
ORI GIN AL ARTICLE

A service accountability framework for QoS service
management and engineering

Kwei-Jay Lin Æ Soo Ho Chang

Received: 15 April 2008 / Revised: 18 September 2008 / Accepted: 5 January 2009 /

Published online: 24 January 2009

� The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Service science, management and engineering (SSME) research is to

study the methodology and technology for service innovation, design, development

and delivery. Since service industry is very quality-sensitive and trust-dependent,

we propose a service accountability management framework to detect, diagnose,

defuse and disclose the root cause for any problematic service process. The

accountability support is important for SSME since service processes often rely on

external service providers to deliver part of the service functionalities. A service

system must have effective yet efficient mechanisms to ensure that every external

service is delivering a consistent and acceptable level of performance to meet the

end-to-end quality of service (QoS) of the whole service process. In this paper, we

present the accountability framework, identify the components in an accountable

service architecture, and design an accountability diagnosis methodology. We also

briefly present the inteLLigent Accountability Management Architecture (LLAMA)

project which implements the accountability service bus (ASB), an agent-based

middleware to support the monitoring, diagnosis, and reconfiguration of e-services.

LLAMA ASB interacts with accountability agents to monitor services and the

Accountability Authority to automatically diagnose faulty situations. The LLAMA

technology is useful to ensure the QoS in SSME-based systems.

Keywords Service-oriented architecture � Accountability � Quality of service �
Diagnosis � LLAMA service bus

K.-J. Lin � S. H. Chang (&)

Department of Electrical Engineering and Computer Science,

University of California, Irvine, CA 92697, USA

e-mail: sooho.chang@gmail.com

123

Inf Syst E-Bus Manage (2009) 7:429–446

DOI 10.1007/s10257-009-0109-5

1 Introduction

The area of service science, management and engineering (SSME) is a multi-

disciplinary research and education endeavor to study the methodology and

technology for service innovation, design and delivery in order to make service

industry more effective and scalable. In recent years, business globalization, server

automation, and componentization of service functions have induced a tremendous

growth on Web-based services. Advances on the Internet technology and the

popularity of Web-dependent life style have created new service business

opportunities. A service business may be used to deliver knowledge, utility,

experience, information, or other intellectual content to its clients. The capabilities

to (1) innovate knowledge-intensive services, (2) create business values from

domain expertise, and (3) design and develop new B2C and B2B business models,

allow many enterpreneurs to set up innovative and successful service businesses at

an unprecedent rate.

To maintain and to grow a successful service business, however, takes more than

just innovative ideas. Service industry is qualitatively different from product-

oriented business. They are much more dynamic and demanding than traditional

product-oriented business. Moreover, they are very quality- and trust-sensitive.

Therefore, the question of how a service business can guarantee manageability and

visibility throughout their service delivery process is very important and challenging

in SSME.

The goal of our SSME research is to develop the IT technology for quality-

sensitive services. In our research, we design new service management models. We

also develop an IT system framework with a powerful middleware support for

service composition and execution. By building a service infrastructure using

current and emerging IT technologies (including wireless Internet, software agents,

pervasive devices, etc.), we want to provide the scientific and technical support that

helps companies become successful service-oriented businesses.

1.1 SOA for SSME

One way to meet the service scalability and manageability needs is for companies to

divide their service processes into reusable service components that can be better

managed individually. Moreover, companies may want to outsource some service

components for cost efficiency and growth capability reasons. Enterprises should

concentrate on their core competency and avoid wasting resources on providing

mundane or non-essential functions. For example, small hospitals may rely on

external specialists and laboratories to perform medical or laboratory tests;

engineering consulting companies may rely on law firms to conduct patent search

or filing.

To achieve an effective outsourcing, one can adopt the service-oriented

architecture (SOA) paradigm. SOA has recently become a popular paradigm to

integrate distributed heterogeneous IT components and applications (Bichler and

Lin 2006; Huhns and Singh 2005). Using SOA, enterprise systems can execute

transactions across multiple server domains at distributed locations, compose

430 K. J. Lin, S. H. Chang

123

complex business processes, and integrate services to enable collaborations

among business partners. However, SOA is not restricted to composing IT

software services only; the SOA paradigm can be used to integrate other types of

services, including those by human, by portable devices, by physical systems, and

by intelligent software agents. In general, the loose coupling and detached

ownership of services give SOA the attractive properties of openness, flexibility,

and agility.

1.2 Accountable SOA

When a service provider subcontracts some service components to external service

providers, it is imperative for the service provider to have a mechanism to ensure

that all external servers provide an acceptable and consistent level of performance,

in order to meet the overall quality requirements from its customers. The behavior

of individual services in a service process must be monitored in order to settle any

responsibility issue. Any under-performed external service should be replaced

immediately to ensure the required quality of service (QoS) level. Therefore, service

systems should have simple-yet-effective mechanisms to conduct:

1. monitoring of services and identification of likely faults or problems,

2. inspection and reasoning about the correctness of individual services, and

3. dynamic reconfiguration of services and service processes.

To provide a holistic solution to the above requirement, we propose the

framework of accountability as a means to monitor services, identify problems, and

make remedies. Accountability requirements have been adopted in real life by many

public institutions such as government agencies, hospitals and non-profit organi-

zations as a comprehensive measure to provide operation transparency and to

furnish a responsible attitude toward any unacceptable behavior. We believe that

accountability for professional services should be carefully studied in SSME by

considering the unique characteristics of service outsourcing. Specifically, we

believe an accountability measure for service industry should clearly specify the

expected behavior, model inter-dependencies among service components, diagnose

and identify faulty service entities, and defuse and recover from problems at run

time.

The contribution of this paper is that we present a comprehensive study on

accountable services. We identify the key components of an accountable service

system architecture, and study the flow of accountability support. We also analyze

the relationships among different quality attributes and study ways to conduct

diagnosis to find the actual cause of a quality deficiency. We then present a

middleware project that is designed to support the accountability of e-services.

Although the current implementation is for e-services, the design and the

architecture can be used to support other types of services (including human,

physical and professional services).

This paper is organized as follows. Section 2 provides the background on

accountability. The accountability computing model and components are presented

in Sect. 3. The inteLLigent Accountability Management Architecture (LLAMA)

Service accountability framework for QoS service management 431

123

middleware for e-service accountability is presented in Sect. 4. Related work on

service QoS is presented in Sect. 5. Concluding remarks are given in Sect. 6.

2 Introduction to accountability

Accountability has become a major concern for business management in USA,

especially after the ratification of the Sarbanes-Oxley Act of 2002 (Sarbanes-Oxley

2002, also known as the Public Company Accounting Reform and Investor

Protection Act of 2002), which establishes new enhanced accountability standards

for all public company management and public accounting firms. The Public

Company Accounting Oversight Board (PCAOB) is given the responsibility of

overseeing, regulating, inspecting, and disciplining accounting firms in their roles as

auditors of public companies. The Act has made accountability a mandatory

requirement for organizations. Partly to meet this needs in many enterprises, IBM

has identified ‘‘Managing Business Integrity’’ as one of the top four technical

challenges in its Global Technology Outlook (GTO) in 2007 (Mohan 2007). An

effective quality management infrastructure is essential to maintain business

integrity. All these provide the motivation for our research on accountability in

order to regulate service quality.

2.1 General accountability

The notion of accountability is used for clarifying the responsibility for certain

problems in complex procedures among different parties. It is a comprehensive

quality assessment concept in the course of complex interaction patterns (such as

invocation, negotiation, nested loops, fork and join, etc., Nissenbaum 1994). When

problems occur in complex transactions among different parties, assessing the

source of the problems and figuring out the responsible parties for the problems

usually are non-trivial.

Horsch (1996) reports a project on results-based accountability for public

institutions. It identifies the following design elements for accountability systems:

1. Objective: outcomes that articulate what programs are to achieve;

2. Quality: indicators to measure whether or not outcomes have been achieved;

3. Benchmark: performance standards to assess how programs are progressing;

4. Monitoring: data collection instruments to regularly obtain indicator data;

5. Feedback: periodic collection and analysis of data for decision making and

reporting.

Among the five elements of the accountability design, the first three are

application-specific, to be defined by application designers. On the other hand, IT

may be used to manage the last two elements: monitoring and feedback. We thus

focus our study on the IT mechanisms for service monitoring and accountability

analysis.

Accountability in the context of computer decision systems has been studied in

Johnson and Mulvey (1995). The authors have discussed four accountability issues:

432 K. J. Lin, S. H. Chang

123

1. Fault: we must first identify what has gone wrong in a system. This is usually

identified from some expected activities but performed in substantially different

ways. From an observed fault, we may look for the cause that leads to the

problematic situation.

2. Causality: given an observed fault, there may be one or more associated causes.

The causality is a direct or indirect relationship between the fault and its causes.

When understanding causality, we need to consider the possibility of having a

chain of causes where one action affects another. Given a chain of causes, one

can trace the fault propagation path and identify the root cause.

3. Role: a role is a specific type of functionality or behavior played by a party.

Some roles in interactions may trigger or otherwise prevent problematic

situations; the parties who play such roles are to be responsible for the problems

identified.

4. Liability: given a problematic situation, there is usually some consequence due

to the service failure. The service provider should be responsible for the

consequence. The liability may be as simple as suspending the service or as

serious as paying for the complete damage due to the faulty service.

2.2 Accountability in SOA

Service-oriented architecture has become a popular and prominent paradigm to

integrate IT components and applications (Bichler and Lin 2006). Our SSME

research decides to study the accountability framework using SOA. Through the

SOA framework and IT support, we hope to offload the accountability management

burdens from human service operators to IT infrastructure. Accountability imposes

that all services deployed (regardless whether by human, machine or software) have

the obligation to accept responsibility or to account for their actions (Lin 2007). By

imposing accountability on services, service clients are provided with the

transparency of understanding abnormal behaviors in service collaborations. As a

result, they may receive a higher standard on problem resolution when subscribing

services with accountability support.

We now review the four accountability attributes from SOA’s perspective.

• Fault in SOA is the result of a service execution which deviates from the

client’s expectation on the service. When a service is invoked, the service is

expected to fulfill some functional and nonfunctional capabilities. If a service

result does not comply with the a priori agreement with a client, it is deemed

to have a fault.

• Causality in SOA is a relationship between a fault and one or more services that

produce the results directly or indirectly. In many cases, a fault in a service

execution can be the cause for another fault, resulting in a chain of faults.

• Role in SOA is a well-defined responsibility fulfilled by a party during service

execution. Service providers and service clients are two most obvious roles in

SOA. Other roles in SOA include service monitors, fault handlers, etc.

• Liability in SOA may include service replacement, process reconfiguration, and/

or compensation transactions. In the simplest case, a faulty service will be

Service accountability framework for QoS service management 433

123

replaced by another capable service candidate. It may also cause the service

process to be recomposed with a different workflow, or be restarted with a valid

set of input values. Finally, due to the erroneous executions that have occurred, a

service system may need to initiate a compensation transaction to undo previous

executions. Depending on the types of the problem situations, different liability

actions should be applied.

We now use an example to discuss the four attributes. Suppose a Flight
Reservation service process includes several services such as searching flight

availability, validating client identification, checking credit information, making

payment, and issuing tickets. There are different roles: airlines, customer

reservation service, payment system, etc. A problem in this service process may

be related to that, for example, the service for accepting payments does not

complete the execution within an acceptable duration. Hence, there is a violation on

the QoS value of response time on payment service. This problem may propagate to

other services in the business process; e.g. it may cause a fault on the service that

issues flight ticket and thus aborting the reservation. This illustrates the relationship

between the (root) cause and the resulting problem. To remedy the problem and to

make the system liable, a recovery action should be applied to replace the faulty

payment service with another service providing the same functionality. In some

cases, even when the transaction was aborted, a ticket should be re-issued at the

quoted price as long as the customer has initiated the payment process. The system

is liable for the delay and should honor the quoted price even when it is no longer

available.

From the above example, we can see that the issue of accountability is more than

simply detecting a fault. It must identify the actual problem and also provide the

action to resolve the liability. All these may need to be done in real time since

customers may request other alternative action immediately if no satisfactory result

can be delivered in real time. Therefore, an automated and capable accountability

support is critical to accountable SOA.

3 Accountable service computing model

When a problem occurs in a service system, the problem should be recognized, the

original causes should be identified and resolved, and the players that are

responsible for the faults should take appropriate remedy actions. The key phases of

accountable computing thus include Detect, Diagnose, Defuse, and Disclose as

shown in Fig. 1. Each phase has its goals and artifacts. As the executions of the

phases are conducted in sequence, the artifacts of the phases are continuously

Detect Diagnose Defuse Disclose

Fig. 1 Phases of accountability management

434 K. J. Lin, S. H. Chang

123

elaborated. In this way, a service system may be continuously improved. In this

section, we study the issues for each phase.

3.1 The detection phase

The detection phase is to be implemented by (1) dynamically acquiring status on

services and the environment, (2) computing the values of relevant quality

attributes, and (3) comparing the values of quality attributes to the threshold values

in service level agreement (SLA).

An accountable SOA system must first determine the expected behavior in a

service system. The criteria for determining acceptable behaviors are usually

derived from service policies and SLA that includes quality attributes and

constraints of services. A policy in SOA is a formal statement representing

assertions on the requirements of services. Examples of SOA policies include

authentication requirements for sensitive information processed by a service, and

the predetermined length of response time for time-sensitive services.

Service providers and consumers define their policies on services. A service

contract is then derived from a mutual agreement on various measurable quality

aspects of the service in order to enable runtime measurement and calculation.

Quality attributes are defined with an acceptable range for normal service

executions (Johnson and Mulvey 1995; O’Brien et al. 2005). Example quality

attributes are availability, accessibility, and performance. The values of these

quality attributes can be computed from measurements on services and the

environment. For example, availability is defined as the percentage of time during

which a service is available and performance can be measured by dispatch time and

latency time.

Faults in service processes may be present at different levels: including platform
level, service level, and process level. The platform level includes the system

infrastructure, middleware, resources, and communication network. The service

level is defined by service invocations, services deployed, and QoS interfaces. The

process level is defined by business process specification and service quality from

the end-to-end point of view. Therefore, an accountable system must detect all kinds

of abnormality at all three levels. Measurements on services and environment can be

gathered by various service monitoring methods such as Baresi and Guinea (2005)

and Morgan et al. (2005).

Some quality attributes are applicable to all three levels, while others are only

present at a specific level. For example, performance at different levels may be

measured by the throughput of a host, the response time of a service and of a

business process. However, scalability, the degree of consistency on response time,

may be more related to the platform rather than the service or process since

processes generally depend on the platform where they are deployed.

3.2 The diagnosis phase

Given some detected fault or faults, an accountable service system must analyze the

problems detected to identify the likely causes. We define the cause as an origin of

Service accountability framework for QoS service management 435

123

the abnormality or a situation (context) which has resulted in the abnormality. An

example of the origin of abnormality can be a failure of a service specified in a

business process and its impact on subsequent services.

We classify causes into three classes: (1) causes arisen from problematic

services, (2) causes arisen from malfunctioned infrastructure, and (3) causes arisen

from invalid service invocations by clients. Causes of the first type are often found

on poor behavior of services such as ‘‘service not responding’’ and ‘‘unexpected

service behavior’’. Causes of the second type are similar to that found in

conventional application system management. For example, service systems may be

overloaded with an excessive number of invocations or network may be congested.

Causes of the third type are related to invalid input values or parameters submitted

by clients, and incompatible input and output parameters between two connected

services.

There are different ways to diagnose faults and to identify causes. We have

studied a probabilistic model in Zhang et al. (2007), which adopts the Bayesian

network model to assess services upon the observation of some abnormal behavior.

The project utilizes monitoring agents and intelligent diagnosis methods, so that

accountability is efficiently assessed. However, as in any probabilistic model, the

result of assessing accountability and diagnosed results is not always correct.

Additional checking is required to confirm the true cause of a fault.

Another way to conduct diagnosis is to use a statistical approach which utilizes

the history of service invocations and rules for determining the cause based on the

observed abnormality. In this approach, we need to derive and define diagnosis rules

from the statistical analysis on earlier occurrences of (Abnormality Type, Cause
Type) pairs. The more comprehensive service logs are recorded, the more reliable

diagnosis may be produced. Statistical studies have been reported in Wang et al.

(2005) and Ardissono et al. (2005).

Fault diagnosis may be carried out with the consideration of specific relationships

among quality attributes as shown in Fig. 2. For example, an unsecured host which

receives a flood of attack messages may make a Web service on the host

unavailable. In turn, the unavailable Web service can cause a slow performance of a

business process which invokes the Web service. A correct diagnosis should be

conducted by tracing the relationship between different quality attributes, from

performance to security via availability in this example.

3.3 The defusing phase

This phase is to resolve the problem determined from the diagnosis phase. The

actual method of defusing problems largely depends on the type of the cause.

For causes from problematic services, a defusing method usually is to replace

malfunctioning services. The replacement can be for a service, a portion of a

process execution path, or the whole proess. A problematic service may be replaced

by a compatible service which provides the same functionality and possibly stronger

QoS. When replacing a portion of an execution path, the execution path is updated

by considering the dependency between replaced services and their neighbor

436 K. J. Lin, S. H. Chang

123

services. When replacing the whole process path, the path is re-defined without

using the problematic service.

For causes from malfunctioning infrastructure, a defusing method must identify

all services affected and exclude them from providing further services. After that,

the system can reconfigure or reboot the middleware environment. For causes of the

third type, e.g. invalid input parameters from clients, the defusing method is to

request for a new set of input values, or select another service that can accept the

invocation correctly.

3.4 The disclosure phase

In real life accountability situations, a liability is imposed on the party that has

caused a service failure. In SSME, this phase is to apply a post-mortem remedy on

the result of a faulty service. The remedy may be to compensate the service client

due to the damage from the service delivery failure, or to penalize the server so that

it is prevented from making similar faulty service in the future.

The former remedy may be carried out as compensating transactions for the

client. For example, an aborted transaction may be restarted. An incorrect purchase

may be returned and credited. A delayed transaction may need to be honored with

the original price and terms, even with extra discounts. Such remedy actions may be

executed as ‘‘exception handling’’ transactions by a penalty decision maker in the

accountability framework.

To penalize faulty servers (such as business process designers, service providers,

network administrators, SOA middleware managers), the information about their

unacceptable service record can be used to change the qualification or reputation of

these services. The result of disclosure can be reflected on the service repository for

future references. That is, the causes for certain abnormality, the effectiveness of

defusing methods for the causes, and reputation of the services can be effectively

considered before making future invocations of the services.

Fig. 2 Relationships among quality attributes

Service accountability framework for QoS service management 437

123

3.5 Accountability architecture components

To provide the functionality needed for accountable service computing, a

component architecture for accountable service system is shown in Fig. 3. The

architecture consists of four components: Monitor, Inspector, Handler, and

Recorder.

The component Monitor is to detect abnormality of services. It consists of the

following sub-components: Service Policy, Service Agreement, Fault Detector, and

Abnormality. The sub-component Fault Detector provides ways to recognize

abnormality by monitoring services, comparing current states to Service Agreement,

and describing abnormal situations.

The component Inspector is to analyze the abnormality and identify the origin

of the abnormality. It consists of sub-components: Diagnosis Conductor and Root

Cause. For the abnormality detected, the sub-component Diagnosis Conductor

identifies original causes using its diagnosing methods such as probability model

or rule-based model, and produces a description of causes in a predefined

template.

The component Handler is to recover a problematic service system from the

causes identified. It consists of sub-components: Recovery Decision Maker,

Recovery Plan, and Recovery Manager. Recovery Decision Maker generates a

recovery plan on which Recovery Manager defuses the root causes. The recovery

plan is defined with appropriate defusing methods for the types of causes and system

management guidelines.

Fig. 3 Accountability framework

438 K. J. Lin, S. H. Chang

123

The component Recorder is to determine responsible players for the causes and

relevant penalties for them. It consists of sub-components: Penalty Decision Maker,

Service Provider, and Penalty. Penalty Decision Maker decides the specific penalty

for responsible players.

We now elaborate on two components: Monitor and Inspector. These specialized

components with multiple quality attributes and diagnosis levels from the

accountability framework are shown in Fig. 4. In the figure, the main components,

Detector and Diagnoser, are derived from Fault Detector in the Monitor component

and Diagnosis Conductor in the Inspector of the accountability framework

respectively. They are behavioral components which provide functionality, while

Symptom and Causes are required information for detection and diagnosis. The

Symptom and Cause are derived from Abnormality in Monitor and Root Cause in

Inspector, and they are data used by the Detector and the Diagnoser.

In our design, a Detector is a software component to notify and to provide more

detailed symptoms to diagnosers. Since published services in a service system are

either atomic or composite services, detected abnormality is from either atomic or

composite services (i.e. business process). Therefore, we need detectors for

composite services which are deployed in a system and detectors for atomic services

which may reside in another system. Moreover, we also need application level

detectors which detect abnormality occurred in applications, as well as system level

detectors.

A Diagnoser is a software component which gets detected symptoms and returns

identified causes. In the diagnosis step, diagnoser requires three types of data: (1)

more information related to the detected abnormality, (2) decision rules to identify

causes, and (3) decision rules to determine further diagnosis.

A Symptom is a detected indicator in an abnormal service system. Symptoms are

classified into Exposed Symptoms and Hidden Symptoms. Exposed symptoms are

immediately observable and sent to diagnosers by detectors. However, hidden

Fig. 4 Specialized concept from accountability framework

Service accountability framework for QoS service management 439

123

symptoms are not directly visible, but will be furnished by detectors only if

diagnosers request for that information.

Causes are classified into intermediate causes and root causes. Intermediate

causes may be produced by other causes so it needs more detailed diagnosis.

However, root causes are the very origin of problems so that they should be

reported. For example, a high CPU or memory utilization may be a possible cause of

a slow service. But too many external requests may cause a high CPU or memory

utilization, and an extreme high number of requests may be due to the malfunction

of a firewall. In other words, a non-operational firewall may be the root cause and

others are just intermediate causes.

The Diagnoser and Detector can be deployed as service containers or business

process containers. Wherever they are deployed, the roles of the components are

the same but the data they read are different. For example, if a Detector is

deployed for a business process, it detects only exposed or hidden symptoms of

the business process executions but not the executions of service implementation

which are invoked from the business process. However, if the Detector is

deployed on a server hosting an invoked service from the business process, the

Detector only focuses on detecting abnormality in the service executions.

Therefore, symptons, causes, and the diagnosis process for the corresponding

diagnosis target are all circumstantial.

4 Accountability support using LLAMA

The above discussion provides a comprehensive requirement of an accountable

service system. We now present the design of the LLAMA middleware which

supports the dynamic and efficient e-service accountability. LLAMA includes the

mechanisms to route and to monitor e-services, and dynamically adapt by rerouting

service invocations away from faulty services. LLAMA is built on top of the open

source Mule Enterprise Service Bus (ESB) (MuleSource 2007) that provides routing

and interception mechanisms. We extend Mule to the LLAMA Accountability

Service Bus (ASB) to provide the accountability support. Although the current

LLAMA implementation is specific for e-services, we believe the design and the

architecture can be used to support other types of accountable services (including

human, machine and professional services).

4.1 LLAMA components

Figure 5 shows the elements of the LLAMA accountability middleware, as well as

service client and service providers.

For the Monitor and Inspector components, LLAMA provides the Accountability

Authority (AA) component and the Agent component that interact with each other

in a sequence of detecting and diagnosing activities. To be more effective, AA

assigns a minimum number of accountability agents to monitor and interact with a

number of services.

440 K. J. Lin, S. H. Chang

123

• Accountability Agents are used to monitor the behavior of Web services to

which they are assigned and report monitoring information to the AA.

• Accountability Authority is responsible for the diagnosis of services with

problematic behaviors in order to ensure that the process produces the desired

outcome. Moreover, it is responsible for initializing a run-time process

reconfiguration when the original process fails to produce desired outcome.

The current implementation of AA adopts the Bayesian network model for

determining probable causes.

• The LLAMA ASB provides the infrastructure for easy and scalable integration of

system components and services in the process. That is, it provides fundamental

supports for (1) dynamic routing, via a routing table and a performance

interceptor, (2) efficient and customizable profiling and logging components to

report performance data regarding services and the host, and (3) a configuration

gateway (CGW) to support the configurability of external service components.

For the Handler, LLAMA provides Service Process Engine and QoS Broker to

configure process and to recover from diagnosed problematic situations.

• QoS broker provides process planning and service selection, in order to assist the

service requester in meeting the end-to-end QoS requirements for a service

process. That means, the QoS broker provides the most appropriate path which

can be replaced for given causes when problematic situation is diagnosed. The

broker’s jobs include:

– Tracking, which is responsible for storing both functional and QoS data

about various service candidates.

– Planning, which composes a business process at the functional level based

on various requirements.

– Selection, which chooses specific services to fulfill each specific functional

need based on the user’s quality of service requirements.

e
P

ro
ce

ss
ng

in
e

B
ro

ke
r

t B
ro

ke
r

Service on
 A

ut
ho

rit
y

S
er

vi
ce E
n

Q
oS

Tr
us

t
Account-

ability
Authority

Account-
ability
Agent

Web
Services

Service
client

R
ep

ut
at

io

LLAMA Accountability Service Bus(ASB)

Fig. 5 LLAMA components

Service accountability framework for QoS service management 441

123

• A service process engine for service process orchestration. Such an engine can

be used by the service requester to coordinate a service process.

For the Recorder, LLAMA provides Trust Broker and Reputation Authority to

maintain the reputation information for services.

• Trust brokers are responsible for evaluating, aggregating, and managing the

reputation of services. Service’s reputation is a QoS parameter that affects the

service network composition: services with better reputation are more likely to

be chosen. Once a service provider who is responsible for a problem is

determined from diagnosis phase, corresponding Trust Broker records the

information for future references.

• Reputation authority is queried by the trust broker for information regarding

reputation information for various services. Trust Broker is to suggest trustable

services for requests within a local region, whereas Reputation Authority

provides globally trustable services by interacting with Trust Brokers.

4.2 Accountability operations using LLAMA

Figure 6 shows how components of LLAMA middleware interact with each other to

provide service accountability. When a service consumer requests a service, the

LLAMA ASB records the information of the transaction such as response time or

Fig. 6 Behavioral model of LLAMA components

442 K. J. Lin, S. H. Chang

123

throughput. In the detection phase, an agent is responsible for several services on the

LLAMA ASB, monitors the transaction logs within a predefined time interval, and

informs any detected abnormal situations to AA. In the diagnosis phase, AA

identifies suspicious services that are probable root causes based on the Bayesian

network model, and asks corresponding Agents for confirmation of the abnormal

situation. Once the root causes are identified, AA makes a recovery plan which is to

replace a service or reconfigure the whole or partial service invocation paths of the

process. To replace a service, ASB reroutes all service requests for it to a substitute

service by using the dynamic router, whereas QoS broker chooses a backup process

to reconfigure the process. Finally, faulty services creating root causes are recorded

in the Trust Broker which provides QoS information to QoS broker for future

service selections.

An example of accountability operation cycle is now shown for the QoS,

performance attribute. Assume that there is a business process using several web

services which are deployed on LLAMA ASB. During execution, agent recognizes

that a web service is not working on time, and reports it to AA. In response, AA

begins identifying suspicious services which may be the origin of the fault, and

asks other agents about the response time of other services. Using the reports from

all agents, AA identifies potential problematic services and produces the most

likely faulty service(s) based on the Bayesian network reasoning. AA then asks

agents to double-check the execution status of those service(s) in doubt. If an

agent finds a strong evidence to confirm faulty service(s), AA will replace those

service(s) and ask LLAMA ASB to reroute future service requests to available

replacements.

For other services that are not deployed on LLAMA ASB, they can still be

monitored and diagnosed if they provide required information to an agent. It is

necessary for agents to be allowed to monitor the status of service executions and to

communicate with AA on the status so that AA can detect and diagnose the exact

fault in service executions.

5 Related work

There are several service quality concepts which are related to accountability, as

shown in Table 1. Their goals and constructs may appear to be similar to

accountability. A close analysis, however, shows that accountability has its own

goals and values.

Autonomic computing is an approach to develop systems that are capable of self-

management, using self-configuring, self-healing, self-optimizing, and self-protect-

ing (IBM 2006). Each of the self-* methods is implemented with four operations in

sequence; monitoring, analyzing, planning, and executing. These operations are

analogous to those defined in accountability. However, autonomic computing is

motivated more from the goal of self management, whereas accountable service

computing is motivated to provide reliable and transparent services. Even if a

service is managed in a fully autonomic manner, it may not be considered to be

accountable because accountability demands additional quality transparency such as

Service accountability framework for QoS service management 443

123

determining responsible party for the given problem, which are not typically

presented in autonomic computing.

Security in computing systems means protecting systems from unauthorized

access, use, disclosure, disruption, modification, or destruction (Pfleeger and

Pfleeger 2003). Security focuses on defending against threat, whereas accountability

considers diagnosing threats for security related problems. It also considers a

comprehensive set of quality attributes beyond security. Hence, a secure service

may or may not be accountable.

Safety in computing systems is a condition where theories and engineering

approaches are defined to prevent foreseeable accidents and to minimize the result

of unforeseen ones (Leveson 1995). The primary concern of system safety is the

management of hazards: their identification, evaluation, elimination, and control

through analysis, design and management procedures. It can be differentiated from

accountability in the similar way that security is compared to accountability. Safety

can be enhanced by accountable service computing, but it is not the main objective

of accountability.

Trust is the subjective probability by which an individual expects that another

individual performs a given action on which its welfare depends (Josang et al.

2007). Trust is related to reputation in SOA, where consumers often rely on

measures of reputation to acquire trustable services. Services with high trust would

yield less problem during invocation, and accountability framework can be used to

provide trustable services. By choosing services with high trust, service systems

tend to be more stable and provide high QoS, but it does not necessarily mean that

those systems are accountable.

Service level agreement is a specification of contracting between service

providers and consumers and it is generally accompanied with contracts on QoS

(Papazoglou 2007). SLA is focused on defining agreements between two parties,

however accountability is to identify problems and resolve them based on the

specification of SLA.

Table 1 Comparison of QoS issues

Quality attributes Objective Technical challenge Methods

Autonomic

computing

Make services

self-managed

Optimization (pro-active

decisions)

Self-config., self-protection,

self-healing, self-

optimization

Security Threat resistance Algorithm complexity

(resource integrity)

Encryption, firewalls,

securing channels

Safety Failure avoidance Property validation Program analysis

Trust Service

trustworthy

Reputation collection,

collusion analysis

Recommendation

SLA QoS agreement Contract QoS measurement

Accountability Problem

identification

Causality and probability Diagnosis and reasoning

444 K. J. Lin, S. H. Chang

123

From above discussions, we can see, some notions of accountability also

appear in related concepts such as autonomic computing, security, safety, trust,

and SLA. However, accountability has different motivation and focus. It is to

promote accountable services and focuses more on investigating problem.

Accountability therefore is a more comprehensive quality aspect than security,

safety, and trust.

6 Conclusion

To guarantee service quality and delivery, we propose the service accountability

management framework to detect, diagnose, defuse and disclose the root cause of a

problematic service process. The accountability support is very important for

SSME-based systems since many service processes utilize external service

providers to deliver part of the service functionalities. Therefore service-oriented

systems must have mechanisms to ensure that every internal or external service is

accountable of its performance, in order to provide the end-to-end QoS of the whole

service process. In this paper, we have reviewed the requirements of a compre-

hensive accountable framework, designed the components in an accountable

services architecture, and presented an accountability management methodology.

We also present the LLAMA ASB project which is an agent-based middleware to

support the monitoring, diagnosis, and reconfiguration of e-services. The ASB

design is useful for all types of services to ensure the quality of service in SSME-

based systems. By deploying services on an ASB, we can make services and service

processes easier to monitor, to diagnose and to manage. In the future, we plan to

study how to adopt the ASB concept in SSME for delivering accountable services in

real world, not just in SOA systems.

Acnowledgments K. J. Lin was supported in part by a Visiting Fellow Grant (96-2811-E-001-003)

from the National Science Council of Taiwan, ROC for his visit at the Academia Sinica. S. H. Chang was

supported in part by the Korea Research Foundation Grant funded by the Korean Government

(MOEHRD) (KRF-2007-357 D00218).

Open Access This article is distributed under the terms of the Creative Commons Attribution Non-

commercial License which permits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.

References

Sarbanes-Oxley Act (2002) http://www.sec.gov/about/laws/soa2002.pdf

Ardissono L, Console L, Goy A, Petrone G, Picardi C, Segnan M, Dupre DT (2005) Enhancing web

services with diagnostic capabilities. In: Proceedings of the Third European Conference on Web

Services (ECOWS ’05), p 182

Baresi L, Guinea S (2005) Towards dynamic monitoring of WS-BPEL processes. In: Proceedings of

International Conference on Service-Oriented Computing (ICSOC 2005). Springer, pp 269–282

Bichler M, Lin KJ (2006) Service-oriented computing. IEEE Comput 39(3):99–101

Horsch K (1996) Results-based accountability systems: opportunities and challenges. The Evaluation

Exchange II (1) http://www.gse.harvard.edu/hfrp/eval/issue3/theory1.html

Service accountability framework for QoS service management 445

123

http://www.sec.gov/about/laws/soa2002.pdf
http://www.gse.harvard.edu/hfrp/eval/issue3/theory1.html

Huhns MN, Singh MP (2005) Service-oriented computing: key concepts and principles. IEEE Internet

Comput

IBM (2006) An architectural blueprint for autonomic computing http://www-01.ibm.com/software/

tivoli/autonomic/

Johnson DG, Mulvey JM (1995) Accountability and computer decision systems. Commun ACM

38(12):58–64

Josang A, Ismail R, Boyd C (2007) A survey of trust and reputation systems for online service provision.

Decis Support Syst 43

Leveson NG (1995) Safeware: system safety and computers. Addison-Wesley, Reading

Lin KJ (2007) Accountable services. In: IEEE International Conference on e-Business Engineering

(ICEBE)

Mohan C (2007) IBM Research global technology outlook (GTO) https://www.almaden.ibm.

com/u/mohan/abstracts.html

Morgan G, Parkin S, Molina-Jimenez C, Skene J (2005) Monitoring middleware for service level

agreements in heterogeneous environments. In: Challenges of Expanding Internet: E-Commerce,

E-Business, and E-Government. Springer, Berlin, pp 79–83

MuleSource (2007) The mule project http://mule.codehaus.org/display/MULE/Home

Nissenbaum H (1994) Computing and accountability. Commun ACM 37(1):72–80

O’Brien L, Bass L, Merson P (2005) Quality attributes and service-oriented architectures. Technical Note

CMU/SEI-2005-TN-014

Papazoglou M (2007) Web services: principles and technology. Prentice-Hall, Englewood Cliffs

Pfleeger CP, Pfleeger SL (2003) Security in computing. Prentice-Hall, Englewood Cliffs

Wang G, Wang C, Chen A, Wang H, Fung C, Uczekaj S, Chen YL, Guthmiller WG, Lee J (2005) Service

level management using qos monitoring, diagnostics, and adaptation for networked enterprise

systems. In: Proceedings of the Ninth IEEE International EDOC Enterprise Computing Conference

(EDOC ’05). IEEE Computer Society, Washington, DC, USA, pp 239–250

Zhang Y, Lin KJ, Hsu JY (2007) Accountability monitoring and reasoning in service-oriented

architectures. Journal of Service-Oriented Computing and Applications (SOCA) 1(1)

446 K. J. Lin, S. H. Chang

123

http://www-01.ibm.com/software/tivoli/autonomic/
http://www-01.ibm.com/software/tivoli/autonomic/
https://www.almaden.ibm.com/u/mohan/abstracts.html
https://www.almaden.ibm.com/u/mohan/abstracts.html
http://mule.codehaus.org/display/MULE/Home

	A service accountability framework for QoS service management and engineering
	Abstract
	Introduction
	SOA for SSME
	Accountable SOA

	Introduction to accountability
	General accountability
	Accountability in SOA

	Accountable service computing model
	The detection phase
	The diagnosis phase
	The defusing phase
	The disclosure phase
	Accountability architecture components

	Accountability support using LLAMA
	LLAMA components
	Accountability operations using LLAMA

	Related work
	Conclusion
	Acnowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

