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1 Background 

 

Contexts of strategic interaction (CSIs) appear in nearly every social situation. They are 

characterized by interdependent decision making: two or more agents have choices to 

make and the rewards an individual receives in consequence of its choices depend, at 

least in part, on the choices made by other agents. Such contexts, when abstracted and 

formalized in certain ways, are the subject of game theory, which seeks to 

“solve”—predict and explain the outcomes of—games (i.e., of CSIs abstracted and 

formalized in certain stylized fashions). 

 

Any solution theory for CSIs (or games) must make and rely upon two kinds of 

assumptions: 

 

1. SR (Strategic Regime) assumptions.  There are assumptions about the 

representation and structure of the CSI (or game), including the rules of play 

and the payoffs to the players. Typically, these assumptions are expressed as 

games in strategic form, games in extensive form, characteristic function 

games, spatial games, and so on. 

 

2. SSR assumptions. These are assumptions about the Strategy Selection 

Regimes (SSRs) employed by the agents, or players, in the game. Classical 

game theory makes two kinds of SSR assumptions, which typically apply to 

all players (Luce & Raiffa, 1957; Shubik, 1982): 

 

a. Ideal rationality assumptions. It is normally assumed that agents 

are ‘rational’ and that Rational Choice Theory in some form (e.g., 

Savage’s Subjective Expected Utility theory) characterizes this 

kind of (ideal) rationality.  Roughly, agents are assumed to have 
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utilities and to be maximizers of their utilities. 

 

b. Knowledge assumptions. It is normally assumed that agents are 

omniscient with respect to the game. The agents know everything 

about the game, common knowledge obtains among all the players, 

and all agents have unlimited computational/ratiocination powers. 

 

In what follows, we report on a series of experimental investigations that examine play in 

games under non-standard SSR assumptions, at least as judged by the classical game 

theory literature. We investigate a series of games that are well recognized in the classical 

literature and that have been extensively studied. Our game—Strategic 

Regime—Assumptions are conventional, although we focus on repeated or iterated (aka: 

staged) games. 

 

It is, and has always been, recognized that the classical SSR assumptions (as we call them) 

are unrealistic.  The original experimental work on Prisoner’s Dilemma, among other 

games (Flood, 1952), was motivated by such concerns. Even so, they—and the 

consequences they engender—are interesting. The assumptions often afford tractability, 

allowing games to be ‘solved’. Because they capture the notion of a certain plausible kind 

of ideal rationality, it is interesting to determine how well they describe actual human 

behavior.  Even if they are inaccurate, they have value as a normative benchmark. And 

given the considerable powers of human cognition and institutions, it is not prima facie 

implausible that classical SSR assumptions will often yield accurate predictions. 

 

This is all well and good, but the story is not over. There are certain puzzles or anomalies 

associated with the classical SSR assumptions.  Famously in the Prisoner’s Dilemma 

game, and in other games, the Nash Equilibrium (NE) outcome is not Pareto efficient. 

Classical theory sees the NE as the solution to the game, yet many observers find it 

anomalous and experiments with human subjects often indicate support for these 

observers (Luce & Raiffa, 1957; Rapoport & Guyer 1976). Further, the NE need not be 

unique, posing thereby a challenge to the classical theory, which often struggles, or has to 

be stretched, to predict equilibrium outcomes that seem natural and that are reached by 

human subjects easily. In short, the classical theory has often proved to be a poor—weak 

and inaccurate—predictor of human behavior (Roth & Erev, 1995). 

 

Besides the well-known puzzles and anomalies, there is another category of reasons to 

study games under variations of the classical SSR assumptions. Rational Choice Theory 

and omniscience may be plausible assumptions for experienced humans in certain 

favorable institutional settings (e.g., well-established markets).  They are often not 

plausible assumptions for games played by birds, bees, monkeys up in trees, bacteria, and 

other similarly less cognitively well-endowed creatures.  It is, simply put, scientifically 
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interesting to investigate the play and outcomes in games in which the SSR assumptions 

of classical game theory are relaxed sufficiently to be capable of describing these kinds of 

more limited agents.  Equally so, this is interesting from a practical, 

applications-oriented perspective.  Adaptive artificial agents, e.g. fielded for purposes of 

electronic commerce, will inevitably resemble the lower animals more than their creators, 

at least in their cognitive powers.  

 

With these motivations principally in mind, we investigated repeated play by simple, 

adaptive agents in a number of well-known games.  Any such investigation, however, 

faces an immediate and urgent theoretical problem: There are indefinitely many ways to 

relax the classical SSR assumptions; how does one justify a particular alternative?  We 

choose with a number of criteria in mind. 

 

1. Simple.  There are few ways to be ideally rational and indefinitely many ways 

not to be.  In examining alternatives it is wise to begin with simple models and 

complexify as subsequent evidence and modeling ambition requires. 

2. New.  Much has been learned about non-ideally rational agents through studies 

of the replicator dynamic (see Gintis, 2000, for a review).  These investigations, 

however, see populations as evolving, rather than individual agents adapting.  

The individuals are typically modeled as naked, unchanging strategies, rather than 

adaptive agents, which proliferate or go extinct during the course of continuing 

play.  Agents in some ‘spatialized’, cellular automata-style games have been 

given certain powers of state change and adaptation, but these have on the whole 

been limited in scope (e.g., Epstein & Axtell, 1996; Grim et al., 1998).  

Experimenting with game-playing agents that are using reinforcement learning is 

a comparatively under-developed area and the kinds of experiments we report 

here are, we believe, original. 

3. Theoretically motivated.  Reinforcement learning as it has developed as a field of 

computational study has been directly and intendedly modeled on learning 

theories from psychology, where there is an extensive supporting literature.  This 

important class of learning model is a natural first choice for modeling agents in 

games, because it appears to apply broadly to other areas of learning, because its 

theoretical properties have been well investigated, and because it has achieved a 

wide scope of application in multiple domains. 

4. Adaptive.  Agents should be responsive to their environments and be able to 

learn effective modes of play. 

5. Exploring.  Agents should be able actively to probe their environments and 

undertake exploration in the service of adaptation; agents face the 

exploration-exploitation tradeoff and engage in both. 

 

In addition, the SSRs should be realizable in sense that they specify definite procedures 
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that simple agents could actually undertake.  It is here, perhaps, that the present 

approach, which we label algorithmic game theory, differs most markedly from classical 

game theory and its assumption of ideal rationality, irrespective of realizability 

constraints. 

 

We turn now to a discussion of the elements of reinforcement learning needed as 

background for our experiments. 
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2 Reinforcement learning 

 

2.1 Simple Q-learning  

Our experimental agents used a simple form of Q-learning, itself a variety of 

reinforcement learning.  Detailed description of Q-learning is easily found in the open 

literature (e.g., Watkins, 1989; Watkins & Dayan, 1992; Sutton & Barto, 1998).  We 

limit ourselves here to a minimal summary for the purposes at hand. 

 

The Q-learning algorithm works by estimating the values of state-action pairs. The value 

Q(s,a) is defined to be the expected discounted sum of future payoffs obtained by taking 

action a in state s and following an optimal policy thereafter. Once these values have 

been learned, the optimal action from any state is the one with the highest Q-value. The 

standard procedure for Q-learning is as follows. Assume that Q(s,a) is represented by a 

lookup table containing a value for every possible state-action pair, and that the table 

entries are initialized to arbitrary values. Then the procedure for estimating Q(s,a) is to 

repeat the following loop until a termination criterion is met:  

 

1. Given the current state s choose an action a. This will result in receipt of an immediate 

reward r, and transition to a next state s'. (We discuss below the policy used by the agent 

to pick particular actions, called the exploration strategy.) 

 

2. Update Q(s, a) according to the following equation:  

 



Q(s,a) Q(s,a)[r  max
b
Q(s',b)Q(s,a)] (1) 

where  is the learning rate parameter and Q(s,a) on the left is the new, updated value of 

Q(s,a).  

 

In the context of repeated games, a reinforcement learning (Q-learning) player explores 

the environment (its opponent and the game structure) by taking some risk in choosing 

actions that might not be optimal, as estimated in step 1. In step 2 the action that leads to 

higher reward will strengthen the Q-value for that state-action pair. The above procedure 

is guaranteed to converge to the correct Q-values for stationary Markov decision 

processes.  

 

In practice, the exploration policy in step 1 (i.e., the action-picking policy) is usually 
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chosen so that it will ensure sufficient exploration while still favoring actions with higher 

value estimates in given state. A variety of methods may be used. A simple method is to 

behave greedily most of the time, but with small probability, , choose an available 

action at random from those that do not have the highest Q value. For obvious reasons, 

this action selection method is called -greedy (see Sutton & Barto, 1995). Softmax is 

another commonly used action selection method. Here again, actions with higher values 

are more likely to be chosen in given state. The most common form for the probability of 

choosing action a is 
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where  is a positive parameter and decreases over time.  It is typically called the 

temperature, by analogy with annealing. In the limit as 0, Softmax action selection 

becomes greedy action selection. In our experiment we investigated both -greedy and 

Softmax action selection. 

 

2.2 Implementation of Q-learning for 2 by 2 games 

 

A Q-learning agent does not require a model of its environment and can be used on-line. 

Therefore, it is quite suited for repeated games against an unknown co-player (especially 

an adaptive, exploring co-player). Here, we will focus on certain repeated 2 by 2 games, 

in which there are two players each having two possible plays/actions at each stage of the 

game. It is natural to represent the state of play, for a given player, as the outcome of the 

previous game played. We say in this case that the player has memory length of one. The 

number of states for 2 by 2 game is thus 4 and for each state there are two actions (the 

pure strategies) from which the player can choose for current game. We also conducted 

the experiments for the case that players have memory length of two (the number of 

states will be 16) and obtained broadly similar results.  The immediate reward a player 

gets is specified by the payoff matrix.  

 

For the Softmax action selection method, we set the decreasing rate of the parameter  as 

follows. 

 



 T *n   (3) 

 

T is a proportionality constant, n is number of games played so far.  , called the 

annealing factor, is a positive constant that is less than 1. In the implementation, when n 
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becomes large enough,  is close to zero and the player stops exploring.  We use 

Softmax, but in order to avoid cessation of exploration, our agents start using -greedy 

exploration once the Softmax progresses to a point (discussed below) after which 

exploration is minimal. 

 

 

3 Experiments 

 

3.1 Motivation 

 

Repeated 2 by 2 games are the simplest of settings for strategic interactions and are a 

good starting point to investigate how outcomes arise under a regime of exploring 

rationality versus the ideal rationality of classical game theory. The Definitely Iterated 

Prisoner’s Dilemma, involving a fixed number of iterations of the underlying game, is a 

useful example. Classical game theory, using a backwards induction argument, predicts 

that both players will defect on each play (Luce & Raiffa, 1957).  If, on the other hand, a 

player accepts the risk of cooperating, hoping perhaps to induce cooperation later from its 

counter-player, it is entirely possible that both players discover the benefits of mutual 

cooperation. Even if both players suffer losses early on, subsequent sustained mutual 

cooperation may well reward exploration at the early stages.  

 

Motivated by this intuition, we selected 8 games and parameterized their payoffs. The 

players are modeled as Q-learners in each repeated game. In 5 of the games the Pareto 

optimal (socially superior, i.e., maximal in the sum of its payoffs) outcome does not 

coincide with a Nash Equilibrium. The remaining 3 games, which we included to address 

the multi-equilibrium selection issue, each have two pure-strategy NEs. 

 

3.2 The games and the parameterization 

 

We parameterized each of our 8 games via a single parameter, , in their payoff matrices. 

In the payoff matrices below, the first number is the payoff to the row player and the 

second is the payoff to the column player. We mark the Nash Equilibria with # and the 

Pareto efficient outcomes with *. Pareto optimal (socially superior) outcomes are labeled 

with **. C and D are the actions or pure strategies that players can take on any single 

round of play. The row player always comes first in our notation. Thus, CD means that 



Draft.doc 7/25/2016 8/33 

the row player chose pure strategy C and column player chose pure strategy D. So there 

are four possible outcomes of one round of play: CC, CD, DC, and DD.  

 

The first two games are versions of Prisoner’s Dilemma (PD). The value of  ranges from 

0 to 3. When its value is 2 (see Table 1), it corresponds to the most common payoff 

matrix in the Prisoner’s Dilemma literature. 
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Place Table 1, “Prisoner’s Dilemma, Pattern 1”, approximately here. 

 

 C D 

C (3, 3)** (0,3+)* 

D (3+, 0)* (3-, 3-)# 

 

Table 1: Prisoner’s Dilemma, Pattern 1 

 

 

 

 

 

Place Table 2, “Prisoner’s Dilemma, Pattern 2”, approximately here. 

 

 

 C D 

C (3,3)** (0, 3+)* 

D (3+, 0)* (, )# 

 

Table 2: Prisoner’s Dilemma, Pattern 2 

 

 

 

 

While the Prisoner’s Dilemma, in its usual form, is a symmetric game (see Tables 1 and 

2), the following three games, adapted from Rapoport and Guyer (1976), are asymmetric. 

The value of  ranges from 0 to 3 in our experiments with these games.  Note that as in 

Prisoner’s Dilemma, in Games #47, #48, and #57 (Tables 3—5) the Nash Equilibrium 

does not coincide with the Pareto optimal outcome.   
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Place “Table 3: Game #47” approximately here. 

 

 

 C D 

C (0.2 ,0.3)# 0.3+, 0.1* 

D 0.1, 0.2 (0.2+, 0.3+)** 

 

Table 3:  Game #47 

 

 

 

 

Place “Table 4: Game #48” approximately here. 

 

 C D 

C (0.2, 0.2)# (0.3+, 0.1)* 

D (0.1, 0.3) (0.2+, 0.3+)** 

 

Table 4:  Game #48 

 

 

 

 

 

 

Place “Table 5: Game #57” approximately here. 

 

 C D 

C (0.2 ,0.3)# (0.3+, 0.2)* 

D (0.1, 0.1) (0.2+, 0.3+)** 

 

Table 5:  Game #57 

 

 

 

For games with two NE, the central question is which equilibrium (if any) is most likely 

to be selected as the outcome. We choose three examples from this class of game. The 
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game of Stag Hunt has a Pareto optimal solution as one of its two NE. The game of 

Chicken and the game of Battle of Sexes are coordination games.  In Battle of the Sexes 

the two coordination outcomes (CC and DD) are NEs and are Pareto optimal. In Chicken, 

the coordination outcomes (CD and DC) may or may not be NEs, depending on .  The 

value of  ranges in our experiments from 0 to 3 for Stag Hunt and Bottle of sexes. For 

Chicken, the range is from 0 to 2. 
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Insert “Table 6: Stag Hunt” approximately here. 

 

 

 C D 

C (5,5)**# (0,3) 

D (3,0) (, )# 

 

Table 6: Stag Hunt 

 

 

 

 

Insert “Table 7: Battle of the Sexes” approximately here. 

 

 

 C D 

C (, 3-)**# (0,0) 

D (0,0) (3-, )**# 

 

Table 7: Battle of the Sexes 

 

 

Insert “Table 8: Chicken” approximately here. 

 

 

 C D 

C (2,2)* (, 2+)*# 

D (2+, )*# (0, 0) 

 

Table 8: Chicken. .  0. CC is ** for 1.  CD and DC are ** for 1. 
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3.3 Settings for the experiments 

 

We set the parameters for Q-learning as follows. Learning rate,  = 0.2 and discount 

factor,  = 0.95. We ran the experiment with both Softmax action selection and -greedy 

action selection. For Softmax action selection, T is set to 5 and the annealing factor  = 

0.9999. When  is less than 0.01, we began using -greedy action section. We set  to 

0.01. We note that these parameter values are typical and resemble those used by other 

studies (e.g., Sandholm and Crites 1995). Also, our results are robust to changes in these 

settings. 

 

Each game was iterated 200,000 times in order to give the players enough time to explore 

and learn. For each setting of the payoff parameter , we ran the repeated game 100 times. 

We recorded the frequencies of the four outcomes (CC, CD, DC and DD) every 100 

iterations. The numbers usually become stable within 50,000 iterations, so we took 

frequencies of the outcomes in the last 100 iterations over the 200,000 iterations to report, 

unless noted otherwise. 

 

The summary of results tables, below, all share a similar layout. In the middle column is 

the payoff parameter . On its left are the results for -greedy action selection. The results 

for Softmax action selection are on the right. Again, the numbers are frequencies of the 

four outcomes (CC, CD, DC and DD) in the last 100 iterations, averaged over 100 runs. 

 

3.4 Results 

 

It is generally recognized as disturbing or at least anomalous when classical game theory 

predicts that a Pareto inferior Nash Equilibrium will be the outcome, rather than a Pareto 

optimal solution (Flood, 1952; Luce & Raiffa, 1957; and ever since). This is exactly what 

happens in our first five games, in which the unique subgame perfect Nash Equilibrium is 

never the Pareto optimal (or even a Pareto efficient!) outcome. Will the outcomes be 

different if agents use adaptive, exploring SSRs, such as reinforcement learning?  More 

specifically, can players learn to achieve a Pareto optimal solution that is not a Nash 

Equilibrium?  Among competing NEs, will players find the Pareto efficient outcome? 

Our results indicate a broadly positive answer to these questions.  

 

Consider Table 9, “Summary of Results for Prisoner’s Dilemma, Pattern 1” (summarizing 

results for the parameterized PD game in Table 1).  If  is close to zero, the two players 

choose to defect most of the time.  (That is, see above, during the final 100 rounds of 

200,000 iterations, they mostly play DD. The entries in Table 9, and in similar tables 
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report counts out of 100 rounds  100 runs = 10,000 plays.) We note, by way of 

explanation, that there is not much difference in rewards between mutual defection and 

mutual cooperation: 3- and 3, with  small. The Pareto optimal outcome does not appear 

to provide enough incentive for these players to risk cooperation. But as  gets larger, we 

see more cases of mutual cooperation. The last row in Table 9 has an interesting 

interpretation: The players have incentive to induce each other’s cooperation so as to take 

advantage of it by defecting. This is always the case in Prisoner’s Dilemma, but 

exacerbated here (final row of Table 9) because the temptation for defection in the 

presence of cooperation is unusually large. Consequently, we see many CDs and DCs, but 

less mutual cooperation (CC). Notice that CC is maximized and DD minimized 

somewhere in the range of [1.75, 2] for . (Softmax and -greedy results are, here and 

elsewhere, in essential agreement.)  When  is low the benefit of mutual cooperation is 

too low for the agents to find the Pareto optimal outcome.  When  is very high, so is 

the benefit of defection in the face of cooperation, and again the agents fail to cooperate 

jointly. In the middle, particularly in the [1.75, 2] range, the benefits of mutual 

cooperation are high enough and the temptation to defection is low enough that 

substantial cooperation occurs. 

 

 

 

Place Table 9, “Summary of Results for Prisoner’s Dilemma, Pattern 1” approximately 

here. 

 

-greedy action selection  Softmax action selection 

CC CD DC DD  CC CD DC DD 

3 87 82 9828 0.05 0 106 101 9793 

0 92 105 9803 0.5 0 90 94 9816 

52 110 111 9727 1 1 111 111 9777 

51 110 93 9746 1.25 2475 338 358 6829 

1136 160 198 8506 1.5 3119 526 483 5872 

1776 245 381 7598 1.75 4252 653 666 4429 

3526 547 413 5514 2 789 883 869 7549 

848 766 779 7607 2.5 496 2276 2368 4860 

544 2313 2306 4837 2.95 539 2821 2112 4528 

 

Table 9: Summary of Results for Prisoner’s Dilemma, Pattern 1 
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Further insight is available by considering Table 10, the Wealth Extraction Report for 

Table 9.  The Total Wealth Extracted (WE) by an agent is simply the number of points it 

obtained in playing a game.  Table 10 presents the Total WE for the row chooser in PD, 

Pattern 1. (Results are similar for the column chooser; this is a symmetric game played by 

identically endowed agents.) WE-Q:Pmax is the ratio (quotient, Q) of (a) Total WE and (b) 

100 iterations  100 runs  Pmax, the maximum number of points row chooser could get 

from outcomes on the Pareto frontier. Pmax = (3+) and is realized when DC is played. 

WE-Q:Pgmax is the ratio of (a) Total WE and (b) 100 iterations  100 runs  Pgmax, the 

maximum number of points row chooser could get from outcomes on the Pareto frontier 

whose total rewards are maximal (among Pareto efficient outcomes). Here, Pgmax = 3 

and is realized when CC is played. WE-Q:Pgmax might be called the “wealth extraction 

quotient for socially optimal outcomes.” Each of these measures declines as  increases. 

Our agents have progressively more difficulty extracting available wealth.  This hardly 

seems surprising, for at =0.05 the game is hardly a PD at all and the reward 3 for mutual 

cooperation is a paltry improvement over the ‘penalty’ for mutual defection, 2.95. As 

delta increases, however, strategy selection becomes more and more of a dilemma and the 

agents become less and less successful in extracting wealth from the system.  Note that 

these trends are more or less monotonic (see Table 10), while the actual outcomes change 

rather dramatically (see Table 9).  From the perspective of classical game theory, 

changes in delta should not matter.  Each of these games is a PD and should produce 

identical outcomes, all DD.  Note that had the players played DD uniformly when 

delta=2.95, the row (and similarly the column) player would have extracted a total wealth 

of 10,000  0.05 = 500.  In this light, extracting 14,410 is a considerable achievement. 
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Place Table 10, “Row Chooser’s Total Wealth Extracted in Prisoner’s Dilemma, Pattern 

1” approximately here. 

 

Softmax  (DC)  (CC)  

delta Total WE Pmax WE-Q:Pmax Pgmax WE-Q:Pgmax 

0.05 29197 3.05 0.957 3 0.973 

0.50 24869 3.50 0.711 3 0.829 

1.00 20001 4.00 0.500 3 0.667 

1.25 20897 4.25 0.492 3 0.697 

1.50 20339 4.50 0.452 3 0.678 

1.75 21456 4.75 0.452 3 0.715 

2.00 14261 5.00 0.285 3 0.475 

2.50 16942 5.50 0.308 3 0.565 

2.95 14410 5.95 0.242 3 0.480 

 

 

Table 10: Row Chooser’s Total Wealth Extracted in Prisoner’s Dilemma, Pattern 1 

 

 

Consider now the parameterized family of Prisoner’s Dilemma Pattern 2 games (see 

Table 2). Here, the players stand to lose almost nothing by trying to cooperate when  is 

close to zero. Exploration seems to help players reach the superior (“socially superior”) 

Pareto optimal outcome (CC) and as we can see from Table 11, mutual cooperation 

happens 94% of time. Consider the scenario with  close to 3.  Note first, there is not 

much incentive to shift from the Nash equilibrium (DD) to the socially superior Pareto 

outcome (CC), since there is not much difference in payoffs; second, the danger of being 

exploited by the other player and getting zero payoff is much higher. Indeed, the players 

learn to defect most of the time (98%). 
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Place Table 11, “Table 11: Summary of Results for Prisoner’s Dilemma, Pattern 2” 

approximately here. 

 

-greedy action selection  Softmax action selection 

CC CD DC DD  CC CD DC DD 

9422 218 183 177 0.05 9334 302 285 79 

9036 399 388 150 0.5 9346 294 220 140 

5691 738 678 2693 1 7537 954 1267 242 

3506 179 275 6040 1.25 8203 542 994 261 

1181 184 116 8519 1.5 7818 767 775 640 

2 98 103 9797 1.75 4685 270 422 4623 

97 114 91 9698 2 1820 217 220 7743 

0 100 92 9808 2.5 0 77 117 9806 

2 96 94 9808 2.95 0 90 114 9796 

 

Table 11: Summary of Results for Prisoner’s Dilemma, Pattern 2 

 

 

The Wealth Extraction Report, Table 12, for Pattern 2 corresponds to Table 10 for Pattern 

1.  We see that our row chooser is able to extract a roughly constant amount of wealth 

from the game, even as delta and the strategy choices vary drastically.  Note further that 

WE-Q:Pgmax is approximately constant (mostly over 90%) even though the players are 

mostly not playing CC at all. 
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Place Table 12, “Row Chooser’s Total Wealth Extracted in Prisoner’s Dilemma, Pattern 

2” approximately here. 

 

Softmax   (DC)   (CC)   

Delta Total WE Pmax WE-Q:Pmax Pgmax WE-Q:Pgmax 

0.05 28875 3.05 0.947 3 0.963 

0.50 28878 3.50 0.825 3 0.963 

1.00 27921 4.00 0.698 3 0.931 

1.25 29160 4.25 0.686 3 0.972 

1.50 27902 4.50 0.620 3 0.930 

1.75 24150 4.75 0.508 3 0.805 

2.00 22046 5.00 0.441 3 0.735 

2.50 25159 5.50 0.457 3 0.839 

2.95 29577 5.95 0.497 3 0.986 

 

 

Table 12: Row Chooser’s Total Wealth Extracted in Prisoner’s Dilemma, Pattern 2 

 

 

 

 

 

 

We now turn to games #47, #48, and #57, which are asymmetric games having a common 

feature: the row player has a dominant strategy C. Thus a fully rational row player will 

never choose D. What will happen if players are able to explore and learn? Tables 13—15 

tell us that it depends on the payoffs. If  is close to zero, the outcome will be the Nash 

equilibrium (CC) almost always. As  increases, however, the incentives favoring the 

socially superior Pareto outcome (CC) concomitantly increase, drawing the players away 

from CC (Nash) to DD (socially superior Pareto).  We note that row chooser would 

prefer CD to DD, yet in all three games (see Tables 13—15) we see a similar pattern of 

CD play as delta increases. 
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Place “Table 13: Game #47” approximately here. 

 

 

 

-greedy action selection  Softmax action selection 

CC CD DC DD  CC CD DC DD 

9790 101 101 8 0 9808 94 98 0 

4147 137 156 5560 0.1 9812 94 93 1 

3019 123 165 6693 0.15 9799 95 104 2 

2188 141 132 7539 0.2 8934 85 109 872 

185 355 130 9330 0.5 730 284 208 8778 

131 309 135 9425 1 120 532 138 9210 

138 288 99 9475 1.5 77 471 103 9349 

99 321 131 9449 2 88 441 126 9345 

126 172 88 9614 3 64 366 92 9478 

 

Table 13: Game #47 

 

 

 

 

Place “Table 14: Game #48” approximately here. 

 

-greedy action selection  Softmax action selection 

CC CD DC DD  CC CD DC DD 

9789 102 107 2 0 9787 106 105 2 

3173 515 173 6139 0.1 9811 86 101 2 

2832 457 207 6504 0.15 8127 256 137 1480 

1227 348 141 8284 0.2 2986 755 230 6029 

109 627 143 9121 0.5 143 631 146 9080 

90 492 139 9279 1 79 1320 126 8475 

88 318 134 9460 1.5 117 1076 128 8679 

241 236 119 9404 2 62 473 126 9339 

76 284 139 9501 3 64 277 128 9531 

 

Table 14: Game #48 
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Place “Table 15: Game #57” approximately here. 

 

-greedy action selection  Softmax action selection 

CC CD DC DD  CC CD DC DD 

9767 119 107 7 0 9764 131 105 0 

1684 587 175 7554 0.1 9794 106 98 2 

531 518 191 8760 0.15 9550 105 105 240 

238 543 159 9060 0.2 1048 497 257 8198 

126 307 121 9446 0.5 224 852 152 8772 

118 520 114 9248 1 113 753 119 9015 

104 526 125 9245 1.5 74 538 117 9271 

66 225 102 9607 2 57 569 123 9251 

123 296 116 9465 3 61 302 125 9512 

 

Table 15: Game #57 

 

 

The Wealth Extraction Reports for game #47 are also useful for understanding the row 

versus column power relationship in these games (Tables 16—17).  Notice that at the 

Nash Equilibrium (CC) total WE for row is 2/3 of that for column.  See Tables 16—17 

for delta=0.  As delta increases and CC play decreases both players uniformly increase 

their WE.  At the same time, their WE becomes more and more equal, and by the time 

delta=2 row chooser is extracting more wealth from the game than column chooser. This 

occurs even though in more than 92% of the games the play is DD and column chooser 

extracts more wealth than row chooser!  The difference is due to the occasional 

‘defection’ by row chooser to play C.  Finally, we note that DC is neither Nash nor 

Pareto in these games.  Our agents play DC at a rate that is low and essentially invariant 

with delta.  That rate may be interpreted as a cost consequence of exploration. 

 

Finally, it is instructive to note that when delta = 3 the expected value for column playing 

D is 3.3-3.2p, if row plays C with probability p. Similarly the expected value of playing C 

is 0.2+0.1p.  Consequently, column should play D so long as p < 31/33.  These 

considerations lead us to wonder whether our row chooser agents have not learned to be 

sufficiently exploitive.  They may be too generous to column chooser, although column 

chooser is not without recourse.  However, the fact that C and D for row chooser are so 

close in value, given that column chooser plays D, may impute stability in this stochastic, 
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noisy, learning context.  Note that in all three games CD is more rare when delta = 3 

than when delta = 2. 

 

 

Place “Table 16: Row Chooser’s Total Wealth Extracted in Game #47” approximately 

here. 

 

Softmax #47 (CD)   (DD)   

Delta Total WE Pmax WE-Q:Pmax Pgmax WE-Q:Pgmax 

0 2000 0.30 0.667 0.20 1.000 

0.1 2010 0.40 0.502 0.30 0.670 

0.15 2014 0.45 0.447 0.35 0.575 

0.2 2189 0.50 0.438 0.40 0.547 

0.5 6539 0.80 0.817 0.70 0.934 

1 11781 1.30 0.906 1.20 0.982 

1.5 16767 1.80 0.931 1.70 0.986 

2 21604 2.30 0.939 2.20 0.982 

3 31559 3.30 0.956 3.20 0.986 

 

Table 16: Row Chooser’s Total Wealth Extracted in Game #47 
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Put “Table 17: Column Chooser’s Total Wealth Extracted in Game #47”, about here. 

 

Column Chooser:     

Softmax #47 (DD)   (DD)   

Delta Total WE Pmax WE-Q:Pmax Pgmax WE-Q:Pgmax 

0 2962 0.30 0.987 0.30 0.987 

0.1 2963 0.40 0.741 0.40 0.741 

0.15 2961 0.45 0.658 0.45 0.658 

0.2 3136 0.50 0.627 0.50 0.627 

0.5 7291 0.80 0.911 0.80 0.911 

1 12076 1.30 0.929 1.30 0.929 

1.5 16909 1.80 0.939 1.80 0.939 

2 21577 2.30 0.938 2.30 0.938 

3 31342 3.30 0.950 3.30 0.950 

 

Table 17: Column Chooser’s Total Wealth Extracted in Game #47 

 

 

 

In PD and games #47, #48, and #57, the Nash Equilibrium is not on the Pareto frontier. 

The Stag Hunt game is thus interesting because its Pareto optimal solution is also one of 

its two pure strategy NEs. But which one, or which mixture, will be sustained remains a 

challenging problem for classical game theory. A mixed strategy seems natural in this 

repeated game for classical game theory. Table 18 shows that the outcomes of for our 

reinforcement learning agents do not conform to the prediction of a mixed strategy. Say, 

for example, when delta is equal to 1, the mixed strategy for both players will be 

choosing action C with probability 1/3 and D with probability 2/3. (Let p be the 

probability of playing C, then at 5p+0p=3p+(1-p) the players are indifferent between 

playing C or D. This happens at p=1/3.)  We should expect to see CC with a frequency 

less than 33%, while Table 15 shows CC happening at a rate of 88%.  
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Place “Table 18: Summary of Results for Stag Hunt” approximately here. 

 

 

-greedy action selection  Softmax action selection 

CC CD DC DD  CC CD DC DD 

9390 126 122 362 0 9715 108 109 68 

9546 91 108 255 0.5 9681 120 121 78 

9211 112 125 552 0.75 9669 111 101 119 

8864 119 110 907 1 9666 98 102 134 

8634 115 132 1119 1.25 9598 139 134 129 

7914 122 130 1834 1.5 9465 99 109 327 

7822 122 104 1952 2 9452 126 126 296 

5936 87 101 3876 2.5 8592 116 89 1203 

5266 121 106 4507 3 3524 111 115 6250 

 

Table 18: Summary of Results for Stag Hunt 

 

 

In Stag Hunt, CC is Pareto optimal but risky, while DD is riskless (on the down side) but 

Pareto dominated.  As delta increases from 0 to 3.0 the risk/reward balance increasingly 

favors DD.  Our agents respond by favoring DD at the expense of CC and in 

consequence they extract a decreasing amount of wealth.  It is as if they were operating 

with a risk premium, yet we know they are not. 
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Place “Table 19: Row Chooser’s Total Wealth Extracted in Stag Hunt”, approximately 

here. 

 

Row Chooser:   

Softmax Stag Hunt (CC) WE-Q:Pmax 

delta Total WE Pgmax WE-Q:Pgmax 

0.0 48902 5 0.978 

0.5 48807 5 0.976 

0.8 48737 5 0.975 

1.0 48770 5 0.975 

1.3 48553 5 0.971 

1.5 48143 5 0.963 

2.0 48230 5 0.965 

2.5 46235 5 0.925 

3.0 36805 5 0.736 

 

Table 19: Row Chooser’s Total Wealth Extracted in Stag Hunt 

 

 

 

The remaining two games are coordination games. We are concerned not only with which 

NEs are to be selected, but also with a larger question: Is the Nash Equilibrium concept 

apt for describing what happens in these games? The later concern arises as we observe 

different behavior in human experiments. Rapport et al. (1976) reported a majority of 

subjects quickly settling into an alternating strategy, with the outcome changing back and 

forth between the two Nash coordination points (CD and DC) when playing the game of 

Chicken.  

 

From Table 20 we can see these two NEs (and coordination points) in Battle of the Sexes 

are equally likely to be the outcome in most cases since the game is symmetric and these 

two outcomes are superior to other two, which give both players a zero payoff. In the 

game of Chicken (Table 21) we see that if the incentive for coordinating is too small (i.e., 

delta is close to zero), the players learn to be conservative and land on the non-NE (CC) 

since they cannot afford the loss resulting from DD (getting zero). As delta increases, the 

game ends up more and more in one of the Nash coordination points (CD or DC). 
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Insert “Table 20: Summary of Results for Battle of the Sexes” approximately here. 

 

-greedy action selection  Softmax action selection 

CC CD DC DD  CC CD DC DD 

2641 63 4571 2725 0 2872 73 4477 2578 

3842 135 1626 4397 0.1 4615 101 1732 3552 

5140 102 90 4668 0.5 4772 102 162 4964 

4828 107 94 4971 1 4862 88 89 4961 

4122 101 109 5668 1.5 4642 85 102 5171 

4983 100 97 4820 2 4623 97 87 5193 

3814 111 96 5979 2.5 5139 102 99 4660 

4015 1388 107 4490 2.9 4303 1794 118 3785 

2653 4921 70 2356 3 2593 4776 58 2573 

 

Table 20: Summary of Results for Battle of the Sexes 

 

 

 

 

 

Insert “Table 21: Summary of Results for Chicken” approximately here. 

 

 

-greedy action selection  Softmax action selection 

CC CD DC DD  CC CD DC DD 

9276 227 347 150 0 9509 165 222 104 

9587 143 135 135 0.25 9119 428 320 133 

9346 209 223 222 0.5 9375 220 225 180 

6485 1491 1858 166 0.75 8759 424 632 185 

1663 3532 4706 99 1 1339 4903 3662 96 

385 4161 5342 112 1.25 158 5416 4323 103 

113 4488 5274 125 1.5 115 4700 5099 86 

111 4301 5504 84 1.75 100 4704 5083 113 

100 4853 4953 94 2 94 4772 5044 90 

 

Table 21: Summary of Results for Chicken 
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The Wealth Extraction Report for Chicken, Table 22, is particularly revealing.  When 

delta is small, play is overwhelmingly CC.  CC is non-Nash and Pareto and for delta  

1.0 CC is socially superior Pareto.  C is less risky for both players than D (both CD and 

DC are Pareto and Nash outcomes), so when delta is small it stands to reason that our 

agents should stick with CC. Note in this regard that if the players exactly alternate the 

CD and DC outcomes, they each will receive a payoff of 1+delta on average. See the 

column labeled “WE if Perfect Alternation” in Table 22.  We see that when delta  1.0 

(i.e., when CC is socially superior), CC play is preponderant and Total WE is greater, 

often substantially greater, than WE if Perfect Alternation.  For delta  1.0, CD and DC 

are socially superior Pareto.  In the neighborhood of 1.0, play transitions from 

predominantly CC to predominantly CD and DC.  Note that Total WE increases 

uniformly with delta (except for a slight decline in the neighborhood of delta=1.0, which 

we attribute to transition-induced error).  As delta ranges from 1.0 to 2.0, Total WE 

closely approximates WE if Perfect Alternation.  In short, the agents are impressively 

effective at extracting wealth.  Outcomes are Nash (for the most part) if and only if there 

is not more money to be made elsewhere. 
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Insert “Table 22: Row Chooser’s Total Wealth Extracted in Chicken” about here. 

 

Row chooser:  Chicken    

Softmax (DC)       WE if Perfect 

delta Total WE Pmax WE-Q:Pmax Pgmax WE-Q:Pgmax Alternation 

0.0 19482 2.00 0.974 1.0 1.948 10000 

0.3 19065 2.25 0.847 1.3 1.525 12500 

0.5 19423 2.50 0.777 1.5 1.295 15000 

0.8 19574 2.75 0.712 1.8 1.119 17500 

1.0 18567 3.00 0.619 2.0 0.928 20000 

1.3 21136 3.25 0.650 2.3 0.939 22500 

1.5 25127 3.50 0.718 2.5 1.005 25000 

1.8 27493 3.75 0.733 2.8 1.000 27500 

2.0 29908 4.00 0.748 3.0 0.997 30000 

Note: Pgmax assumes perfect alternation of CD and DC.  

 

 

Table 22: Row Chooser’s Total Wealth Extracted in Chicken 

 

 

 

 

In order to see if players can learn alternating strategies, as observed in human subject 

experiments, we conducted another 100 trials for these two games with delta set to 1 and 

with Softmax action selection. For most of the trials the outcomes converge (i.e., settle, 

Dworman et al., 1995, 1996) to one of the Pareto superior outcomes. But we did observe 

patterns showing alternating strategies for both games. These patterns are quite stable and 

can recover quickly from small random disturbances. For the Battle of the Sexes, we 

observed only one alternating pattern: the players playing the two Nash Equilibria 

alternately, in sequence. This pattern occurred in 11 out of 100 trials. For Chicken, we 

observed other kinds of patterns and have summarized their frequencies in Table 23. 
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Insert “Table 23: Frequencies of different patterns of outcome in the game of Chicken” 

approximately here. 

 

The outcomes Frequency in 100 trials 

Alternating between CD and DC 10 

Cycle through CD-DC-CC or CD-CC-DC 13 

Converge to one of the three: CC, CD or DC 76 

No obvious pattern 1 

 

Table 23: Frequencies of different patterns of outcome in the game of Chicken 

 

 

 

At 23% (10+13 of 100), the proportion of alternating patterns cannot be said to be large. 

Note first that we have used payoffs different from Rapport et al. (1976) and this may 

influence the incentive to form alternating strategies.  Second, our players do not 

explicitly know about the payoff matrix and can only learn about it implicitly through 

play.  Finally, there certainly are some features of human adaptive strategic behavior that 

are not captured in our current Q-learning model but that are important for human 

subjects to learn such alternating strategies. The main point, however, is how irrelevant 

the Nash Equilibrium concept seems for describing the outcomes of the repeated 

coordination games—Chicken and Battle of the Sexes—as played by our agents. 

  

 

 

 

 

4 Summary  

 

Wealth extracted (WE) is the proper measure of an agent’s performance in a game.  

When the game is a repeated one, it may well be to an agent’s advantage to explore, 

taking different actions in essentially identical contexts.  Our simple reinforcement 

learning agents do exactly this. They present perhaps the simplest case of an adaptive, 

exploring rationality.  In utter ignorance of the game and their co-players, they merely 

seek to maximize their WE by collecting information on the consequences of their actions, 

and playing what appears to be best at any given moment.  This is tempered by a 

tendency to explore by occasionally making what appear to be inferior moves. 
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Remarkably, when agents so constituted play each other and NEs are distinct from more 

rewarding Pareto outcomes (Prisoner’s Dilemma, games #47, #48, and #57, Chicken with 

  ), Pareto wins.  The drive to maximize WE succeeds.  Similarly, a Pareto superior 

Nash Equilibrium will trump a Pareto inferior NE (Stag Hunt).  Finally, in the presence 

of Pareto outcomes that are socially superior but unequally advantageous to the players, 

the players learn to extract an amount of wealth close to the maximum available (Battle 

of the Sexes, Chicken).   

 

Outcomes that are neither Pareto efficient nor Nash Equilibria are rarely settled upon.  

Nash outcomes give way to Pareto superior outcomes when it pays to do so. A bit more 

carefully, in the case that there is one sub-game perfect NE, these results violate that as a 

prediction.  In the case that the repeated games are seen as open-ended, there are (viz., 

the Folk Theorem) a very large number of NEs, but there is also insufficient theory to 

predict which will in fact occur. Again, our agents defy this as a prediction: they rather 

effectively maximize their Total WE.  To sloganize, “It’s not Nash that drives the results 

of repeated play, it’s Pareto.”  

 

5 Discussion of Related Work 

Reinforcement learning in games has become an active area of investigation. A 

systematic treatment of the literature would require a rather lengthy review paper of its 

own. Instead, we shall confine ourselves to brief discussions of certain especially apt 

works. We begin with several papers describing investigations into reinforcement 

learning in games by artificial agents. 

 

Hu and Wellman (1998) essay a theoretical treatment of general-sum games under 

reinforcement learning. They prove that a simple Q-learning algorithm will converge for 

an agent to a Nash Equilibrium under certain conditions, including uniqueness of the 

equilibrium. When these conditions obtain the Nash equilibrium is, in effect, also Pareto 

optimal or dominant for the agent.  

 

Claus and Boutilier (1998) investigate reinforcement learning (Q-learning) agents in 

coordination (aka: common interest) games. (Claus and Boutilier refer to these as 

cooperative games, which are not to be confused with cooperative game theory; the 

games played here are non-cooperative.) The paper studies factors that influence the 

convergence to Nash equilibrium under the setting of repeated play when using 

Q-learning. The empirical results show that whether the agent learns the action values 

jointly or individually may not be critical for convergence and that convergence may not 

be generally obtainable for more complicated games. The paper also proposes use of a 
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myopic heuristic for exploration, which seems promising to help convergence to optimal 

(Pareto dominant) equilibrium. However, because the games tested in the paper are 

restricted to two particular coordination games, the results are somewhat limited in scope. 

 

Bearden (2003) examines two Stag Hunt games, one with ‘high’ risk and one with ‘low’ 

using reinforcement learning and a genetic algorithm to discover parameter values for the 

agents’ learning schedules. His results are not easily comparable with ours, since his two 

games are effectively parameterized differently than our series of games (as delta 

changes).  Broadly, however, our results are in agreement.  Bearden’s ‘high’ risk game 

is closest to our game with delta = 2 or 2.5, while his ‘low’ risk game roughly 

corresponds to our case with delta = 0.75 or 1. In both studies, there is considerably more 

joint stag hunting (cooperation) in the ‘low’ risk case and considerably more joint hare 

hunting in the ‘high’ risk case.   

 

Mukherjee and Sen (2003) explore play by reinforcement learning agents in four 

carefully-designed 3x3 games, in which the ‘greedy’ (i.e., Nash) outcome is Pareto 

inferior to the ‘desired’ (by the authors) outcome. Besides the different games, the 

experimental treatment involves comparison of two play revelation schemes (by one or 

both players) with straight reinforcement learning.  It is found, roughly, that when the 

‘desired’ outcome is also a Nash Equilibrium (NE) the revelation schemes are effective in 

promoting it.  This kind of investigation, in which the effects of institutions upon play 

are explored, is, we think, very much in order, especially in conjunction with further 

investigation of learning regimes.  

 

Reinforcement learning, in a related sense, has become popular in behavioral economics. 

A rather extensive series of results finds that reinforcement learning models, often 

combined with other information, perform well in describing human subject behavior in 

games. See Camerer (2003) for an extensive and up to date review.  In part as a 

consequent of the experimental results, there has been theoretical interest by economists 

in reinforcement learning in games. Burgos (2002), for example, tries to use 

reinforcement learning models to explain subjects’ risk attitudes, which are one aspect of 

choice theory. The setting is pairwise choices between risky prospects with the same 

expected value. Two models are used for the simulation; one is from Roth and Erev (1995) 

and Erev and Roth (1998), the other from Börgers and Sarin (1997, 2000). The paper 

demonstrates a possible explanation of risk aversion as a side-effect of the learning 

regime. This raises the important question of whether risk aversion, risk seeking, and 

even individual utilities could be emergent phenomena, arising from simple underlying 

learning processes.  

 

Finally, Bendor et al. (2001) study long run outcomes when two players repeatedly play 

an arbitrary finite action game using a simple reinforcement learning model. The model 
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resembles that in Erev and Roth (1998). A distinguishing feature of the model is the 

adjustable aspiration level, which is used as an adaptive reference point to evaluate 

payoffs. Aspirations are adjusted across rounds (each round consists of a large number of 

plays). They define and characterize what they call Pure Steady States (either 

Pareto-efficient or Protected Nash equilibrium of the stage game), and the convergence to 

such states is established under certain conditions. The model limits itself to selection of 

particular action, thus does not allow mixed strategy or trigger strategy such as “Tit for 

Tat” in Prisoner’s Dilemma. In this simple, but general case, the authors prove that 

“convergence to non-Nash outcomes is possible under reinforcement learning in repeated 

interaction settings” (emphasis in original). 

 

The results original to this paper are consistent with and complementary to the results 

reported in the above papers and other extant work.  Further analytic and simulation 

results can only be welcomed. The experimental technique, however, has allowed us to 

discover hypotheses that merit continued investigation.  In particular, our suggestion is 

that for agents playing games, and learning, wealth extraction (or some variant of it) is a 

key indicator for understanding system performance.  Agents, we suggest, respond to 

rewards, but do so imperfectly and in a noisy context. If the reward signals are 

sufficiently clear, the agents will largely achieve Pareto optimal outcomes. If the signals 

are less clear, the outcomes obtained represent a balance between risk and reward. In 

either case, it is far from clear what causal contribution, if any, is made by the Nash 

Equilibrium. Resolution of these issues awaits much more extensive investigation. 
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