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ABSTRACT

Cellulations of the projective plane RP 2 define single qubit topological quantum error
correcting codes since there is a unique essential cycle in H1(RP 2; Z2). We construct three
of the smallest such codes, show they are inequivalent, and identify one of them as Shor’s
original 9 qubit repetition code. We observe that Shor’s code can be constructed in a
planar domain and generalize to planar constructions of higher genus codes for multiple
qubits.
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Kitaev has constructed a class of quantum error correcting codes using qubits ar-
ranged on the edges of square lattices embedded in the two dimensional torus [1]. While
these toric codes are not particularly efficient—they do not come close to saturating the
quantum Hamming bound [2]—they are nevertheless interesting for several reasons: Toric
codes have local stabilizers, which means that the code subspace can be identified as the
(degenerate) ground state subspace of a local Hamiltonian; thus there would be some level
of automatic error correction in such a quantum system. Furthermore, fault-tolerant quan-
tum computation can be performed using elementary excitations of the Hamiltonian [3];
universal quantum computation is possible if the qubits (lying in C

2 = C
Z2) are replaced

in the model with states in C
60 = C

A5 [4].

Kitaev also remarks that cellulations with |E| edges of genus g compact orientable
surfaces generally encode 2g qubits using |E| qubits [3]. The toric codes, for example,
encode 2 qubits. In this note we observe that, as is the case for percolation, there is
something to be learned from studying the problem on the projective plane RP 2 [5]. Since
there is a unique essential cycle in H1(RP 2; Z2), cellulations of RP 2 encode a single qubit.
Here we consider the smallest such quantum error correcting codes and compare them with
single qubit codes obtained otherwise.

We begin by reviewing the construction of (two dimensional) topological quantum
error correcting codes. A cellulation C of a surface defines sets F , E and V of faces, edges
and vertices, respectively. For each face f ∈ F , let Ef ⊂ E be the set of edges in the
boundary of f ; define (our construction is dual to Kitaev’s [1], but equivalent)

Af :=
⊗

e∈E

σ
δ(e∈Ef )
x . (1)

Similarly, for each vertex v ∈ V , let Ev ⊂ E be the set of edges in whose boundary v lies;
define

Bv :=
⊗

e∈E

σδ(e∈Ev)
z . (2)

Here σx and σz are the usual Pauli matrices

σx =

(

0 1
1 0

)

and σz =

(

1 0
0 −1

)

,

the exponents in equations (1) and (2) are 1(0) according to the truth(falsity) of the
argument of δ(·), and the stabilizer operators Af and Bv act on the Hilbert space H =
(C2)⊗|E| with qubit tensor factors labelled by the edges of the cellulation. These stabilizer
operators form an overcomplete set of generators for the stabilizer group; there are two
relations:

∏

f

Af = id =
∏

v

Bv. (3)

As usual, let 0 and 1 denote the eigenvectors of σz with eigenvalues 1 and −1, respec-
tively. The 2|E| configurations of 0s and 1s on the edges of C form a basis for H. There
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is a natural bijection between this basis and the set of Z2-linear combinations of elements
in E, the 1-chains of C with coefficients in Z2, C1(C; Z2); thus we identify H = C

C1(C;Z2).
The subspace of H which is the intersection of the eigenvalue 1 eigenspaces of the Bv is
spanned (over C) by configurations with an even number of edges labelled by 1s incident
at each vertex; these are chains in C1(C; Z2) without boundary, i.e., the cycles Z1(C; Z2).

So the subspace of H fixed by all the Bv is C
Z1(C;Z2), the functions from Z2 1-cycles

to C. Since σx acting at an edge exchanges 0 and 1, each Af corresponds to the order
2 automorphism of Z1(C; Z2) which changes each cycle by the Z2-addition of the cycle
bounding f . Thus the subspace of H fixed by both all the Bv and all the Af is the set
of functions on Z1(C; Z2) which are invariant under the Z2-addition of cycles bounding

2-chains in C, the boundaries B1(C; Z2). This code subspace is therefore C
H1(C;Z2), where

H1(C; Z2) = Z1(C; Z2)/B1(C; Z2) is the first homology group of C over Z2. For a genus

g compact orientable surface Σ, H1(Σ; Z2) =
⊕2g

i=1 Z2, so a corresponding code subspace
would have dimension 22g and thus encode 2g qubits. But the real projective plane RP 2

has a unique essential cycle, so H1(RP 2; Z2) = Z2 and any corresponding code subspace
has dimension 2 and encodes a single qubit.

Consider a bit flip error in the qubit on some edge e, i.e., multiplication by σx on
the corresponding tensor factor of H. This error will be detected by the eigenvalues of
the stabilizer operators Bv for the two vertices in the boundary of e—unless there are
bit flip errors on an even number of the edges incident at one or the other vertex. More
generally, bit flip errors in the qubits on any collection of edges corresponding to a chain
c1 ∈ C1(C; Z2) will be detected by the Bv for the vertices in the boundary of c1. Error
correction by choosing any chain c2 ∈ C1(C; Z2) with the observed boundary vertices and
acting by σx on the corresponding qubits succeeds unless c1+c2 contains an essential cycle.
The length of the shortest essential cycle in C is thus the (bit flip error) distance of the
code [6].

Similarly, phase errors are detected by the eigenvalues of the stabilizer operators Af .
The observed faces correspond to vertices in the dual cellulation C∗ bounding a chain
c∗1 ∈ C1(C∗; Z2) of edges at which phase errors have occurred (edges in C∗ are dual to edges
in C). Error correction by choosing any c∗2 ∈ C1(C∗; Z2) with the observed boundary and
acting by σz on the corresponding qubits succeeds unless c∗1 +c∗2 contains an essential cycle
in C1(C∗; Z2). The length of the shortest essential cycle in the dual cellulation C∗ is thus
the (phase error) distance of the code.

The smallest square lattice toric code correcting an arbitrary single error, i.e., with
distance 3, uses 18 qubits to encode two qubits. Figure 1 shows a similarly regular trian-
gulation of RP 2 with 15 edges, defining a 15 qubit code for one qubit. In this diagram
antipodal points on the circle are identified and it is easy to see that while the minimal
length of any essential cycle is 3, it is 5 in the dual cellulation. By considering more general
cellulations we can construct smaller codes correcting 1 error. Figure 2 shows a cellulation
of RP 2 with 9 edges, defining a distance 3 code for one qubit using 9 qubits; the minimal
length of any essential cycle is 3 in both this cellulation and its dual. The dual cellulation
also defines a code, with the stabilizers Af and Bv replaced by corresponding Bf∗ and
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Figure 1. A triangulation of the projective plane
with 15 edges, all minimal essential (dual) cycles
of length 3 (5). Antipodal points on the circle are
identified.

Figure 2. A less regular, but more efficient, cel-
lulation of the projective plane using 9 edges.
Both the minimal essential cycles and the min-
imal essential dual cycles have length 3.

Av∗ . The resulting code, however, is equivalent [7] to the original under multiplication of
each tensor factor by the Hadamard transform

H =
1√
2

(

1 1
1 −1

)

since σz = HσxH−1.

But there are other cellulations of RP 2 which define distinct codes. Figure 3 shows a
cellulation obtained from the one in Figure 2 by identifying two vertices. The resulting 9
qubit code still has distance 3 and is not equivalent to the code derived from the cellulation
in Figure 2. To demonstrate that these codes are inequivalent, we consider the projections
P1 and P2 onto the respective code subspaces—and their polynomial invariants under the
adjoint actions of U(2)⊗9 and the permutation group S9. There are, of course, many such
invariants [8] but for our purpose it suffices to consider the coefficients of the characteristic
polynomials of the reduced density matrices obtained by tracing over pairs of tensor factors.
For P1 exactly two of these reduced density matrices have rank 2 (the two obtained by
tracing over either the qubits on the two edges incident at the valence 2 vertex, or the
qubits on the edges bounding the 2-gon in the cellulation). For P2, however, there are
three rank 2 reduced density matrices—corresponding to the presence of the three 2-gons
in Figure 3. Thus the two codes are inequivalent.

Finally, let us consider the cellulation shown in Figure 4, obtained from the one in
Figure 3 by identifying two vertices—which identifies the endpoints of an edge—and then
sliding the endpoints of this edge to the two other vertices. This cellulation again defines
a 9 qubit code with distance 3. The resulting code is inequivalent to either of our first
two by the same argument: the six reduced density matrices corresponding to tracing
the projection P3 over the qubits on the edges of each 2-gon have rank 2. While the
first two codes were new, this code is very familiar—it is exactly Shor’s original 9 qubit
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Figure 3. Another cellulation of the projective
plane obtained by identifying two vertices of the
cellulation shown in Figure 2. Both the minimal
essential cycles and the minimal essential dual
cycles still have length 3.

Figure 4. A third cellulation of the projective
plane with minimal essential cycle (also dual cy-
cle) of length 3. The interior of one face and a
neighborhood of one vertex are shaded; the re-
maining cellulation is planar.

repetition code [9] as can be seen by comparing their stabilizer operators: The 9 qubits are
partitioned into 3 triples according to the endpoints of the edges on which they lie; there
are six stabilizers acting by σx on pairs of edges in the same triple and three stabilizers
acting by σz on all the qubits in pairs of triples; one of the latter is redundant, as is the
stabilizer corresponding to the hexagonal face of the cellulation. This is the exactly the
(dual of the) stabilizer formulation of Shor’s code [10, p. 17].

By considering cellulations of the projective plane we have demonstrated the existence
of single qubit topological quantum codes. While two of the ones we find are new, the
third is Shor’s original 9 qubit code [9]; this connects Kitaev’s novel perspective [1,3] with
the bulk of the work on quantum error correcting codes (see, for example, [10] and the
references therein). One might ask whether the 5 qubit [11] and 7 qubit [12] single qubit
codes are also equivalent to some projective plane quantum code. They are not—there
are no cellulations of RP 2 with 5 or 7 edges and lengths of all essential cycles and dual
cycles at least 3. This exemplifies the inefficiency of two dimensional qubit topological
quantum error correcting codes, even for cellulations with few edges. We reiterate that
their attraction lies in the locality of the stabilizer operators which one might hope to
implement with designer (but local) Hamiltonians.

As Kitaev remarks [3], for the purposes of physical implementation one would like
to make two dimensional topological quantum error correcting codes planar in the sense
that the qubits lie in a plane and that each of the necessary stabilizers acts locally, on
the qubits at the frontier of one of a set of disjoint regions (e.g., a neighborhood of a
vertex or the interior of a face). Notice that the redundancy of the stabilizer operators
implied by the relations in equation (3) allows us to disregard one of the faces and one
of the vertices and thus make Shor’s code planar: removing the interior of the hexagon
face and a neighborhood of, say, the upper left vertex in Figure 4 (both shaded), leaves a
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planar diagram∗ with a generating set of stabilizers acting locally (imagine the qubits to
be located at the midpoints of the edges).

Figure 5. A cellulation of the 2-punctured disk
which defines a planar topological quantum code
for two qubits correcting 1 phase error and 3 bit-
flip errors.

A related observation leads to planar
constructions of topological quantum er-
ror correcting codes for multiple qubits
deriving from higher genus surfaces [3]:
the faces of a cellulation need not be disks.
For these more general cellulations C, the
code subspace corresponds to

H1(C; Z2)/
⊕

f

H1(f, ∂f ; Z2)

To apply this observation to construct a planar code protecting g qubits, cellulate an
orientable surface of genus g using one large face with the topology of a g-punctured disk
and all other faces disks. Again by the relation (3) we may discard the Af corresponding to
the large face; the remaining faces cellulate a g-punctured disk which is, of course, planar.
Particularly simple versions of such planar codes—with all stabilizers involving no more
than 4 qubits—can be constructed using subsets of the square lattice. Figure 5 shows such
a planar construction for a two qubit topological quantum code correcting 1 phase error
and 3 bitflip errors.

Kitaev and Bravyi have discovered a closely related planar construction by a different
route [13]. Their planar lattices have “x-boundary” and “z-boundary”. Connecting the
free edges of the x-boundary to an additional vertex (for which the associated Bv can be
discarded) and taking the z-boundary as the boundary of an additional face (for which
the associated Af can also be discarded) defines a cellulation of a closed surface. We
greatly appreciate Alexei Kitaev’s willingness to describe their preliminary results and his
assistance in recognizing the isomorphism between their construction and ours.

We conclude by remarking that higher dimensional manifolds offer the possibility of
constructing local codes which are more efficient, in the sense of protecting against more
(worst case) errors relative to their size, than any local surface code. Their intrinsic geome-
try [14] restricts n qubit surface codes for a constant number of qubits to correcting O(n1/2)
(worst case) errors. But, for example, five dimensional n qubit topological quantum codes
for a constant number of qubits can correct O(n32/61) (worst case) errors [15].

∗ Perhaps the simplest way to conceptualize the resulting planarity is to think of the projective plane
as formed by the three faces of a cube incident at a single vertex with antipodal identification of the
hexagonal boundary. Discarding two of the three faces—these represent the domain of the redundant
Af and Bv—the result is a single square with no boundary identifications, clearly a planar object.
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