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Abstract

We describe the shrinking neighborhood approach of Robust Statistics, which applies to
general smoothly parametrized models, especially, exponential families. Equal generality is
achieved by object oriented implementation of the optimally robust estimators. We evaluate
the estimates on real datasets from literature by means of our R packages ROptEst and RobLoz.
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1 Introduction

Following @), p 61, the purpose of robustness is “to safeguard against deviations from
the assumptions, in particular against those that are near or below the limits of detectability”.
The infinitesimal approach of Huber-Carol (1970), [Rieder (1978) and Rieded (1980), Bickel (1981),
Rieder! (@) to robust testing and estimation, respectively, takes up this aim by employing shrink-
ing neighborhoods of the parametric model, where the shrinking rate n~'/2, as the sample size
n — 00, may be deduced in a testing setup; confer Ruckdeschel (IZDD_d)
It is true that Huber’s own minimum Fisher information approach refers to (small) neighborhoods
of fixed size; cf. (@) But it only treats variance, sets bias = 0 by assuming symmetry,
and is restricted to Tukey-type neighborhoods about location or scale models. It has not been ex-
tended to simultaneous location and scale, let alone to more general models. [Fraiman et al! (2001)
derive MSE optimality on fixed size neighborhoods. In situations beyond one-dimensional location,
however, they do not determine a solution in closed form either. The infinitesimal approach, on
the contrary, provides closed-form robust solutions for general models (cf. Section 1) and fairly
general risks based on variance and bias cf. k hel an :t

As noted by Huber (p 291 of Huberl , in view of Theorem 3. 7 of (@ there is a
close relation between the infinitesimal nei hborhood approach and Hampel’s Lemma 5 (cf.
(1968)); see also Theorem 3.2 of [Riederl (If()ﬁ and Theorem 5.5.7 of[B_er (1994). leferences to
Hampel et all (1986) nevertheless exist and concern:

e definition of the influence curve,

e necessity of the form of the optimally robust influence curves,
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optimality criterion: MSE and even more general criterions,

determination of the bias bound (sensitivity),
e uniform asymptotics on neighborhoods, and

coverage of more models.

A fourth robustness approach pursues efficiency in the ideal model subject to a high breakdown
point; confer for example Maronna. et _al! (lZDD_d), Sections 5.6.3, 5.6.4 and 6.4.5. A high breakdown,
though, may easily be incorporated in our approach: Given some starting estimator én, we construct
our optimal estimators .S,, as one-step estimates,

S, =0, + ’n_l(wén (1) +---+ Yg, (xn)) (1)

cf. Section @ The procedure is called one-step re-weighting in Section 5.6.3 of Maronna. et. all (2006)
and has already been used in the Princeton robustness study (cf. [Andrews et all (1972)). Thus, if
[y (z)| < b, also |S, — 6, < b. Consequently, the breakdown point of the starting estimator 6,, is
inherited to our estimator .S,,. Given the high breakdown, however, we do not consider robustness
as settled, then striving just for high efficiency in the ideal model. Our primary aim stays minmax
MSE on shrinking neighborhoods about the ideal model, which altogether complies with
M), p 61, that “a high breakdown point is nice to have if it comes for free”.

The organisation of the paper is as follows: We review the theory of asymptotic robustness on
shrinking neighborhoods, add some recent results and spezialize. Then, we compute and apply
the infinitesimal robust estimators to datasets from literature using our R packages ROptFst (gen-
eral models) and RobLoz (normal location and scale); confer (2008),

[Kohl and Ruckdeschel (2008d) and [Kohl (2008). Appplications of infinitesimal neighborhood ro-

bustness to time series will be the subject of another paper.

2 Setup

2.1 General Smoothly Parametrized Models

Denoting by M;(A) the set of all probability measures on some measurable space (£2,.4), we
consider a parametric model P = {Py|0 € O} C M;(A), whose parameter space © is an open
subset of some finite-dimensional R¥, and which is dominated: dPy = pgdu (6 € ©). At any fixed
f# € ©, model P is required to be Lo differentiable, that is, to have Lo differentiable square root
densities such that, in La(p), as t — 0,

VPo+t = /o (1+ 5t'Ag) +o(|t]) (2)

The R*-valued function Ay € L’g(Pg) is called Ly derivative, and its covariance Zy = Eg AgAj, under
Py is the Fisher information of P at @, required of full rank k. This type of differentiability is implied

by continuous differentiability of py and continuity Zy, with respect to #, and then Ag = -2 log py.
Confer e.g. Lemma A.3 of (1979), Section 1.8 of Witting (1985), Section 2.3 ofm(@),
Rieder and Ruckdeschel

(2001).

Our main applications in this article concern exponential families, in which case

po(x) = exp{((0) T(x) — B(6) } h(x) (3)




with some measurable functions ¢: © — RF, h: Q — [0,00), T: Q — RF of positive definite
covariance Covg T = 0, and the normalizing constant 5(f). Then P forms a k-dimensional ex-
ponential family of full rank. The natural parameter space Z, consists of all (-values such that
0 < [exp{¢'T(x)}h(x) u(dx) < co. P is Lo differentiable under the following assumptions: ¢
continuously differentiable in § € © with regular Jacobian matrix J¢, and {(©) C Z2 (interior).
And then,

Ag (:E) = ._75 (T(CL‘) — E9 T) Ig = ._75 COV9 (T)jg (4)

where Eg denotes expectation under Py. The result mentioned inlvan der Vaart dm()ﬁ), Example 7.7,
is proven in (2007), Lemma 2.3.6 (a). In what follows, the parametric model P is assumed Lo
differentiable at any 6 € ©.

2.2 Asymptotically Linear Estimators

The founders of robust statistics have defined influence curves (IC) as Gateaux derivatives of sta-
tistical functionals; confer Section 2.5 of [Huber (1981) and Section 2.1 of [Hampel et all (1986).
The classical definition, however, remains vague. Even if such a derivative exists, the definition is
not strong enough to cover the empirical; confer Reeds (1976) and [Fernhold (1983). Our approach
is different: Since most proofs of asymptotic normality in the i.i.d. case amount to an estimator
expansion with the IC as summands, we define the set of all (square integrable, R*-valued) ICs at
Py beforehand by

U(0) = {v € L5(Py) | Eg g = 0, EgthgAy = I1 } (5)

where I}, denotes the k x k identity matrix. Then we define asymptotically linear (AL) estimators S
to be any sequence of estimators S, : Q" — R¥ such that for some 1y € ¥(#), necessarily unique,

n1/2(Sn —-0)= n~1/? (1/)9(:E1) +-+ 1/)0(1571)) +opp (no) (6)

where opy (n”) — 0 in product Pj* probability as n — co. Thus, the originally intended interpreta-
tion is achieved: g (x;) represents the asymptotic, suitably standardized influence of observation z;
on S,. The class of AL estimators as introduced by Riedet M), Definition 1.1 and Remarks,
and [Rieder (M), Section 4.2, covers M, L, R, S and MD (minimum distance) estimates.
By the Lindeberg-Lévy CLT, as vy € L5(Py), Eg1bg = 0, AL estimators are asymptotically normal
under Py,

n!/2(Sy = 0)(Pg') —w+ N (0, Covo(vhg)) (7)

The third condition Eg 1pAj, = ) is equivalent to the locally uniform extension of (), with 6 on
the LHS replaced by 6,, with limsup,,_,. v/n |0, — 0] < cc.
For the asymptotic variance under Py, the Cramér-Rao bound holds,

Covg(1g) = I, ' = Covg(¥ne), g € Wy (8)
with equality iff ¢y = ¥p ¢ 1= IglAg, the classical scores.

2.3 Infinitesimal Perturbations

The i.i.d. observations x1, . .., z, may now follow any law @ in some neighborhood about Py. In this
article , the type of neighborhoods in Riedex (@) will be restricted to (convex) contamination



(+ = ¢) and total variation (x = v). Delegating the total variation case to Appendix [A] the
system U.(0) thus consists of all contamination neighborhoods

Uc(0,s) ={(1—s)Ps+sQ|Q € M1(A)}, 0<s<1 (9)

Subsequently, s = s,, = rn~'/? for starting radius r € [0,00) and n — oo.

Remark 1. Under Q, still the parameter 6 has to be estimated. Since the equation Q = Py + (Q — P)
involving the nuisance component @ — Py, may have multiple solutions 6, the parameter 6 is no longer
identifiable. This problem has been dealt with by estimating fun ctlonals that extend the parametrization
to the neighborhoods. As noted in Section 4.3.3 of [Riederl , however, both approaches lead to the
same optimally robust ICs and procedures once the choice of the functional is subjected to robustness
criteria.

We now fix § € © and introduce the bounded tangents at Py,
Zso(0) = {a € Loo(Py) | Egq = 0} (10)
Along any g € Z(0) and for starting radius r € [0, 00), simple perturbations are defined by
dQn(q,r) = (1 +rn_1/2q)dP9 (11)

provided that n'/? > —rinfp, ¢, where infp, denotes the Pp-essential infimum. AL estimators,
under such simple perturbations, are still asymptotically normal,

n'2(S = 0)(Qn(q,7)) ~ Ni(rEg toq, Cova(ty)) (12)
with bias r Eg ¢pq. We have Q,,(q,7) € U.(0,7n"1/?) iff ¢ € G.(0) for the class
Ge(0) = {a € Zoc(0) | infp, ¢ > 1} (13)

Confer (1994), proof to Proposition 4.3.6 and Lemma 5.3.1.

3 Optimally Robust Influence Curves

3.1 DMaximum Risk

Our aim is minmax risk. Employing a continuous loss function /: R¥ — [0, 00), the asymptotic
maximum risk of any estimator sequence on contamination neighborhoods about Py of size rn~1/2
is
lim lim su Car(n*/3( aqy 14

M —o00 n—o0 QeU.(0 Fn1/2)/ M )) Q ( )
where, for ease of attainability of the minimum risk, the truncated loss functions £, = min{M, £}
are employed. A further simplified and smaller risk is obtained by a restriction to simple perturba-
tions @, = Qn(q,r) with ¢ € G.(0) and the interchange of SUPgeg. (6)» limas oo, and lim,, .
The fixed 6 will be dropped from notation henceforth whenever feasible. Thus, for an AL estima-
tor S = (S,) with IC ¢ at P = Py, and Z ~ N, (O, Cov(d))),

sup lim lim [ £y (n1/2(Sn —0))dQ(q,7) = sup ELl(rEvq+ Z) (15)
q€G.(6) M —r 00 n—00 4€Ge(0)



For the square £(z) = |z|?, the (maximum, asymptotic) MSE is obtained as weighted sum of the
Lo- and Lo.-norms of ¢ under P,

MSE(¢,7) = B[] + rw? () (16)
since

we(1h) = sup {|Evq| | q € Ge(0)} = supp [¢)] (17)

the P-essential sup of |¢|; confer Sections 5.3.1 and 5.5.2 of Riedex (@)

Other (convex, monotone) combinations of bias and variance (e.g., L,-risks) have been considered
in [Ruckdeschel and Rieder (2004).

A suitable construction achieves that, in case of the optimally robust estimator, risk (I4) is not
larger than the simplified risk (I3)); confer Section [ below.

3.2 Minmax Mean Square Error

The optimally robust *, the unique solution to minimize MSE(¢), ) among all ¢ € ¥, is given in
Theorem 5.5.7 of Riedell (1994): There exist some vector z € R¥ and matrix 4 € R¥** 4 = 0,
such that

P =AA - 2)w, w =min{1, b|A(A - 2)| 7"} (18)
where
r?b = E(JAA — 2)| - b), (19)
and
0=E(A - 2)w, AT =E(A - 2)(A - 2)w (20)

Conversely, form (I8)—(20) suffices for ¢* to be the solution.

The proof uses the Lagrange multipliers supplied by Riederl m), Appendix B.

The minmax solution to the more general risks considered in |[Ruckdeschel and Rieder (IIJQAI) also is
a MSE solution with suitably transformed bias weight; confer their Theorem 4.1 and equation (4.7).
The matrix A, in case r = 0, equals inverse Fisher information Z~!, which appears in the Cramér-
Rao bound (®). In general, A is defined by (I9) and (20) only implicitly. It is surprising that the
statistical interpretation in terms of minimum risk obtains in the extension, with bias now involved.

Theorem 1. For any r € (0,00) and i) € ¥ we have
MSE(¢),r) > tr A = MSE(¢*, r) (21)

where equality holds in the first place iff ¢ = ¢* defined by ([I8)—20).

3.3 Relative MSE

The starting radius r for the neighborhoods U, (8, rn—'/?), on which the minmax MSE solution 1/* =
¥y depends, will often be unknown or only known to belong to some interval [rio, 7yp) C [0,00). In
this situation that ¢} is used when in fact ¢ is optimal, we introduce the relative MSE of ¥} at

radius r,
relMSE(¢7, r) = MSE( :,r)/MSE(U):,r) (22)



For any radius s € [rio, Tup) the sup, relMSE(¢%, r) is attained at the boundary,
sup  relMSE(¢},r) = relMSE(¢}, 110) V relMSE(¢7, 7up) (23)

€[, up)
A least favorable radius 7 is defined by achieving infy of sup, relMSE(4%, r), that is,
inf sup relMSE(¢},r) = sup relMSE(+;, ,7) (24)

SE[T‘lO,T‘up) ’I‘E[T‘loﬂ‘up) T‘e[”‘loyrup)

and is characterized by relMSE(¢)} , o) = relMSE (4, Tup).

The IC ¢}, respectively the AL estimator with this IC, are called radius-minmax (rmx) and
recommended.

Confer (200), in particular Lemma 2.2.3, and [Rieder et all (2008).

The recommendation is in some sense independent of the loss function: In case of unspecified radius
(i.e., 1o = 0, ryp = 00), the rmx IC is the same for a variety of loss functions satisfying a weak

homogeneity condition; confer [Ruckdeschel and Riedex (1200_41), Theorem 6.1.

3.4 Cniper Contamination

The notion is suited to demonstrate how relatively small outliers suffice to destroy the superiority
of the classical procedure. Employing, for this purpose, contaminations R, := (1 — rn_1/2)P +
rn~1/? I{4y by Dirac measures in a € R, the asymptotic MSE of the classically optimal estimator
(ie., with IC ¢, = Z71A) under R,, is MSE, (¢, 7) := tr Z~! + r?|yn(a)|?. Relating this quantity
to the minmax MSE = tr A (Theorem [I]), we are interested in the set C of values a € R such that
MSE, (¢, r) > MSE(¢}, r); that is,

r|n(a))? > tr A —tr 7! (25)

In all models we have considered so far, rather small values a suffice to fulfill 25). In a Janus type
pun on the words “nice” and “pernicious”, the boun values of C are called cniper points (acting

like a sniper); confer Ruckdeschel (2004) and Kohl , Introduction.

4 Estimator Construction

Given the optimally robust IC 17, one for each 6 € ©, the problem is to construct an estimator S* =
(Sy) that is AL at each € with IC . In addition, the construction should achieve that there is no
increase from the simplified risk (I3) to the asymptotic maximum MSE (I4).

We require initial estimators o = (0,,) which are n'/? consistent on the full neighborhood system
U.(09); that is, for each r € [0, 00),

hm lim sup sup { QY () (n1/2|g,, — 0] > M) | Qn.i € Uc(0,rn 1/2)} 0 (26)

M—=00 pnsoco

with Q%") =Qn1®:--®@Qn, . For technical reasons, the o,, are in addition discretized in a suitable

sense (cf. (1994), Section 6.4.2).
In this article, the optimally robust ICs ¢} are bounded. Thus conditions ( ) of Riedet m
p 247, on (¢9)ge@ simplify drastically; namley, to continuity in sup-norm,

i sup, ¢ |4 (2) — ()] =0 (27)



Then, according to Rieder (@), Theorem 6.4.8 (b), the one-step estimator S,
Sp=0n+n" (W) (21) + -+ UL, (20)) (28)

where o, = o,(21,...,2y), is uniformly asymptotically normal such that, for all arrays Q,; €
U.(6,7n=/?) and each r € (0, 0),

n'/2(S, — 0 — By) QM) —+ N (0, Cove (1)) (29)

with B, =n~' ([ 45 dQn1 + -+ [¥5 dQn.n). Employing a version ¢} of form (I8)—(20) which is
bounded pointwise by b = by, we obtain

|Bn| < sup,cq |¢5 ()| = b (30)
Thus ([29) ensures that risk (1)) is not larger than the simplified risk ([I3)).

Remark 2. As initial estimators we prefer MD estimates, not primarily because of their breakdown
point but because of their related tail behavior (cf. Ruckdeschel (2008a)) and their applicability in general
models. In particular, both Kolmogorov and Cramér-von Mises MD (CvM) estimates may be employed
(ct. (1994), Theorems 6.3.7 and 6.3.8), with an advantage of the latter—in view of the larger
neighborhoods, to which its n!/? consistency extends, and the variance instability, for finite n, of the former
(cf. IDonoho and Liu (1988)). In particular models, other estimators may qualify as starting estimators and
may even be preferable for computational reasons; e.g.; median, MAD in one-dim location and scale,
minimum covariance determinant estimator in multivariate scale, least median of squares, and S estimates

in linear regression; confer Rousseeuw and Leroyl (1987) and Yohai (1987).
Remark 3. Under additional smoothness, according to [Ruckdeschel (2008d) and [Ruckdeschel (2008b),

assumption (26]) of n'/? consistency may be weakened to only nl/4+e consistency, for some § > 0. Conse-
quently, for example, the least median of squares estimator may be employed as a high breakdown start-
ing estimator. [Ruckdeschel ([2_0_0_8_H) gives other, partly more, partly less stringent conditions. Moreover,
Ruckdeschel (2008d) ensures uniform integrability so as to dispense with the truncation of unbounded loss
functions in (I4).

The remainder of the section deals with condition (7). We assume that the Lagrange multipliers
Ap and ag := Apzg in (I8)—R0) are unique, and, as 7 — 0,

A (Pr) —= No(Py), trZ, — trZy (31)

sup [Ar () — Ag(a)] + sup Lr(®) — Ao(@)]

— 0 32
2€D. zeep, |[AgAg(z) — agl (32)

where D, = {x € Q | [A;A¢(x) — as| < by for t = Tort = 6 }. Then, by Kohi (2005), Theorem 2.3.3,
condition [27)) is fulfilled.

For example, in case of a location and scale with location parameter f € R and scale parameter
o € (0,00), we have Ag(x) = o~ Ag, ((z — B)/0), hence Ag(Py) = o7 Ay, (Py,) and Ty = 02Ty,
where 0 = (5,0)" and 6y = (0,1)’. Therefore, ([B1)) is fulfilled. Condition ([B2)) needs further checking
but seems plausible as A, is continuous (if the model is to be Ly differentiable).

In the case of an Ly differentiable exponential family, in view of (@), condition (BI) is satisfied,
while B2) holds according to [Kohl (200), Lemma 2.3.6.



5 Applications

5.1 Proposal

Based on the presented results we make the following proposal for applications:

Step 1: Decide on the ideal model.

Step 2: Decide on the type of neighborhood (x = ¢ or * = v).

Step 3: Determine lower and upper bounds si,, Sup for the size s = s, of the neighborhoods
U.(0, s) to be taken into account.

Step 4: Put r, = n'/%s,, Tup = nl/zsup, and compute the rmx IC for [ro, rup).

Step 5: Evaluate an appropriate starting estimator.

Step 6: Determine the rmx estimator using the one-step construction.

Our R packages RobLoz (cf. [Kohl (2008)) and ROptEst (cf. Kohl and Ruckdeschel (2008d)) pro-
vide an easy way to perform steps 4-6 making use of our packages distr (cf. [Ruckeschel et all
(2006)), distrEz (cf. Ruckeschel et all (2006)), distrMod (cf. [Ruckdeschel et all (2008)), RandVar
(cf. [Kohl and Ruckdeschel (20084)) and RobAStBase (cf. Kohl and Ruckdeschel (2008H)).

The implementation of these packages heavily relies on S4 classes and methods; confer IChambet
(M) Based on this object orientated approach package ROptEst provides an implemenation
that (so far) works for all(!) Lo differentiable parametric models which are based on a univariate
distribution.

In the sequel, we will demonstrate the use of packages RobLox and ROptEst by application to some
datasets from literature.

5.2 Normal Location and Scale

We consider the following 24 measurements (in parts per million) of copper in wholemeal flour

(cf. |Analytical Methods Committed (1989))

2.20 2.20 2.40 2.40 2.50 2.70 2.80 2.90
3.03 3.03 3.10 3.37 3.40 3.40 3.40 3.50
3.60 3.70 3.70 3.70 3.70 3.77 5.28 28.95

where the value 28.95 is clearly conspicuous. In agreement with [Maronna et all dﬂ)ﬂﬂ), Section 2.1,
in view of the majority of the data, we assume normal location and scale as the ideal model,
Py = N(p,0?) with 0 = (u,0)', p € R, o € (0,00). Let us stick to contamination neighborhoods
(* = ¢). We assume that roughly 1-5 observations, that is, roughly 5-20% of the 24 observations
are erroneous. Then the matrix A and centering vector a = Az in (I8)—(20), by absolute continuity
of the normal distribution, are unique. Since normal location and scale also is an Lo differentiable
exponential family, the assumptions for our estimator construction are fulfilled. We choose the
Crameér-von Mises MD estimator (CvM) as initial estimator.

The following R code shows how function roptest of package ROptEst can be applied to perform
the computations, where = represents the data,

R > roptest(x = x, L2Fam = NormLocationScaleFamily(),
neighbor = ContNeighborhood(), eps.lower = 0.05,
eps.upper = 0.20, distance = CvMDist)



Table 1: Normal location and scale estimates

Estimator o G
mean & sd 4.28 5.30
median & MAD 3.39 0.53
Huber M (Proposal 2) 3.21 0.67
Yohai MM 3.16 0.66
CvM 3.23 0.67
rmx (roptest) 3.16 0.66
rmx (roblox) 3.23 0.64
Location part Scale part
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Figure 1: rmx IC computed via roblox.

More specified to the normal ideal model is the function roblox of package RobLoxz, which only
works for, and is optimized for speed in, normal location and scale. It uses median and MAD as
starting estimates which is justified by (M), Section 2.3.4.

R > roblox(x = x, eps.lower = 0.05, eps.upper = 0.20)

Table [l shows the results of these computations as well as mean, standard deviation and some well-
known robust estimators. The robust estimators median & MAD — rmx (roblox) yield very similar
results, while, obviously, mean and standard deviation represent the data badly. Figure [Il shows
the location and scale parts of the rmx IC computed via function roblox. The location part of the
rmx IC, as of any optimally robust IC, is redescending. Thus, redescending in our setup follows
on optimality grounds. For another derivation of redescending M-estimators see
).

Based on these robust estimates, let us assume a mean of p = 3.2 and a standard deviation of
o = 0.7 for the ideal distribution Py = AN(3.2,0.7%). For a contamination of s, = 10% at a
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Figure 2: Observed frequencies and fitted Gamma densities.

sample size of n = 24 (i.e., r =~ 0.49), the cniper points are calculated to 1.86 and 4.54, and
C = (—00,1.86] U [4.54,00). Under any element of U.(f, s,,) the probability of C is 5-15%, where
Py(C) = 5.56%.

5.3 Gamma Model
We analyze the length of stays of 201 patients in the University Hospital of Lausanne during

the year 2000 (cf. (2006)). Following Marrazi et all (1998), we use the
Gamma model pﬁ% “lgmap~1e72/7 with shape and scale parameters o, a € (0,00) and
0 = Sectlon 6.1, this exponential family is Lo differentiable. We assume
contamlnatlon nelghborhoods (x = ¢ but, on visual inspection of the data, of only small size
0.5% < s, < 5%. Then, due to absolute continuity of P = Py, equations ([I8)—-(20) yield unique
solutions A and a = Az. Thus, the one-step construction of the rmx estimator, based on the
CvM estimate, applies. The algorithm can be performed by applying function roptest of package
ROptFEst, where x contains the data,

R > roptest(x = x, L2Fam = GammaFamily(),
neighbor = ContNeighborhood(), eps.lower = 0.005,
eps.upper = 0.05, distance = CvMDist)

a call, which is very similar to the one in the previous example. In fact, the unified call for roptest
applies to any smooth model. Figurecompares the densities of the estimated Gamma, distributions
with the histogram of the data. Table[2lshows the results as well as the MLE and the CvM. Again,
the MLE is strongly affected by a few very large observations whereas the robust estimators stay
closer to the bulk of the data. Figure Bl shows scale and shape parts of the rmx IC (similarly, of
any optimally robust I1C; confer (2009), Figure 6.1).
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Table 2: Gamma scale and shape estimates

Estimator MLE CvM rmx
G 7.00 6.53 4.97
& 1.61 1.54 1.86
Scale part Shape part
ﬂ ] W 3 -
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Figure 3: rmx IC computed via roptest.

Assuming the ideal Gamma distribution Py with 8 = (5.0,1.9)" and a contamination size s,, = 2.5%
at n = 201 (i.e., r ~ 0.35), the cniper points are 0.62 and 29.31, and C = (—o0, 0.62] U [29.31, 00).
Under any element of U.(6, s,,) the probability of C is 2.5-5%, where Py(C) = 2.63%.

5.4 Poisson Model
For the decay counts of polonium recorded by [Rutherford and Geiger (|l9.l.d),

counts 0 1 2 3 4 5 6 7 8 91011 12 13 14
frequency 57 203 383 525 532 408 273 139 45 27 10 4 0 1 1

we assume the Poisson model pp(z) = e~? #7/z!, which exponential family is Ly differentiable in
the paramter 6 € (0,00) (cf. [Kohl (I%@), Section 4.1).

For both contamination (x = ¢) and total variation neighborhoods (* = v) of size 0.01 < s, < 0.05
we compute the rmx estimator. But, in case * = ¢, a = Az may be non-unique, which happens
if medp(A), the median of A = Ay under P = Py, is non-unique and r = nt/2s, is > the so called
lower case radius 7 (cf. [Kohl (M), Section 2.1.2). The non-uniqueness of the median occurs for
only countably many values 6. Since, as our numerical evaluations show, already small deviations
(~ +1078) from the exceptional values lead to a unique a, non-uniqueness may be neglected in
practice; confer @), Sections 4.2.1 and 4.4. In case * = v, the one-step construction
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Table 3: Poisson mean estimates
Estimator MLE CvM rmx (x =¢) rmx (x =0v)
0 3.8715 3.8953 3.9131 3.9133

Decay counts of polonium

g | . —— observed
0 | | - - MLE
! ! mx (*=c,v
S | . | | ( )
< 1 | | |
] ] ] ]
& o | | | |
§ S 7 1 1 1 1
2 ] ] ] ] '
o o ] ] ] ] ]
= IS 1 1 1 1 1 1
] ] ] ] ] ]
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S 1 1 1 1 1 [
1 1 1 1 1 [ | '
| | | | | | [ |
o - | | | | | | voche che o che oL
T T T T T T T I
0 2 4 6 8 10 12 14

count

Figure 4: Observed and fitted frequencies.

applies without restrictions; confer Appendix [Al Then, using the CvM as starting estimator, the
rmx estimators are obtained via the following calls to function roptest of package ROptFEst, where
x contains the data,

R > roptest(x = x, L2Fam = PoisFamily(),
neighbor = *, eps.lower = 0.01,
eps.upper = 0.05, distance = CvMDist)

where * stands for ContNeighborhood () or TotalVarNeighborhood(), respectively. The results as
well as MLE and CvM estimate are given in Table[Bl The estimates differ only slightly, as the data,
in view of the observed and fitted frequencies in Figured appears in very good agreement with the
Poisson model. Figure Bl shows the rmx ICs for contamination and total variation neighborhoods.
In fact, any optimally robust IC is of similar form (cf. (2005), Figures 4.1 (x = ¢) and 4.14
(x =v)).

Remark 4. ICs are defined with respect to the ideal model, thus, in case of the Poisson model, on No. If
we want to allow distributions in the neighborhoods whose supports are more generally in [0, c0), we only

need to extend ¥* from Ny to [0, 00) such that [¢p*(x)] < b for each x > 0; confer (B0) in the estimator
construction.

Assuming the ideal Poisson distribution Py with 8 = 3.9, neighborhood type * = ¢ and a contam-
ination size s, = 3% at n = 2608 (i.e., 7 ~ 1.53), we get the cniper points 1.26 and 6.54, and

12



total variation (* = v)

contamination (* = c)
o-9-0-0-0-0-0-0 09 -0 -0 -0 -0 0 o o-0-0-0

1 1
N ! N !
1 I
1 1
1 1
- Y - L
1 1
! |
1 1
Q o o ! O o H !
l’ I
1 1
! I
- _| ! - _| .
] | I h
1 1
1 1
o ! o~ '
i (] ro .
le —o - e -o o'

I I I I I I I I I I I I I I
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Figure 5: rmx IC computed via roptest for x = ¢, v.
C =[0,1.26] U [6.54, 00). Under any element of U.(0, s,,) the probability of C is 19.5-22.5%, where
Py(C) = 20.0%.

A Total variation neighborhoods (* = v)

The system U, (0) consist of the closed balls of radius s about Py, in the total variation metric

dy(Q, Pp) = sup e 4 |Q(A) — Pp(A)],
Uy(0,5) = {Q e My(A) | do(Q,Py) <s}, 0<s<1 (33)
which have the following representation in terms of contamination neighborhoods,
(34)

UU(G, S) - P9 == (UC(G, S) - Pg) - (UC(G, S) - Pg)

In particular, U.(8, s) C U,(6, s) follows. In our asymptotics, s = s,, = rn~"/2 for some r € [0, 00),
as the sample size n — co. Corresponding simple perturbations @, (g, r) are defined by (I0) and (T

with tangents ¢ in the class
(35)

Gu(0) = {a € Zo(0) | Eolg] < 2} = Ge(6) — G (6)
We fix 6 and drop it from notation. Then, with sup, extending over all unit vectors e in R¥, the
standardized (infinitesimal) bias term of an IC ¢ € U is

wy () = sup{| Evq] ‘ qe QU(G)} = sup, (supp e’y —infp 6'1/)) (36)

The exact bias term in case k& > 1 is difficult to handle and has been dealt with only in exceptional
(1994), p 205 and Theorem 7.4.17). The obvious bound w, (1) < wy (1) < 2we(1))

cases (cf.
13



suggests an approximate solution by a reduction to the contamination case * = ¢ and radius 2r.
An exact solution of the MSE problem with bias term w,, is still possible in dimension k = 1, in
which case w, (1)) = supp ¢ —infp . In case k = 1, the optimally robust IC ¢*, the unique solution
to minimize MSE(¢,r) = E? + r?w?(¢)) among all ICs ¢ € ¥ is provided by (1994),

Theorem 5.5.7: For some numbers ¢, b, A,

Y =cVANA (c+Db) (37)
where
r?b=E(c— ANy =E (AN — (c+b)), (38)
and
E(cVAAA(c+b)A=1 (39)

Conversely, form (B7)-(39) suffices for ¢* to be the solution.
The solutions A, b and ¢ of equations [B7)—([BJ) are always unique, as discussed in Section [B.l
below. Moreover, the condition that, as 7 — 6,

sup |A-(x) — Ag(z)| + sup [A7(z) — Ao ()|

— 0 40
Sup S @) (40)

where D, = {z € Q| ¢; < AiAi(x) < b+ ¢ for t = 7ort = 0}, has been verified by (M),
Lemma 2.3.6, in the case x = v, k = 1, for Lo differentiable exponential families. Thus, the one-step
construction is valid.

B Auxiliary Results And One Proof

B.1 Boundedness, Uniqueness, Continuity Of Lagrange Multipliers

We discuss boundedness, uniqueness, and continuity of the Lagrange multipliers A, a = Az, b and ¢
in the optimally robust IC ¢*. These properties are, on one hand, reassuring for the convergence of
our numerical algorithms. On the other hand, they imply the continuity in sup-norm 27)) required
for the construction.

Boundedness Given r > 0, bounds for the solutions A, a = Az, b and c of (I8)—(20) and (B7)-(3B9),
respectively, are derived in Kohl M), Section 2.1.3. For example, |a| < 72b holds.

Uniqueness The Lagrange multipliers (like the separating hyperplanes) need not be unique; con-
fer [Rieder (1994), Remark B.2.10 (a). But, at least, tr A, b, and ¢ in (I8)-@0) and B7)-B9),
respectively, are unique since, in terms of the unique ¢*,

tr A = MSE(Y*,r), b=uw.(¢*), c=infpi* (41)

If k=1 and medp(A) is unique, then a is unique; (@), Lemma C.2.4. In case k =1 and
medp(A) is non-unique, then a is unique for » < 7 (the so called lower case radius); confer Kohl
(2005), Proposition 2.1.3.

In case * = ¢, k > 1, uniqueness of A and a is ensured by the assumption that

support A(P) = R* (42)
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confer [Rieder (M), Remark 5.5.8. A and a are unique also under the more implicit condition
that, for any hyperplane H C R”,

P(Ae H) < P(J¢*] < b) (43)
which certainly is satisfied if P(A € H) = 0 for any hyperplane H; that is,
e€RY acR, PA=0a)>0 = e¢=0 (44)

confer Rieder (1994), Section 5.5.3. Both @2) and (@) imply that Z - 0.

Continuity in 8: Denote by 1} the MSE solution to variable parameter § € © and fixed radius
r € (0,00). Then, under assumption (BIl), we obtain

trA; —trAg, b — by, cr —>cy (45)
as 7 — 0. Provided that Ay and ay are unique, moreover

A — Ay, ar — Qg (46)

Confer [Kohl (2005), Theorem 2.1.11.

Continuity in r: Continuity in r is needed for the rmx estimator. Denoting by A,, a, = A, 2z,
b, and ¢, the solutions of (I8)-(20) and B7)-(B9), respectively, for fixed § and variable r € (0, 00),
[Kohl (M), Proposition 2.1.9, says that

trd, — trA,, by —b., cs—cr (47)
as s — r. Moreover, in case that A, and a, are unique,

A, — A, as — a, (48)

For the rmx estimator, in addition some monotonicity in r is needed and supplied by Ruckdeschel and Rieder
(2004), [Kohi (2003), and [Rieder et all (2008).

B.2 Proof of Theorem 1

minmaxMSE = E|n|* +r?0* = —En'(Y —n) + En'Y + r?b* with the abbreviations 7 = ¢*,
Y := AA, where EnY = trEnY’ = tr A’ = tr A since EnA’ = 1.

% = c: In this case, n # Y iff [Y| > b, and thus En/(Y —n) = bE(|Y| — b); = r?b.

* = v, k = 1: In this case, En(Y —n) =bE(c — Y); = r?b%
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