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1. Introduction

The goal of learning theory (and a goal in some other contexts as well) is to find
an approximation of a function fρ : X → Y known only through a set of pairs
z = (xi , yi )

m
i=1 drawn from an unknown probability measure ρ on X×Y ( fρ is the

“regression function” of ρ).
An approach championed by Poggio (see, e.g., [5]) with ideas going back to

Ivanov [7] and Tikhonov [13] is to minimize

1

m

m∑
i=1

( f (xi ) − yi )
2 + γ ‖A f ‖2

L2
ρ(X)

,

where A is an operator and L2
ρ(X) is the Hilbert space of square integrable func-

tions on X with measure ρX on X defined via ρ. See [4] (in the sequel denoted
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by [CS]∗) for background on this and, even more importantly, for results used
here.

This minimization is well-conditioned and solved by straightforward finite-
dimensional least squares linear algebra (see Theorem 1 below) to yield fγ,z :
X → Y . The problem is posed: How good an approximation is fγ,z to fρ , or
measure the error

∫
X ( fγ,z − fρ)2? and What is the best choice of γ to minimize

this error?
Our goal in this paper is to give some answers to these questions.

Main Result. We exhibit, for each m ∈ N and δ ∈ [0, 1), a function

Em,δ = E : R
+ → R

such that, for all γ > 0,

∫
X
( fγ,z − fρ)

2 ≤ E(γ )

with confidence 1 − δ. There is a unique minimizer of E(γ ) which is found by an
easy algorithm to yield the “best” regularization parameter γ = γ ∗.

The bound E(γ ) found is a natural one, a bound which flows from the hypothe-
ses and thus yields a γ ∗ which could be useful in the algorithmics for fγ,z. Of
course, γ ∗ depends on the number of examples m, confidence 1 − δ, as well as the
operator A and a simple invariant of ρ.

2. RKHS and Regularization Parameters

Let X be a compact domain or a manifold in Euclidean space and let Y = R (one
can extend all that follows to Y = R

k with k ∈ N). Let ρ be a Borel probability
measure on Z = X × Y .

For every x ∈ X , let ρ(y | x) be the conditional (with respect to x) probability
measure on Y and let ρX be the marginal probability measure on X , i.e., the measure
on X defined by ρX (S) = ρ(π−1(S)) where π : X×Y → X is the projection.
Notice that ρ, ρ(y | x), and ρX are related as follows. For every integrable function

∗ Corrections to [CS]:

(1) A regularity hypothesis on measure ρX on X requiring every open set on X to have positive
measure is needed for our extension of Mercer Theorem and its applications. This is a mild
hypothesis since open sets with zero measure can be deleted from X with no harm.

(2) In connection with the matrices associated to a Mercer kernel, the “positive definite” condition
should be relaxed to “positive semidefinite.”
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ϕ : X×Y → R a version of Fubini’s theorem states that∫
X×Y

ϕ(x, y) dρ =
∫

X

(∫
Y

ϕ(x, y) dρ(y | x)

)
dρX .

This “breaking” of ρ into the measures ρ(y | x) and ρX corresponds to looking at
Z as a product of an input domain X and an output set Y .

Define fρ : X → Y by

fρ(x) =
∫

Y
y dρ(y | x).

The function fρ is called the regression function of ρ. For each x ∈ X , fρ(x) is
the average of the y coordinate of {x}×Y .

In what follows we assume that fρ ∈ L2
ρ(X) is bounded. We also assume that

Mρ = inf{M̄ ≥ 0 | {(x, y) ∈ Z | |y − fρ(x)| ≥ M̄} has measure zero}

is finite. Note that this implies that

|y| ≤ M = max{‖ fρ‖∞ + Mρ, 1}

almost surely.
Recall, ‖ f ‖ denotes, unless otherwise specified, the norm of f in L2

ρ(X). Let
K be a Mercer kernel. That is, K : X×X → R is continuous, symmetric, and K
is positive semidefinite, i.e., for all finite sets {x1, . . . , xk} ⊂ X the k×k matrix
K [x] whose (i, j) entry is K (xi , xj ) is positive semidefinite. Then (see Chapter III
of [CS]) K determines a linear operator L K : L2

ρ(X) → C(X) given by

(L K f )(x) =
∫

K (x, t) f (t) dt

which is well-defined, positive, and compact. In addition, there exists a Hilbert
space HK of continuous functions on X (called reproducing kernel Hilbert space,
RKHS for short) associated to K and X and independent of ρ such that the linear
map L1/2

K is a Hilbert isomorphism between L2
ρ(X) and HK . Here L1/2

K denotes

the square root of L K , i.e., the only linear operator satisfying L1/2
K ◦ L1/2

K = L K .
Thus, we have the following diagram:

✲




�

✻
L2

ρ(X) C(X)

HK

L1/2
K ,C

IK≈L1/2
K
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where we write L K ,C to emphasize that the target is C(X) and IK denotes the
inclusion. If K is C∞ then IK is compact. In the sequel, K denotes a C∞ Mercer
kernel, and ‖ ‖K denotes the norm in HK .

Let z = (z1, . . . , zm) with zi = (xi , yi ) ∈ X × Y for i = 1, . . . , m. We also
write x = (x1, . . . , xm), y = (y1, . . . , ym). Note that since K is a Mercer kernel,
K [x] is positive semidefinite.

For γ > 0, let �(γ ) and �z(γ ) be the problems, respectively,

min
∫

X
( f (x) − y)2 + γ ‖ f ‖2

K ,

s.t. f ∈ HK ,

and

min
1

m

m∑
i=1

( f (xi ) − yi )
2 + γ ‖ f ‖2

K ,

s.t. f ∈ HK .

For x ∈ X , let Kx : X → R be given by Kx (t) = K (x, t).

Theorem 1. For all γ > 0, the minimizers fγ and fγ,z of �(γ ) and �z(γ ),
respectively, exist and are unique. In addition,

fγ = (Id + γ L−1
K )−1 fρ

and fγ,z is given by

fγ,z(x) =
m∑

i=1

ai K (x, xi )

where a = (a1, . . . , am) is the unique solution of the well-posed linear system
in R

m ,

(γ m Id + K [x])a = y.

Finally, for f = ∑m
i=1 ai Kxi we have ‖ f ‖2

K = aT K [x]a.

Proof. See Propositions 7 and 8 and Theorem 2 in Chapter III of [CS] and its
references, and [5] and its references.

3. Estimating the Confidence

Define, for f ∈ L2
ρ(X), its error

E( f ) =
∫

Z
( f (x) − y)2
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and, given a sample z ∈ Zm , its empirical error

Ez( f ) = 1

m

m∑
i=1

( f (xi ) − yi )
2.

Note that from the equality E( fγ,z) = E( fγ,z) − E( fγ ) + E( fγ ) we deduce that

E( fγ,z) ≤ |E( fγ,z) − E( fγ )| + E( fγ ).

We will call the first term in the right-hand side, the sample error (this use of this
expression slightly differs from the one in [CS]) and the second, the approximation
error. Note that the sample error is a random variable on the space Zm . In this
section we will bound the confidence for the sample error to be small enough. The
main result is Theorem 2 below.

For r > 0 let Br = { f ∈ HK | ‖ f ‖K ≤ r} and H(r) = IK (Br ). Notice that
this is a compact subset of C(X) so that, for every η, the covering number

N (H(r), η) = min{s ∈ N | ∃ s closed balls of radius η in C(X) covering H(r)}

is finite. Also, let

CK = max

{
1, sup

x,t∈X
|K (x, t)|

}

and

Rγ =
√

CK ‖ fρ‖∞
γ

and rγ =
√

CK M

γ
.

Theorem 2. For all γ, ε > 0,

Prob
z∈Zm

{|E( fγ ) − E( fγ,z)| ≤ ε}

≥ 1 − 4

[
m + N

(
H(rγ ),

εγ

32M(γ + CK )

)]
e
− mε2γ 4

128M4(γ+CK )4 .

The idea toward the proof of Theorem 2 is to write

E( fγ ) − E( fγ,z) = E( fγ ) − Ez( fγ ) + Ez( fγ ) − Ez( fγ,z) + Ez( fγ,z) − E( fγ,z)

from which it follows that

|E( fγ )−E( fγ,z)| ≤ |E( fγ )−Ez( fγ )|+|Ez( fγ )−Ez( fγ,z)|+|Ez( fγ,z)−E( fγ,z)|.

We first (see Proposition 1 below), bound (with high confidence) the first and last
terms in the sum above. Toward this end, we give bounds on ‖ fγ ‖K , ‖ fγ,z‖K ,

‖ fγ ‖∞, and ‖ fγ,z‖∞.
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Lemma 1. For all γ > 0,

‖ fγ ‖K ≤ Rγ .

Proof. Let fρ = ∑
ciϕi . Then

fγ =
∞∑

i=1

(
1 + γ

λi

)−1

ciϕi =
∞∑

i=1

(
λi

γ + λi

)
ciϕi

and, therefore,

‖ fγ ‖2
K =

∞∑
i=1

λi

(γ + λi )2
c2

i

≤ max
i≥1

λi

(γ + λi )2

∞∑
i=1

c2
i

≤ 1

γ 2
max
i≥1

λi ‖ fρ‖2

≤ CK

γ 2
‖ fρ‖2.

Lemma 2. For all γ > 0,

‖ fγ,z‖K ≤ rγ .

Proof. Since fγ,z = ∑
ai Kxi we have ‖ fγ,z‖2

K = aT K [x]a.
Also, since a = (γ m Id + K [x])−1y it follows that

‖a‖ ≤ ‖y‖‖(γ m Id + K [x])−1‖ ≤ √
mM

1

γ m
= M

γ
√

m
,

where ‖a‖ and ‖y‖ refer to the Euclidean norm in R
m . Therefore

‖ fγ,z‖2
K ≤ ‖a‖2‖K [x]‖ ≤ M2

γ 2m
CK m = M2

γ 2
CK ,

where ‖K [x]‖ denotes the operator norm of K [x] : R
m → R

m with respect to the
Euclidean norm in both domain and target space and we have used that, since each
entry of K [x] is bounded in absolute value by CK , ‖K [x]‖ ≤ CK m.

Corollary 1. For all γ > 0, ‖ fγ ‖∞ ≤ CK ‖ fρ‖∞/γ and ‖ fγ,z‖∞ ≤ CK M/γ .

Proof. By Theorem 2 in Chapter III of [CS], ‖IK ‖ ≤ √
CK .

Remark 1. Note that for all γ > 0, rγ ≥ Rγ .
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Proposition 1. For all ε, γ > 0,

(i)

Prob
z∈Zm

{|E( fγ ) − Ez( fγ )| ≤ ε}

≥ 1 − N
(
H(Rγ ),

εγ

8M(γ + CK )

)
2e

− mε2γ 4

8M4(γ+CK )4 .

(ii)

Prob
z∈Zm

{|E( fγ,z) − Ez( fγ,z)| ≤ ε}

≥ 1 − N
(
H(rγ ),

εγ

8M(γ + CK )

)
2e

− mε2γ 4

8M4(γ+CK )4 .

Proof. We use Theorem B of [CS], but proved with Hoeffding’s inequality instead
of Bernstein’s. This yields, for a compact subset H of C(X) such that | f (x)− y| ≤
M almost everywhere for all f ∈ H, the uniform estimate

Prob
z∈Zm

{
sup
f ∈H

|E( f ) − Ez( f )| ≤ ε

}
≥ 1 − N

(
H,

ε

8M

)
2e− mε2

8M4 .

For (i), use this estimate applied to H = H(Rγ ), and

M = ‖ fγ ‖∞ + Mρ + ‖ fρ‖∞ ≤ CK ‖ fρ‖∞
γ

+ M ≤ M(γ + CK )

γ
.

and note that

Prob
z∈Zm

{|E( fγ ) − Ez( fγ )| ≤ ε} ≥ Prob
z∈Zm

{
sup

f ∈H(Rγ )

|E( f ) − Ez( f )| ≤ ε

}
.

A similar proof, now with H = H(rγ ), and

M = ‖ fγ ‖∞ + Mρ + ‖ fρ‖∞ ≤ CK M

γ
+ M = M(γ + CK )

γ
,

yields (ii).

We now proceed with the middle term |Ez( fγ ) − Ez( fγ,z)|.
In what follows, for f : X → R and x ∈ Xm , we denote by f [x] the point

( f (x1), . . . , f (xm)) ∈ R
m . Also, if v ∈ R

m , we denote ‖v‖max = max{|v1|,
. . . , |vm |}.

Proposition 2. For all γ, ε > 0,

Prob
z∈Zm

{‖ fγ [x] − fγ,z[x]‖max ≤ 2ε} ≥ 1 − 4me
− mε2γ 4

2C2
K

M2(γ+CK )2
.
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Proof of Theorem 2. Recall,

|E( fγ ) − E( fγ,z)| ≤ |E( fγ ) − Ez( fγ )|
+ |Ez( fγ ) − Ez( fγ,z)| + |Ez( fγ,z) − E( fγ,z)|.

The first and last terms are each bounded by ε with probabilities at least

1 − N
(
H(rγ ),

εγ

8M(γ + CK )

)
2e

− mε2γ 4

8M4(γ+CK )4

by Proposition 1 and the fact that rγ ≥ Rγ . For the middle term note that

|Ez( fγ ) − Ez( fγ,z)| = 1

m

∣∣∣∣∣
m∑

i=1

( fγ (xi ) − yi ) −
m∑

i=1

( fγ,z(xi ) − yi )

∣∣∣∣∣
≤ 1

m

m∑
i=1

| fγ (xi ) − fγ,z(xi )|

≤ ‖ fγ [x] − fγ,z[x]‖max.

Now apply Proposition 2 to bound this term by 2ε with probability at least

1 − 4me
− mε2γ 4

2C2
K

M2(γ+CK )2

and the conclusion follows by noting that 2C2
K M2(γ + CK )2 ≤ 8M4(γ + CK )4

and by replacing ε by ε/4.

It only remains to prove Proposition 2. Toward this end, recall, Hoeffding’s
inequality states that if ξ is a random variable on a probability space Z bounded
almost everywhere by M with mean µ, then

Prob
z∈Zm

{∣∣∣∣∣ 1

m

m∑
i=1

ξ(zi ) − µ

∣∣∣∣∣ ≤ ε

}
≥ 1 − 2e− mε2

2M .

Lemma 3. For all γ, ε > 0 and all t ∈ X ,

Prob
z∈Zm

{∣∣∣∣∣ 1

mγ

m∑
i=1

K (xi , t)( fρ(xi ) − yi )

∣∣∣∣∣ ≤ ε

}
≥ 1 − 2e

− mε2γ 2

2(CK Mρ )2 .

Proof. Consider the random variable

z �→ 1

γ
K (x, t)( fρ(x) − y).
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It is almost everywhere bounded by (1/γ )CK Mρ . Its mean is 0 since, by Fubini’s
theorem,∫

Z

1

γ
K (x, t)( fρ(x) − y) =

∫
X

1

γ
K (x, t)

(∫
Y

fρ(x) − y dρ(y | x)

)
dρX

and the inner integral is 0 by definition of fρ . Now apply Hoeffding’s in-
equality.

Lemma 4. For all γ, ε > 0 and all t ∈ X ,

Prob
z∈Zm

{∣∣∣∣∣ fγ (t) − 1

mγ

m∑
i=1

K (xi , t)( fρ(xi ) − fγ (xi ))

∣∣∣∣∣ ≤ ε

}

≥ 1 − 2e
− mε2γ 2

2C2
K

(‖ fρ ‖∞+
√

CK Rγ )2
.

Proof. By Theorem 1,

fγ = (Id + γ L−1
K )−1 fρ ⇒ fγ + γ L−1

K fγ = fρ
⇒ L K fγ + γ fγ = L K fρ

⇒ fγ = 1

γ
L K ( fρ − fγ )

⇒ fγ (t) =
∫

X

(
1

γ
K (x, t)( fρ(x) − fγ (x))

)
dρX .

The function inside the last integral can thus be considered a random variable on
X with mean fγ (t). It is bounded by (CK /γ )(‖ fρ‖∞ + √

CK Rγ ). Again, apply
Hoeffding’s inequality.

Lemma 5. For all γ, ε > 0,

Prob
z∈Zm

{∥∥∥∥
(

Id + K [x]

γ m

)
fγ [x] − K [x]y

γ m

∥∥∥∥
max

≤ 2ε

}
≥ 1 − 4me

− mε2γ 4

2C2
K

M2(γ+CK )2
.

Proof. From Lemmas 3 and 4 it follows that, with a probability at least

1 − 2


e

− mε2γ 2

2(CK Mρ )2 + e
− mε2γ 2

2C2
K

(‖ fρ ‖∞+
√

CK Rγ )2




for every t ∈ X , ∣∣∣∣∣ fγ (t) + 1

mγ

m∑
i=1

K (xi , t)( fγ (xi ) − yi )

∣∣∣∣∣ ≤ 2ε.
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Note that, since

max{Mρ, ‖ fρ‖∞ +
√

CK Rγ } ≤ M +
√

CK rγ = M(γ + CK )

γ

the confidence above is at least

1 − 4e
− mε2γ 4

2C2
K

M2(γ+CK )2
.

Applying this to t = x1, . . . , xm and writing the m resulting inequalities in
matrix form we obtain that, with confidence at least the one in the statement,∥∥∥∥ fγ [x] + 1

mγ
K [x] fγ [x] − 1

mγ
K [x][y]

∥∥∥∥
max

≤ 2ε.

Lemma 6. For all γ, ε > 0,(
Id + K [x]

γ m

)
fγ,z(x) = K [x]y

γ m
.

Proof. In Proposition 8, Chapter III of [CS] it is shown that

fγ,z(t) =
m∑

i=1

yi − fγ,z(xi )

γ m K (xi , t)

⇒ γ m fγ,z(t) =
m∑

i=1

(yi − fγ,z(xi ))K (xi , t)

⇒ γ m fγ,z(t) +
m∑

i=1

fγ,z(xi )K (xi , t) =
m∑

i=1

yi K (xi , t).

Applying this equality for t = x1, . . . , xm and writing the resulting m equalities
in matrix form we obtain

γ m fγ,z[x] + fγ,z[x]K [x] = K [x]y

from which the statement follows.

Proof of Proposition 2. From Lemmas 5 and 6 it follows that∥∥∥∥
(

Id + K [x]

γ m

)
fγ [x] −

(
Id + K [x]

γ m

)
fγ,z[x]

∥∥∥∥
max

≤ 2ε,

i.e., ∥∥∥∥
(

Id + K [x]

γ m

)
( fγ [x] − fγ,z[x])

∥∥∥∥
max

≤ 2ε

with the stated confidence. The result now follows since K [x]/γ m is positive
definite and therefore ‖(Id + K [x]/γ m)−1‖ ≥ 1.
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4. Estimating the Sample Error

The expression |E( fγ )−E( fγ,z)| is called the sample error (of fγ,z). In the previous
section we estimated the confidence of obtaining a small sample error when the
sample size m and an error bound ε are given. In this section we will fix a confidence
1 − δ and a sample size m and obtain bounds for the sample error.

Lemma 7. Let c1, c2 > 0 and s > q > 0. Then the equation

xs − c1xq − c2 = 0

has a unique positive zero x∗. In addition,

x∗ ≤ max{(2c1)
1/(s−q), (2c2)

1/s}.

Proof. Let ϕ(x) = xs − c1xq − c2. Then, taking the derivative with respect to x ,
ϕ′(x) = sxs−1 − qc1xq−1 = xq−1(sxs−q − qc1). Thus

ϕ′(x) = 0 ⇔ xs−q = qc1

s

and this derivative has a unique positive zero. The first statement follows since
ϕ(0) < 0, ϕ′(0+) ≤ 0, and ϕ(x) → +∞ when x → +∞.

The second statement is a well-known bound (see [10, Theorem 4.2(iv)]).

Remark 2. Note that, given c1, c2, s, and t , one can efficiently compute (a good
approximation of) x∗ using algorithms such as Newton’s method.

By Theorem 2, the sample error ε satisfies, with confidence 1 − δ,

4mN
(
H(rγ ),

εγ

32M(γ + CK )

)
e
− mε2γ 4

128M4(γ+CK )4 ≥ δ,
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i.e.,

mε2γ 4

128M4(γ + CK )4
− ln

(
4m

δ

)
− lnN

(
H(rγ ),

εγ

32M(γ + CK )

)
≤ 0. (1)

Now we recall (see Section 6 in Chapter I of [CS]) that, for every t < 2, there
exists a constant Ct independent of ε and γ , such that

lnN
(
H(rγ ),

εγ

32M(γ + CK )

)
≤
(

rγ Ct 32M(γ + CK )

εγ

)t

≤
(

32Ct M2(γ + CK )2

εγ 2

)t

(a different bound appears in [15]). Note that in the last inequality we replaced
rγ by its definition and used that

√
CK ≤ (CK + γ ). Using this bound for the

covering number, inequality (1) becomes

mε2γ 4

128M4(γ + CK )4
− ln

(
4m

δ

)
−
(

32Ct M2(γ + CK )2

εγ 2

)t

≤ 0.

Write

v = εγ 2

32M2(γ + CK )2
.

Then the inequality above takes the form

c0v
2 − c1 − c2v

−t ≤ 0, (2)

where c0 = m/4, c1 = ln(4m/δ), c2 = Ct
t , the t th power of Ct . Note that one

could fix, for example, t = 1.
Now take the equality in (2) to obtain the equation

ϕ(v) = vt+2 − c1

c0
vt − c2

c0
= 0

and note that this equation has only one positive zero by Lemma 7. Let v∗(m, δ)

be this solution. Then, also by Lemma 7,

v∗(m, δ) ≤
{(

8 ln(4m) − ln(δ)

m

)1/2

,

(
8Ct

t

m

)t+2
}

(3)

and

ε = 32M2(γ + CK )2

γ 2
v∗(m, δ)

and we can conclude stating the following result.

Theorem 3. Given m ≥ 1 and 0 < δ ≤ 1, for all γ > 0, the expression

S(γ ) = 32M2(γ + CK )2

γ 2
v∗(m, δ)

bounds the sample error with confidence at least 1 − δ.
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5. Choosing the Optimal γ

We now focus on the approximation error E( fγ ). To do so we first apply part (1)
of Theorem 3, Chapter II in [CS] with H = L2

ρ(X), s = 1, A = L1/2
K , and a = fρ ,

and use that ‖L−1/2
K f ‖ = ‖ f ‖K to obtain that, for 0 < θ < 1 (e.g., for θ = 1

2 ),

min
f ∈L2

ρ(X)
(‖ f − fρ‖2 + γ ‖ f ‖2

K ) ≤ γ θ‖L−θ/2
K fρ‖2.

Since the minimum above is attained at fγ we deduce

‖ fγ − fρ‖2 + γ ‖ fγ ‖2
K ≤ γ θ‖L−θ/2

K fρ‖2.

A basic result in [CS, Proposition 1, Chapter I] states that, for all f ∈ L2
ρ(X),

E( f ) =
∫

X
( f − fρ)

2 + σ 2
ρ , (4)

where σ 2
ρ is a nonnegative quantity depending only on ρ. Therefore the approxi-

mation error E( fγ ) is bounded by A(γ ) + σ 2
ρ where

A(γ ) = γ θ‖L−θ/2
K fρ‖2.

Proof of the Main Result. Let

E(γ ) = A(γ ) + S(γ ).

Recall

E( fγ,z) ≤ ∣∣E( fγ ) − E( fγ,z)
∣∣+ E( fγ ).

Then the error E( fγ,z) satisfies the bound

E( fγ,z) ≤ E(γ ) + σ 2
ρ

and, therefore, subtracting σ 2
ρ from both sides and using (4) for f = fγ,z,

∫
X
( fγ,z − fρ)

2 ≤ E(γ ).

This proves the first part of the Main Result. Note that this is actually a family of
bounds parametrized by t < 2 and 0 < θ < 1 and depends on m, δ, K , and fρ .

For a point γ > 0 to be a minimum of E(γ ) = S(γ ) + A(γ ) it is necessary
that S ′(γ ) + A′(γ ) = 0. Taking derivatives, we get

S ′(γ ) = −64M2v∗(m, δ)CK
γ + CK

γ 3
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and

A′(γ ) = θγ θ−1‖L−θ/2
K fρ‖2.

Thus the solutions of A′(γ ) + S ′(γ ) = 0 are those of

θγ θ+2‖L−θ/2
K fρ‖2 − 64M2v∗(m, δ)CK (γ + CK ) = 0,

i.e., those of

γ θ+2 − 64M2v∗(m, δ)CK

θ‖L−θ/2
K fρ‖2

γ − 64M2v∗(m, δ)C2
K

θ‖L−θ/2
K fρ‖2

= 0. (5)

Using again Lemma 7, we obtain a unique solution γ ∗ which is a minimizer of
E since E(γ ) → ∞ as γ → 0 or γ → ∞. This finishes the proof of the Main
Result.

Corollary 2. For every 0 < δ ≤ 1,

lim
m→∞ E(γ ∗) = 0.

Proof. The bound (3) shows that v∗(m, δ) → 0 when m → ∞. Now, equation
(5) shows that γ ∗ is the only positive root of

γ θ+2 − Qv∗(m, δ)γ − Qv∗(m, δ)CK = 0, (6)

where Q = 64M2CK /θ‖L−θ/2
K fρ‖2. Then, by Lemma 7,

γ ∗ ≤ max{(2Qv∗(m, δ))1/(θ+1), (2Qv∗(m, δ)CK )1/(θ+2)}

from which it follows that γ ∗ → 0 when m → ∞. Note that this implies that

lim
m→∞A(γ ∗) = lim

m→∞(γ ∗)θ‖L−θ/2
K fρ‖2 = 0.

Finally, it follows from equation (6) that

(γ ∗)θ − (Qγ ∗ + QCK )

[
v∗(m, δ)

(γ ∗)2

]
= 0

and, therefore, that [v∗(m, δ)/(γ ∗)2] → 0 when m → ∞. This, together with
Theorem 3, shows that limm→∞ S(γ ∗) = 0.

6. Final Remarks

(1) This paper can be seen as a solution of one instance of the Bias–Variance
problem. Roughly speaking, the “bias” of a solution f coincides with our approx-
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imation error, and its “variance” with the sample error. Quoting [3],

A model which is too simple, or too inflexible, will have a large bias, while
one which has too much flexibility in relation to the particular data set will
have a large variance. Bias and variance are complementary quantities, and
the best generalization [i.e., the smallest error] is obtained when we have
the best compromise between the conflicting requirements of small bias and
small variance.

As described in Section 3, Chapter II in [CS], the bias–variance problem amounts
to the choice of a compact subspace H of C(X) over which Ez is minimized.
A too-small space H will yield a large bias while one too large will yield a large
variance. Several parameters (radius of balls, dimension, etc.) determine the “size”
of H and different instances of the bias–variance problem are obtained by fixing
all of them except one and minimizing the error over this nonfixed parameter.
Our solution considers the ball of radius r = ‖ fγ,z‖K in HK and H = IK (Br )

(a space over which fγ,z minimizes Ez). The number r is our replacement of the
VC-dimension. Since γ is inversely proportional to r , large γ corresponds to large
bias or approximation error and small γ to large variance or sample error.

Failing to find a good compromise between bias and variance leads to what
is called underfitting (large bias) or overfitting (large variance). As an example,
consider the curve C in the figure below with the set of sample points and assume
we want to approximate that curve with a polynomial of degree d (the parameter
d determines, in our case, the dimension of H). If d is too small, say d = 2, we
obtain a curve as in (a) in the figure, which necessarily “underfits” the data points.
If d is too large, we can tightly fit the data points but this “overfitting” yields a
curve as in (b).

For more on the bias–variance problem, see [3], the above-mentioned section in
[CS], [6], and the references in these papers. Note, however, that the literature on
this problem is vast and we have only touched on it.

(2) One could interpret the main estimates in this paper in terms of algorithms
for approximating solutions of integral equations by Monte Carlo methods. But
for most algorithms in the theory of integral equations the points xi , i = 1, . . . , m,
are not randomly choosen but taken, for example, as a set of lattice points of a
domain X ⊂ R

n (this would correspond to active learning in the learning theory
literature). Now one might take ρX as Lebesgue measure and the xi from a uniform
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grid of points. The theory in our previous paper [CS] should permit modifications
to deal with this situation and our main result here as well.

(3) Our work can be interpreted in the area of statistics known as regularized
nonparametric least squares regression. A general reference for this area is the
book by Sara van de Geer [14]. Besides the references in this book, the papers [2],
[1], [8], [9] are also related to our work. A result somewhat similar in spirit to our
main result appears in [11], [12]. Here a function E(m, n) is exhibited bounding
the error in terms of the number m of examples and the number n of basis functions
in a space of Gaussian radial basis functions and it is shown that, for each m ∈ N,
E(m, n) has a unique minimizer n∗.
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