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Abstra
t

We des
ribe the shrinking neighborhood approa
h of Robust Statisti
s, whi
h applies to

general smoothly parametrized models, espe
ially, exponential families. Equal generality is

a
hieved by obje
t oriented implementation of the optimally robust estimators. We evaluate

the estimates on real datasets from literature by means of our R pa
kages ROptEst and RobLox.

Keywords: Exponential family; In�uen
e 
urves; Asymptoti
ally linear estimators; Shrinking


ontamination and total variation neighborhoods; One-step 
onstru
tion; Minmax MSE

1 Introdu
tion

Following Huber (1997), p 61, the purpose of robustness is �to safeguard against deviations from

the assumptions, in parti
ular against those that are near or below the limits of dete
tability�.

The in�nitesimal approa
h of Huber�Carol (1970), Rieder (1978) and Rieder (1980), Bi
kel (1981),

Rieder (1994) to robust testing and estimation, respe
tively, takes up this aim by employing shrink-

ing neighborhoods of the parametri
 model, where the shrinking rate n−1/2
, as the sample size

n→ ∞, may be dedu
ed in a testing setup; 
onfer Ru
kdes
hel (2006).

It is true that Huber's own minimum Fisher information approa
h refers to (small) neighborhoods

of �xed size; 
f. Huber (1981). But it only treats varian
e, sets bias = 0 by assuming symmetry,

and is restri
ted to Tukey-type neighborhoods about lo
ation or s
ale models. It has not been ex-

tended to simultaneous lo
ation and s
ale, let alone to more general models. Fraiman et al. (2001)

derive MSE optimality on �xed size neighborhoods. In situations beyond one-dimensional lo
ation,

however, they do not determine a solution in 
losed form either. The in�nitesimal approa
h, on

the 
ontrary, provides 
losed-form robust solutions for general models (
f. Se
tion 2.1) and fairly

general risks based on varian
e and bias (
f. Ru
kdes
hel and Rieder (2004)).

As noted by Huber (p 291 of Huber (1981)), in view of Theorem 3.7 of Rieder (1978), there is a


lose relation between the in�nitesimal neighborhood approa
h and Hampel's Lemma 5 (
f. Hampel

(1968)); see also Theorem 3.2 of Rieder (1980) and Theorem 5.5.7 of Rieder (1994). Di�eren
es to

Hampel et al. (1986) nevertheless exist and 
on
ern:

� de�nition of the in�uen
e 
urve,

� ne
essity of the form of the optimally robust in�uen
e 
urves,
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� optimality 
riterion: MSE and even more general 
riterions,

� determination of the bias bound (sensitivity),

� uniform asymptoti
s on neighborhoods, and

� 
overage of more models.

A fourth robustness approa
h pursues e�
ien
y in the ideal model subje
t to a high breakdown

point; 
onfer for example Maronna et al. (2006), Se
tions 5.6.3, 5.6.4 and 6.4.5. A high breakdown,

though, may easily be in
orporated in our approa
h: Given some starting estimator θ̂n, we 
onstru
t
our optimal estimators Sn as one-step estimates,

Sn = θ̂n + n−1
(

ψθ̂n
(x1) + · · ·+ ψθ̂n

(xn)
)

(1)


f. Se
tion 4. The pro
edure is 
alled one-step re-weighting in Se
tion 5.6.3 of Maronna et al. (2006)

and has already been used in the Prin
eton robustness study (
f. Andrews et al. (1972)). Thus, if

|ψθ(x)| ≤ b, also |Sn − θ̂n| ≤ b. Consequently, the breakdown point of the starting estimator θ̂n is

inherited to our estimator Sn. Given the high breakdown, however, we do not 
onsider robustness

as settled, then striving just for high e�
ien
y in the ideal model. Our primary aim stays minmax

MSE on shrinking neighborhoods about the ideal model, whi
h altogether 
omplies with Huber

(1997), p 61, that �a high breakdown point is ni
e to have if it 
omes for free�.

The organisation of the paper is as follows: We review the theory of asymptoti
 robustness on

shrinking neighborhoods, add some re
ent results and spezialize. Then, we 
ompute and apply

the in�nitesimal robust estimators to datasets from literature using our R pa
kages ROptEst (gen-

eral models) and RobLox (normal lo
ation and s
ale); 
onfer R Development Core Team (2008),

Kohl and Ru
kdes
hel (2008
) and Kohl (2008). Apppli
ations of in�nitesimal neighborhood ro-

bustness to time series will be the subje
t of another paper.

2 Setup

2.1 General Smoothly Parametrized Models

Denoting by M1(A) the set of all probability measures on some measurable spa
e (Ω,A), we

onsider a parametri
 model P = {Pθ | θ ∈ Θ} ⊂ M1(A), whose parameter spa
e Θ is an open

subset of some �nite-dimensional R
k
, and whi
h is dominated: dPθ = pθ dµ (θ ∈ Θ). At any �xed

θ ∈ Θ, model P is required to be L2 di�erentiable, that is, to have L2 di�erentiable square root

densities su
h that, in L2(µ), as t → 0,

√
pθ+t =

√
pθ (1 +

1
2 t

′Λθ) + o(|t|) (2)

The R
k
-valued fun
tion Λθ ∈ Lk

2(Pθ) is 
alled L2 derivative, and its 
ovarian
e Iθ = Eθ ΛθΛ
′
θ under

Pθ is the Fisher information of P at θ, required of full rank k. This type of di�erentiability is implied

by 
ontinuous di�erentiability of pθ and 
ontinuity Iθ, with respe
t to θ, and then Λθ = ∂
∂θ log pθ.

Confer e.g. Lemma A.3 of Hajek (1972), Se
tion 1.8 of Witting (1985), Se
tion 2.3 of Rieder (1994),

Rieder and Ru
kdes
hel (2001).

Our main appli
ations in this arti
le 
on
ern exponential families, in whi
h 
ase

pθ(x) = exp
{

ζ(θ)′T (x)− β(θ)
}

h(x) (3)
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with some measurable fun
tions ζ : Θ → R
k
, h : Ω → [0,∞), T : Ω → R

k
of positive de�nite


ovarian
e Covθ T ≻ 0, and the normalizing 
onstant β(θ). Then P forms a k-dimensional ex-

ponential family of full rank. The natural parameter spa
e Z∗ 
onsists of all ζ-values su
h that

0 <
∫

exp
{

ζ′T (x)
}

h(x)µ(dx) < ∞. P is L2 di�erentiable under the following assumptions: ζ

ontinuously di�erentiable in θ ∈ Θ with regular Ja
obian matrix Jζ , and ζ(Θ) ⊂ Zo

∗ (interior).

And then,

Λθ(x) = J ′
ζ

(

T (x)− Eθ T
)

Iθ = J ′
ζ Covθ(T )Jζ (4)

where Eθ denotes expe
tation under Pθ. The result mentioned in van der Vaart (1998), Example 7.7,

is proven in Kohl (2005), Lemma 2.3.6 (a). In what follows, the parametri
 model P is assumed L2

di�erentiable at any θ ∈ Θ.

2.2 Asymptoti
ally Linear Estimators

The founders of robust statisti
s have de�ned in�uen
e 
urves (IC) as Gâteaux derivatives of sta-

tisti
al fun
tionals; 
onfer Se
tion 2.5 of Huber (1981) and Se
tion 2.1 of Hampel et al. (1986).

The 
lassi
al de�nition, however, remains vague. Even if su
h a derivative exists, the de�nition is

not strong enough to 
over the empiri
al; 
onfer Reeds (1976) and Fernholz (1983). Our approa
h

is di�erent: Sin
e most proofs of asymptoti
 normality in the i.i.d. 
ase amount to an estimator

expansion with the IC as summands, we de�ne the set of all (square integrable, R
k
-valued) ICs at

Pθ beforehand by

Ψ(θ) =
{

ψθ ∈ Lk
2(Pθ) | Eθ ψθ = 0, Eθ ψθΛ

′
θ = Ik

}

(5)

where Ik denotes the k×k identity matrix. Then we de�ne asymptoti
ally linear (AL) estimators S
to be any sequen
e of estimators Sn : Ωn → R

k
su
h that for some ψθ ∈ Ψ(θ), ne
essarily unique,

n1/2(Sn − θ) = n−1/2
(

ψθ(x1) + · · ·+ ψθ(xn)
)

+ oPn
θ
(n0) (6)

where oPn
θ
(n0) → 0 in produ
t Pn

θ probability as n→ ∞. Thus, the originally intended interpreta-

tion is a
hieved: ψθ(xi) represents the asymptoti
, suitably standardized in�uen
e of observation xi
on Sn. The 
lass of AL estimators as introdu
ed by Rieder (1980), De�nition 1.1 and Remarks,

and Rieder (1994), Se
tion 4.2, 
overs M, L, R, S and MD (minimum distan
e) estimates.

By the Lindeberg-Lévy CLT, as ψθ ∈ Lk
2(Pθ), Eθ ψθ = 0, AL estimators are asymptoti
ally normal

under Pn
θ ,

n1/2(Sn − θ)(Pn
θ ) −→w N (0,Covθ(ψθ)) (7)

The third 
ondition Eθ ψθΛ
′
θ = Ik is equivalent to the lo
ally uniform extension of (7), with θ on

the LHS repla
ed by θn with lim supn→∞

√
n |θn − θ| <∞.

For the asymptoti
 varian
e under Pθ, the Cramér-Rao bound holds,

Covθ(ψθ) � I−1
θ = Covθ(ψh,θ) , ψθ ∈ Ψθ (8)

with equality i� ψθ = ψh,θ := I−1
θ Λθ, the 
lassi
al s
ores.

2.3 In�nitesimal Perturbations

The i.i.d. observations x1, . . . , xn may now follow any law Q in some neighborhood about Pθ. In this

arti
le , the type of neighborhoods in Rieder (1994) will be restri
ted to (
onvex) 
ontamination

3



(∗ = c) and total variation (∗ = v). Delegating the total variation 
ase to Appendix A, the

system Uc(θ) thus 
onsists of all 
ontamination neighborhoods

Uc(θ, s) =
{

(1− s)Pθ + sQ
∣

∣Q ∈ M1(A)
}

, 0 ≤ s ≤ 1 (9)

Subsequently, s = sn = rn−1/2
for starting radius r ∈ [0,∞) and n→ ∞.

Remark 1. Under Q, still the parameter θ has to be estimated. Sin
e the equation Q = Pθ + (Q − Pθ)
involving the nuisan
e 
omponent Q − Pθ, may have multiple solutions θ, the parameter θ is no longer

identi�able. This problem has been dealt with by estimating fun
tionals that extend the parametrization

to the neighborhoods. As noted in Se
tion 4.3.3 of Rieder (1994), however, both approa
hes lead to the

same optimally robust ICs and pro
edures on
e the 
hoi
e of the fun
tional is subje
ted to robustness


riteria.

We now �x θ ∈ Θ and introdu
e the bounded tangents at Pθ,

Z∞(θ) =
{

q ∈ L∞(Pθ) | Eθ q = 0
}

(10)

Along any q ∈ Z∞(θ) and for starting radius r ∈ [0,∞), simple perturbations are de�ned by

dQn(q, r) =
(

1 + rn−1/2q
)

dPθ (11)

provided that n1/2 ≥ −r infPθ
q, where infPθ

denotes the Pθ-essential in�mum. AL estimators,

under su
h simple perturbations, are still asymptoti
ally normal,

n1/2(Sn − θ)
(

Qn
n(q, r)

)

−→
w

Nk

(

rEθ ψθq, Covθ(ψθ)
)

(12)

with bias rEθ ψθq. We have Qn(q, r) ∈ Uc(θ, rn
−1/2) i� q ∈ Gc(θ) for the 
lass

Gc(θ) =
{

q ∈ Z∞(θ) | infPθ
q ≥ −1

}

(13)

Confer Rieder (1994), proof to Proposition 4.3.6 and Lemma 5.3.1.

3 Optimally Robust In�uen
e Curves

3.1 Maximum Risk

Our aim is minmax risk. Employing a 
ontinuous loss fun
tion ℓ : Rk → [0,∞), the asymptoti


maximum risk of any estimator sequen
e on 
ontamination neighborhoods about Pθ of size rn−1/2

is

lim
M→∞

lim
n→∞

sup
Q∈Uc(θ,rn−1/2)

∫

ℓM
(

n1/2(Sn − θ)
)

dQn
n (14)

where, for ease of attainability of the minimum risk, the trun
ated loss fun
tions ℓM = min{M, ℓ}
are employed. A further simpli�ed and smaller risk is obtained by a restri
tion to simple perturba-

tions Qn = Qn(q, r) with q ∈ Gc(θ) and the inter
hange of supq∈Gc(θ), limM→∞, and limn→∞.

The �xed θ will be dropped from notation hen
eforth whenever feasible. Thus, for an AL estima-

tor S = (Sn) with IC ψ at P = Pθ, and Z ∼ Nk

(

0,Cov(ψ)
)

,

sup
q∈Gc(θ)

lim
M→∞

lim
n→∞

∫

ℓM
(

n1/2(Sn − θ)
)

dQn
n(q, r) = sup

q∈Gc(θ)

E ℓ
(

rEψq + Z
)

(15)
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For the square ℓ(z) = |z|2, the (maximum, asymptoti
) MSE is obtained as weighted sum of the

L2- and L∞-norms of ψ under P ,

MSE(ψ, r) = E|ψ|2 + r2ω2
c(ψ) (16)

sin
e

ωc(ψ) = sup
{

|Eψq|
∣

∣ q ∈ Gc(θ)
}

= supP |ψ| (17)

the P -essential sup of |ψ|; 
onfer Se
tions 5.3.1 and 5.5.2 of Rieder (1994).

Other (
onvex, monotone) 
ombinations of bias and varian
e (e.g., Lp-risks) have been 
onsidered

in Ru
kdes
hel and Rieder (2004).

A suitable 
onstru
tion a
hieves that, in 
ase of the optimally robust estimator, risk (14) is not

larger than the simpli�ed risk (15); 
onfer Se
tion 4 below.

3.2 Minmax Mean Square Error

The optimally robust ψ⋆
, the unique solution to minimize MSE(ψ, r) among all ψ ∈ Ψ, is given in

Theorem 5.5.7 of Rieder (1994): There exist some ve
tor z ∈ R
k
and matrix A ∈ R

k×k
, A ≻ 0,

su
h that

ψ⋆ = A(Λ − z)w , w = min
{

1, b |A(Λ− z)|−1
}

(18)

where

r2b = E(|A(Λ − z)| − b)+ (19)

and

0 = E(Λ − z)w , A−1 = E(Λ − z)(Λ− z)′w (20)

Conversely, form (18)�(20) su�
es for ψ⋆
to be the solution.

The proof uses the Lagrange multipliers supplied by Rieder (1994), Appendix B.

The minmax solution to the more general risks 
onsidered in Ru
kdes
hel and Rieder (2004) also is

a MSE solution with suitably transformed bias weight; 
onfer their Theorem 4.1 and equation (4.7).

The matrix A, in 
ase r = 0, equals inverse Fisher information I−1
, whi
h appears in the Cramér-

Rao bound (8). In general, A is de�ned by (19) and (20) only impli
itly. It is surprising that the

statisti
al interpretation in terms of minimum risk obtains in the extension, with bias now involved.

Theorem 1. For any r ∈ (0,∞) and ψ ∈ Ψ we have

MSE(ψ, r) ≥ trA = MSE(ψ⋆, r) (21)

where equality holds in the �rst pla
e i� ψ = ψ⋆
de�ned by (18)�(20).

3.3 Relative MSE

The starting radius r for the neighborhoods Uc(θ, rn
−1/2), on whi
h the minmax MSE solution ψ⋆ =

ψ⋆
r depends, will often be unknown or only known to belong to some interval [rlo, rup) ⊂ [0,∞). In

this situation that ψ⋆
s is used when in fa
t ψ⋆

r is optimal, we introdu
e the relative MSE of ψ⋆
s at

radius r,
relMSE(ψ⋆

s , r) = MSE(ψ⋆
s , r)

/

MSE(ψ⋆
r , r) (22)
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For any radius s ∈ [rlo, rup) the supr relMSE(ψ⋆
s , r) is attained at the boundary,

sup
r∈[rlo,rup)

relMSE(ψ⋆
s , r) = relMSE(ψ⋆

s , rlo) ∨ relMSE(ψ⋆
s , rup) (23)

A least favorable radius r0 is de�ned by a
hieving infs of supr relMSE(ψ⋆
s , r), that is,

inf
s∈[rlo,rup)

sup
r∈[rlo,rup)

relMSE(ψ⋆
s , r) = sup

r∈[rlo,rup)

relMSE(ψ⋆
r0 , r) (24)

and is 
hara
terized by relMSE(ψ⋆
r0 , rlo) = relMSE(ψ⋆

r0 , rup).
The IC ψ⋆

r0 , respe
tively the AL estimator with this IC, are 
alled radius-minmax (rmx) and

re
ommended.

Confer Kohl (2005), in parti
ular Lemma 2.2.3, and Rieder et al. (2008).

The re
ommendation is in some sense independent of the loss fun
tion: In 
ase of unspe
i�ed radius

(i.e., rlo = 0, rup = ∞), the rmx IC is the same for a variety of loss fun
tions satisfying a weak

homogeneity 
ondition; 
onfer Ru
kdes
hel and Rieder (2004), Theorem 6.1.

3.4 Cniper Contamination

The notion is suited to demonstrate how relatively small outliers su�
e to destroy the superiority

of the 
lassi
al pro
edure. Employing, for this purpose, 
ontaminations Rn := (1 − rn−1/2)P +
rn−1/2 I{a} by Dira
 measures in a ∈ R, the asymptoti
 MSE of the 
lassi
ally optimal estimator

(i.e., with IC ψh = I−1Λ) under Rn is MSEa(ψh, r) := tr I−1 + r2|ψh(a)|2. Relating this quantity

to the minmax MSE = trA (Theorem 1), we are interested in the set C of values a ∈ R su
h that

MSEa(ψh, r) > MSE(ψ⋆
r , r); that is,

r2|ψh(a)|2 > trA− tr I−1
(25)

In all models we have 
onsidered so far, rather small values a su�
e to ful�ll (25). In a Janus type

pun on the words �ni
e� and �perni
ious�, the boundary values of C are 
alled 
niper points (a
ting

like a sniper); 
onfer Ru
kdes
hel (2004) and Kohl (2005), Introdu
tion.

4 Estimator Constru
tion

Given the optimally robust IC ψ⋆
θ , one for ea
h θ ∈ Θ, the problem is to 
onstru
t an estimator S⋆ =

(S⋆
n) that is AL at ea
h θ with IC ψ⋆

θ . In addition, the 
onstru
tion should a
hieve that there is no

in
rease from the simpli�ed risk (15) to the asymptoti
 maximum MSE (14).

We require initial estimators σ = (σn) whi
h are n1/2

onsistent on the full neighborhood system

Uc(θ); that is, for ea
h r ∈ [0,∞),

lim
M→∞

lim sup
n→∞

sup
{

Q(n)
n (n1/2|σn − θ| > M)

∣

∣ Qn,i ∈ Uc(θ, rn
−1/2)

}

= 0 (26)

with Q
(n)
n = Qn,1⊗· · ·⊗Qn,n. For te
hni
al reasons, the σn are in addition dis
retized in a suitable

sense (
f. Rieder (1994), Se
tion 6.4.2).

In this arti
le, the optimally robust ICs ψ⋆
θ are bounded. Thus 
onditions (2)�(6) of Rieder (1994),

p 247, on (ψ⋆
θ )θ∈Θ simplify drasti
ally; namley, to 
ontinuity in sup-norm,

lim
τ→θ

supx∈Ω |ψ⋆
τ (x)− ψ⋆

θ (x)| = 0 (27)
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Then, a

ording to Rieder (1994), Theorem 6.4.8 (b), the one-step estimator S,

Sn = σn + n−1
(

ψ⋆
σn

(x1) + · · ·+ ψ⋆
σn
(xn)

)

(28)

where σn = σn(x1, . . . , xn), is uniformly asymptoti
ally normal su
h that, for all arrays Qn,i ∈
Uc(θ, rn

−1/2) and ea
h r ∈ (0,∞),

n1/2(Sn − θ −Bn)(Q
(n)
n ) −→

w

N
(

0,Covθ(ψ
⋆
θ )
)

(29)

with Bn = n−1
(∫

ψ⋆
θ dQn,1 + · · ·+

∫

ψ⋆
θ dQn,n

)

. Employing a version ψ⋆
θ of form (18)�(20) whi
h is

bounded pointwise by b = bθ, we obtain

|Bn| ≤ supx∈Ω |ψ⋆
θ (x)| = bθ (30)

Thus (29) ensures that risk (14) is not larger than the simpli�ed risk (15).

Remark 2. As initial estimators we prefer MD estimates, not primarily be
ause of their breakdown

point but be
ause of their related tail behavior (
f. Ru
kdes
hel (2008a)) and their appli
ability in general

models. In parti
ular, both Kolmogorov and Cramér-von Mises MD (CvM) estimates may be employed

(
f. Rieder (1994), Theorems 6.3.7 and 6.3.8), with an advantage of the latter�in view of the larger

neighborhoods, to whi
h its n1/2

onsisten
y extends, and the varian
e instability, for �nite n, of the former

(
f. Donoho and Liu (1988)). In parti
ular models, other estimators may qualify as starting estimators and

may even be preferable for 
omputational reasons; e.g.; median, MAD in one-dim lo
ation and s
ale,

minimum 
ovarian
e determinant estimator in multivariate s
ale, least median of squares, and S estimates

in linear regression; 
onfer Rousseeuw and Leroy (1987) and Yohai (1987).

Remark 3. Under additional smoothness, a

ording to Ru
kdes
hel (2008a) and Ru
kdes
hel (2008b),

assumption (26) of n1/2

onsisten
y may be weakened to only n1/4+δ


onsisten
y, for some δ > 0. Conse-
quently, for example, the least median of squares estimator may be employed as a high breakdown start-

ing estimator. Ru
kdes
hel (2008b) gives other, partly more, partly less stringent 
onditions. Moreover,

Ru
kdes
hel (2008a) ensures uniform integrability so as to dispense with the trun
ation of unbounded loss

fun
tions in (14).

The remainder of the se
tion deals with 
ondition (27). We assume that the Lagrange multipliers

Aθ and aθ := Aθzθ in (18)�(20) are unique, and, as τ → θ,

Λτ (Pτ ) −→w Λθ(Pθ) , trIτ −→ trIθ (31)

sup
x∈Dc

|Λτ (x) − Λθ(x)| + sup
x∈cDc

|Λτ (x)− Λθ(x)|
|AθΛθ(x)− aθ|

−→ 0 (32)

where Dc = { x ∈ Ω | |AtΛt(x)− at| ≤ bt for t = τ or t = θ }. Then, by Kohl (2005), Theorem 2.3.3,


ondition (27) is ful�lled.

For example, in 
ase of a lo
ation and s
ale with lo
ation parameter β ∈ R and s
ale parameter

σ ∈ (0,∞), we have Λθ(x) = σ−1Λθ0

(

(x − β)/σ
)

, hen
e Λθ(Pθ) = σ−1Λθ0(Pθ0) and Iθ = σ−2Iθ0 ,
where θ = (β, σ)′ and θ0 = (0, 1)′. Therefore, (31) is ful�lled. Condition (32) needs further 
he
king
but seems plausible as Λθ0 is 
ontinuous (if the model is to be L2 di�erentiable).

In the 
ase of an L2 di�erentiable exponential family, in view of (4), 
ondition (31) is satis�ed,

while (32) holds a

ording to Kohl (2005), Lemma 2.3.6.
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5 Appli
ations

5.1 Proposal

Based on the presented results we make the following proposal for appli
ations:

Step 1: De
ide on the ideal model.

Step 2: De
ide on the type of neighborhood (∗ = c or ∗ = v).
Step 3: Determine lower and upper bounds slo, sup for the size s = sn of the neighborhoods

U∗(θ, s) to be taken into a

ount.

Step 4: Put rlo = n1/2slo, rup = n1/2sup, and 
ompute the rmx IC for [rlo, rup].
Step 5: Evaluate an appropriate starting estimator.

Step 6: Determine the rmx estimator using the one-step 
onstru
tion.

Our R pa
kages RobLox (
f. Kohl (2008)) and ROptEst (
f. Kohl and Ru
kdes
hel (2008
)) pro-

vide an easy way to perform steps 4�6 making use of our pa
kages distr (
f. Ru
kes
hel et al.

(2006)), distrEx (
f. Ru
kes
hel et al. (2006)), distrMod (
f. Ru
kdes
hel et al. (2008)), RandVar

(
f. Kohl and Ru
kdes
hel (2008a)) and RobAStBase (
f. Kohl and Ru
kdes
hel (2008b)).

The implementation of these pa
kages heavily relies on S4 
lasses and methods; 
onfer Chamber

(1998). Based on this obje
t orientated approa
h pa
kage ROptEst provides an implemenation

that (so far) works for all(!) L2 di�erentiable parametri
 models whi
h are based on a univariate

distribution.

In the sequel, we will demonstrate the use of pa
kages RobLox and ROptEst by appli
ation to some

datasets from literature.

5.2 Normal Lo
ation and S
ale

We 
onsider the following 24 measurements (in parts per million) of 
opper in wholemeal �our

(
f. Analyti
al Methods Committee (1989))

2.20 2.20 2.40 2.40 2.50 2.70 2.80 2.90

3.03 3.03 3.10 3.37 3.40 3.40 3.40 3.50

3.60 3.70 3.70 3.70 3.70 3.77 5.28 28.95

where the value 28.95 is 
learly 
onspi
uous. In agreement with Maronna et al. (2006), Se
tion 2.1,

in view of the majority of the data, we assume normal lo
ation and s
ale as the ideal model,

Pθ = N (µ, σ2) with θ = (µ, σ)′, µ ∈ R, σ ∈ (0,∞). Let us sti
k to 
ontamination neighborhoods

(∗ = c). We assume that roughly 1�5 observations, that is, roughly 5�20% of the 24 observations

are erroneous. Then the matrix A and 
entering ve
tor a = Az in (18)�(20), by absolute 
ontinuity

of the normal distribution, are unique. Sin
e normal lo
ation and s
ale also is an L2 di�erentiable

exponential family, the assumptions for our estimator 
onstru
tion are ful�lled. We 
hoose the

Cramér-von Mises MD estimator (CvM) as initial estimator.

The following R 
ode shows how fun
tion roptest of pa
kage ROptEst 
an be applied to perform

the 
omputations, where x represents the data,

R > roptest(x = x, L2Fam = NormLo
ationS
aleFamily(),

neighbor = ContNeighborhood(), eps.lower = 0.05,

eps.upper = 0.20, distan
e = CvMDist)

8



Table 1: Normal lo
ation and s
ale estimates

Estimator µ̂ σ̂

mean & sd 4.28 5.30
median & MAD 3.39 0.53

Huber M (Proposal 2) 3.21 0.67
Yohai MM 3.16 0.66

CvM 3.23 0.67
rmx (roptest) 3.16 0.66
rmx (roblox) 3.23 0.64
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Figure 1: rmx IC 
omputed via roblox.

More spe
i�ed to the normal ideal model is the fun
tion roblox of pa
kage RobLox, whi
h only

works for, and is optimized for speed in, normal lo
ation and s
ale. It uses median and MAD as

starting estimates whi
h is justi�ed by Kohl (2005), Se
tion 2.3.4.

R > roblox(x = x, eps.lower = 0.05, eps.upper = 0.20)

Table 1 shows the results of these 
omputations as well as mean, standard deviation and some well-

known robust estimators. The robust estimators median & MAD � rmx (roblox) yield very similar

results, while, obviously, mean and standard deviation represent the data badly. Figure 1 shows

the lo
ation and s
ale parts of the rmx IC 
omputed via fun
tion roblox. The lo
ation part of the

rmx IC, as of any optimally robust IC, is redes
ending. Thus, redes
ending in our setup follows

on optimality grounds. For another derivation of redes
ending M -estimators see Shevlyakov et al.

(2008).

Based on these robust estimates, let us assume a mean of µ = 3.2 and a standard deviation of

σ = 0.7 for the ideal distribution Pθ = N (3.2, 0.72). For a 
ontamination of sn = 10% at a

9
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Figure 2: Observed frequen
ies and �tted Gamma densities.

sample size of n = 24 (i.e., r ≈ 0.49), the 
niper points are 
al
ulated to 1.86 and 4.54, and
C = (−∞, 1.86] ∪ [4.54,∞). Under any element of Uc(θ, sn) the probability of C is 5�15%, where

Pθ(C) = 5.56%.

5.3 Gamma Model

We analyze the length of stays of 201 patients in the University Hospital of Lausanne during

the year 2000 (
f. Hubert and Vandervieren (2006)). Following Marrazi et al. (1998), we use the

Gamma model pθ(x) = Γ(α)−1σ−αxα−1 e−x/σ
with shape and s
ale parameters σ, α ∈ (0,∞) and

θ = (σ, α)′. By Kohl (2005), Se
tion 6.1, this exponential family is L2 di�erentiable. We assume


ontamination neighborhoods (∗ = c) but, on visual inspe
tion of the data, of only small size

0.5% ≤ sn ≤ 5%. Then, due to absolute 
ontinuity of P = Pθ, equations (18)�(20) yield unique

solutions A and a = Az. Thus, the one-step 
onstru
tion of the rmx estimator, based on the

CvM estimate, applies. The algorithm 
an be performed by applying fun
tion roptest of pa
kage

ROptEst, where x 
ontains the data,

R > roptest(x = x, L2Fam = GammaFamily(),

neighbor = ContNeighborhood(), eps.lower = 0.005,

eps.upper = 0.05, distan
e = CvMDist)

a 
all, whi
h is very similar to the one in the previous example. In fa
t, the uni�ed 
all for roptest

applies to any smooth model. Figure 2 
ompares the densities of the estimated Gamma distributions

with the histogram of the data. Table 2 shows the results as well as the MLE and the CvM. Again,

the MLE is strongly a�e
ted by a few very large observations whereas the robust estimators stay


loser to the bulk of the data. Figure 3 shows s
ale and shape parts of the rmx IC (similarly, of

any optimally robust IC; 
onfer Kohl (2005), Figure 6.1).
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Table 2: Gamma s
ale and shape estimates

Estimator MLE CvM rmx

σ̂ 7.00 6.53 4.97
α̂ 1.61 1.54 1.86
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Figure 3: rmx IC 
omputed via roptest.

Assuming the ideal Gamma distribution Pθ with θ = (5.0, 1.9)′ and a 
ontamination size sn = 2.5%
at n = 201 (i.e., r ≈ 0.35), the 
niper points are 0.62 and 29.31, and C = (−∞, 0.62] ∪ [29.31,∞).
Under any element of Uc(θ, sn) the probability of C is 2.5�5%, where Pθ(C) = 2.63%.

5.4 Poisson Model

For the de
ay 
ounts of polonium re
orded by Rutherford and Geiger (1910),


ounts 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

frequen
y 57 203 383 525 532 408 273 139 45 27 10 4 0 1 1

we assume the Poisson model pθ(x) = e−θ θx/x!, whi
h exponential family is L2 di�erentiable in

the paramter θ ∈ (0,∞) (
f. Kohl (2005), Se
tion 4.1).

For both 
ontamination (∗ = c) and total variation neighborhoods (∗ = v) of size 0.01 ≤ sn ≤ 0.05
we 
ompute the rmx estimator. But, in 
ase ∗ = c, a = Az may be non-unique, whi
h happens

if medP (Λ), the median of Λ = Λθ under P = Pθ, is non-unique and r = n1/2sn is ≥ the so 
alled

lower 
ase radius r̄ (
f. Kohl (2005), Se
tion 2.1.2). The non-uniqueness of the median o

urs for

only 
ountably many values θ. Sin
e, as our numeri
al evaluations show, already small deviations

(∼ ±10−8
) from the ex
eptional values lead to a unique a, non-uniqueness may be negle
ted in

pra
ti
e; 
onfer Kohl (2005), Se
tions 4.2.1 and 4.4. In 
ase ∗ = v, the one-step 
onstru
tion

11



Table 3: Poisson mean estimates

Estimator MLE CvM rmx (∗ = c) rmx (∗ = v)

θ̂ 3.8715 3.8953 3.9131 3.9133
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Figure 4: Observed and �tted frequen
ies.

applies without restri
tions; 
onfer Appendix A. Then, using the CvM as starting estimator, the

rmx estimators are obtained via the following 
alls to fun
tion roptest of pa
kage ROptEst, where

x 
ontains the data,

R > roptest(x = x, L2Fam = PoisFamily(),

neighbor = *, eps.lower = 0.01,

eps.upper = 0.05, distan
e = CvMDist)

where * stands for ContNeighborhood() or TotalVarNeighborhood(), respe
tively. The results as

well as MLE and CvM estimate are given in Table 3. The estimates di�er only slightly, as the data,

in view of the observed and �tted frequen
ies in Figure 4, appears in very good agreement with the

Poisson model. Figure 5 shows the rmx ICs for 
ontamination and total variation neighborhoods.

In fa
t, any optimally robust IC is of similar form (
f. Kohl (2005), Figures 4.1 (∗ = c) and 4.14

(∗ = v)).

Remark 4. ICs are de�ned with respe
t to the ideal model, thus, in 
ase of the Poisson model, on N0. If

we want to allow distributions in the neighborhoods whose supports are more generally in [0,∞), we only
need to extend ψ⋆

from N0 to [0,∞) su
h that |ψ⋆(x)| ≤ b for ea
h x > 0; 
onfer (30) in the estimator


onstru
tion.

Assuming the ideal Poisson distribution Pθ with θ = 3.9, neighborhood type ∗ = c and a 
ontam-

ination size sn = 3% at n = 2608 (i.e., r ≈ 1.53), we get the 
niper points 1.26 and 6.54, and

12
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Figure 5: rmx IC 
omputed via roptest for ∗ = c, v.

C = [0, 1.26] ∪ [6.54,∞). Under any element of Uc(θ, sn) the probability of C is 19.5�22.5%, where

Pθ(C) = 20.0%.

A Total variation neighborhoods (∗ = v)

The system Uv(θ) 
onsist of the 
losed balls of radius s about Pθ, in the total variation metri


dv(Q,Pθ) = supA∈A |Q(A)− Pθ(A)|,

Uv(θ, s) =
{

Q ∈ M1(A)
∣

∣ dv(Q,Pθ) ≤ s
}

, 0 ≤ s ≤ 1 (33)

whi
h have the following representation in terms of 
ontamination neighborhoods,

Uv(θ, s)− Pθ =
(

Uc(θ, s)− Pθ

)

−
(

Uc(θ, s)− Pθ

)

(34)

In parti
ular, Uc(θ, s) ⊂ Uv(θ, s) follows. In our asymptoti
s, s = sn = rn−1/2
for some r ∈ [0,∞),

as the sample size n→ ∞. Corresponding simple perturbationsQn(q, r) are de�ned by (10) and (11)
with tangents q in the 
lass

Gv(θ) =
{

q ∈ Z∞(θ)
∣

∣ Eθ |q| ≤ 2
}

= Gc(θ)− Gc(θ) (35)

We �x θ and drop it from notation. Then, with supe extending over all unit ve
tors e in R
k
, the

standardized (in�nitesimal) bias term of an IC ψ ∈ Ψ is

ωv(ψ) = sup
{

|Eψq|
∣

∣ q ∈ Gv(θ)
}

= supe
(

supP e
′ψ − infP e

′ψ
)

(36)

The exa
t bias term in 
ase k > 1 is di�
ult to handle and has been dealt with only in ex
eptional


ases (
f. Rieder (1994), p 205 and Theorem 7.4.17). The obvious bound ωc(ψ) ≤ ωv(ψ) ≤ 2ωc(ψ)
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suggests an approximate solution by a redu
tion to the 
ontamination 
ase ∗ = c and radius 2r.
An exa
t solution of the MSE problem with bias term ωv is still possible in dimension k = 1, in
whi
h 
ase ωv(ψ) = supP ψ− infP ψ. In 
ase k = 1, the optimally robust IC ψ⋆

, the unique solution

to minimize MSE(ψ, r) = Eψ2 + r2ω2
v(ψ) among all ICs ψ ∈ Ψ is provided by Rieder (1994),

Theorem 5.5.7: For some numbers c, b, A,

ψ⋆ = c ∨ AΛ ∧ (c+ b) (37)

where

r2b = E
(

c−AΛ)+ = E
(

AΛ − (c+ b)
)

+
(38)

and

E
(

c ∨ AΛ ∧ (c+ b)
)

Λ = 1 (39)

Conversely, form (37)�(39) su�
es for ψ⋆
to be the solution.

The solutions A, b and c of equations (37)�(39) are always unique, as dis
ussed in Se
tion B.1

below. Moreover, the 
ondition that, as τ → θ,

sup
x∈Dv

|Λτ (x) − Λθ(x)|+ sup
x∈cDv

|Λτ (x) − Λθ(x)|
|Λθ(x)|

−→ 0 (40)

where Dv = {x ∈ Ω | ct ≤ AtΛt(x) ≤ bt + ct for t = τ or t = θ }, has been veri�ed by Kohl (2005),

Lemma 2.3.6, in the 
ase ∗ = v, k = 1, for L2 di�erentiable exponential families. Thus, the one-step


onstru
tion is valid.

B Auxiliary Results And One Proof

B.1 Boundedness, Uniqueness, Continuity Of Lagrange Multipliers

We dis
uss boundedness, uniqueness, and 
ontinuity of the Lagrange multipliers A, a = Az, b and c
in the optimally robust IC ψ⋆

. These properties are, on one hand, reassuring for the 
onvergen
e of

our numeri
al algorithms. On the other hand, they imply the 
ontinuity in sup-norm (27) required

for the 
onstru
tion.

Boundedness Given r > 0, bounds for the solutions A, a = Az, b and c of (18)�(20) and (37)�(39),
respe
tively, are derived in Kohl (2005), Se
tion 2.1.3. For example, |a| ≤ r2b holds.

Uniqueness The Lagrange multipliers (like the separating hyperplanes) need not be unique; 
on-

fer Rieder (1994), Remark B.2.10 (a). But, at least, trA, b, and c in (18)�(20) and (37)�(39),

respe
tively, are unique sin
e, in terms of the unique ψ⋆
,

trA = MSE(ψ⋆, r) , b = ω∗(ψ
⋆) , c = infP ψ

⋆
(41)

If k = 1 and medP (Λ) is unique, then a is unique; Rieder (1994), Lemma C.2.4. In 
ase k = 1 and

medP (Λ) is non-unique, then a is unique for r < r̄ (the so 
alled lower 
ase radius); 
onfer Kohl

(2005), Proposition 2.1.3.

In 
ase ∗ = c, k ≥ 1, uniqueness of A and a is ensured by the assumption that

supportΛ(P ) = R
k

(42)
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onfer Rieder (1994), Remark 5.5.8. A and a are unique also under the more impli
it 
ondition

that, for any hyperplane H ⊂ R
k
,

P (Λ ∈ H) < P (|ψ⋆| < b) (43)

whi
h 
ertainly is satis�ed if P (Λ ∈ H) = 0 for any hyperplane H ; that is,

e ∈ R
k , α ∈ R , P (e′Λ = α) > 0 =⇒ e = 0 (44)


onfer Rieder (1994), Se
tion 5.5.3. Both (42) and (44) imply that I ≻ 0.

Continuity in θ: Denote by ψ⋆
θ the MSE solution to variable parameter θ ∈ Θ and �xed radius

r ∈ (0,∞). Then, under assumption (31), we obtain

trAτ −→ trAθ , bτ −→ bθ , cτ −→ cθ (45)

as τ → θ. Provided that Aθ and aθ are unique, moreover

Aτ −→ Aθ , aτ −→ aθ (46)

Confer Kohl (2005), Theorem 2.1.11.

Continuity in r: Continuity in r is needed for the rmx estimator. Denoting by Ar, ar = Arzr,
br, and cr the solutions of (18)�(20) and (37)�(39), respe
tively, for �xed θ and variable r ∈ (0,∞),
Kohl (2005), Proposition 2.1.9, says that

trAs −→ trAr , bs −→ br , cs −→ cr (47)

as s→ r. Moreover, in 
ase that Ar and ar are unique,

As −→ Ar , as −→ ar (48)

For the rmx estimator, in addition some monotoni
ity in r is needed and supplied by Ru
kdes
hel and Rieder

(2004), Kohl (2005), and Rieder et al. (2008).

B.2 Proof of Theorem 1

minmaxMSE = E |η|2 + r2b2 = −E η′(Y − η) + E η′Y + r2b2 with the abbreviations η := ψ⋆
,

Y := AΛ, where E η′Y = tr E ηY ′ = trA′ = trA sin
e E ηΛ′ = Ik.

∗ = c: In this 
ase, η 6= Y i� |Y | > b, and thus E η′(Y − η) = bE(|Y | − b)+ = r2b.
∗ = v, k = 1: In this 
ase, E η(Y − η) = bE(c− Y )+ = r2b2.
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