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1 Introduction

Many works in the last years discussed the phenomenon of long memory in the
volatility of fincial time series and findings of this are well documented in the litera-
ture. Several models were also proposed in the statistical and econometric literature
to capture the observed persistence in the conditional variance; among these FI-
GARCH and FIEGARCH models (Baillie et al., 1996; Bollerslev and Mikkelsen,
1996; Andersen and Bollerslev, 1997) and the Long Memory Stochastic Volatility
model (Breidt et al., 1998) are well known and very common.
In order to model the empirical evidences of periodic long memory behaviour in the
volatility of intra-daily financial returns, more recently, Bordignon et al.(2005, 2007)
introduced new GARCH-type models characterised by long memory behaviour of pe-
riodic type. These models, called Periodic Long–Memory GARCH (PLM-GARCH)
and Generalised Long Memory GARCH (G–GARCH), generalise the FIGARCH and
FIEGARCH models introducing suitable filters allowing to account also for periodic
long memory patterns in conditional variance (associated to the zero frequency of
the power spectrum). As a result, G-GARCH and PLM-GARCH also nest some
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traditional long memory GARCH specifications.
The filter used for G–GARCH is the most general and allows the description of quite
complex long memory behaviours. However, it also requires a richer and less parsi-
monious parametrization and is more difficult to estimate. In turn, PLM-GARCH
is more complex than a simple short memory GARCH including seasonal lags.
It is thus important to be able to discriminate between short and long memory peri-
odic dependence and, when periodic long memory occurs, to evaluate the suitability
of the G–GARCH representation.
Since the estimation of PLM– and G–GARCH models is based on likelihood meth-
ods, classical misspecifiction tests, for example Likelihood Ratio (LR) and Lagrange
Multiplier (LM), may be used to select the more appropriate model.
Bordignon et al. (2005, 2007) showed, by a simulation study, the practical applicabil-
ity and the good performance of the Quasi-Maximum Likelihood (QML) procedure
for parameters estimation. However, they also highlighted the lack of formal results
concerning consistency or distributional theory, even asympotically, for estimators
based on likelihood methods in long memory models.
For this reason, the aim of this study is to check that, despite the mentioned limita-
tions, Likelihood Ratio and Lagrange Multiplier tests can be safely used as misspeci-
fication tests when generalised long memory patterns are involved in the conditional
variance. This is done through Monte Carlo simulations, exploiting the nesting re-
lations between G–GARCH and other GARCH-type models and taking advantage
of the computation of the analytical expressions of the Gradient and of the Hessian
of the G–GARCH model.
The paper is organized as follows: in section 2 periodic long memory filters and the
frameworks of PLM- and G–GARCH models are briefly reviewed. The plan of the
Monte Carlo simulations is described in section 3. Section 4 provides an example
based on the time series of the two-hourly USD/JPY exchange rate. Conclusions
are given in section 5, whereas technicalities, i.e. analytical derivatives, are given in
the Appendix.

2 Periodic Long Memory filters and Generalised–GARCH

models

According to Woodward et al. (1998), an (h + 1)−factor Gegenbauer ARMA
(GARMA) model allowing for long memory behaviour associated with h + 1 fre-
quencies in [0, π] is defined by

Φ(L)

h
∏

j=0

(

1 − 2 cos (ωj)L+ L2
)dj (yt − µ) = Θ(L)εt, (1)

where h is an integer, εt is a white noise with variance σ2
ε , µ is the mean of the

process, ωj (j = 0, ..., h) are frequencies at which the long memory behaviour occurs,
dj (j = 0, ..., h) are long memory parameters indicating how slowly the autocorrela-
tions are damped and Φ(L) and Θ(L) are standard short memory autoregressive and
moving average polynomials with roots satisfying the usual conditions for stationar-
ity and invertibility. The main characteristic of model (1) is given by the presence
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of the Gegenbabuer polynomial P (L) =
∏h

j=0

(

1 − 2 cos (ωj)L+ L2
)dj that models

the long memory periodic behaviour at frequencies ωj through the parameters dj .
When we think of the ωj as the driving frequencies of a cyclical pattern of length

S, ωj =
(

2πj
S

)

and h+ 1 = [S/2] + 1, where [·] stands for the integer part.

To highlight the contributions at frequencies ω = 0 and ω = π, P (L) can be also
written as:

P (L) = (1 − L)d0 (1 + L)dhI(E)
h−1
∏

j=1

(

1 − 2 cos (ωj)L+ L2
)dj , (2)

where I(E) = 1 if S is even and zero otherwise and h+ 1 = [S/2] + 1 − I(E).
Bordignon et al. (2007) proposed to include the generalized long memory filter P (L)
into a GARCH structure in order to describe periodic long memory patterns in the
conditional variance of a time series. Such kind of patterns are observed, for exam-
ple, in some intra-daily financial time series.The resulting class of models was called
G–GARCH.
Due to the constraints needed for conditional variance positivity, G–GARCH mod-
els themeselves are not always feasible. For this reason, Bordignon et al. (2007)
suggested to use the logarithmic specification (Log–G–GARCH), wich is easier to
estimate.
The Log–G–GARCH model is given by

yt = µt + εt = µt + σt zt εt|It−1 ∼ D(0, σ2
t )

where µt is the conditional mean of yt, zt is an i.i.d. random variable with zero
mean and unitary variance, and εt|It−1 ∼ D(0, σ2

t ) with conditional variance σ2
t ,

It−1 being the information up to time t− 1.
The dynamics of the log-conditional variance is given by

ln(σ2
t ) = γ + β(L) lnσ2

t + {1 − β(L) +

−



(1 − L)d0(1 + L)dhI(E)
h−1
∏

j=1

(

1 − 2 cos (ωj)L+ L2
)dj



× (3)

×φ(L)}
[

ln
(

ε2t
)

− τ
]

,

where φ(L) = 1 −
∑q

i=1 φiL
i and β(L) =

∑p
i=1 βiL

i are suitable polynomials in
the lag operator L and τ = E

[

(ln(z2
t )
]

(in the gaussian case τ = −1.27). The dj

(j = 0, ..., h) are (long) memory parameters associated to the frequencies ωj indi-
cating how slowly the autocorrelations are damped. In the G–GARCH model, thus,
each periodic frequency is modelled by means of a specific long memory parameter
di.
When d0 = d1 = ... = dh all the involved frequencies have the same degree of mem-
ory. Under the additional assumption that the remarkable frequencies are associ-
ated to a single periodic component, the specification of the conditional variance (3)
corresponds to that of a logarithmic Periodic Long–Memory GARCH (Log-PLM–
GARCH) model, introduced by Bordignon et al. (2005). Again, the logarithmic
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specifiction is considered for obtain computational advantages. In this case, the
expression (3) becomes

ln
(

σ2
t

)

= γ + β(L) ln
(

σ2
t

)

+
[

1 − β(L) −
(

1 − LS
)d

(1 − φ(L))
]

[

ln
(

ε2t
)

− τ
]

(4)

which can be derived from model (3) under the restriction d0 = d1 = ... = dh.
The main difference between PLM-GARCH and G–GARCH is that the former as-
sumes equal degrees of memory for all interested frequencies and, thus, models the
whole long memory behaviour with just a single parameter, leading to a very parsi-
monious description of the dynamics.
G–GARCH models nest, as particular cases, some of the existing GARCH models.
For example, standard GARCH models – included Seasonal GARCH (Bollerslev and
Hodrick, 1992; Bollerslev and Ghysel, 1996) – can be obtained by putting dj = 0
(j = 0, ..., h), while the FIGARCH model is equivalent to S = 1, 0 < d0 < 1 and
dj = 0 (j = 1, ..., h). Also PLM-GARCH includes the same GARCH specifications.
Whereas model (3) is clearly more flexible than the nested models, it is also evident
that it is more complex and less parsimonious. It is, thus, particularly useful to
have suitable tests for establishing when using G–GARCH models instead of PLM-
GARCH models. Similarly, it is of interest to test the opportunity of fitting a long
memory periodic model rather than a simpler short memory periodic one.
Since the G–GARCH class encompasses PLM-GARCH as well as other short mem-
ory GARCH specifications, it is possible to apply the standard LR test as misspecifi-
cation test. For example, testing a PLM-GARCH form versus a possible G–GARCH
specification implies verifying the hypothesis of equality of all memory coefficients
di, while testing PLM-GARCH or G–GARCH forms versus a short memory GARCH
with coefficients at periodic lags implies to test the not significance of all coefficients
di because this induces a GARCH model where α (L) = φ (L) − β (L).
It is well known that the application of the LM test requires the computation of the
derivatives of the likelihood. To this purpose, the analytical gradient and Hessian
of the G–GARCH model have been calculated and they are given in Appendix.
The gradient and the hessian of the PLM model may be obtained with suitable
simplifications.

3 Monte Carlo simulations

In order to proof the reliability of LR and LM tests, in this section nominal and real
levels of the tests, as well as powers, are compared through Monte Carlo simulations.
To evaluate levels and powers M = 1000 simulation trials were considered for series
of length n = 500, 1000 and 2000. All the data generating models are expressed
in the logarithmic form, with no mean component (µt = 0) and with a periodic
component of period S = 7 (h+ 1 = 4).
Since this work mainly focuses on the ability of distinguishing between short and
long memory periodic behaviour and between PLM– and G–GARCH specifications,
only Seasonal-GARCH, PLM–GARCH and G–GARCH models were considered and
compared among them. In detail, data were generated from:
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a. Log–G–GARCH models without and with short memory component.
For models with only the long memory component we set γ = −0.05, β(L) = 0,
φ(L) = 0, and the following memory parameters:
d1 = 0.1, d2 = 0.2, d3 = 0.25 and d4 = 0.25 (model M1); d1 = 0.3, d2 = 0.4,
d3 = 0.5 and d4 = 0.6 (model M2); d1 = 0.45, d2 = 0.6, d3 = 0.7 and d4 = 0.8
(model M3);
The models including also a short memory component are M1, M2 and M3

with φ1 = 0.1, φ7 = 0.5, β1 = 0.2 β7 = 0.3. They will be referred, respectively,
as M4, M5 and M6 models.

b. Log–PLM–GARCH models without and with short memory component.
For models with only the long memory component we set β(L) = 0, φ(L) = 0,
and parameters d1 = d2 = d3 = d4 = d with: d = 0.1 (model M7); d = 0.25
(model M8) and d = 0.4 (model M9).
The same models were also considered with a short memory component defined
by φ1 = 0.1, φ7 = 0.5, β1 = 0.2 β7 = 0.3. They will be referred, respectively,
as M10, M11 and M12 models.

c. Seasonal short memory GARCH models with coefficients at lags 1 and S both
for α (L) and β (L). Parameters were chosen in order to induce peristent peri-
odic behaviour. In particular they were set to α1 = 0.05, α7 = 0.05, β1 = 0.05
and β7 = 0.8 (model M13) and α1 = 0.02, α7 = 0.02, β1 = 0 and β7 = 0.95
(model M14).

Within these cases, when two models are compared the simpler one is denoted by
M0 and the more complex by MA. In all simulations the hypotesis system under
study is

{

H0 : M0

H1 : MA
(5)

System (5) is verified with respect to q constraints on some model parameters.
For example, when M0 is an S–GARCH and MA a PLM–GARCH, which means
to test short memory versus long memory periodic behaviour, system (5) becomes
H0 : d = 0 against H1 : d 6= 0. Instead, if M0 is a PLM–GARCH and M1 a G–
GARCH, the implied null hypothesis is H0 : di = d (i = 1, ..., h).
When PLM–GARCH and G–GARCH models have only the long memory compo-
nent, they do not nest S-GARCH models; in this case the LR test was applied only
for discriminating between PLM- and G–GARCH models. Also, when the data
generating process (DGP) is short memory the hypothesis PLM–GARCH versus

G–GARCH has not been considered because not interesting.
Real levels are studied considering Log–PLM–GARCH and Log-S–GARCH as data
generating processes and results on this point are contained in Tables 3, 4 and 5. For
n = 500, results indicate that the tests perform poorly, but for n ≥ 1000 real levels
are globally satisfactory and more consistent with the nominal ones. Furthermore,
when the DGP is short memory (Table 5) the LM test tends to be conservative and
thus to under-reject the hypothesis of short memory DGP.
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Results concerning the power of tests are dispalyed in Tables 1, 2, 3 and 4.
Again, for n = 500 the tests perform sometimes poorly but for n ≥ 1000 powers
are generally high. In particular, we note that when the DGP is long memory the
S-GARCH is definitely rejected and both tests, and particularly the LM test, show
a very high power in discriminating between PLM- and G–GARCH generators. An
exception is when the DGP is model M4: in this case the test is too much conserva-
tive with respect the hypotesis of PLM-type generating process. This is not strange
because model M4 has parameters di quite similar to those of a PLM-type model
with di = 0.2 or di = 0.25. We note, however, that in general the inclusion of short
memory components makes more difficult to discriminate between different forms of
periodic long memory. Finally, it seems that the LM test is more powerful than the
LR test.
In Table 4, the effects of the inclusion of short memory components appear as an
underrejection of the null hypothesis, particularly evident with small sample size
(n = 500), and for model M10. In this last case, the convergence to the appropriate
frequencies is slower than for the other DGPs, and still unsatisfactory for lenght
n = 2000. This depends on the particular values of parameters of the DGP, a PLM
model with memory coefficient set to 0.1. In fact, the limited memory of the process
combined with the occurence of a short memory dynamics introduces a larger un-
certainty which can be reduced only increasing the sample size.
In this study, the analyses were limited to just one combination of short memory pa-
rameters. In fact, the estimation of periodic long memory models requires a higher
CPU time when models include also short memory coefficients. Despite the overall
estimating time is not elevate, around 15 minutes for a series of length 2000, their
inclusion within a Monte Carlo experiment greatly increment the time required to
run the simulations. Note also that PLM– and G–GARCH models without short
memory coefficients require estimation times considerably lower, in the order of 1 to
5 minutes, depending on the starting values used in association with the true mem-
ory degree and the series length. Furthermore, the specific chosen short memory
parameters induce a mildly persistent short memory pattern. Under the hypothesis
of no long memory, these short memory coefficients induce a Short memory GARCH
with parameters equal to α1 = −0.1, α7 = 0.2, β1 = 0.2, β7 = 0.3; the negative
coefficient is not a problem given that the model is expressed in the logs.

4 An application: the USD/JPY exchange rate

As an empirical application of the previous testing framework, the intra-daily series
of the exchange rate US Dollar versus Japanese Yen was analysed. The covered
period is March 1, 2000 - February 28, 2005, for a total of 1304 working days. Data
were provided by Olsen & Associates at a frequency of 5–minutes, but in the ap-
plication two-hourly data were considered. Within every week, data range from the
22.00 of Sunday to 22.00 of Friday. The length of the resulting series is n = 15648.
The return time series (rt) is uncorrelated with a not significant mean, thus no
model for the conditional mean is required. Squared and log–squared returns, in-
stead, are significantly correlated and show a periodic behaviour. Since in the fol-
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LM test LR test

level 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

DGP: M1 PLM vs G S vs G S vs PLM PLM vs G

500 0.673 0.883 0.932 0.992 0.933 0.994 0.855 0.955
1000 0.964 0.994 0.997 1.000 0.998 1.000 0.997 0.999
2000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

DGP: M2 PLM vs G S vs G S vs PLM PLM vs G

500 0.999 1.000 0.987 0.996 0.990 0.998 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

DGP: M3 PLM vs G S vs G S vs PLM PLM vs G

500 1.000 1.000 0.983 0.990 0.986 0.995 1.000 1.000
1000 1.000 1.000 0.947 0.989 1.000 1.000 1.000 1.000
2000 1.000 1.000 0.911 0.982 1.000 1.000 1.000 1.000

Table 1: Data generating process: G–GARCH without short memory component.
Parameters: Model M1 (0.1 - 0.2 - 0.25 - 0.25); Model M2 (0.3 - 0.4 - 0.5 - 0.6),
Model M3 (0.45 - 0.6 - 0.7 - 0.8)

lowing only log–GARCH–type models will be considered, hereafter we concentrate
on log–squared residuals, ln(r2t ). Figure 1 shows the correlogram and periodogram
of ln(r2t ).
The very slow periodic decaying of the autocorrelation function and the pronounced

peaks of the periodogram at the origin and at seasonal frequencies may indicate a
cyclical long memory behaviour. The four main peaks are located at the frequencies
ω0 = 0, ω1 = 0.083, ω2 = 0.166 and ω3 = 0.25, which correspond, respectively, to
a traditional long memory component and to three possibly long memory periodic
components of daily (S = 12), semi-daily (S = 6) and 4–hourly (S = 2) periods.
Besides these periodic components, in the spectrum some minor peaks, for example
that at ω = 0.333, are present.
The peaks in the periodogram may also suggest a deterministic periodic behaviour
which could be accounted using seasonal dummy variables. A visual inspection of
the periodogram of the standardized squared residuals of a regression on dummy
variables revealed that this approach is not satisfactory and that a stochastic mod-
elling seems more appropriate.
In order to specify the form of a suitable stochastic model for the observed periodic
pattern, three periodic GARCH-type models were selected and estimated for the
log–squared returns: a Seasonal-GARCH (S-GARCH) a PLM-GARCH and a G–
GARCH. The first is short memory whereas the last two are long memory. Results,
displayed in Table 6, suggest considering the G–GARCH specification.
The estimation results are listed in Table 7 and show that the memory parameters
for the G–GARCH model are all significant and that, in terms of loglikelihood, the
G–GARCH specification is, in actual fact, the best one.
Finally, the analysis of the autocorrelation function and of the periodogram of the
standardized squared residuals of model G–GARCH confirms that there is not sig-
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LM test LR test

level 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

DGP: M4 PLM vs G S vs G S vs PLM PLM vs G S vs G S vs PLM

500 0.024 0.071 0.978 0.998 0.999 1.000 0.099 0.235 0.376 0.558 0.367 0.536
1000 0.021 0.073 0.996 0.999 1.000 1.000 0.145 0.320 0.354 0.556 0.259 0.505
2000 0.057 0.155 0.997 0.1000 1.000 1.000 0.286 0.542 0.587 0.817 0.416 0.683

DGP: M5 PLM vs G S vs G S vs PLM PLM vs G S vs G S vs PLM

500 0.985 0.997 0.988 0.997 1.000 1.000 0.997 0.998 0.999 1.000 0.914 0.962
1000 1.000 1.000 0.999 1.000 1.000 1.000 0.999 0.999 1.000 1.000 0.986 0.997
500 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 1.000 1.000 1.000 1.000

DGP: M6 PLM vs G S vs G S vs PLM PLM vs G S vs G S vs PLM

500 0.983 0.992 0.993 0.998 1.000 1.000 0.998 1.000 1.000 1.000 0.876 0.927
1000 0.999 0.999 0.978 0.996 0.998 0.998 0.999 0.999 1.000 1.000 0.979 0.992
2000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000

Table 2: Data generating process: G–GARCH including a short memory component. Parameters: Models M4,M5 and M6 are
defined as models M1, M2 and M3 with also φ1 = 0.1, φ7 = 0.5, β1 = 0.2 β7 = 0.3
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LM test LR test

level 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

DGP: M7 PLM vs G S vs G S vs PLM PLM vs G

500 0.076 0.201 0.934 0.993 0.945 0.998 0.010 0.046
1000 0.014 0.067 0.991 0.997 0.999 1.000 0.013 0.052
2000 0.012 0.068 1.000 1.000 1.000 1.000 0.007 0.059

DGP: M8 PLM vs G S vs G S vs PLM PLM vs G

500 0.017 0.072 0.917 0.988 0.928 0.995 0.013 0.065
1000 0.020 0.062 0.993 1.000 0.999 1.000 0.014 0.063
2000 0.014 0.057 1.000 1.000 1.000 1.000 0.012 0.047

DGP: M9 PLM vs G S vs G S vs PLM PLM vs G

500 0.015 0.076 0.913 0.977 0.932 0.987 0.012 0.062
1000 0.018 0.072 0.988 0.996 0.994 0.999 0.021 0.073
2000 0.010 0.045 0.999 1.000 1.000 1.000 0.011 0.051

Table 3: Data generating process: PLM–GARCH without short memory component.
Parameters: Model M7 d = 0.1; M8 d = 0.25, Model M9 d = 0.4.
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Figure 1: UDS/JPY exchange rate: autocorrelation function and periodogram of
ln(r2t ).

nificant residual correlation nor dominant peaks at the seasonal frequencies or at
some neighbourhood in the periodogram.

5 Conclusions

In this paper it was shown that LM and LR tests can be safely used as model selection
tools when the underlying data generating process may include long memory periodic
components. By mean of a Monte Carlo analysis the real size and power of these
tests were derived evidencing their reliability apart from some special and limited
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LM test LR test

level 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

DGP: M10 PLM vs G S vs G S vs PLM PLM vs G S vs G S vs PLM

500 0.004 0.010 0.923 0.993 0.999 1.000 0.011 0.054 0.086 0.210 0.164 0.315
1000 0.002 0.017 0.992 0.999 0.999 0.999 0.010 0.058 0.202 0.400 0.370 0.574
2000 0.004 0.020 1.000 1.000 1.000 1.000 0.016 0.062 0.509 0.724 0.719 0.862

DGP: M11 PLM vs G S vs G S vs PLM PLM vs G S vs G S vs PLM

500 0.008 0.025 0.985 1.000 1.000 1.000 0.025 0.099 0.505 0.701 0.662 0.849
1000 0.003 0.020 0.994 1.000 1.000 1.000 0.018 0.087 0.856 0.952 0.949 0.980
2000 0.004 0.035 1.000 1.000 1.000 1.000 0.013 0.057 0.947 0.989 0.996 1.000

DGP: M12 PLM vs G S vs G S vs PLM PLM vs G S vs G S vs PLM

500 0.003 0.027 0.943 0.998 1.000 1.000 0.022 0.097 0.603 0.805 0.794 0.899
1000 0.005 0.018 1.000 1.000 1.000 1.000 0.025 0.080 0.959 0.991 0.988 0.998
2000 0.003 0.040 1.000 1.000 1.000 1.000 0.014 0.055 0.989 0.999 0.999 1.000

Table 4: Data generating process: PLM–GARCH including short memory component. Parameters: Models M10,M11 and M12 are
defined as models M7, M8 and M9 with also φ1 = 0.1, φS = 0.5, β1 = 0.2 βS = 0.3
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LM test

level 0.01 0.05 0.01 0.05

DGP: M13 S vs PLM S vs G

500 0.010 0.037 0.013 0.035
1000 0.008 0.028 0.010 0.031
2000 0.005 0.026 0.007 0.029

DGP: M14 S vs PLM S vs G

500 0.012 0.039 0.023 0.045
1000 0.011 0.035 0.022 0.041
2000 0.008 0.034 0.019 0.040

Table 5: Data generating process: S–GARCH. Parameters: α1 = 0.05, α7 = 0.05,
β1 = 0.05 and β7 = 0.8 for model M13; α1 = 0.02, α7 = 0.02, β1 = 0 and β7 = 0.95
for model M14.

LR–test n. restrictions p-value

Log–GARCH vs Log-PLM-GARCH 348.830 1 < 0.001
Log–GARCH vs Log–G–GARCH 446.902 7 < 0.001
Log–PLM–GARCH vs Log–G–GARCH 98.072 6 < 0.001

LM–test n. restrictions p-value

Log–GARCH vs Log–PLM–GARCH 203.395 1 < 0.001
Log–GARCH vs Log–G–GARCH 204.275 7 < 0.001
Log–PLM–GARCH vs Log–G–GARCH 941.317 6 < 0.001

Table 6: UDS/JPY exchange rate: LM and LR tests for ln(r2t ).

cases.
The test performances are however influenced by the sample length and results
show that about a thousand observations are required in order to obtain reliable
conclusions. This is not an unexpected result given the presence of a long memory
of periodic type.
Finally, an application showing how our testing approach can be used in the model
identification has been provided for an intra-daily series of the USD/JPY exchange
rate.
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Appendix: derivatives

This appendix reports the analytical derivatives of the Log–G–GARCH model. The
equations for the Log-PLM-GARCH model, nested in the Log–G–GARCH model,
can be obtained by exploiting the nesting constraints.
Let us recall the model and some known results. The mean equation is:

yt − µt = ztσt = εt.

with εt assumed to follow a GARCH structure. In particular, defined ht = ln
(

σ2
t

)

and et = ln
(

ε2t
)

− k (θ), the log-conditional variance of εt has the following specifi-
cation:

ht = ω + β (L)ht +

[

1 − β (L) −

[

h
∏

i=0

(

1 − 2ηiL+ L2
)di

]

φ (L)

]

et.

where β (L) =
∑p

i=1 βiL
i and φ (L) = 1 −

∑q
i=1 φiL

i.
The the long memory polynomial can be expanded by using the expression

h
∏

i=0

(

1 − 2ηiL+ L2
)di =

h
∏

i=0

∞
∑

j=0

ci,j (di, ηi)L
j .

The coefficients of the expansion depend on the memory coefficients di and on the
ηi frequencies at which the long memory operates. For simplicity, the dependence of
the ci,j (di, ηi) coefficients on the memory levels and frequencies will be suppressed
and the simpler notation ci,j will be used, where the first subscript identifies the
memory and frequency coefficients while the second subscript identifies the lag. The
ci,j coefficients have the following recursive structure

cl,0 = 1

cl,1 = −2dlηl

cl,y = 2ηl

(

−dl − 1

y
+ 1

)

cl,y−1 −

(

2
−dl − 1

y
+ 1

)

cl,y−2

Analytical gradient of Log–G–GARCH models

In order to define the gradient the model likelihood is defined as L =
∑T

t=1 Lt, with
Lt the likelihood for time t

Lt = −
1

2
ht −

1

2

ε2t
exp (ht)

We also collect the constant of the conditional variance, ω, the short memory coeffi-
cients included in β(L) and φ(L), and the long memory coefficients in a single para-
meter set denoted by ψ = (ω, β1, ..., βp, φ1, ..., φ). The gradient of the log-likelihood
L is then

∂L

∂ψ′
=

T
∑

t=1

∂Lt

∂ψ′
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and the gradient for time t is

∂Lt

∂ψ′
=

1

2

[

ε2t
exp (ht)

− 1

]

∂ht

∂ψ′
.

The expressions for the single coefficient derivatives are reported grouping them
according to the coefficients. Notice that we report directly the expression for the
derivative with respect to the log-variances; the gradient for the entire likelihood
can be obtained by substitution.
The derivative with respect to the variance constant is

∂ht

∂ω
= 1 + β (L)

∂ht

∂ω
.

The derivatives with respect to the short memory coefficients in β(L) are

∂ht

∂βj

= β (L)
∂ht

∂βj

+ ht−j − et−j .

The derivatives with respect to the short memory coefficients in φ(L) are

∂ht

∂φl

= β (L)
∂ht

∂φl

−

[

h
∏

i=0

(

1 − 2ηiL+ L2
)di

]

et−l.

Note that all derivatives have a recursive structure and are very similar to those
reported in Lombardi and Gallo (2002).
The most complex set of derivatives is that with respect to the memory coefficients.
In this case the derivatives with respect to the long memory coefficients require the
computation of the derivatives for the coefficients in the long memory polynomial
expansion

∂

∂dl

h
∏

i=0

∞
∑

j=0

ci,j (di, ηi)L
j =





h
∏

i=0i6=l

∞
∑

j=0

ci,j (di, ηi)L
j









∂

∂dl

∞
∑

y=0

cl,y (dl, ηl)L
y



 .

The derivative with respect to a single long memory coefficient can be written as

∂

∂dl

∞
∑

y=0

cl,y (dl, ηl)L
y =

∞
∑

y=0

∂cl,y (dl, ηl)

∂dl

Ly,

where the derivatives of the long memory expansion coefficients are

∂cl,y
∂dl

= 2ηl

(

−dl − 1

y
+ 1

)

∂cl,y−1

∂dl

−

(

2
−dl − 1

y
+ 1

)

∂cl,y−2

∂dl

− 2ηl

1

y
cl,y−1 +

2

y
cl,y−2,

∂cl,0
∂dl

= 0,
∂cl,1
∂dl

= −2ηl.

Summarizing, the derivative with respect to a single memory coefficient is thus

∂ht

∂dl

= β (L)
∂ht−1

∂dl

− φ (L)







h
∏

i=0
i6=l

∞
∑

j=0

ci,jL
j











∞
∑

y=0

∂cl,y
∂dl

Ly



 et.

Note that also the derivatives with respect to the memory coefficients have a recur-
sive structure in the main derivative and in the polynomial coefficients.
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Analytical Hessian of Log–G–GARCH models

Using the same notation previously introduced, the Hessian at time t is

∂Lt

∂ψ∂ψ′
=

1

2

[

ε2t
exp (ht)

− 1

]

∂2ht

∂ψ∂ψ′
−

1

2

ε2t
exp (ht)

∂ht

∂ψ

∂ht

∂ψ′
.

The elements entering the second part of the Hessian can be obtained by using the
results achieved for the Gradient. Here only the elements characterizing the second
order derivatives of the log-variances are reported.
The second order derivative with respect to the constant is

∂2ht

∂ω2
= β (L)

∂2ht

∂ω2
.

The second order derivatives with respect to a couple of coefficients of the polynomial
β (L) are

∂2ht

∂βj∂βi
= β (L)

∂2ht

∂βj∂βi
+
∂ht−i

∂βj
+
∂ht−j

∂βi
i, j = 1, 2, ...p.

The second order derivatives with respect to a couple of coefficients of the polynomial
φ (L) are

∂2ht

∂φj∂φl

= β (L)
∂2ht

∂φj∂φl

j, l = 1, 2, ...q.

The cross-second order derivatives between the constant ω and the coefficients φi

and βj are

∂2ht

∂ω∂βj
= β (L)

∂2ht

∂ω∂βj
+
∂ht−j

∂ω
j = 1, 2, ...p;

∂2ht

∂ω∂φl

= β (L)
∂2ht

∂ω∂φl

l = 1, 2, ...q;

∂2ht

∂βj∂φl

= β (L)
∂2ht

∂βj∂φl

+
∂ht−i

∂ωφl

j = 1, 2, ...p; l = 1, 2, ...q.

The second order derivatives with respect to memory coefficients are

∂2ht

∂dl∂dk

= β (L)
∂2ht−1

∂dl∂dk

− φ (L)







k
∏

i=1
i6=l,k

∞
∑

j=0

ci,jL
j











∞
∑

y=0

∂cl,y
∂dl

Ly





(

∞
∑

m=0

∂ck,m

∂dk

Lm

)

et

l, k = 0, 1, 2, ...h l 6= k

∂2ht

∂d2
l

= β (L)
∂2ht−1

∂d2
l

− φ (L)







k
∏

i=1
i6=l

∞
∑

j=0

ci,jL
j











∞
∑

y=0

∂2cl,y
∂d2

l

Ly



 et

l = 0, 1, 2, ...h
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where the derivatives of the memory expansion coefficients are

∂2cl,y
∂d2

l

= 2ηl

(

−dl − 1

y
+ 1

)

∂2cl,y−1

∂d2
l

−

(

2
−dl − 1

y
+ 1

)

∂2cl,y−2

∂d2
l

−
4

y

(

ηl

∂cl,y−1

∂dl

−
∂cl,y−2

∂dl

)

∂2cl,0
∂d2

l

= 0
∂2cl,1
∂d2

l

= 0.

Finally, the cross-derivatives involving memory coefficients are

∂2ht

∂ω∂dl

= β (L)
∂2ht

∂ω∂dl

∂2ht

∂βj∂dl

= β (L)
∂2ht

∂βj∂dl

+
∂ht−j

∂dl

∂2ht

∂φl∂dm
= β (L)

∂2ht

∂φl∂dm
−







k
∏

i=1
i6=m

∞
∑

j=0

ci,jL
j











∞
∑

y=0

∂cm,y

∂dm
Ly



 et−l.



Working Paper Series

Department of Statistical Sciences, University of Padua

You may order paper copies of the working papers by emailing wp@stat.unipd.it

Most of the working papers can also be found at the following url: http://wp.stat.unipd.it


