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Kevin Walker, and Zhenghan Wang. Their work has been the inspiration for this

lecture.

Abstract

The mathematical problem of localizing modular functors to neigh-
borhoods of points is shown to be closely related to the physical prob-
lem of engineering a local Hamiltonian for a computationally universal
quantum medium. For genus = 0 surfaces, such a local Hamiltonian
is mathematically defined. Braiding defects of this medium imple-
ments a representation associated to the Jones polynomial and this
representation is known to be universal for quantum computation.

1 The Picture Principle

Reality has the habit of intruding on the prodigies of purest thought and
encumbering them with unpleasant embellishments. So it is astonishing when
the chthonian hammer of the engineer resonates precisely to the gossamer
fluttering of theory. Such a moment may soon be at hand in the practice and
theory of quantum computation. The most compelling theoretical question,
“localization,” is yielding an answer which points the way to a solution of

∗Based on lectures prepared for the joint Microsoft/University of Washington cele-
bration of mathematics April 2000 and the AMS meeting on mathematics in the new
millennium UCLA, August 2000.

†Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399
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Quantum Computing’s (QC) most daunting engineering problem: reaching
the accuracy threshold for fault tolerant computation.

After Shor’s discovery [S1] of a polynomial time factoring algorithm in the
quantum model QC, skeptics properly questioned whether a unitary evolu-
tion could ever be induced to process information fault tolerantly. The most
obvious tricks, such as making a backup copy, useful in a dissipative system
(e.g. pencil and paper) are unavailable in quantum mechanics. To overcome
these difficulties, a remarkable theoretical framework based on “stabilizer
codes,” “transversal gates,” “cat-state-ancilli, ” and nested concatenations
of these was erected [S2], [S3], [A,B-O], [K1], and [KLZ]. While the result
is a consistent recipe for fault-tolerant quantum computation, the accuracy
threshold which would allow this combinatorial behemoth to overcome its
own overhead has been estimated as about 10−6, one i.i.d. error per one mil-
lion physical gate operations and requiring gates accurate also to one part in
a million. This places a formidable task before the engineer and physicist.
But within the year the beginnings of a new idea on fault tolerance had been
generated by Kitaev [K2].

While the term is not yet present in that paper the idea is to construct
(first mathematically) a “quantum medium” and to store quantum states
as topological structures within the medium and (eventually) manipulate
these states, that is, apply gates to them, by topological transformations
of the medium. For our purposes, we define a quantum medium as a col-
lection of many finite level systems coupled together by a Hamiltonian H
obeying a strong locality condition: The individual systems are located in
a 2−dimensional lattice or a more irregular cellulation of a surface Σ. We
postulate a constant d > 0 so that H = ΣHk and each Hk = Hk⊗id, where
the identity is on all tensor factors(= subsystem) not located within some
ball Bℓ of diameter d in the lattice. For example, the Heisenberg magnet
with H = −J Σ

a,b = ∂ edge

⇀
σa ⊗

⇀
σb is a quantum medium of diameter = 1. (But

engineer be warned; localizing Hℓ within balls of diameter = d implies n−ary
interaction for n ∼ d2. Controlling effective n−ary terms for n ≥ 2 will be
tricky in the extreme and probably will require enforcing symmetries to can-
cel lower order terms.) Kitaev’s “toric code” [K2] in which quantum states
are stored as first homology of a torus, can be counted as having d = 2; they
require 4−ary interactions.

We study here a partial generalization of the toric code which also stores
quantum information in a degenerate ground state V (Σ) of a quantum medium.
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The medium is on a disk with point-like defects which we treat as punctures.
The dimension of V (Σ), Σ the punctured disk, grows exponentially with the
number of punctures. Transformations of Σ, that is braidings (up to isotopy)
of the punctures in space-time, Σ×R, operate unitarily on V (Σ). Other work
([K2], [P], and [K,B]) also explores the realization of elements of computation
by braiding anyonic “quasi-particles” or “defects” of a quantum medium.

The vision is that stability of computation, at least sufficient to reach the
10−6 threshold for “software” error correction, is to be realized by the dis-
creteness of algebraic topology: two Z2−homology cycles are never “close,”
two words in the braid group are equal or distinct. More exactly, it is ge-
ometry not topology which will confer stability. Working in a lattice model
one may calculate [K2] that the perturbation Hamiltonian P must be raised
to the length scale L before nonzero terms, < ζ |PL|η >, ζ, η ∈ ground state
(H), are encountered and so the splitting of the ground state is estimated
to be proportional to e−Ω(L). The length scale in the previous two examples
are: L = (length of shortest essential cycle); and in the anyonic context, the
closest that two defects are allowed to come to each other during braiding.
The “engineering goal” is to construct a physical quantum medium on a ma-
terial disk whose ground state admits many localized excitations (“anyons”)
whose braidings effect computationally universal unitary transformations of
the ground state. It is further hoped that actual “errors,” the result of un-
wanted noisy excitations, are to be removed automatically by some relaxation
process in which the system is coupled to a cold bath by another much weaker
Hamiltonian H ′. The mathematicians first cut at the engineering goal is to
produce a mathematical quantum medium with these properties and this is
accomplished by the theorem below. This “first cut” is not yet interesting
to experimentalists since the Hamiltonian contains summands which have as
many as 30 nontrivial indices, but it represents an exact existence theorem.
The question for physicist is whether this phase can also be represented per-
turbatively with a simple Hamiltonian, perhaps a RVB model [A], [N,S]. This
would be a major step toward physical realization.

Theorem 1.1. Consider a rectangle R of Euclidian square lattice consisting
of 15 boxes by 30n boxes. Associate a 2−level spin system C2 with each of
the e := 960n+ 36 box edges in R. The disjoint union of these spin systems
has Hilbert space (C2)⊗e =: X. There is a time dependent local Hamiltonian

Ht =
(
Σ
k
Hk,t

)
with fewer than 2000n terms and each Hk having 30 or fewer

indices, supported in at most a 5 × 3 rectangle of boxes - “diameter = 5.”
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For t = 0, the ground states of H0 form a sub-Hilbert space W ⊂ X, and
geometrically determines 3n exceptional points or “defects” spaced out along
the midline of R. Within W there is a “computational” sub-Hilbert space
V ∼= (C2)⊗n, V ⊂ W. W may be identified with the SU(2)−Witten-Chern-
Simons modular functor at level l = r − 2 = 3 of the 3n−punctured disk
with the fundamental representation of SU(2) labeling each of the 3n + 1
boundary components. The Braid group B(3n) of the defects acts unitarily
on W according to the Jones’ representation at level = 5. Any quantum
algorithm can be efficiently simulated on V by restricting the action of B(3n)
to a “computational subspace.”

The representation is implemented adiabatically by gradually deforming
Ht to Ht+1 and then to Ht+2 and so on. The passage from Ht to Ht+1 involves
turning off an exceptional term Hk,t which defines a defect site and turning
on a new term Hk,tH , which determines an alternative, adjacent, site for the
defect at time t + 1. Each braid generator can be implemented in 4(r + 1)
times steps. We believe, based on a conjectural energy gap, that the geometry
confers stability to this implementation which increases exponentially, error
= e−Ω(L), under refinement of the lattice on R by a factor of L, while the
number of time step needed for a computation increases only linearly in L.

Comments 1.2.

• The second paragraph of the theorem should be read as a defensible
physical proposition, whereas the first paragraph is mathematics.

• Our Hamiltonian may be too complicated to prove the persistence of
an energy gap above the ground state in the thermodynamic limit. But
based on an analogy with a simpler system the gap is conjectured and
will be discussed at the end of the proof.

• The passage from the Jones’ representation to computation on V is
the subject of [FLW1] and [FLW2] where it is proved that universality
holds for r = 5 and r ≥ 7. Functorially V is a tensor summand of a
subspace of W but by fixing a reference vector in the complementary
tensor factor we regard V simply as a subspace of W .

• The idea of anyonic computation is taken from [K2] and in a more
speculative form [Fr]. The new ingredient is the implementation of
a computationally complete modular functor by a local Hamiltonian.
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Witten’s approach [Wi] to CSr was Lagrangian and so nonlocal; it yields
an identically zero Hamiltonian under Legendre transform, [FKW] and
[A]. This lecture, in contrast, supplies a Hamiltonian interpretation for
CS5 (We may replace 5 by any r ≥ 7 in the statement at the expense
of scaling the constants in the theorem by r

5
or r2

25
according to whether

they scale as lengths or areas.).

• We know of two works in progress with a similar objective. Kitaev
and Bravyi [K,B] study a local model for the weaker functor CS4 on
high genus surfaces, and Kitaev and Kupperberg [K,K] have an ap-
proach to construct local Hamiltonians generally for modular functors
on surfaces of any genus which (unlike CS5) are quantum doubles [D].
Their approach has the advantage that the local contributions to the
Hamiltonian can be arranged to commute so that an energy gap will be
rigorously established. In contrast, an interesting feature of the present
paper is that topological a combinatorial means yield an exact deter-
mination of a ground state defined by non-commuting terms. This is
not usually possible. Finally, we will see that our local construction
for H extends to the higher genus surfaces if CSr is replaced by any
modular functors of the form V ⊗ V ∗. The simple topological reason
for this may illuminate the analysis of [K,K].

• Shortly, we will give the reader a completely pictorial understanding of
CSr on planar surfaces.

So far, we have only discussed the “engineering”: the quest to specify H
(which will be described in the proof). Let us take a brief digression from
that sulfurous underworld of grinding gears to the Elysian fields of abstract
thought. The Witten-Chern-Simons theory descends from the signature (=
Pontryagin form) in dimension 4 and every step of the desent to lower dimen-
sion leads to deeper abstraction until mathematical wit is well nigh exhausted
as the point (dimension = 0) is reached. To tell this story in its barest outline,
we restrict to G = SU(2), and borrow from Atiyah [A], Freed [F], and Walker
[W]. The signature of a closed 4−manifold is an integer as is the Pontryagin
class of an SU(2) bundle over a closed 4−manifold. An SU(2)−bundle over
a closed 3−manifold is topologically trivial but if endowed with a connection
acquires a secondary “ Chern-Simons” class in the circle = R/Z. Quantizing
[Wi] at level l, leads to the topological Jones-Witten-Chern-Simons invari-
ant ∈ C which is morally an average of the classical Chern-Simons invariant
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over all connections. The invariant for a closed surface Σ (with some addi-
tional structure) is a finite dimensional vector space V ; and each 3−manifold
bounding Σ determines a vector v ∈ V . Before dividing by gauge symmetry,
the vector space V is the infinite dimensional space of sections of the asso-
ciated complex line bundle to a natural S1−bundle over the space of SU(2)
connections A on SU(2) bundles over Σ. A 3−manifold Y with connection,
A, on a bundle extending the bundle over the boundary, ∂(Y,A) = (Σ, A),
determines a map f{(Y ′, A′)|∂(Y ′, A′) = (Σ, A)} −→ S1 by integrating the
Chern-Simons form over Y ∪−Y ′. The consistent choices for such functionals
constitute the total space of this “natural” S1−bundle. In general, a map
f is “consistent” if it obeys the additivity properties of the Chern-Simons
integral: f(Y ′) − f(Y ′′) = C.S.(Y ′ ∪ −Y ′′). Symplectic reduction followed
by quantization as explained in [A] produces a finite dimensional V from V
with v(Y ) ∈ V depending only on the topology of Y . The definition of the
Witten-Chern-Simons invariant for a surface with boundary is a collection of
vector spaces indexed by certain labelings. For a 1−manifold the invariant
seems to be a certain type of “2−category” while the correct definition for
a point is but dimly perceived and the object of current research. Several
authors assert that it is unnecessary to finish the progression, that we can
be content with a theory whose smallest building blocks are “pairs of pants”
(three-punctured- spheres). The invariant for these while technically a vec-
tor in a 2−vector space is easily understood in terms of sets of vector spaces
parameterized by “labelings” of the boundary circles so no unusual categor-
ical abstractions need be mastered. The reason for this assertion is that
using a handle body decomposition all closed 3−manifold invariants can be
calculated from gluing along surfaces with smooth boundary; gluings along
faces with corners on the boundary, which one would encounter computing
from a cellulation, can be avoided. But the Freed-Walker program rejects
this advice on two grounds. First localizing V (Σ) not merely to “pants,”
but to cells (i.e. neighborhoods of points) may give more natural consistency
conditions, to replace the 14 consistency equations of [W]; which in turn
could eventually lead to classification of modular functors and a conceptual
understanding. Second, to paraphrase Edmund Hillary, we should localize to
points “because they are there.”

The hyperbole of the first paragraph can now be made sound. CS5 is
a universal model for quantum computation and for the physicist/engineer
to implement it, a local Hamiltonian H must be described. For the pure
mathematician to be satisfied with his understanding of CS5 it must be
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localized to points. The two objectives are certainly similar in spirit and
possibly identical. To clarify the connection, we introduce an intermediate
concept, undoubtedly plebeian, but dear to a topologist. We would like when
possible to describe a vector in a modular functor as a linear combinations
of “admissible” pictures up to “equivalence.” This, after all, is exactly how
we understand homology: v ∈ H1(Σ, Z2) is an equivalence class of admissible
pictures. To be admissible the picture must be a closed 1−manifold, the
equivalence relation is bordism. Both “1−manifold-ness” and “bordism” can
be defined by local conditions which are the combinatorial analogs of “closed”
and “co-closed” familiar from de Rham’s theory of differential forms. In
Kitaev’s toric code these condition are imposed by vertex and face operators
Av and Bf respectively. There is a subtle shift here from the usual way
of thinking of homology as equivalence classes of cycles to the “harmonic”
representative which is merely the equally weighted average of all cycles in
the homology class. In this way quotients and equivalence classes are never
encountered and homology is located within cycles, within chains, just as a
C.S.S. code space is located within the fixed space of stabilizers built from
products of σz’s and further within the fixed space of stabilizers, Πσx’s.

To generalize from homology, we should think of a picture as (linear
combinations of) anything we can draw on a surface Σ. If helpful, we al-
low various colors and/or notational labels, framing fields, etc. . . , and even
additional dimensions bundled over Σ. But in the present case no such em-
bellishments are required. What is important that if we move the surface
by a diffeomorphism, the picture should also move and move canonically.
Thus if Σ is a torus it would not suite our purposes to draw the picture of
v ∈ V (Σ) in a solid torus T , ∂T = Σ: a meridial Dehn twist on Σ extends
over T , twisting the picture, but a longitudinal Dehn twist does not have
any obvious way to act on a picture drawn in T . (To anticipate, a modular
functor will have an S−matrix which can transform a picture in one (call
it the “inside”) solid torus to a picture in the dual (“outside”) solid torus
where longitudinal a Dehn twist does act. But resorting to the S−matrix
does not solve our problem since its input and output pictures are on a scale
of the injectivity radius of the surfaces and hence nonlocal.) We demand
that “admissibility” and “equivalence” of pictures be locally determined, i.e.
decided on the basis of restriction to small patches on Σ. To make the con-
nection with lattice models, we consider Σ discretized as a cell complex; the
conditions must span only clumps of cells of constant combinatorial diameter.
As in the example of harmonic 1−cycles, “equivalence” is a slight misnomer:
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what we impose instead are invariance condition on the (linear combinations
of) admissible pictures representing any fixed v ∈ V which ensure that the
stabilized vectors are in fact equally weighted superpositions of all admissible
pictures representing v.

Now consider the question, perhaps the first question a geometric topol-
ogist should ask about a modular functor V (Σ); Can you draw a (local)
picture of it on Σ so that the mapping class group of Σ acts on V (Σ) by the
obvious induced action on pictures?

We should not expect it to be easy to discover the local rules for the
pictures associated to a given modular functor V and in fact they may not
exist in much generality. Recall that a three manifold Y bounding Σ, ∂Y =
Σ determines a vector v(Y ) ∈ V (Σ) so we might think of our proposed
picture P

(
v(Y )

)
drawn on Σ as some ghostly recollection of Y . The present

understanding of modular functors is closely related to surgery formulas on
links, but to think in this way we must choose a “base point” 3−manifold Y0

with ∂Y0 = Σ to hold the links. This choice seems to create an asymmetry
which should not be present in P

(
v(Y )

)
. Thus for a pictorial representation

of V which is derived from surgery, we expect only part of the mapping group
− that part extending over Y0 − will act locally. To localize V, this problem
must be overcome.

Let us propose a meta theorem or “principle” that solving the “picture
problem,” which we call “combinatorial localization,” should imply both the
Freed-Walker program, which we call “algebraic localization” and the design
problem for the Hamiltonian H which we call “physical localization.”

combinatorial localization
(pictures)

algebraic localization
(3-catergories)

physical localization
(H)

Picture Principle


Figure 1
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The solid arrow is asserted with some confidence at least as a mathemat-
ical statement; the dotted arrow is speculative. While the solid arrow seems
unlikely to have a literal converse: ground states of even simple Hamiltoni-
ans in dimension ≥ 2 are too complicated to draw pictures of; conceivably
the dotted arrow might be an equivalence constituting a culmination of the
Freed-Walker program.

2 Combinatorial localization of CS5 on marked

disks, and the proof of the theorem.

We show how to represent CS5 (and by extension all CSr) on a disk with
marked points by local pictures. Since the representation of quantum com-
puting within CS5 [FLW] only used the braid group acting on a disk with
marked points, this partial solution to the combinatorial localization problem
will suffice to prove the theorem (once we have explained the solid arrow in
figure 1).

For any r ≥ 2, CSr has a combinatorial localization on any cellulated disk
with marked labeled points, (labels ǫ{0, 1, . . . , r−2} lie on the marked points
and disk boundary) provided the cellulation has bounded combinatorics and
the marked points stay sufficiently far from each other and the boundary.
For a concrete statement, let us take the cellulated disk to be a rectangle
R with a square Euclidean cellulation. We suppose that all marked points
are at least r lattice spacings from the boundary and 9 r from each other.
The marked points and ∂R are all assigned the label 1 (the irreducible 2
dimensional representation of sl(2,C)q). In this circumstances it is easy to
build a trivalent “r−collared rooted tree” Tr for the disk with marked points
as shown in figure 2.

r

root

Figure 2
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All straight segments of the tree are to be more than 3r lattice bonds in
length; the root is on ∂R and the leaves are the marked points. The r−collard
condition is that an ⌈ r

2
⌉ relative regular neighborhood N(T ) of lattice cells -

the region within the dashed line - should be imbedded in R.
The box counts in the statement of the theorem are designed to permit

a (discontinuous) family of Tr’s to be found for at all times during braiding.
We say that the boxing of R is roomy relative to the location of the marked
points if it has this property. The key Lemma 2.1 will show that for roomy
boxing that two discrete pictures, which we regard as smoothly equivalent
are in fact combinatorially equivalent. More precisely, the infinity of smooth
averaging operators acting on the space of combinatorial pictures has exactly
the same joint fixed set as a finite subset of combinatorial operators.

Let us begin with a geometric interpretation of CS5(Σ) =: V (Σ). For
a closed surfaces Σ it is implicit in [K,L]. Let Σ bound a handle body H .
A general 3−manifold Y with boundary Σ can now be represented as a
“blackboard framed” surgery diagram in H . The special cabling morphism
w of the Temperley-Lieb category (See chapter 12 [K,L] or [R,T]) when com-
posed into the surgery diagram yields a linear combinations of 1− manifolds,
each labeled by “1”. We may write H as a planar surface cross interval,
H ∼= Σ × I, so that Σ = Σ ∪∂ −Σ , where −Σ denotes Σ with its orienta-
tion reversed. Now projecting these 1−manifolds to Σ , we see a linear com-
bination of immersed 1−labeled 1−manifolds with overcrossings indicated
at double points. This pictures determines the vector v(Y ). The Kauffman
relations at a root of unity, in our case e2πi/5, allow extensive simplification
of these pictures via the recoupling formalism. In fact each v ∈ V can be en-
coded as a labeling of a fixed (framed, imbedded, and vertex planar) trivalent
graph, which is a spine for a Σ .

It is an important observation of Walker’s (personal communication) and
Gelca’s [G] that this description can be extended to labeled surfaces with
boundary. (Verification follows directly from the gluing axiom.) In the case
of a disk with n marked points (D, n) - treating marked points as crushed

boundary components - the modular functor with n + 1 labels
⇀

ℓ , V⇀

ℓ
(D, n)

has as its basis q−admissible labelings with boundary condition on a fixed
trivalent tree imbedded in D, rooted on ∂D, with leaves on the marked
points. The boundary condition is that the label on the root is the label
given on ∂D2 and each leaf has the label associated to its marked point. As
in [FLW], we only need consider the case where all labels = 1.
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The (framed) braid group acts on the labeled tree T via its imbedding in
the disk. To see the induced action on V (D, n) (we drop labeling subscripts),
perturb the imbedding of T (rel its endpoints) by pushing it downward into
a three ball D × [0,−1], where we think of D identified with D × 0. Now
implement any desired braid b as a diffeormorphism of D × [0,−ǫ] where
ǫ > 0 is small with respect to the previous push. Viewed from above, b(T )
has overcrossings but the recoupling (6j) rules (and isotopies) allow b(T ) to
be described in the original basis of q−admissible labelings on T (with root
and leaves still carrying the label 1). For example the simplest Kauffman
relations, on strands of b(T ) labeled by “1” read:

= eπi/10)(e−πi/10 and © = eπi/5 + e−πi/5 =: d.

A detailed example: the effect of a single braid generator, is given immedi-
ately following the statement of Lemma 2.1 to elucidate the recoupling of
braids.

There is a topological observation inherent in inducing the braid action
on V (D, n). By capping off, any diffeomorphism of a planar surface extends
to the two sphere and can be extended further to a diffeomorphism of the
3−ball B3. The action on V comes from projecting this topological extension
acting on labeled trivalent trees back into the original planar surface (after
crushing the inner boundary components to points). In fact, it is the cor-
respondence between 3−manifolds and diagrams which proves that we have
correctly specified the action on the functor, for we have v(fY ) = f∗v(Y )
where f |∂Y =Σ = f . Generally, when a surfaces Σ has genus > 0 there will
be no way of including it in the boundary of a 3−manifold M so that all
diffeomorphisms of Σ extend over Y . However it is a triviality that any dif-
feomorphism of Σ extends over Σ × I by product with idI . Now let this
extension act on the appropriate equivalence classes of framed q−admissibly
labeled trivalent graphs imbedded in Σ × I projected back into Σ to define
the action on any SU(N)−level = r modular functor V . Thus the “doubled”
functor V (Σ) ⊗ V ∗(Σ) = V (Σ ∐ Σ) = V

(
∂(Σ × I)

)
has a combinatorial lo-

calization, i.e. is describable by local pictures. This may have some relation
to unpublished work of Kitaev and Kupperberg (private communication) on
local descriptions for Drinfeld doubles.

We set aside for later study the problem of devising combinatorial local
rules for the necessary elementary equivalences of such trees T : 6j−moves,
ribbon equivalence, vertex half-twist equivalence, and regular homotopy.
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One would hope to define a quantum medium for CS5 of individual
systems with levels to record labels 0, 1, 2, 3 (and possible additional lev-
els to store other information) and terms Hk with at most 6 indices (as in
a 6j−symbol) corresponding to these elementary equivalences. While this
count seems correct in the smooth setting, there the crude Hilbert space is
infinite dimensional which may create new difficulties. We have not been
able to find a discrete setting in which all the equivalences are expressed
efficiently. For the purpose of this lecture, we stay with discrete models for
quantum media built from 2−level systems, but to do this we accept terms
Hk with up to 30 indices.

The fundamental 2−dimensional representation of SU(2) generates SU(2)’s
complex representation ring and as a result recoupling theory achieves a very
simple result: an element v ∈ V (D, n) is a linear combination of imbedded
1−manifolds each labeled by “1”, i.e. the standard 2−dimensional repre-
sentation and given the boundary condition: each 1−manifold of the linear
combination meets each marked point (and ∂D) once. Thus “manifoldness”
and the “boundary condition” define admissibility for our picture. this makes
good sense combinatorically in the lattice ofR, as well as, smoothly. We point
out that our notion of 1−manifold is strict: at each vertex 0 or 2 edges (not
4) should be occupied.

It is time to define the local equivalence moves between pictures. We are
working within the Temperley-Lieb category modulo the relation that the
(r − 1)th = 4th Jones-Wenzl projector is trivial. This is our most interesting
relation. As a smooth equivalence relation this has only one form but combi-
natorially, we need to impose two versions of it according to how the output

endpoints are grouped. We denote these by and . The second picture

stands for : in conventional projector notation ([K,L]).
A second relation says that removing a circle which bounds a disk free

from punctures multiples the diagram by the scalar 1
d
, d = eπi/5 + e−πi/5.

A third relation replaces the undercrossing that arise through braiding with
legitimate morphisms if the category. In terms of smooth pictures, the rela-
tion replaces the “virtual” uncrossing in the middle diagram with a two term
sum:
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  −π i/10e

    π i/10e

left moving strand

skip over

Figure 3

The middle picture is “ virtual”; it is not actually an admissible picture
to be assigned a weight. This relation requires a little care and lattice space
to discretize since we do not want to permit the intermediate picture:

Figure 4

which would represent the wrong boundary data at the indicated defect.
Recall that each defect is labeled by 1 representing the 2−dimensional irre-
ducible representation of sl(2,C)q which is recorded by a single line leaving
the defect.

Finally, a fourth class of equivalence permits isotopy. Again the reader
should note that enough neighboring sites should be observed by the ap-
propriate Hk to preserve imbeddedness. For example, cases 1 and 2 are
allowable, case 3 is not.
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case 1 case 2

case 3


Figure 5

There will be isotopy relations for arc endpoints as well. For example,
in cases 1 and 2 of Figure 3 imagine the open circle filled to become an end
point and the shorter of the two line segments meeting it deleted. Morally,
we should define operators Hk which enforce the average of the initial I and
final F configuration of cases 1 and 2. However there is a detail, to get the
overall phase correct, and not settle for merely a projective representation,
we must fix a base point direction: say the positive ray emanating from each
endpoint at 45 degrees and find positive semidefinite Hk’s which assign zero
norm to 1√

2
(I1−e−πi/10F1) and 1√

2
[I2−F2] in cases 1 and 2 respectively. These

operators correspond to asserting equivalences: I1 ∼ −e−πi/10F1 and I2 ∼ F2.
The general rule is that a state obtained by clockwise (counterclockwise)
isotopy through the base point direction must be adjusted by the phase
+(−)eiπ/2r before being averaged. Similarly there is an isotopy relation for
the arc end point on the boundary circle of the disk D. Here some point on
the boundary is chosen an phase is adjusted by −(+)eiπ/2r as this point is
crossed clockwise (counterclockwise).

Let us return to the raltions = 0 = . Combinatorically the first
may be written out with the left hand side a 3× 3 lattice square foliated by
parallel straight lines (of label = 1). Wenzl’s [We], recursion formula, yields
an identity equating 4 parallel lines with a linear combination of 13 “smaller”

terms each containing “turn arounds.” The form of the relation is shown
below:
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Figure 6.0

In its other incarnation, the 4th Jones-Wenzl’s projector relation = 0
looks like this:

=

(
+

a

a

a

(
+

+
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a
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0
++
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0

a

a
5

0

(a

a
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Figure 6.1

The coefficients ai are rational functors of d which can be computed from
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the Wenzl’s recursion relation for projectors (see pg. 18 [K, L] or [We]).
Figure 6.0 is merely the lattice counterpart of the more familiar smooth
relation, Figure 6.0′, which may be applied within any diagram (at r = 5)
whenever four 1− labeled lines are found running parallel. Obviously Figure
6.1 also has a smooth counterpart.
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+

(( +

+ (a + +


(


+ (+ + +

(

aa

+
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4 6
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a5
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Figure 6.0′

The admissibility conditions and the above four classes of “equivalences”
must be rewritten as operators Ai and Bj respectively; collectively denoted
Hk. Let G denote the ground state of the soon-to-be-defined Hamiltonian
H = Σ

k
Hk. Let V denote the CSr modular functor of the disk with 3nmarked

points and all labels = 1. Via recoupling, we may describe V in the fashion
of homology. Set P = C [admissible pictures] and write: V = Vs = P/ ∼s,
where ∼s is the smooth-category equivalence relation corresponding to our
four combinatorical equivalences: ∼c. Lemma 2.1 will prove that under
the “roomy hypothesis” ∼s and ∼c induce identical equivalence classes of
admissible pictures (which of course are combinatorial objects). So we may
also write V = Vc = P/ ∼c. Our goal is to tailor H so that the ground states
g ∈ G correspond bijectively to linear functionals φ : V −→ C under the
map φ 7−→ Σ

p∈
admissible pictures

φ(p)(p). This will identify G with V ∗, but since V

has a canonical nonsingular Hermitian inner product
(
[Wi] and [K,L]

)
this

also gives an isomorphism G ∼= V .
The inner product < p1, p2 > is defined on pictures by imbedding the

disk D into the (x, y)−plane, deforming p1 upward rel endpoints and p2

downward rel endpoints. The union of the deformed pictures p̃1 ∪ p̃2 is a
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(vertically framed) link in R3 and it Kauffman bracket is < p1, p2 >. Note
that the vertical framing is singular where p1 and p2 share a common lattice
bonds meeting ∂p1 and ∂p2; here the convention is to bend such bonds of p2

slightly clockwise at the endpoints internal to D and counterclockwise at an
endpoint on ∂D.

The definition of the Ai operators is quite obvious. Consider, a ver-
tex v in the interior of R. A Hermitian Av with 4 indices whose ground
state is spanned by classical states of valence 0 or 2 at v is said to enforce
“1−manifoldness” at v. Clearly the ground state of Av has dimension 7.
To enforce, instead, a “defect” or marked point labeled by the fundamental
representation, “1” of SU(2), we would use instead a Hermitian operator A′

v

with ground state spanned by the four classical states of valence = 1 at v.
Turning now to “relations” Bj consider a box b of R centered in a 3 × 3

square of boxes:

b

Figure 7

there are 12 nonboundary edges {e} (shown in bold). If {c’s} are the
nonempty (classical) manifold configuration of these edges, i.e. valence ∈
{0, 2} at each of the four internal vertices, and iff c0 and c1 = c0 xor ∂b ∈
{c’s}, set d = 1√

2
(c0 − c1) and let {d} be the set of such vectors. Let

Bb = Σ
dǫ{d}

|d >< d| be the Hermitian operator with 12 indices on (C2)⊗{e}

whose ground state is orthogonal to span {d}. Bb is the operator which
“allows isotopy across b.”

To remove circles which bound disks we need, in the presence of iso-
topy, only introduce operators which deletes a box. This operator may
be written as |θ >< θ| where θ is a unit vector proportional to |box >
+

(
eπi/5 + e−πi/5

)
|φ >.

We postpone the definition of the operator corresponding to figures 3 and
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4 since this must involve the dynamics “t” of Ht. Some trick is needed to
avoided adding new levels to our system to encode “crossings.”

The projector corresponding to , Figure 6.0, requires a 24−index op-
erator acting on a 3 × 3 grid of edges or “box” B whose 1− dimensional
excited state is spanned by the vector obtained by putting all fourteen term
in Figure 6.0 on the left hand side of the equation. Similarly the projector

corresponding to , Figure 6.1 is a 30 index operator acting on the bonds
of a region the shape of l.h.s. in Figure 6.1. This “nobby box” B′ is a 2 × 5
rectangle union an additional small box in the middle of one of the long sides.

Now we turn to the dynamics. Almost all conditions Hk that combine to
yield H are permanent, only the end point operators A′

v should change as we
execute braiding. Because of the technical problem illustrated in figure 4; any
lattice resolution into a superposition of two 1−manifolds as in figure 3 may
cause collision with other strands. One way to deal with this problem is to
locate the marked points on a second lattice L′ consisting of the mid points of
the edges in the original Lattice L of boxes in R. This means that we have to
add additional 2−index A operators holding equal the two classical states on
both halves of the original edges, i.e. ground state (A) = (| 00 >, |11 >), and
that the end point operators A′

w actually occur (with 2−dimensional ground
states) on the finer lattice L′, wǫL′. The dynamics consists of moving an
endpoint diagonally on L′, i.e. translating one unit horizontally or vertically
in the structure of L. In Figure 8 the endpoint w is moved horizontally to
w′ by replacing: {A′

w, Aw′} with {Aw, A
′
w′}. If w and w′ are immediately

adjacent in L the operator swap will cause the end point to travel around a
corner.

w' 'ww w




Figure 8
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This operator swap can be performed gradually by slowly turning the
appropriate terms on or off. If the adiabatic theory is applicable, and follow-
ing the proof of Lemma 2.1 we discuss the heuristics for an energy gap (in
the theromdynamic limit) for the family Ht, ψt will be carried to a unique
ground state ψt of Ht+1. This ground as a functional on pictures is identical
to ψt provided pictures are identified according to the obvious isotopy rules
(and phase rules at endpoints). If the lattice is refined by a linear factor
L, tunneling to an undesired orthogonal ground state ψ′

t+1 should, by ar-
guments analogous to those for the stability of homology classes [K2], have
amplitudes scaling like ǫ(L) = e−Ω(L). The mathematical description for
adiabatic evolution of the system is via the natural connection A on the tau-
tological bundle over the complex Grassmannian X: The time evolution of
G := {ground states (Ht)} defines a path in X and A−transport covers this
motion with a unitary (i.e.isometric) identification G0 ≡ Gt, for all t ≥ 0.
After a braiding b is completed at time t = T , the self-identification G0 ≡ GT

is the representation of the braid b.
A ground state g ∈ G ⊂ P defines a functional g∗ on P via orthogonal

projection. The {Bj} have been chosen to correspond to ∼c precisely so that
a unique extension φ exists:

P
g

Vc

C
*

f



and φ satisfies g = Σφ(p)(p). Conversely given a functional φ on Vc the g
associated to φ by the formula above lies in the null space of each Bj , so in
fact G = V ∗

c .
The important remaining point is to see that after braiding, when the

marked points have been returned to there original sites set-wise, that the
induced transformation on the ground state is precisely, up to error ≈ ǫ(L),
the unitary CS5 representation originally introduced by Jones [J] and stud-
ied in [FLW]. But this follows from the recoupling theory as presented in
[K,L] provided we show that the combinatorial relations that we have im-
posed through Hermitian operators {Bj} in fact are sufficient to span all the
relations implied by the infinitely many smooth relations between pictures,
that is Vs = Vc. For this the following lemma suffices.

Lemma 2.1. Let ρ = Σ
i
aipi be a linear relation between admissible combi-
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natorial pictures in (R, {3n}) which holds under ∼s, the smooth recoupling
theory associated to CSr. Provided that the configuration {3n} ⊂ R is roomy
in the rectangle R, the same relation already holds under ∼c.

Before proving the lemma let us carry out a simple calculation to get a
feel for how the action of braiding is computed via recoupling theory. If the
reader wishes to try more complicated examples, the formulas on pages 93-
100 of [K,L] are helpful. Here we compute the effect of a braid generator on a
vector ψ◦ ∈ V :=CS5 (3−punctured disk) where each boundary component
has label= 1 ( the 2−dimensional representation of sl(2,C)q) and to account
for phase each boundary has a marked base point.

ψ′
◦ is the diagram: ,

which as a labeled tree is:

ψ′
◦ =

1 1 1 1 

0

Let b be the counterclockwise braided of the right most pair of punctures.
Then bψ′

◦ is represented by:

=
“virtual picture”

=

(∗) A + A−1 , where A = e2πi/10.

Now
2

is our notation for the Jones-Wenzl idempotentent
2

=
1√

d2−1

(
− 1

d
⊃⊂

)
where d = −A2 − A−2 and, as usual, the open ends in

the above diagrams can be interpreted as permitting arbitrary (but constant)
extension to the outside. Note: the orthogonality relations

• < 1
d
⊃⊂, 1

d
⊃⊂>= 1

d2 = 1

• < 1√
d2−1

(
− 1

d
⊃⊂

)
, 1√

d2−1

(
− 1

d
⊃⊂

)
>=

1
d2−1

(
− 2

d
+ 1

d2

)
= 1

d2−1

(
d2 − 2

d
d+ 1

d2d
2
)

= 1, and
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• < 1√
d2−1

(
− 1

d
⊃⊂

)
, 1

d
⊃ ⊂>= 1

d
√

d2−1

(
− 1

d

)
=

1
d
√

d2−1

(
d− 1

d
d2

)
= 0

Normalizing, ψ◦ = 1
d
ψ′

t is a unit vector, < ψ◦, ψ◦ >= 1.

From the definition of
2

we have: =
√
d2 − 1

2 − 1
d
⊃⊂. So

we use this to expand the two parallel lines in the second term of (∗) to get:

bψ◦ =Aψ◦ +
A−1

d







=Aψ◦ +
A−1

d



√
d2 − 1

2

+
1

d



 (∗∗)

=Aψ◦ +

√
d2 − 1

d
A−1ψ2 +

A−1

d
ψ◦

where ψ2 :=
2

,

=

(
A+

A−1

d

)
ψ◦ +

√
d2 − 1

d
A−1ψ2

As a check on unitarity note that under the sequelinear pairing,

< bψ◦, bψ◦ >=

(
A +

A−1

d

) (
A−1 +

A

d

)
+

(√
d2 − 1

d
A−1

√
d2 − 1

d
A

)

=1 +
A2 + A−2

d
+

1

d2
+
d2 − 1

d2
= 1

Proof of Lemma 2.1. The argument is based on the Birkhoff curve short-
ening principle where by a family of imbedded arcs and circles can be “pulled
tight” to a shorter geodesic position without crossings developing. We work
combinatorically. By the “roomy hypothesis” there is an r−collared tree
T := Tr ⊂ R. Assign a positive weight w(β) to each bond β (or 1−cell) of
the cellutation of R so that w grows rapidly with distance to T : as a good
first approximation, we may take w(β) = 10#(β) where #(β) =minimum
number of bonds joining β to T . Now for any (classical) picture pi define its
length L(pi) = Σ

βǫpi

w(β). Permitting combinatorial isotopy (rel the marked

points) and the removal of small circles, but not the undercrossing, , or
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relations, we may pull pi tight by local moves to equivalent pictures (up to
a scalar) which steadily reduce L(pi) until a local minimum is reached. Call
this step “pull tight”. Because of our weight function w, the new pi will try
to lie mainly in a small neighborhood of T , and only occupancy of the bonds
close to T will force parts of the picture to lie farther away. Also the picture,
seeking to occupy the bonds near T efficiently will have its strands running
parallel to T in (r−2)×(r−2) lattice blocks β a thwart the middle r−bonds
of each of the distinguished length 3r segments of T . Also at the trivalent
vertices of T near which sufficiently many strands pass, we would like to see
copies of l.h.s. Figure 6.1. This will be true up to a small isotopy (across
a few boxes) and can be made true on the nose by modifying the weight
function w by adding a small term proportional to the distance from each

trivalent vertex out to a distance r from that vertex. Now apply at some

site in a B or at some site B′ if the opportunity presents. This breaks
pi into Σ

j
bijqij and for all j, L(qij) < L(pi). Pull tight again to remove the

slack created by the “turn arounds” in Figure 6.0 or 6.1. Alternate pulling

tight with applications of or until no further reductions in length can
be made in this way. Call this cycle “pull and cut”. With a slight abuse
of notation let qij denote one of the terminal classical states of this process.
Now allow a single “under crossing” move (Figure 3) to further reduce L(qij)
if such a move is available. Now alternated the “pull and cut” cycle with
single under crossing moves until no daughter picture (still denote qij) can
have its length reduced by further iteration of this process.

Manifestly, all the daughter pictures qij now lie in N(T ) and pass through
all boxes B parallel to T and with 3 or few strands and pass through each
B′ in a standard way according to some admissible triple as explained below.
Note that (3, 3, 2) is not admissible. At this point it is simple to formally
reorganize the term of this sum Σ

ij
bij , qij as ΣcℓTℓ where Tℓ is an admissible

labeling of T . As explained in [K,L], the leaves and root T of t are always
labeled by 1 (this is our choice) and the admissibility condition says that
other edges (i.e. components of the intrinsic 1−skeleton of T ) are labeled by
a, b, c, d, . . . taken from {0, 1, 2, . . . , r− 2} so that at each trivalent vertex of
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T the following relations hold on the triple of incident labels a, b, and c:

a ≤ b+ c

b ≤ c+ a

c ≤ a + b

a + b+ c ≡ 0 (mod 2), and

a + b+ c < 2(r − 1) = 8.

An admissible labeling Tℓ is interpreted as a linear combination of pictures
by replacing each edge with the Jones-Wenzl projector corresponding to its
label. The set of admissible labeled trees {Tℓ} is an orthogonal basis for the
modular functor Vs(R, {3n}), defined topologically using the smooth equiva-
lence relation. (The subscript s is to emphasis that the smooth relations are
used in this definition; of course Vs = V .)

Because of the assumed p = Σ
i,j
bij , qij = 0 ∈ Vs(R, {3n}), cℓ = 0 for all

admissible ℓ. But each qij is an imbedded arc pairing x of the {leaves ∪ root}
in N(T ) satisfying the additional admissibility restriction at each trivalent
vertex of T . Such pairings are an alternative (though not orthogonal) basis
for the modular functor V (R, {3n}) so collected in this basis we have for each
pairing type x, we have Σ bxij , q

x
ij = 0 where

bxij = bij if qij has type = x

= 0 if qij has type 6= x.

But all qij of a fixed type are clearly combinatorally equivalent (∼c). Thus
we have found a combinatorial path through applications of (∼c) from p to
the empty picture, or more precisely to a sum of zero times various pictures.
�

Unlike [K2] the individual summands of H do not commute. The ground
states of H has been computed topologically, however the spectrum spec(H)
is less accessible. The most important question is the existence of an energy
gap above the ground state which is constant under lattice refinement, L −→
∞, i.e. in the thermodynamic limit. The following heuristics motivate the
conjectured energy gap.

In finite classical systems such as random walk on a graph diffusion time
is well known to scale inversely with the spectral gap of the Laplacian. Simi-
larly, in some simple quantum mechanical systems where exact calculation is
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possible, the energy gap scales inversely to the diffusion time between clas-
sical states. In [K2] where direct calculation yields an energy gap above the
ground state, the classical states are cycles and the “diffusion” is through
elementary bordisms. Since we have set up our ground state to be analogous
to homology: G ∼= P/ ∼c with pictures playing the role of cycles and our
{Bj} playing the role of bordisms we expect similar diffusion properties and
hence an energy gap. In lemma 2.1 the proof shows that equivalent pictures
p1 and p2 are connected by a “path” γ of deformations (“down” from p1 to a
neighborhood of Tr and then back up to p2). Rapid diffusion corresponds to
observing that there are a plethora of such paths and in fact the procedure
for finding γ is highly under determined. More difficult would be a rigor-
ous implication between diffusion and spec(H). Extending the analogy with
[K2], in both cases when the lattice is refined by a factor of L, a sequence of
O(L) local operators is required to transform between a pair of orthogonal
ground states. So given the existence of an energy gap, the Hamiltonian H
will be stable to order O(L) in perturbation theory; formally corresponds
to tunneling amplitudes between orthogonal ground states which scale like
e−Ω(L).

There are several important open questions. The first is a rigorous treat-
ment of the energy gap, but this is probably too difficult in the present
model. Another is how to deal with errors in the form of actual rather than
“virtual” excitation which have already been discussed in the context of tun-
neling. Can a coupling to a could bath repair such errors or are more active
measures required? For example, can broken endpoint pairs of a 1−manifold
find each other and cancel through some imposed attraction (as suggested by
Dan Gottesman in conversations) or merely through random walk? Nearby
error pairs may be more serious in CS5 than in the toric codes since isotopy
class not just homology needs to be preserved; the wrong reconnection pair-
ing would result in an unrecoverable error. To make this unlikely, should
additional terms be included into our Hamiltonian H which could force dis-
tinct strands to be widely separated? This would put more weight on the
simpler pictures, which are the ones that the quantum medium can most
easily correct if damaged.

Kitaev’s very general notion of quantum media with its several antecedents
in the study of quantum statistical mechanics looks likely to become a cen-
tral object of study shared between theoretical physics, solid state physics,
and topology. The main disappointment of the present investigation is the
complexity of the local Hamiltonian H used to construct stable universal
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topological quantum computation. One sees no easy road to radically sim-
plifying it and still obtaining an exact description of CS5. However another
path may be open. In our discussions, Kitaev has suggested (also see page 46
[P]) that simpler lattice Hamiltonians may renormalize in the scaling limit
to topological modular functors. Perhaps the most interesting topological
theories, such as CS5, because of their simplicity will have large “basins of
attraction” under renormalization and that identifiable universality classes of
quantum media may not only exist mathematically but may even lie within
the reach of engineers.
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