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Abstract
Far-reaching decisions in organizations often rely on sophisticated methods of data 
analysis. However, data availability is not always given in complex real-world sys-
tems, and even available data may not fully reflect all the underlying processes. In 
these cases, artificial data can help shed light on pitfalls in decision making, and 
gain insights on optimized methods. The present paper uses the example of forecasts 
targeting the outcomes of sports events, representing a domain where despite the 
increasing complexity and coverage of models, the proposed methods may fail to 
identify the main sources of inaccuracy. While the actual outcome of the events pro-
vides a basis for validation, it remains unknown whether inaccurate forecasts source 
from misestimating the strength of each competitor, inaccurate forecasting methods 
or just from inherently random processes. To untangle this paradigm, the present 
paper proposes the design of a comprehensive simulation framework that models the 
sports forecasting process while having full control of all the underlying unknowns. 
A generalized model of the sports forecasting process is presented as the conceptual 
basis of the system and is supported by the main challenges of real-world data appli-
cations. The framework aims to provide a better understanding of rating procedures 
and forecasting techniques that will boost new developments and serve as a robust 
validation system accounting for the predictive quality of forecasts. As a proof of 
concept, a full data generation is showcased together with the main analytical advan-
tages of using artificial data.
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1  Introduction

Forecasting future events is a challenging task that requires a high level of 
domain-specific understanding of the underlying processes, high quality and 
availability of data, as well as detailed statistical modelling. In real-world situ-
ations, uncertainty governs all different steps of decision making, and one of the 
main tasks of accurate forecasting is to embrace this uncertainty to support deci-
sions. The increased relevance and complexity has led to forecasting becoming a 
highly interdisciplinary research topic that deals with areas as diverse as econom-
ics (Timmermann 2000), politics (Wolfers and Leigh 2002), energy supply (Hong 
et  al. 2016), weather (Taylor and Buizza 2004), climate (Green et  al. 2009), 
criminality (Gorr et  al. 2003), or demography (Booth 2006). The present paper 
is focused on another well-established and widely studied forecasting domain, 
which addresses the outcomes of sports events (McHale and Swartz 2019; Stekler 
et al. 2010; Wunderlich and Memmert 2020b).

Three particular aspects drive the relevance of sports forecasting. First, the 
large and growing sports betting market (Nederlandse Online Gambling Associa-
tie 2015) represents a real-world economic application, where wrong decisions on 
forecasting models might lead to negative financial consequences for bookmak-
ers (Forrest et al. 2005) and economists find a viable data environment to inves-
tigate market efficiency (Angelini and Angelis 2019). Second, the great public 
interest in sports and broad media coverage of events supports a high availability 
of data, which makes it possible to assess decent sports-related datasets (Baker 
and McHale 2013; Kovalchik 2016; Štrumbelj and Šikonja 2010). Third, predic-
tive models in sport can also contribute to answering sports science questions 
by providing a better understanding of the characteristics of the sports (Heuer 
and Rubner 2009; Štrumbelj and Vračar 2012; Wunderlich and Memmert 2018). 
This paper introduces the use of information technology in the sports forecasting 
domain from a foundational perspective, provides an abstraction of the processes 
and information involved and proposes the modelling, generation, and use of arti-
ficial data to study and improve forecasting scenarios.

Despite the fact that the existing knowledge in sports forecasting contains a 
plethora of statistical models (Wunderlich and Memmert 2020b) as well as an 
increasingly number of advanced data mining methods (Horvat and Job 2020; 
Lessmann et al. 2010), the present paper attempts to extent this body of research 
by critically examining each of the components participating in a very heter-
ogenous information system. As reported by Venable et  al. (2016), the formal 
description of the processes involved can boost research communication between 
practitioners as well as drive the scope of new developments. Moreover, the 
design and granular investigation of such a generic model of sports forecasting 
enables an integral simulation of the system. Other relevant fields of forecasting 
have robust integrations with simulation and modelling research such as weather 
forecasting (Wilks and Wilby 1999). However, even though the simulation and 
statistical modelling of data have been used to predict and validate sports out-
comes, for instance, modelling competition structures in basketball (Saá Guerra 
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et al. 2012) or simulating full tournaments result in tennis (Clarke and Dyte 2000) 
and football (Leitner et al. 2010), to the best of our knowledge, no prior research 
has presented a simulation-based approach accounting for all relevant steps of 
sports forecasting and evaluation of forecasts in sports.

The beneficial aspects of modelling and simulation of any environment subject 
to analysis are well established. From a data collection point of view, real-world 
datasets are difficult to use for inference learning and reasoning due to the amount 
of information and factors involved (Lin et  al. 2014). Sometimes it is difficult to 
decouple noise from general-purpose collected datasets, and the generation of real 
data is usually restricted to time. The ability to control and understand artificial 
data’s inherent relationships is a major advantage that creates interest in the scien-
tific community. Moreover, in certain topics, artificial data can be created faster and 
in larger quantities than real-world data is accessible. From a methodological point 
of view, numerous success cases have been highlighted in the conjunction of simula-
tion applications in information systems and real-world applications, for instance, in 
healthcare (Jahangirian et al. 2012; Zhang 2018) or manufacturing (Mourtzis et al. 
2014). Generating artificial data is used for simulation purposes and data sharing, 
benchmarking and testing software systems (Misra 2015).

The contributions of the present paper are the following: The process involved in 
sports forecasting is examined in detail from the existing literature, and a general-
ized definition is presented to include all sports competitions with a format of pair-
wise comparisons. Moreover, following the described process, a simulation frame-
work that can be used to create and analyze artificial sports data is introduced. The 
instantiated framework constitutes a system able to represent all relevant aspects 
of forecasting in sports, which are timely event schedules (graphs) and event out-
comes, the estimation of team or player strengths (ratings), the prediction of prob-
abilities for various outcomes (forecasting) and the consideration of bookmakers 
(betting odds) and betting strategies to measure model profitability. The two-fold 
contribution of this research is effectively evaluated by their fit and integration in the 
sports forecasting environment (Hevner et al. 2004). The generalized process model 
is presented in concordance with the existent practices and exposes the challenges 
of current practitioners with real-data scenarios. The framework uses the presented 
model to structure and theoretically eliminate the exposed challenges. In conjunc-
tion, a detailed proof of concept is presented to showcase how the framework can 
be used to theoretically analyze sports forecasting methods and gain an improved 
understanding of sports forecasting processes.

2 � A generalized process of sports forecasting and current challenges 
in real‑world data applications

The idea to establish a framework for investigating sports forecasting processes by 
means of artificial data is based on two prerequisites. First, the existence of a gener-
alizable forecasting process in the state-of-the-art sports forecasting literature. Sec-
ond, the existence of specific challenges when applying this process to real-world 
datasets, which can be overcome by using artificial data. Subsequently, a forecasting 
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process is presented, that includes four major steps, is generalizable to a wide range 
of sports and has been widely deployed in real-world scenarios. Moreover, in each 
step, challenges arising from the characteristics of real-world datasets are explained. 
These challenges mainly stem from the fact that real-world data is limited in size, 
cannot be deliberately controlled and the true underlying processes of data genera-
tion are not directly observable. All of these drawbacks can be tackled by the use of 
artificial data generation.

The process is focused on competitions consisting of pair confrontations accord-
ing to a prearranged competition schedule. This excludes sports where more than 
two actors compete at the same time in a joint competition to determine the win-
ner (e.g. horse racing, golf, motorsports, ski racing, athletics, etc.) but includes a 
wide range of team sports (e.g. football (Constantinou et al. 2012), basketball (Man-
ner 2016), American football (Baker and McHale 2013), cricket (Asif and McHale 
2016), ice hockey (Marek et al. 2014), baseball (Soto Valero 2016), handball (Groll 
et al. 2020), etc.) and individual sports (e.g. chess (Glickman and Jones 1999), ten-
nis (Kovalchik 2016), table tennis (Lai et al. 2018), darts (Liebscher and Kirschstein 
2017), etc.) that represent common applications of sports forecasting.

The generality and cross-thematic approach of the process makes it impos-
sible to present a full and comprehensive literature review including all relevant 
approaches and methods in sports forecasting across all sports. For a more detailed 
overview on the sports forecasting literature, we thus refer to the reviews of Wun-
derlich and Memmert (2020b) and Horvat and Job (2020), as well as to two special 
issues related to sports forecasting in the International Journal of Forecasting (see 
McHale and Swartz 2019, Vaughan Williams and Stekler 2010). Sports forecast-
ing use cases are inherently a data collection and analysis process. The initial step 
involves the creation and configuration of the sports competitions (Step 1). That is, 
sports competitions are formed in a natural basis, they involve teams or players and a 
certain competition schedule. This schedule governs the evolution of confrontations 
and structure of the competition that will finally conclude with a set of conclusions 
premises (i.e., winner of the competition). In despite of other analytical scenarios, 
sports forecasting differentiates clearly between the evaluation of the competitors 
(Step 2) and the prediction of a certain match (Step 3). Finally, the predictive quality 
is evaluated (Step 4), once the actual results of the confrontations are known.

Table 1 summarizes the four steps. Each is discussed in detail below exposing the 
current limitation and challenges of real-world data scenarios. In the following sec-
tion, each of the steps is integrated and formulated into the artificial data framework 
to cope with the exposed challenges.

Step 1: The competition network
Sports data is created naturally by highly active sports disciplines, involving 

teams or players competing regularly in several leagues or tournaments. Limiting 
the analysis to sports with pairwise comparisons enables the schedule of play to be 
represented as a temporal network (Newman 2010), where competitors represent 
vertices and matches represent edges. The competition network can be character-
ized as the data basis for the forecasting process. In real-world scenarios, the fore-
caster does not have any direct influence on its creation. The network characteristics 
depend on the sport and competition. For instance, in a national European football 
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league, teams play each other twice. The winner of the competition is the team with 
the best overall performance.

Figure  1 illustrates the composition of a competition network and its inherent 
temporality. The nodes of this network refer to entities competing in a sports event, 
namely teams in sports like European football or basketball and individual play-
ers in disciplines such as tennis or chess. This network structure is highly flexible 
and reflects sport dynamics and organization. In some tournaments, edges can be 
repeated, while the comparison of two actors is unique on other occasions. If the 
sport requires, the edge direction can serve as a mapping to determine home and 
away teams on an event (Bang-Jensen and Gutin 2009). In elimination tournaments, 
the result of a single pairwise competition can change the following events, while in 
tournaments such as national leagues, the schedule remains predefined. Examples 
from the forecasting literature that explicitly discuss and illustrate the network struc-
ture of competitions can be found in the work of Lai et al. (2018). They model more 
than 700.000 Italian table tennis matches as a network, Wunderlich and Memmert 

Table 1   The sports forecasting process

Step Description

Step 1: The competition network The sports forecasting process is based on an existing scheduling of 
confrontations between competitors referred to as network. The 
network dictates how the competitors are going to face each other 
and how the competition evolves over time

Step 2: The rating procedure The strength of each competitor is estimated by means of one or 
several quantitative measure(s)

Step 3: The forecasting method Competitor confrontations and their potential outcomes are modelled 
by a combination of systematic and unsystematic effects including 
the fore-mentioned competitors’ ratings

Step 4: The model validation Once the result of a confrontation is known, the forecast can be 
evaluated by two principles: The correctness or closeness of the 
predicted result to the actual result (forecast accuracy) and the 
economic return of a certain prediction (forecast profitability)

Fig. 1   An example of a competition network and its temporality. Only a certain number of edges is acti-
vated on each round, colored as black. In addition, edges with known results, colored with light grey, are 
gradually being generated
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(2018), discussing the asymmetry of within-league comparisons in national leagues 
and cross-league comparisons by means of international club competitions in foot-
ball, or Juyong Park and M E J Newman (2005) illustrating the network of college 
American football matches with its conference system. The network itself can be 
accompanied with a lot of relevant data, such as match outcomes, betting odds, or 
additional player- or team-specific statistics. In most forecasting research, data is not 
discussed explicitly as a network; however, as long as targeting at the pairwise com-
parison, data will in every case be representable by this network structure.

A significant challenge in real-world applications is that data can be limited with 
regard to several aspects such as size, consistency and format rules of sports. Sam-
ple size, in general, is not the predominant challenge in sports, particularly com-
pared to other forecasting domains. While data acquisition in economic or social 
forecasting might be complicated by company secrets or data protection, the out-
comes of sports events and the betting odds from the betting market are published in 
the public domain and freely available. Applications of forecasting in various sports 
can draw from the results and the betting odds of a few thousands of matches (Baker 
and McHale 2013; Forrest et al. 2005; Kovalchik 2016; Štrumbelj and Šikonja 2010; 
Štrumbelj and Vračar 2012). This data availability, however, is highly dependent on 
the sport, competition, and research question. In football, for example, data sources 
from European domestic leagues may include more than 30.000 matches (Angelini 
and Angelis 2019), while World Cups and European Championships are individual 
major events played with a limited number of teams and matches, whereby forecasts 
of these tournaments may rely on sample sizes as small as the comparison of a final 
ranking of 16 participating teams (Leitner et al. 2010). Internal and external factors 
that inherently affect the processes of any sport do have an effect on the consistency 
of the data through several competitions and time. Top-class sports can be subject 
to inconsistent rules, rule changes, or social influences beyond forecasters’ control. 
Examples are the fact that male tennis players play best of five sets in Grand Slam 
tournaments while playing best of three in ATP tour matches (see Clarke and Dyte 
2000), the change from two-point rule to three-point rule in football (Riedl et  al. 
2015), major changes in basketball rules including a move of the three-point arc 
(Strumbelj et  al. 2013) or possible effects of spectator exclusion due to COVID-
19 measures on the home advantage (Wunderlich et  al. 2021). Such effects com-
plicate data processing and integration steps in forecasting scenarios. Further data 
limiting aspects are the quality (i.e., completeness and accuracy) and granularity of 
the available data. Artificial data helps to overcome these challenges as it enables a 
researcher to simulate data with a nearly unlimited size, the desired granularity as 
well as full consistency and quality.

A further challenge of real-world data is the heterogeneity of network struc-
tures, driven by different rules that guide each sport discipline. This set of rules may 
govern how the final winner is drawn from the competition, how competitors are 
grouped to compete or how a certain event must be executed and this structure is 
predefined in real-world data, The optimal model choice might depend on the com-
petition format and its characteristics, besides all other sports-specific aspects. As 
an example, the same model might not be equally valuable for tennis with a knock-
out tournament format and football leagues with a round-robin format, or American 
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football with a very limited number of matches per team and basketball with a very 
high number of matches per team. Again, artificial data enables a researcher to 
deliberately change competition formats while keeping all other aspects of a sport 
constant, which is obviously not possible in real-world applications. Thus, the iso-
lated influence of the network structure on rating and forecasting models can be spe-
cifically analysed by means of artificial data generation.

Step 2: The rating procedure
Wunderlich and Memmert (2020b) outlined that the outcomes of sports events 

are influenced by systematic and unsystematic effects. In particular, forecasting 
models require modelling participant-specific systematic effects that can be denoted 
as quality, skill, or strength of a competitor. To account for the systematic influ-
ences of the competitors on the results, a rating procedure is the standard approach 
(see Barrow et  al. 2013 for a definition of ratings). The rating estimation can be 
based on prior results (Koopman and Lit 2019) or use official ratings and rankings 
(Clarke and Dyte 2000; Lasek et al. 2013). While the quality of a competitor can be 
expressed by one single value, such as in versions of the well-established ELO rat-
ing (Glickman and Jones 1999; Hvattum and Arntzen 2010; Kovalchik 2020), it can 
also be beneficial to use more than one rating parameter. Dependent on the sport, 
this can be serve and return strengths in tennis (Newton and Aslam 2009), hazards 
for various types of scores in American football (Baker and McHale 2013), as well 
as offensive and defensive strengths in football (Koopman and Lit 2019), that can 
additionally be modelled as varying between home and away matches (Constantinou 
and Fenton 2013).

In real-world applications, it can be assumed that a large number of external and 
internal factors determines the strength of a competitor and its timely development. 
The forecaster naturally only has limited knowledge of the true underlying processes 
that they intend to imitate by defining a model, which is a particular challenge for 
ratings being an interim step of forecasting (cf. Wunderlich and Memmert 2020b). 
The real strength of a competitor that the rating procedure aims to estimate is not 
directly observable, even after the events have taken place in real-world data. Thus, 
the ratings quality is usually assessed indirectly by turning the rating into a forecast 
and then measuring its accuracy (Lasek et al. 2013). This difficulty of assessing rat-
ing quality, which has been outlined by (Wunderlich and Memmert 2020b) can be 
overcome by the use of artificial data. When using artificial data, the true ratings 
are fully known as they have been deliberately simulated. The researcher thus can 
directly compare estimated and true ratings without consideration of a forecasting 
model, as will be further elaborated on in Sect. 4.2.

Step 3: The forecasting method
Given the quality estimation of the teams provided by the rating procedure in Step 

2, other systematic influences like the home advantage (cf. Pollard and Pollard 2005) 
and random processes need to be modelled to determine the probabilities for several 
outcomes. The forecasting method transfers the competitors’ strengths estimations 
(i.e. ratings) into a probabilistic forecast (i.e. a probability estimation for each possi-
ble outcome). A rather simplistic way of implementing this are Bradley-Terry mod-
els, where the outcome probabilities for a paired comparison are, in principle, solely 
based on the relationship between the two ratings (Cattelan et al. 2013; McHale and 
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Morton 2011). Another straightforward possibility is using ratings as parameters of 
mathematical probability distributions, for example, Poisson distributions being a 
standard approach in football (Koopman and Lit 2015) and further goal-based sports 
(Karlis and Ntzoufras 2003; Marek et  al. 2014). Moreover, the use of regression 
models to transfer ratings and potentially additional data into outcome probabilities 
is well established (Goddard 2005; Hvattum and Arntzen 2010). In general, sports 
with more than one possibility of scoring confront the forecaster with a particularly 
high degree of complexity that might require the use of more process-based model-
ling approaches. The point process model of (Baker and McHale 2013) considering 
several ways of scoring in American football and the Markov model of Štrumbelj 
and Vračar (2012), modelling the course of basketball matches by means of play-by-
play data both pursue this approach. Simulation models are another viable forecast-
ing method, particularly used for whole tournaments (Clarke and Dyte 2000; Leitner 
et al. 2010). However, it must be noted that this refers solely to estimating outcome 
probabilities and does not refer to a simulation of the whole forecasting process as 
discussed in this paper.

In contrast to ratings of competitors, the outcome of matches being subject of a 
forecasting method can be observed after the match has taken place. Still, research-
ers have a highly limited knowledge of the underlying processes as the observed 
result only represents a single instance drawn from a true probability distribution for 
this event. This challenge will be further elaborated on in the model validation.

Step 4: The model validation
As a last step, the predictive quality of the model needs to be evaluated. With 

regard to the two major forecasting objectives of accuracy and profitability, statis-
tical or economic measures can be used (see Wunderlich and Memmert 2020a). 
Accuracy is typically focused if the purpose of the model is on forecasting methods 
(Kovalchik 2016) or to compare different sources of forecasts (Spann and Skiera 
2009), while profitability is particularly relevant when forecasting for financial rea-
sons (Hubáček et al. 2019) or investigating market efficiency (Angelini and Angelis 
2019). In the literature, it has been widely established to report both types of meas-
ures concurrently (Baker and McHale 2013; Constantinou et al. 2012; Hvattum and 
Arntzen 2010; McHale and Morton 2011).

Step 4a: Model accuracy
The basic idea of measuring accuracy is to test how well the forecasts and the 

observed results fit each other. Such statistical measures include the strongly related 
Brier score (Cattelan et  al. 2013) and rank probability score (Koopman and Lit 
2019) as well as the likewise strongly related log-likelihood (Forrest et  al. 2005) 
and ignorance score (Wheatcroft 2020). For a more detailed discussion on statistical 
measures and their advantages and disadvantages, refer to the work of Constantinou 
and Fenton (2012) and Wheatcroft (2021).

In real-world applications, the ability of a model to replicate the real processes 
can be assessed by extracting accuracy metrics from the observed outcomes of 
the events. Yet, these metrics are subject to a significant degree of randomness, 
as the true probability distribution for the different possible outcomes cannot be 
observed, even after the events have taken place. Therefore, a competition result 
is not necessarily reflecting the most probable outcome. Artificial data helps to 
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exclude the noise of randomness as the forecaster has full knowledge on the prob-
ability distribution, where the actual outcome has been “drawn” from. Conse-
quently, the true probability distribution and the estimated forecast can be directly 
compared.

Step 4b: Model profitability
The basic idea of measuring profitability is to test the model’s ability to cre-

ate positive returns on the betting market. Thereafter, a new entity highly present 
in the sports forecasting process must be defined, the bookmakers. Bookmakers 
are independent entities from the sports competition with a clear profit intention. 
Bookmakers make use of forecasting capabilities to predict a certain event outcome 
and consequently post betting odds. Betting odds generally not only account for the 
bookmaker prediction but for the additional margin the bookmaker is expected to 
get out of the bets. From a forecasting practitioner point of view, knowing the esti-
mates of the model and the betting odds offered by the bookmakers, promising bets 
can be identified. Using the observed results, the actual betting returns from these 
bets can be calculated as a measure of model profitability. Bets are only taken if they 
are assumed to have a positive expected value with reference to the model forecast; 
however, strategies can additionally differ in the choice of stakes. As a typical exam-
ple for different stake selections, we refer to Hvattum and Arntzen (2010).

In real-world applications, the issue of data availability is aggravated when inves-
tigating returns of betting strategies. The initial sample size is reduced to the number 
of actually placed bets, which in general represents a small fraction of the total num-
ber of matches. Forrest and Simmons (2008) investigate more than 3.000 potential 
bets from Spanish football but report results of betting strategies based on no more 
than 18 to 112 bets. Similarly, McHale and Morton (2011) report results of betting 
strategies ranging from 54 to 123 bets, although analyzing a dataset consisting of as 
much as nine seasons of tennis data from ATP tournaments. Betting returns from 
such small numbers of bets inherently imply large noise and the danger of report-
ing randomly profitable betting strategies (Wunderlich and Memmert 2020a). In 
this sense, decent sample sizes in terms of the number of matches may still imply a 
highly limited informative value concerning the profitability of bets. The arbitrary 
sample size in artificial datasets makes it possible to circumvent this problem, reduc-
ing random noise from betting returns.

Another challenge is that profitability depends on the potential systematic inac-
curacies of bookmakers in creating betting odds (Wunderlich and Memmert 2020a). 
In full analogy to the accuracy, the forecaster can only observe a part of the rele-
vant information, namely the bookmaker published odds and the betting returns of a 
model once the event’s outcome is known. The bookmaker inaccuracies in the odds 
estimation or the expected values of the bets placed with regard to the true outcome 
probabilities of a certain event are not directly observable. In conclusion, artificial 
data would allow the forecaster to be in full knowledge of all processes and thus an 
improved and unbiased assessment of the profitability of specific models. For this 
reason, the artificial data framework concept presented below also comprises the 
bookmaker modelling. Thus, bookmakers can also be integrated in the simulation 
and analysis enabling improved understanding of effects of bookmaker prediction 
errors and profitability.



560	 M. Garnica‑Caparrós et al.

1 3

3 � Framework for generation and analysis of artificial sports data

The generalized process presented in Sect. 2 provides the basis to model a con-
ceptual system to generate artificial sports data. The framework includes all the 
described entities present in the sports forecasting process: Competition sched-
ules are generated and evolved in time by performing pairwise comparisons of 
the competitors, each competitor has attributed a certain strength that evolves in 
the timeline, the outcome of each comparison of competitors is drawn from a cer-
tain formula using each competitor strength among other factors. As in real-world 
data, estimations of the underlying processes can be added to the system: rat-
ings can be added to the competitors to estimate their strength, forecasting meth-
ods can be implemented to predict the outcome of each comparison. At the same 
time, bookmakers can customize their odds, and the bettor can analyze and place 
bets against these odds. Every aspect of sports forecasting is included in the con-
ceptual framework; the main difference is that the inherent nature of the data and 
its ground truth are fully accessible. Figure 2 provides an overview of the con-
ceptual system design and its interaction with the model and observed process in 
sports forecasting. The proposed framework gains control over all the underlying 
unknowns and enables full customization of the process.

3.1 � Simulation engine design

The simulation engine instantiates the generalized process of sports forecasting 
and allows a controlled and customizable data generation and an experimental 
setup to properly analyze the rating procedures and forecasting methods. As pre-
sented in Fig. 2, the simulation engine gains control over the unknown and ran-
dom process observed in reality and is uncertain in the sports forecasting pro-
cess. Schedules are no longer external factors as they can be loaded or created by 
the simulation engine as networks. The simulation model enables the creation of 
competitions from a diverse list of sports that operate by pairwise comparisons 
of their competitors and different competition formats. The simulation dictates 
the strength of each competitor, referred to from now on as true ratings, and how 
the outcome of a pairwise comparison is going to be calculated, referred to as 
true forecasts. From now on, the conjunction between the simulated true ratings 
and true forecasts integrated in the competition network generation is referred as 
the simulated environment and acts as an equivalent to the real-world sports data 
generation. Any mathematical implementation to assign and evolve competitors’ 
strength can be integration on the system instantiation as well as any formula can 
be selected to decide on the result of each pairwise comparison for the simula-
tion. As a result, a complete competition schedule is generated as in step 1 of the 
sports forecasting process. While simulating the real-world processes, the simula-
tion engine also enables sports forecasting methods to interact with the simulated 
environment; thus, estimations of each competitor strength can be added as rat-
ings and outcome predictions as forecasts.
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Fig. 2   UML-based activity chart of the simulation design. The simulation engine has been designed by 
analyzing the observed processes in reality and the workflow of the forecasting process
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Similarly, bookmakers and bettors are modelled. Bookmakers make use of a 
specific forecast to compute odds with a configured margin. In contrast, bettors 
propose their forecast methods and decide whether to place bets or not depending 
on the bookmaker odds and their own predictions. The sports forecasting steps 
interact with the simulation environment similarly to real-world scenarios; rating 
estimations do not know the true ratings, and calculated forecasts do not know the 
implementation governing the simulation of each confrontation. While the same 
metrics that can be computed with real-world data can be extracted from this 
setup, new insightful metrics can be combined by comparing the proposed esti-
mation with the actual true values. The following sections describe the modelling 
of each simulated entity and its interfaces; while most of the models are entirely 
flexible and can integrate any new configuration, the simulation engine includes 
certain generalized implementations to provide basic examples.

3.1.1 � Network modelling

Networks are defined as directed multigraphs (multidigraphs) G ≔ (V, E) with V a 
set of nodes and E a set of edges (Bang-Jensen and Gutin 2009; Newman 2010). 
Networks contain temporality since the edges are time-based, following the schedule 
of the sports competition (refer to Fig. 1). In location-based competitions such as 
European football leagues, source and target nodes represent the away and home 
teams. In other sport disciplines where the game’s location is not dependent on the 
nodes, the edge direction can define other attributes such as the better-ranked player 
or the final winner. Networks are multi directed; for instance, tennis players can face 
each other several times during a season. Edges of the network can contain a large 
variety of information related to the match itself.

As explained in Sect. 2, different sports disciplines use different scheduling rules. 
The scheduling of sports competitions and regulations is represented with the topol-
ogy of the simulated networks in the system. Figure 3 shows three different network 
topologies simulated by the system and based on real-world competitions. Figure 3a 
shows a simple scenario for a European Football national league with six teams. 
These competitions schedule the teams to face each other twice during the season in 
a specific order. The consequent network follows a duplicated Round-Robin tourna-
ment structure (Harary and Moser 1966). A given national league network with ||Vn

|| 
teams has ||En

|| number of games where:

Another typical example of a tournament is the elimination tournament. In this 
schedule, teams are grouped in pairs to compete. Only the winner continues play-
ing. The modelled network forms a binary tree where only the winner nodes keep 
playing at each round. In this case, with a number of nodes ||Vt

|| , the number of edges 
is ||Et

|| = ||Vt
|| − 1 . Another interesting metric of this type of tournament is the depth 

(D) of the tournament, or in other words, how many rounds are required to have a 

|
|En

|
| =

(
||Vn

|| − 1
)
||Vn

||
2
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winner. The depth of the tournament can be computed as a function of the number 
of teams participating as ||Dt

|
| = 1 + log2

|
|Vt

|
|.

International competitions topologies form a composed network of simpler 
shapes. Figure 3c shows how a European Championship is scheduled from the quali-
fier stage to the final stage in two years. In other sports, such as tennis, the structure 
is much more complex to be represented as a system or mathematical equation. In 
Fig. 3b, the system simulates the shape of the 2019 ATP season for the 15 highest 
ranked players. Interestingly, the three topologies have properties in common and 
core differences, such as the variance of connection between pairs or the temporality 
of the network.

Fig. 3   Different network topologies depending on the number of competitors, schedule, and evolution in 
time. A double round-robin tournament with only six teams (a). A real tennis ATP circuit for the top-20 
tennis players (b). An international competition schema with different scheduling phases (c): competi-
tion qualifiers (light gray), qualifier play-offs (light gray dashed), competition group stage (gray dashed), 
knock-out final stage (gray) and, final match of the competition (black) (color figure online)
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Networks have a certain number of iterations (number of concurrent groups of 
connections or rounds) and seasons (groups of iterations). Seasonality is a crucial 
factor in several sports disciplines. Each season is developed in a natural year 
in tennis, and the accumulated performances determine the players ranking. In 
football or basketball, lower-level teams are relegated from the league and teams 
from secondary divisions promoted in national leagues. The relegation and pro-
motion mechanisms give the network a higher order than the number of teams in 
the league and higher diversity on edges clusters. The network’s topology is also 
affected by seasonality. The system design offers the possibility to create a fully 
functional network topology from a detailed description or mimic an existing net-
work topology as many times as desired. Existing real-world network topologies 
can be loaded into the system if available.

3.1.2 � Rating procedure modelling

The main goal of the rating modelling is to capture each competitor skill and the 
evolution in time. Thus, ratings are defined as a time-series attribute of each node 
in the network. The number of measurements of a node rating is not determined 
a priori. The simulation engine uses ratings in two different cases: A modelling 
of a rating can be used to represent the true rating of a competitor, meaning that 
the values of these ratings are going to be used as the ground truth will be the 
basis for the pairwise comparisons together with the true forecast methods. On 
the other side, ratings can also be modelled in the system to represent a calculated 
rating, an estimation of the true rating. Both usages of rating models follow the 
same abstraction in the model and are treated equally by the simulation engine.

Section  2 has already presented some examples of rating procedures in sev-
eral sports. The simulation engine interacts with a standard rating interface that 
abstracts the implementation of any rating. A basic but robust implementation 
of a rating procedure can be generalized as a mathematical function yielding a 
numerical value at every point in time. This time series could be random or fol-
low some trends. Following this high-level description, other ratings could be 
easily integrated into the model, providing a user-defined function that validates 
the requirements of the prerequisites of the interface. In addition to providing a 
broad definition of a rating procedure, the simulation engine includes an agnostic 
implementation of a rating procedure ruled by four different factors:

1.	 Rating’s starting point S . The initial value at the beginning of the simulation.
2.	 Rating’s trend T  . A value indicating how the rating is supposed to be changing 

through time.
3.	 Rating’s trend length T

l
. The period where a trend is influencing the evolution of 

the rating.
4.	 Rating’s randomness. The magnitude of the random fluctuation to the rating 

concerning its trend. Two values are included in this factor, the daily random 
fluctuation of the rating Δ

d
 and the seasonally random fluctuation of the rating Δ

s
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The final function for a rating on a single trend length without seasonality is 
expressed as follows:

where i isthe day number in the season and

and P
s
,P

T
,PΔd

respond to any probability distribution.
All the factors are generated independently. The trend length of the rating deter-

mines the period where a rating value follows a single function. Finally, the random 
seasonality fluctuation is applied at the end of each season to the rating value. Fig-
ure 4 shows four different examples of ratings generated by the system with different 
parameters. All four instances of rating values through time are included in the gen-
eral rating procedure presented. These values could represent the strength of a tennis 
player during a year or the strength of a team during the second half of a basketball 
season. Depending on the configuration of the rating formula, the result time-series 
creates different behaviors, e.g., positive, stable, or negative periods, fluctuations 
and unexpected changes.

R
i
= S +

(

(T × i) +

d=i∑

d=0

Δ
d

)

S ∼ P
s

T ∼ P
T

Δ
d
∼ PΔd

Fig. 4   Different ratings depending on the configuration of the four factors. a Shows a rating with no 
trends and no fluctuations, b shows a rating with the constant trend and daily fluctuations, c shows a 
negative trend rating with daily fluctuations and d a positive trend with daily fluctuations
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Although the generalized definition of the rating procedure might be helpful to 
generate unbiased examples, the modelling of rating procedures in the simulation 
enables any other assumption or implementation to be included and implemented. 
Thereafter, any rating procedure could be selected to represent the true ratings in 
the simulated environment. Specific rating procedures presented in Sect. 2 could be 
integrated into the simulation modelling the true ratings or the calculated ratings.

3.1.3 � Forecasting method modelling

The forecasting method is configured in the system to create a forecast for each pre-
sent match. The forecasting method is modelled as a processing unit that computes 
the predicted distribution of probabilities among the possible outcomes of an event. 
A forecasting model requires the match information and the competitors involved in 
the match. In most cases, the forecasting method also requires a previously defined 
rating of each for the basis of its forecasts. Like the rating procedures, the usage of 
a forecasting method is needed in the simulation engine to instantiate a true fore-
cast and dictate the actual probability of each possible outcome to happen in the 
simulation. The simulation draws the outcome from the set of probabilities yielded 
by the true forecast. The forecasting methods are also present in the simulation to 
estimate the true forecast. The framework is designed to be able to use any forecast 
method for both utilities: to model the ground truth and the generation actual results 
and to model the calculated or proposed forecasts as long as the prerequisites of 
these certain methods are present in the system (i.e., certain ratings or other system-
atic effects). The presented modelling and definition of a forecasting method aims 
to include most forecasting methods present in the current state of the art, even the 
forecasting methods implicitly not using a rating as their basis could be included in 
the presented abstraction by configuring a rating with all the necessary inputs of the 
predictive method. The number of outcomes can be customized, e.g., two outcomes 
for basketball or tennis simulations or three possible outcomes (including draws) in 
football or chess.

3.1.4 � Betting modelling

The betting modelling of the simulation engine comprises the design of bookmakers 
and betting actors as part of the sports forecasting process. While this modelling is 
not necessary to generate the core of the simulation, it implements an important part 
of the system where all the betting actors are simulated. The bookmaker proposes 
or uses a certain forecast to create the odds for each confrontation or match. The 
bookmaker can be configured to include systematic or random inaccuracies regard-
ing the forecast, namely the bookmaker errors. As in reality, bookmakers are not 
in possession of the truth mechanism dictating the results of the events, thus their 
prediction is imperfect. In addition to their potential inaccuracies, the odds account 
for a profit margin that is intended to generate profit from the bets. Conceptually, 
the bookmaker entity is proposing an estimation of the true forecast as a calculated 
forecast. The bookmaker uses this calculated forecast and a predefined margin to 
generate the odds.
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The system simulates a betting actor with some specific betting strategy. Con-
ceptually, a betting strategy involves implementing a forecast for an event and the 
odds generated by a bookmaker for a predefined set of outcomes, therefore the bet-
tor implements the full sports forecasting process to finally compare his predic-
tions against the odds. Depending on the betting strategy and the bookmaker odds, 
the betting actor decides whether to place bets. Generally, only bets with positive 
expected values are placed. Betting strategies can include fixed or flexible bank-
rolls and unit-based or relative betting amounts (Hvattum and Arntzen 2010). The 
model is open to any more specific betting situations under the presented abstract 
definitions.

3.1.5 � Evaluation module

The evaluation module is designed to allow the usage, parametrization, and analy-
sis of any evaluation method. As discussed in Sect. 2, two main groups of forecast 
evaluation metrics co-exist in the sports forecasting process. The evaluation model 
allows the analysis to focus in either accuracy-based or profitability-based metrics. 
With the ability to retrieve the true probabilities from the true forecast, additional 
values can be calculated from these methods by substituting the actual observed 
results with these true probabilities. Any method present in the sports forecasting 
evaluation literature can be represented in the evaluation module if its requirements 
are fulfilled, for instance, profitable metrics are only suitable with a previous genera-
tion of bookmakers and bettors entities in the simulated environment.

4 � Proof of concept

This section reports how the various elements described in the artificial data frame-
work can be integrated in a simulated sports forecasting process to gain a better 
understanding of forecasting scenarios. The following use cases provide some exam-
ples of how the system executes a robust and controlled environment to analyze data 
beyond the possibilities of real-world data. The proof of concept of the system is 
structured as follows: Initially, the flexible generation of data is exemplified based 
on the first step of the sports forecasting process. As in reality, an ad-hoc sports 
competition is modelled through the framework. That is, the competition schedule 
is decided, each competitor strength is properly simulated and the model to draw the 
results of each confrontation is fixed. Once the simulated environment, including 
true mechanisms and estimators, is generated, the focus shifts to the creation of esti-
mators and proposed forecasts. Finally, the examples showcase how the framework 
improves the evaluation methods and tackles the challenges of using real-world data. 
Three use cases are presented, the analysis of rating procedures, the evaluation of 
forecast by accuracy measures and the evaluation of forecasts by profitability. The 
analysis and figures presented in the following sections are provided by means of an 
initial prototype implementation of the conceptual framework.
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4.1 � Data simulation specifications

Despite the simulation not being restricted to any specific sport, the data generation 
of the following experiments was based on European football, and it best represents 
football in terms of data points, density, and evolution. The simulation consisted 
of ten seasons of a double round-robin tournament with eighteen competitors. No 
relegation or promotion procedures were specified; thus, the eighteen competitors 
remained competing through the ten seasons. Each competitor received a certain 
strength distribution by using the simulation rating presented in Sect.  3.1.2; this 
strength is referred by R

TRUE
 through all the experiments. The rating starting point 

of each competitor strength was fixed to 1000. The daily trend for each competitor 
was drawn from a normal distribution with a mean of 0 and a standard deviation of 
0.2, while the daily random fluctuation for each competitor was drawn from a nor-
mal distribution with a mean of 0 and a standard deviation of 2. Finally, a season 
fluctuation on each competitor strength was added to the simulation of the rating. 
Each specific season fluctuation for each competitor was drawn from a normal distri-
bution with a mean of 0 and a standard deviation of 20. At every season, a new trend 
and a new daily fluctuation were specified for each competitor.

Once the competitor’s strength and evolution were generated, the simulation 
specified how each pairwise comparison would be executed. By experiment design, 
the possible outcomes of each comparison were specified as home, draw or away; 
however, any other combination could have also been possible. The result of each 
pairwise comparison scheduled is simulated by implementing an Ordered Logistic 
Regression (OLR) forecasting model (Arntzen and Hvattum 2020; Greene 2000). 
The logistic regression only uses one covariate, which sources from the difference 
between the two facing competitor’s ratings, and three parameters C0 , C1 and � . The 
model designed to simulate the results used the true rating R

TRUE
 to compute the dif-

ference between each competitor strength and C0 = −0.9 , C1 = 0.3 and � = 0.006 . 
This OLR model, also referred as true forecast in the simulation, determined the true 
outcome probabilities of each comparison. The actual result of each comparison is 
then drawn from the respective outcome probabilities.

The explained data generation only covers the first step of the sports forecasting 
process. Thereafter, the second part of the data simulation tackles the generation of 
estimators as conceived in step 2 and 3 of the sports forecasting process. As a rating 
procedure candidate, an ELO Rating (Glickman and Jones 1999) was implemented 
and integrated with the simulation engine. The ELO rating tries to measure each 
competitor strength from a scoring system depending on the outcome of the matches 
and some initial parametrization. For testing purposes, the ELO rating added was 
predefined with parameters k = 14 , c = 10 , d = 400 and a home advantage of 80 
points according to previous studies (Wunderlich and Memmert 2018). Equiva-
lently, a candidate to estimate the outcome probabilities of each event was added. 
Despite that the conceptual system could be able to adapt a totally different forecast-
ing method, for testing purposes, the forecasting method candidate implemented the 
same OLR model as the true forecast with a small but significant difference. This 
new forecasting method would extract the differences between each competitor from 
the ELO rating described above. Therefore, the differences between the true forecast 
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and the proposed forecast would be directly related to the difference between the 
true ratings and the ELO estimator ratings.

This proof of concept also introduces betting actors to the simulation to showcase 
their functionalities. A bookmaker was configured to create odds for every compari-
son scheduled. Several options could be implemented with regard to the generation 
of the odds by the bookmaker. For testing purposes, the bookmaker accessed the 
true forecast of each comparison to generate the odds. However, to avoid that the 
bookmaker would use the exact true values, a systematic error was drawn from a 
standard uniform distribution for each forecast. Additionally, the bookmaker applied 
a 5% margin to compute the odds and add them to the simulation. To properly sim-
ulate a real-world example, none of the true processes was available to the bettor 
entity. In this case, the bettor would make use of the afore-mentioned proposed fore-
cast implementing an OLR model based on the ELO Rating implementation to com-
pute the predicted outcome probabilities. Finally, the betting strategy was configured 
to assign a unit to every bet placed by the bettor.

All the simulated components are summarized in Table 2. The simulated environ-
ment and the proposed estimators follow the abstraction of the sports forecasting 
process. In the evaluation step, only the proposed methods are subject to evalua-
tion. While the explained data generation process is inspired by European football, 
similar specifications could be added to the framework to create other sports scenar-
ios, e.g., tennis elimination tournaments or NBA playoffs. The following examples 
would be directly applicable to any other sports use case. Even more interestingly, 
unusual scenarios could have also been generated. For instance, extremely unbal-
anced network schedules can be the subject of analysis (i.e., competitions where 
some competitors are competing significantly more than others) or semantic biases 
could be added to any of the estimators (bookmakers with an extensive bias towards 
the strongest competitor, rating procedures with specific features, etc.). The follow-
ing section focuses on demonstrating how the conceptual framework enables new 
and improved evaluation insights.

4.2 � Improved evaluation

4.2.1 � Rating accuracy

The rating procedure step aims to estimate the skill or strength of a competitor. 
While there are many different methodologies to train and implement rating pro-
cedures, a rating evaluation is usually limited, as presented in Sect. 2. The lack of 
knowledge on the real strength of each competitor and how it is evolving makes 
it impossible to achieve a rating accuracy metric. Usually, ratings are evaluated by 
their predictive value, i.e., using a rating for a forecasting method and evaluating this 
forecast against the actual results. However, these evaluation methodologies involve 
other actors such as the forecast method or the randomness of the actual result that 
adds noise to the end goal, which evaluates the rating procedure.

In contrast to real-world applications, the conceptual system can reveal the dif-
ference between a calculated and actual rating due to the theoretical background 
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and rating modelling. To showcase this functionality, the ELO rating R
ELO

 is 
compared to the true rating R

TRUE
.

Figure  5 plots R
ELO

 in comparison to the R
TRUE

 values of a single competi-
tor. Thanks to the simulation environment, deviations and weaknesses of specific 
rating procedures could be identified. The test shows that the implemented R

ELO
 

relies upon its initialization. The initial value of R
ELO

 influences how the follow-
ing values will calibrate against R

TRUE
 (see Fig. 5 for an example). This is usu-

ally solved by reserving part of the dataset for rating initialization. Overall, R
ELO

 
performs a decent estimation of the actual true rating, however, the comparison 
of both time series highlights some longer periods of inaccuracies. These inac-
curacies are usually present in periods of high trends by R

TRUE
 or proceed some 

seasonal fluctuations.
In the forecasting literature by means of real-world data, similar figures are 

shown to illustrate results or compare methods (see Fig. 1 in Koopman and Lit 
2019, Figure 2 in Hvattum and Arntzen 2010 or Figures 5 and 6 in Wunderlich 
and Memmert 2018). However, please note that a comparison to the true ratings 
is not given in the literature, as it is not observable in real-world data and only 
gets possible employing the simulation framework.

4.2.2 � Forecast accuracy

In step 3 of the generalized sports forecasting process, forecasting methods are 
introduced as mechanisms to predict the probability of each possible outcome of 
a certain event. These methods use a set of variables as inputs including the rat-
ings of each competitor. In real-world data applications, the accuracy of these fore-
casts is extracted by analyzing them against the observed results. A well-established 
metric to measure the accuracy of forecasts expressed as probability distributions 
is the Rank Probability Score (RPS) (Koopman and Lit 2019). However, the RPS 
judges a forecast by how close the distribution is to the observed value. As discussed 
above, in sports forecasting as well as many other forecasting disciplines, there is 

Fig. 5   ELO Rating and True Rating evolution in time
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a significant degree of randomness in the observed value, possibly misleading the 
evaluation processes.

Thanks to the simulated environment, the actual probability distributions are 
known, and the evaluation process can be improved. Table 3 gives an overview of 
the evaluation metrics available for analysis. When evaluating a proposed forecast 
such as the OLR

ELO
 , the RPS value would refer to the distance between the model 

probabilities and the observed values in the simulation. The RPS then contains sys-
tematic errors due to the inaccuracies of OLR

ELO
 and unsystematic errors due to, for 

instance, randomness on the observed values. This same procedure could be used 
to evaluate how close the true forecast OLR

TRUE
 was from the observed values, in 

other words, how unexpected the observed values were, this metric is referred as the 
true RPS. While the true RPS still is affected by randomness, this measure elimi-
nates systematic errors as it considers the actual probability distributions (the truth). 
Similarly, the evaluation of a proposed forecast could be executed independently of 
the observed results. Two theoretical values can then be formulated, the expected 
RPS and the forecastability score. The expected RPS refers to the expected score 
the OLR

ELO
 forecast would obtain considering all the outcome possibilities and the 

true probability distributions. Similarly, the forecastability score is the expected RPS 
score the true forecast OLR

TRUE
 would obtain. Consequently, the expected RPS val-

ues get rid of the unsystematic errors that the randomness of the observed results 
generates while still being dependent on the systematic errors of their predictions. In 
contrast, the forecastability score is agnostic of any errors as it is not affected by the 
observed results randomness neither the inaccuracies of forecast, because it uses the 
actual distribution of probabilities that dictates the data generation.

Despite the fact that the metrics presented in Table 3 are theoretical, their analyti-
cal value can be useful to evaluate the accuracy of forecasting methods in practice. 
For instance, Fig.  6 illustrates the distribution of the RPS and the expected RPS 
values by competition round throughout the simulated environment. The RPS values 
contain a high degree of randomness while the Expected RPS is more stable. As 
a second example, the expected RPS values per season simulated are compared to 
the actual forecastability score in Fig. 7. Expected RPS versus Forecastability Score 
average values per season simulated. The forecastability score measures the optimal 
forecast without systematic or unsystematic errors.. In this case, the forecastability 

Table 3   RPS-based advanced metrics to evaluate forecast accuracy. By means of artificial data model-
ling, the system is able to extract metrics not affected by systematic or unsystematic errors

OLR
TRUE

= (h = 0.27, d = 0.28, a = 0.45), OLRELO
= (h = 0.37, d = 0.29, a = 0.34), observed result = h

Metric Implementation Value Systematic 
errors

Unsys-
tematic 
errors

RPS RPS method on OLR
ELO

0.26 Yes Yes
True RPS RPS method on OLR

TRUE
0.37 No Yes

Expected RPS Expected RPS w.r.t.OLR
TRUE

0.23 Yes No
Forecastability Score Expected True RPS w.r.t. OLR

TRUE
0.22 No No
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scores functions as an indicator of the potential accuracy that the proposed fore-
cast could achieve, thus, a proxy for the difficulty of the problem-space. While in 
these brief examples only a single forecast method is used, these advanced metrics 
could also be of great usage to compare different methods fairly without systematic 
or unsystematic errors.

4.2.3 � Forecast profitability

In the third case study, the aim is to show how the simulated engine provides novel 
tools to assess the profitability of specific betting strategies. The quality of a betting 
strategy is usually evaluated by calculating the achieved betting profits or losses. 
In a real-world example, the final profit is the only economic assessment available 
from a bettor’s perspective, dealing with wrong diagnoses or expectations. However, 
with the modelling and simulation of data, the true inherent profit expectation can 
be calculated from the true probabilities and reveal the differences between true and 
observed returns.

The betting returns were used as the main metric to evaluate the performance of 
the bettor. Thanks to the simulated environment, it was also possible to compute 

Fig. 6   RPS versus Expected RPS average values per round. The expected RPS eliminates the effect of 
randomness in the measurement of accuracy of the forecasts

Fig. 7   Expected RPS versus Forecastability Score average values per season simulated. The forecastabil-
ity score measures the optimal forecast without systematic or unsystematic errors
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the expected betting returns. The expected returns are the measure of what a bet-
tor could expect to get per bet on the same odds time and time again. The expected 
returns require the true outcome probabilities to be accessible (true forecast). 
Accordingly, the accumulated profit was used to compare the actual betting returns 
and the expected returns. The accumulated profit was defined as the sum of returns 
from the bettor’s bets.

Figure  8 shows the accumulated profit and the expected accumulated profit of 
the bets placed by the bettor in the ten seasons period. In a real-world use case, only 
the actual return would be visible to the bettor. The betting returns show a positive 
increment of profit during the first half of the betting activity. However, the plot 
denotes the true expected returns based on the placed bets, and the true probabili-
ties are close to 0 and declining. The deviation from the expected returns visible in 
the actual returns would be a clear example where betting returns are interpreted as 
positive for a considerably long period without accounting for randomness in the 
process.

Again, similar figures reporting the evolvement of betting returns can be found in 
the literature (see Fig. 6 in Hubáček et al. 2019 or Figs. 5 and 6 in Constantinou and 
Fenton 2013). However, in analogy to the ratings, only actual returns can be found, 
while the comparison to expected returns only gets possible utilizing the simulation 
framework.

5 � Conclusions and applications

The sports forecasting domain has been characterized for the use of advanced math-
ematical and information systems theories to untangle the mechanisms of real-world 
scenarios. The present work contributes to this body of research from a different 
perspective with a focus in practical relevance and presents two enclosed utility arti-
facts. First, a complete abstraction of the sports forecasting process is documented 
and presented with a focus on demonstrating and developing a single information 

Fig. 8   Betting returns and expected betting returns accumulated profit
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system for the sports forecasting domain. Second, this article introduces a compre-
hensive and broadly usable framework design to generate and analyze data from 
the domain of sports forecasting based on the presented sports forecasting process. 
This study has important contributions and implications in research and practice. 
The unifying view of the sports forecasting process is expected to contribute to the 
community by categorizing the different lines of research as well as the opening of 
new ones, as has been documented in previous design science research meta-anal-
yses (Deng and Ji 2018). In addition, the presented process also helps practitioners 
and researchers to validate and contextualize their contributions by means not only 
of the existing literature of their peers but to the recent advances in the connected 
components in the process. Limitations and the challenges of the sports forecasting 
process by using real-world data sets have also been listed to highlight the need and 
benefits of a simulation framework that can model each component and accurately 
generate a precise simulation. The two main advantages of the framework are to 
enable full control over all factors in the data generation and, consequently, provide 
the opportunity for a more detailed data analysis. Section 4 has demonstrated these 
advantages by showcasing the possibility of identifying possible weaknesses in the 
rating procedure, extending accuracy-based metrics to account for systematic and 
unsystematic errors and avoiding misjudgments of betting returns by comparing 
actual returns to the theoretically expected returns. These analyses are impossible 
in applications of sports forecasting on real-world datasets. The system can inte-
grate any other test cases or newly implemented methods than the presented in this 
paper and provide the same insightful functionalities. The framework presented in 
this work can benefit a variety of stakeholders in answering a broad range of further 
research questions and supporting decision-making.

First and most important, researchers can use it to better understand rating 
procedures and forecasting methods by testing various methods while individu-
ally varying one specific aspect of the data. Variations in network structures can 
help gain insights into the strengths or weaknesses of methods to handle specific 
competition formats (e.g., specific elimination tournaments, scheduling rules, 
dynamic number of competitors). Variations in the modelling of true ratings can 
help to reveal specific inaccuracies of rating procedures, such as inabilities to 
accurately account for trends, random fluctuations, or strong shifts between sea-
sons. Likewise, forecasting methods’ variations can help identify possible sys-
tematic weaknesses of models in transferring strengths to forecasts. The final goal 
of these analyses would focus on using these insights to improve existing meth-
ods and re-apply them to real-world datasets. Moreover, professional gamblers 
can use the frameworks to understand better the connection between accuracy and 
profitability of forecasting models with the final ambition to create forecasting 
methods with improved profitability. Bookmakers, in turn, can use it to under-
stand the impact of their inaccuracies on the risk of suffering financial losses with 
the ambition to incorporate this knowledge into improved odds setting proce-
dures and risk-management tools. Similarly, sports scientists or sports organiza-
tions can use the framework to simulate the impact of changes in the structure or 
regulations of sports competitions. Conceivable scenarios are the adjustment of 
competition schedules such as the introduction of playoffs in domestic football 
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leagues; the implementation of adjusted scoring rules such as shortened sets in 
tennis; attempts to improve the attractiveness of sports by stimulating a gener-
ally higher number of goals; or measures to foster equality of teams such as the 
introduction of salary caps. All these aspects can be specifically modelled in the 
context of the current framework, and the impact on ratings, probability distribu-
tions, and the evolution of competitions can be analyzed. Thus, researchers are 
encouraged to develop and use comparable frameworks for artificial data genera-
tion in further domains of forecasting and sports science.

While the goal of this article is to highlight the benefits of artificial data and 
simulation modelling in the domain of sports forecasting from a holistic view, this 
approach is not intended to replace studies of real data sets. In fact, it is explicitly 
desired and required to conceive these two approaches as complementary. While 
artificial data helps to overcome real-world challenges, particularly by allowing a 
higher level of control, new challenges are introduced, particularly as artificial data 
is highly dependent of the assumptions and constraints that model the simulation 
of a real-world problem (Koivisto 2017). To put it simply, the value of results from 
artificial data analysis is highly dependent on whether the processes modelled as a 
basis for the simulated data are actually comparable to the (unknown) real processes. 
Although accurately realistic artificial data and simulations are encouraged, the 
unknown nature of the processes involved cannot be ignored. However, the advan-
tages of the modelling and analysis of artificial data rely beyond its validity against 
real-data scenarios and are centered in the increased control over all the factors and 
the design and study of unfeasible situations in reality. Thus, insights from artificial 
data could reveal answers from unconceivable questions in reality but should then 
always be presented in concordance with the theoretical assumptions of the simula-
tion, discussed carefully and consequently, be validated and applied in real-world 
data applications.

The utility and evaluation of the presented framework has been based in the cur-
rent theories and methods available in the sports forecasting domain and evalu-
ated by their research and practice relevance. It is expected that the adaptation and 
instantiation of the process model and the artificial data framework would help to 
increase the knowledge base in sports forecasting. Similarly, the execution of rig-
orous research is expected to undoubtedly determine further iterations. Based on 
Hevner and Chatterjee (2010), the proposed artifacts must be integrated in a vali-
dation process. Relevance would ensure the practical implications of the artifacts 
and the innovative creation of opportunities and solutions while the rigor cycle is 
expected to fit the proposed artifacts with new theories, methods, and expertise from 
the domain of sports forecasting.
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