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Abstrat

We desribe the shrinking neighborhood approah of Robust Statistis, whih applies to

general smoothly parametrized models, espeially, exponential families. Equal generality is

ahieved by objet oriented implementation of the optimally robust estimators. We evaluate

the estimates on real datasets from literature by means of our R pakages ROptEst and RobLox.

Keywords: Exponential family; In�uene urves; Asymptotially linear estimators; Shrinking

ontamination and total variation neighborhoods; One-step onstrution; Minmax MSE

1 Introdution

Following Huber (1997), p 61, the purpose of robustness is �to safeguard against deviations from

the assumptions, in partiular against those that are near or below the limits of detetability�.

The in�nitesimal approah of Huber�Carol (1970), Rieder (1978) and Rieder (1980), Bikel (1981),

Rieder (1994) to robust testing and estimation, respetively, takes up this aim by employing shrink-

ing neighborhoods of the parametri model, where the shrinking rate n−1/2
, as the sample size

n→ ∞, may be dedued in a testing setup; onfer Rukdeshel (2006).

It is true that Huber's own minimum Fisher information approah refers to (small) neighborhoods

of �xed size; f. Huber (1981). But it only treats variane, sets bias = 0 by assuming symmetry,

and is restrited to Tukey-type neighborhoods about loation or sale models. It has not been ex-

tended to simultaneous loation and sale, let alone to more general models. Fraiman et al. (2001)

derive MSE optimality on �xed size neighborhoods. In situations beyond one-dimensional loation,

however, they do not determine a solution in losed form either. The in�nitesimal approah, on

the ontrary, provides losed-form robust solutions for general models (f. Setion 2.1) and fairly

general risks based on variane and bias (f. Rukdeshel and Rieder (2004)).

As noted by Huber (p 291 of Huber (1981)), in view of Theorem 3.7 of Rieder (1978), there is a

lose relation between the in�nitesimal neighborhood approah and Hampel's Lemma 5 (f. Hampel

(1968)); see also Theorem 3.2 of Rieder (1980) and Theorem 5.5.7 of Rieder (1994). Di�erenes to

Hampel et al. (1986) nevertheless exist and onern:

� de�nition of the in�uene urve,

� neessity of the form of the optimally robust in�uene urves,
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� optimality riterion: MSE and even more general riterions,

� determination of the bias bound (sensitivity),

� uniform asymptotis on neighborhoods, and

� overage of more models.

A fourth robustness approah pursues e�ieny in the ideal model subjet to a high breakdown

point; onfer for example Maronna et al. (2006), Setions 5.6.3, 5.6.4 and 6.4.5. A high breakdown,

though, may easily be inorporated in our approah: Given some starting estimator θ̂n, we onstrut
our optimal estimators Sn as one-step estimates,

Sn = θ̂n + n−1
(

ψθ̂n
(x1) + · · ·+ ψθ̂n

(xn)
)

(1)

f. Setion 4. The proedure is alled one-step re-weighting in Setion 5.6.3 of Maronna et al. (2006)

and has already been used in the Prineton robustness study (f. Andrews et al. (1972)). Thus, if

|ψθ(x)| ≤ b, also |Sn − θ̂n| ≤ b. Consequently, the breakdown point of the starting estimator θ̂n is

inherited to our estimator Sn. Given the high breakdown, however, we do not onsider robustness

as settled, then striving just for high e�ieny in the ideal model. Our primary aim stays minmax

MSE on shrinking neighborhoods about the ideal model, whih altogether omplies with Huber

(1997), p 61, that �a high breakdown point is nie to have if it omes for free�.

The organisation of the paper is as follows: We review the theory of asymptoti robustness on

shrinking neighborhoods, add some reent results and spezialize. Then, we ompute and apply

the in�nitesimal robust estimators to datasets from literature using our R pakages ROptEst (gen-

eral models) and RobLox (normal loation and sale); onfer R Development Core Team (2008),

Kohl and Rukdeshel (2008) and Kohl (2008). Apppliations of in�nitesimal neighborhood ro-

bustness to time series will be the subjet of another paper.

2 Setup

2.1 General Smoothly Parametrized Models

Denoting by M1(A) the set of all probability measures on some measurable spae (Ω,A), we
onsider a parametri model P = {Pθ | θ ∈ Θ} ⊂ M1(A), whose parameter spae Θ is an open

subset of some �nite-dimensional R
k
, and whih is dominated: dPθ = pθ dµ (θ ∈ Θ). At any �xed

θ ∈ Θ, model P is required to be L2 di�erentiable, that is, to have L2 di�erentiable square root

densities suh that, in L2(µ), as t → 0,

√
pθ+t =

√
pθ (1 +

1
2 t

′Λθ) + o(|t|) (2)

The R
k
-valued funtion Λθ ∈ Lk

2(Pθ) is alled L2 derivative, and its ovariane Iθ = Eθ ΛθΛ
′
θ under

Pθ is the Fisher information of P at θ, required of full rank k. This type of di�erentiability is implied

by ontinuous di�erentiability of pθ and ontinuity Iθ, with respet to θ, and then Λθ = ∂
∂θ log pθ.

Confer e.g. Lemma A.3 of Hajek (1972), Setion 1.8 of Witting (1985), Setion 2.3 of Rieder (1994),

Rieder and Rukdeshel (2001).

Our main appliations in this artile onern exponential families, in whih ase

pθ(x) = exp
{

ζ(θ)′T (x)− β(θ)
}

h(x) (3)
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with some measurable funtions ζ : Θ → R
k
, h : Ω → [0,∞), T : Ω → R

k
of positive de�nite

ovariane Covθ T ≻ 0, and the normalizing onstant β(θ). Then P forms a k-dimensional ex-

ponential family of full rank. The natural parameter spae Z∗ onsists of all ζ-values suh that

0 <
∫

exp
{

ζ′T (x)
}

h(x)µ(dx) < ∞. P is L2 di�erentiable under the following assumptions: ζ
ontinuously di�erentiable in θ ∈ Θ with regular Jaobian matrix Jζ , and ζ(Θ) ⊂ Zo

∗ (interior).

And then,

Λθ(x) = J ′
ζ

(

T (x)− Eθ T
)

Iθ = J ′
ζ Covθ(T )Jζ (4)

where Eθ denotes expetation under Pθ. The result mentioned in van der Vaart (1998), Example 7.7,

is proven in Kohl (2005), Lemma 2.3.6 (a). In what follows, the parametri model P is assumed L2

di�erentiable at any θ ∈ Θ.

2.2 Asymptotially Linear Estimators

The founders of robust statistis have de�ned in�uene urves (IC) as Gâteaux derivatives of sta-

tistial funtionals; onfer Setion 2.5 of Huber (1981) and Setion 2.1 of Hampel et al. (1986).

The lassial de�nition, however, remains vague. Even if suh a derivative exists, the de�nition is

not strong enough to over the empirial; onfer Reeds (1976) and Fernholz (1983). Our approah

is di�erent: Sine most proofs of asymptoti normality in the i.i.d. ase amount to an estimator

expansion with the IC as summands, we de�ne the set of all (square integrable, R
k
-valued) ICs at

Pθ beforehand by

Ψ(θ) =
{

ψθ ∈ Lk
2(Pθ) | Eθ ψθ = 0, Eθ ψθΛ

′
θ = Ik

}

(5)

where Ik denotes the k×k identity matrix. Then we de�ne asymptotially linear (AL) estimators S
to be any sequene of estimators Sn : Ωn → R

k
suh that for some ψθ ∈ Ψ(θ), neessarily unique,

n1/2(Sn − θ) = n−1/2
(

ψθ(x1) + · · ·+ ψθ(xn)
)

+ oPn
θ
(n0) (6)

where oPn
θ
(n0) → 0 in produt Pn

θ probability as n→ ∞. Thus, the originally intended interpreta-

tion is ahieved: ψθ(xi) represents the asymptoti, suitably standardized in�uene of observation xi
on Sn. The lass of AL estimators as introdued by Rieder (1980), De�nition 1.1 and Remarks,

and Rieder (1994), Setion 4.2, overs M, L, R, S and MD (minimum distane) estimates.

By the Lindeberg-Lévy CLT, as ψθ ∈ Lk
2(Pθ), Eθ ψθ = 0, AL estimators are asymptotially normal

under Pn
θ ,

n1/2(Sn − θ)(Pn
θ ) −→w N (0,Covθ(ψθ)) (7)

The third ondition Eθ ψθΛ
′
θ = Ik is equivalent to the loally uniform extension of (7), with θ on

the LHS replaed by θn with lim supn→∞

√
n |θn − θ| <∞.

For the asymptoti variane under Pθ, the Cramér-Rao bound holds,

Covθ(ψθ) � I−1
θ = Covθ(ψh,θ) , ψθ ∈ Ψθ (8)

with equality i� ψθ = ψh,θ := I−1
θ Λθ, the lassial sores.

2.3 In�nitesimal Perturbations

The i.i.d. observations x1, . . . , xn may now follow any law Q in some neighborhood about Pθ. In this

artile , the type of neighborhoods in Rieder (1994) will be restrited to (onvex) ontamination

3



(∗ = c) and total variation (∗ = v). Delegating the total variation ase to Appendix A, the

system Uc(θ) thus onsists of all ontamination neighborhoods

Uc(θ, s) =
{

(1− s)Pθ + sQ
∣

∣Q ∈ M1(A)
}

, 0 ≤ s ≤ 1 (9)

Subsequently, s = sn = rn−1/2
for starting radius r ∈ [0,∞) and n→ ∞.

Remark 1. Under Q, still the parameter θ has to be estimated. Sine the equation Q = Pθ + (Q − Pθ)
involving the nuisane omponent Q − Pθ, may have multiple solutions θ, the parameter θ is no longer

identi�able. This problem has been dealt with by estimating funtionals that extend the parametrization

to the neighborhoods. As noted in Setion 4.3.3 of Rieder (1994), however, both approahes lead to the

same optimally robust ICs and proedures one the hoie of the funtional is subjeted to robustness

riteria.

We now �x θ ∈ Θ and introdue the bounded tangents at Pθ,

Z∞(θ) =
{

q ∈ L∞(Pθ) | Eθ q = 0
}

(10)

Along any q ∈ Z∞(θ) and for starting radius r ∈ [0,∞), simple perturbations are de�ned by

dQn(q, r) =
(

1 + rn−1/2q
)

dPθ (11)

provided that n1/2 ≥ −r infPθ
q, where infPθ

denotes the Pθ-essential in�mum. AL estimators,

under suh simple perturbations, are still asymptotially normal,

n1/2(Sn − θ)
(

Qn
n(q, r)

)

−→
w

Nk

(

rEθ ψθq, Covθ(ψθ)
)

(12)

with bias rEθ ψθq. We have Qn(q, r) ∈ Uc(θ, rn
−1/2) i� q ∈ Gc(θ) for the lass

Gc(θ) =
{

q ∈ Z∞(θ) | infPθ
q ≥ −1

}

(13)

Confer Rieder (1994), proof to Proposition 4.3.6 and Lemma 5.3.1.

3 Optimally Robust In�uene Curves

3.1 Maximum Risk

Our aim is minmax risk. Employing a ontinuous loss funtion ℓ : Rk → [0,∞), the asymptoti

maximum risk of any estimator sequene on ontamination neighborhoods about Pθ of size rn−1/2

is

lim
M→∞

lim
n→∞

sup
Q∈Uc(θ,rn−1/2)

∫

ℓM
(

n1/2(Sn − θ)
)

dQn
n (14)

where, for ease of attainability of the minimum risk, the trunated loss funtions ℓM = min{M, ℓ}
are employed. A further simpli�ed and smaller risk is obtained by a restrition to simple perturba-

tions Qn = Qn(q, r) with q ∈ Gc(θ) and the interhange of supq∈Gc(θ), limM→∞, and limn→∞.

The �xed θ will be dropped from notation heneforth whenever feasible. Thus, for an AL estima-

tor S = (Sn) with IC ψ at P = Pθ, and Z ∼ Nk

(

0,Cov(ψ)
)

,

sup
q∈Gc(θ)

lim
M→∞

lim
n→∞

∫

ℓM
(

n1/2(Sn − θ)
)

dQn
n(q, r) = sup

q∈Gc(θ)

E ℓ
(

rEψq + Z
)

(15)
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For the square ℓ(z) = |z|2, the (maximum, asymptoti) MSE is obtained as weighted sum of the

L2- and L∞-norms of ψ under P ,

MSE(ψ, r) = E|ψ|2 + r2ω2
c(ψ) (16)

sine

ωc(ψ) = sup
{

|Eψq|
∣

∣ q ∈ Gc(θ)
}

= supP |ψ| (17)

the P -essential sup of |ψ|; onfer Setions 5.3.1 and 5.5.2 of Rieder (1994).

Other (onvex, monotone) ombinations of bias and variane (e.g., Lp-risks) have been onsidered

in Rukdeshel and Rieder (2004).

A suitable onstrution ahieves that, in ase of the optimally robust estimator, risk (14) is not

larger than the simpli�ed risk (15); onfer Setion 4 below.

3.2 Minmax Mean Square Error

The optimally robust ψ⋆
, the unique solution to minimize MSE(ψ, r) among all ψ ∈ Ψ, is given in

Theorem 5.5.7 of Rieder (1994): There exist some vetor z ∈ R
k
and matrix A ∈ R

k×k
, A ≻ 0,

suh that

ψ⋆ = A(Λ − z)w , w = min
{

1, b |A(Λ− z)|−1
}

(18)

where

r2b = E(|A(Λ − z)| − b)+ (19)

and

0 = E(Λ − z)w , A−1 = E(Λ − z)(Λ− z)′w (20)

Conversely, form (18)�(20) su�es for ψ⋆
to be the solution.

The proof uses the Lagrange multipliers supplied by Rieder (1994), Appendix B.

The minmax solution to the more general risks onsidered in Rukdeshel and Rieder (2004) also is

a MSE solution with suitably transformed bias weight; onfer their Theorem 4.1 and equation (4.7).

The matrix A, in ase r = 0, equals inverse Fisher information I−1
, whih appears in the Cramér-

Rao bound (8). In general, A is de�ned by (19) and (20) only impliitly. It is surprising that the

statistial interpretation in terms of minimum risk obtains in the extension, with bias now involved.

Theorem 1. For any r ∈ (0,∞) and ψ ∈ Ψ we have

MSE(ψ, r) ≥ trA = MSE(ψ⋆, r) (21)

where equality holds in the �rst plae i� ψ = ψ⋆
de�ned by (18)�(20).

3.3 Relative MSE

The starting radius r for the neighborhoods Uc(θ, rn
−1/2), on whih the minmax MSE solution ψ⋆ =

ψ⋆
r depends, will often be unknown or only known to belong to some interval [rlo, rup) ⊂ [0,∞). In

this situation that ψ⋆
s is used when in fat ψ⋆

r is optimal, we introdue the relative MSE of ψ⋆
s at

radius r,
relMSE(ψ⋆

s , r) = MSE(ψ⋆
s , r)

/

MSE(ψ⋆
r , r) (22)
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For any radius s ∈ [rlo, rup) the supr relMSE(ψ⋆
s , r) is attained at the boundary,

sup
r∈[rlo,rup)

relMSE(ψ⋆
s , r) = relMSE(ψ⋆

s , rlo) ∨ relMSE(ψ⋆
s , rup) (23)

A least favorable radius r0 is de�ned by ahieving infs of supr relMSE(ψ⋆
s , r), that is,

inf
s∈[rlo,rup)

sup
r∈[rlo,rup)

relMSE(ψ⋆
s , r) = sup

r∈[rlo,rup)

relMSE(ψ⋆
r0 , r) (24)

and is haraterized by relMSE(ψ⋆
r0 , rlo) = relMSE(ψ⋆

r0 , rup).
The IC ψ⋆

r0 , respetively the AL estimator with this IC, are alled radius-minmax (rmx) and

reommended.

Confer Kohl (2005), in partiular Lemma 2.2.3, and Rieder et al. (2008).

The reommendation is in some sense independent of the loss funtion: In ase of unspei�ed radius

(i.e., rlo = 0, rup = ∞), the rmx IC is the same for a variety of loss funtions satisfying a weak

homogeneity ondition; onfer Rukdeshel and Rieder (2004), Theorem 6.1.

3.4 Cniper Contamination

The notion is suited to demonstrate how relatively small outliers su�e to destroy the superiority

of the lassial proedure. Employing, for this purpose, ontaminations Rn := (1 − rn−1/2)P +
rn−1/2 I{a} by Dira measures in a ∈ R, the asymptoti MSE of the lassially optimal estimator

(i.e., with IC ψh = I−1Λ) under Rn is MSEa(ψh, r) := tr I−1 + r2|ψh(a)|2. Relating this quantity

to the minmax MSE = trA (Theorem 1), we are interested in the set C of values a ∈ R suh that

MSEa(ψh, r) > MSE(ψ⋆
r , r); that is,

r2|ψh(a)|2 > trA− tr I−1
(25)

In all models we have onsidered so far, rather small values a su�e to ful�ll (25). In a Janus type

pun on the words �nie� and �perniious�, the boundary values of C are alled niper points (ating

like a sniper); onfer Rukdeshel (2004) and Kohl (2005), Introdution.

4 Estimator Constrution

Given the optimally robust IC ψ⋆
θ , one for eah θ ∈ Θ, the problem is to onstrut an estimator S⋆ =

(S⋆
n) that is AL at eah θ with IC ψ⋆

θ . In addition, the onstrution should ahieve that there is no

inrease from the simpli�ed risk (15) to the asymptoti maximum MSE (14).

We require initial estimators σ = (σn) whih are n1/2
onsistent on the full neighborhood system

Uc(θ); that is, for eah r ∈ [0,∞),

lim
M→∞

lim sup
n→∞

sup
{

Q(n)
n (n1/2|σn − θ| > M)

∣

∣ Qn,i ∈ Uc(θ, rn
−1/2)

}

= 0 (26)

with Q
(n)
n = Qn,1⊗· · ·⊗Qn,n. For tehnial reasons, the σn are in addition disretized in a suitable

sense (f. Rieder (1994), Setion 6.4.2).

In this artile, the optimally robust ICs ψ⋆
θ are bounded. Thus onditions (2)�(6) of Rieder (1994),

p 247, on (ψ⋆
θ )θ∈Θ simplify drastially; namley, to ontinuity in sup-norm,

lim
τ→θ

supx∈Ω |ψ⋆
τ (x)− ψ⋆

θ (x)| = 0 (27)
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Then, aording to Rieder (1994), Theorem 6.4.8 (b), the one-step estimator S,

Sn = σn + n−1
(

ψ⋆
σn

(x1) + · · ·+ ψ⋆
σn
(xn)

)

(28)

where σn = σn(x1, . . . , xn), is uniformly asymptotially normal suh that, for all arrays Qn,i ∈
Uc(θ, rn

−1/2) and eah r ∈ (0,∞),

n1/2(Sn − θ −Bn)(Q
(n)
n ) −→

w

N
(

0,Covθ(ψ
⋆
θ )
)

(29)

with Bn = n−1
(∫

ψ⋆
θ dQn,1 + · · ·+

∫

ψ⋆
θ dQn,n

)

. Employing a version ψ⋆
θ of form (18)�(20) whih is

bounded pointwise by b = bθ, we obtain

|Bn| ≤ supx∈Ω |ψ⋆
θ (x)| = bθ (30)

Thus (29) ensures that risk (14) is not larger than the simpli�ed risk (15).

Remark 2. As initial estimators we prefer MD estimates, not primarily beause of their breakdown

point but beause of their related tail behavior (f. Rukdeshel (2008a)) and their appliability in general

models. In partiular, both Kolmogorov and Cramér-von Mises MD (CvM) estimates may be employed

(f. Rieder (1994), Theorems 6.3.7 and 6.3.8), with an advantage of the latter�in view of the larger

neighborhoods, to whih its n1/2
onsisteny extends, and the variane instability, for �nite n, of the former

(f. Donoho and Liu (1988)). In partiular models, other estimators may qualify as starting estimators and

may even be preferable for omputational reasons; e.g.; median, MAD in one-dim loation and sale,

minimum ovariane determinant estimator in multivariate sale, least median of squares, and S estimates

in linear regression; onfer Rousseeuw and Leroy (1987) and Yohai (1987).

Remark 3. Under additional smoothness, aording to Rukdeshel (2008a) and Rukdeshel (2008b),

assumption (26) of n1/2
onsisteny may be weakened to only n1/4+δ

onsisteny, for some δ > 0. Conse-
quently, for example, the least median of squares estimator may be employed as a high breakdown start-

ing estimator. Rukdeshel (2008b) gives other, partly more, partly less stringent onditions. Moreover,

Rukdeshel (2008a) ensures uniform integrability so as to dispense with the trunation of unbounded loss

funtions in (14).

The remainder of the setion deals with ondition (27). We assume that the Lagrange multipliers

Aθ and aθ := Aθzθ in (18)�(20) are unique, and, as τ → θ,

Λτ (Pτ ) −→w Λθ(Pθ) , trIτ −→ trIθ (31)

sup
x∈Dc

|Λτ (x) − Λθ(x)| + sup
x∈cDc

|Λτ (x)− Λθ(x)|
|AθΛθ(x)− aθ|

−→ 0 (32)

where Dc = { x ∈ Ω | |AtΛt(x)− at| ≤ bt for t = τ or t = θ }. Then, by Kohl (2005), Theorem 2.3.3,

ondition (27) is ful�lled.

For example, in ase of a loation and sale with loation parameter β ∈ R and sale parameter

σ ∈ (0,∞), we have Λθ(x) = σ−1Λθ0

(

(x − β)/σ
)

, hene Λθ(Pθ) = σ−1Λθ0(Pθ0) and Iθ = σ−2Iθ0 ,
where θ = (β, σ)′ and θ0 = (0, 1)′. Therefore, (31) is ful�lled. Condition (32) needs further heking
but seems plausible as Λθ0 is ontinuous (if the model is to be L2 di�erentiable).

In the ase of an L2 di�erentiable exponential family, in view of (4), ondition (31) is satis�ed,

while (32) holds aording to Kohl (2005), Lemma 2.3.6.
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5 Appliations

5.1 Proposal

Based on the presented results we make the following proposal for appliations:

Step 1: Deide on the ideal model.

Step 2: Deide on the type of neighborhood (∗ = c or ∗ = v).
Step 3: Determine lower and upper bounds slo, sup for the size s = sn of the neighborhoods

U∗(θ, s) to be taken into aount.

Step 4: Put rlo = n1/2slo, rup = n1/2sup, and ompute the rmx IC for [rlo, rup].
Step 5: Evaluate an appropriate starting estimator.

Step 6: Determine the rmx estimator using the one-step onstrution.

Our R pakages RobLox (f. Kohl (2008)) and ROptEst (f. Kohl and Rukdeshel (2008)) pro-

vide an easy way to perform steps 4�6 making use of our pakages distr (f. Rukeshel et al.

(2006)), distrEx (f. Rukeshel et al. (2006)), distrMod (f. Rukdeshel et al. (2008)), RandVar

(f. Kohl and Rukdeshel (2008a)) and RobAStBase (f. Kohl and Rukdeshel (2008b)).

The implementation of these pakages heavily relies on S4 lasses and methods; onfer Chamber

(1998). Based on this objet orientated approah pakage ROptEst provides an implemenation

that (so far) works for all(!) L2 di�erentiable parametri models whih are based on a univariate

distribution.

In the sequel, we will demonstrate the use of pakages RobLox and ROptEst by appliation to some

datasets from literature.

5.2 Normal Loation and Sale

We onsider the following 24 measurements (in parts per million) of opper in wholemeal �our

(f. Analytial Methods Committee (1989))

2.20 2.20 2.40 2.40 2.50 2.70 2.80 2.90

3.03 3.03 3.10 3.37 3.40 3.40 3.40 3.50

3.60 3.70 3.70 3.70 3.70 3.77 5.28 28.95

where the value 28.95 is learly onspiuous. In agreement with Maronna et al. (2006), Setion 2.1,

in view of the majority of the data, we assume normal loation and sale as the ideal model,

Pθ = N (µ, σ2) with θ = (µ, σ)′, µ ∈ R, σ ∈ (0,∞). Let us stik to ontamination neighborhoods

(∗ = c). We assume that roughly 1�5 observations, that is, roughly 5�20% of the 24 observations

are erroneous. Then the matrix A and entering vetor a = Az in (18)�(20), by absolute ontinuity

of the normal distribution, are unique. Sine normal loation and sale also is an L2 di�erentiable

exponential family, the assumptions for our estimator onstrution are ful�lled. We hoose the

Cramér-von Mises MD estimator (CvM) as initial estimator.

The following R ode shows how funtion roptest of pakage ROptEst an be applied to perform

the omputations, where x represents the data,

R > roptest(x = x, L2Fam = NormLoationSaleFamily(),

neighbor = ContNeighborhood(), eps.lower = 0.05,

eps.upper = 0.20, distane = CvMDist)

8



Table 1: Normal loation and sale estimates

Estimator µ̂ σ̂

mean & sd 4.28 5.30
median & MAD 3.39 0.53

Huber M (Proposal 2) 3.21 0.67
Yohai MM 3.16 0.66

CvM 3.23 0.67
rmx (roptest) 3.16 0.66
rmx (roblox) 3.23 0.64
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Figure 1: rmx IC omputed via roblox.

More spei�ed to the normal ideal model is the funtion roblox of pakage RobLox, whih only

works for, and is optimized for speed in, normal loation and sale. It uses median and MAD as

starting estimates whih is justi�ed by Kohl (2005), Setion 2.3.4.

R > roblox(x = x, eps.lower = 0.05, eps.upper = 0.20)

Table 1 shows the results of these omputations as well as mean, standard deviation and some well-

known robust estimators. The robust estimators median & MAD � rmx (roblox) yield very similar

results, while, obviously, mean and standard deviation represent the data badly. Figure 1 shows

the loation and sale parts of the rmx IC omputed via funtion roblox. The loation part of the

rmx IC, as of any optimally robust IC, is redesending. Thus, redesending in our setup follows

on optimality grounds. For another derivation of redesending M -estimators see Shevlyakov et al.

(2008).

Based on these robust estimates, let us assume a mean of µ = 3.2 and a standard deviation of

σ = 0.7 for the ideal distribution Pθ = N (3.2, 0.72). For a ontamination of sn = 10% at a

9
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Figure 2: Observed frequenies and �tted Gamma densities.

sample size of n = 24 (i.e., r ≈ 0.49), the niper points are alulated to 1.86 and 4.54, and
C = (−∞, 1.86] ∪ [4.54,∞). Under any element of Uc(θ, sn) the probability of C is 5�15%, where

Pθ(C) = 5.56%.

5.3 Gamma Model

We analyze the length of stays of 201 patients in the University Hospital of Lausanne during

the year 2000 (f. Hubert and Vandervieren (2006)). Following Marrazi et al. (1998), we use the

Gamma model pθ(x) = Γ(α)−1σ−αxα−1 e−x/σ
with shape and sale parameters σ, α ∈ (0,∞) and

θ = (σ, α)′. By Kohl (2005), Setion 6.1, this exponential family is L2 di�erentiable. We assume

ontamination neighborhoods (∗ = c) but, on visual inspetion of the data, of only small size

0.5% ≤ sn ≤ 5%. Then, due to absolute ontinuity of P = Pθ, equations (18)�(20) yield unique

solutions A and a = Az. Thus, the one-step onstrution of the rmx estimator, based on the

CvM estimate, applies. The algorithm an be performed by applying funtion roptest of pakage

ROptEst, where x ontains the data,

R > roptest(x = x, L2Fam = GammaFamily(),

neighbor = ContNeighborhood(), eps.lower = 0.005,

eps.upper = 0.05, distane = CvMDist)

a all, whih is very similar to the one in the previous example. In fat, the uni�ed all for roptest

applies to any smooth model. Figure 2 ompares the densities of the estimated Gamma distributions

with the histogram of the data. Table 2 shows the results as well as the MLE and the CvM. Again,

the MLE is strongly a�eted by a few very large observations whereas the robust estimators stay

loser to the bulk of the data. Figure 3 shows sale and shape parts of the rmx IC (similarly, of

any optimally robust IC; onfer Kohl (2005), Figure 6.1).

10



Table 2: Gamma sale and shape estimates

Estimator MLE CvM rmx

σ̂ 7.00 6.53 4.97
α̂ 1.61 1.54 1.86
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Figure 3: rmx IC omputed via roptest.

Assuming the ideal Gamma distribution Pθ with θ = (5.0, 1.9)′ and a ontamination size sn = 2.5%
at n = 201 (i.e., r ≈ 0.35), the niper points are 0.62 and 29.31, and C = (−∞, 0.62] ∪ [29.31,∞).
Under any element of Uc(θ, sn) the probability of C is 2.5�5%, where Pθ(C) = 2.63%.

5.4 Poisson Model

For the deay ounts of polonium reorded by Rutherford and Geiger (1910),

ounts 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

frequeny 57 203 383 525 532 408 273 139 45 27 10 4 0 1 1

we assume the Poisson model pθ(x) = e−θ θx/x!, whih exponential family is L2 di�erentiable in

the paramter θ ∈ (0,∞) (f. Kohl (2005), Setion 4.1).

For both ontamination (∗ = c) and total variation neighborhoods (∗ = v) of size 0.01 ≤ sn ≤ 0.05
we ompute the rmx estimator. But, in ase ∗ = c, a = Az may be non-unique, whih happens

if medP (Λ), the median of Λ = Λθ under P = Pθ, is non-unique and r = n1/2sn is ≥ the so alled

lower ase radius r̄ (f. Kohl (2005), Setion 2.1.2). The non-uniqueness of the median ours for

only ountably many values θ. Sine, as our numerial evaluations show, already small deviations

(∼ ±10−8
) from the exeptional values lead to a unique a, non-uniqueness may be negleted in

pratie; onfer Kohl (2005), Setions 4.2.1 and 4.4. In ase ∗ = v, the one-step onstrution

11



Table 3: Poisson mean estimates

Estimator MLE CvM rmx (∗ = c) rmx (∗ = v)

θ̂ 3.8715 3.8953 3.9131 3.9133
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Figure 4: Observed and �tted frequenies.

applies without restritions; onfer Appendix A. Then, using the CvM as starting estimator, the

rmx estimators are obtained via the following alls to funtion roptest of pakage ROptEst, where

x ontains the data,

R > roptest(x = x, L2Fam = PoisFamily(),

neighbor = *, eps.lower = 0.01,

eps.upper = 0.05, distane = CvMDist)

where * stands for ContNeighborhood() or TotalVarNeighborhood(), respetively. The results as

well as MLE and CvM estimate are given in Table 3. The estimates di�er only slightly, as the data,

in view of the observed and �tted frequenies in Figure 4, appears in very good agreement with the

Poisson model. Figure 5 shows the rmx ICs for ontamination and total variation neighborhoods.

In fat, any optimally robust IC is of similar form (f. Kohl (2005), Figures 4.1 (∗ = c) and 4.14

(∗ = v)).

Remark 4. ICs are de�ned with respet to the ideal model, thus, in ase of the Poisson model, on N0. If

we want to allow distributions in the neighborhoods whose supports are more generally in [0,∞), we only
need to extend ψ⋆

from N0 to [0,∞) suh that |ψ⋆(x)| ≤ b for eah x > 0; onfer (30) in the estimator

onstrution.

Assuming the ideal Poisson distribution Pθ with θ = 3.9, neighborhood type ∗ = c and a ontam-

ination size sn = 3% at n = 2608 (i.e., r ≈ 1.53), we get the niper points 1.26 and 6.54, and

12
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Figure 5: rmx IC omputed via roptest for ∗ = c, v.

C = [0, 1.26] ∪ [6.54,∞). Under any element of Uc(θ, sn) the probability of C is 19.5�22.5%, where

Pθ(C) = 20.0%.

A Total variation neighborhoods (∗ = v)

The system Uv(θ) onsist of the losed balls of radius s about Pθ, in the total variation metri

dv(Q,Pθ) = supA∈A |Q(A)− Pθ(A)|,

Uv(θ, s) =
{

Q ∈ M1(A)
∣

∣ dv(Q,Pθ) ≤ s
}

, 0 ≤ s ≤ 1 (33)

whih have the following representation in terms of ontamination neighborhoods,

Uv(θ, s)− Pθ =
(

Uc(θ, s)− Pθ

)

−
(

Uc(θ, s)− Pθ

)

(34)

In partiular, Uc(θ, s) ⊂ Uv(θ, s) follows. In our asymptotis, s = sn = rn−1/2
for some r ∈ [0,∞),

as the sample size n→ ∞. Corresponding simple perturbationsQn(q, r) are de�ned by (10) and (11)
with tangents q in the lass

Gv(θ) =
{

q ∈ Z∞(θ)
∣

∣ Eθ |q| ≤ 2
}

= Gc(θ)− Gc(θ) (35)

We �x θ and drop it from notation. Then, with supe extending over all unit vetors e in R
k
, the

standardized (in�nitesimal) bias term of an IC ψ ∈ Ψ is

ωv(ψ) = sup
{

|Eψq|
∣

∣ q ∈ Gv(θ)
}

= supe
(

supP e
′ψ − infP e

′ψ
)

(36)

The exat bias term in ase k > 1 is di�ult to handle and has been dealt with only in exeptional

ases (f. Rieder (1994), p 205 and Theorem 7.4.17). The obvious bound ωc(ψ) ≤ ωv(ψ) ≤ 2ωc(ψ)
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suggests an approximate solution by a redution to the ontamination ase ∗ = c and radius 2r.
An exat solution of the MSE problem with bias term ωv is still possible in dimension k = 1, in
whih ase ωv(ψ) = supP ψ− infP ψ. In ase k = 1, the optimally robust IC ψ⋆

, the unique solution

to minimize MSE(ψ, r) = Eψ2 + r2ω2
v(ψ) among all ICs ψ ∈ Ψ is provided by Rieder (1994),

Theorem 5.5.7: For some numbers c, b, A,

ψ⋆ = c ∨ AΛ ∧ (c+ b) (37)

where

r2b = E
(

c−AΛ)+ = E
(

AΛ − (c+ b)
)

+
(38)

and

E
(

c ∨ AΛ ∧ (c+ b)
)

Λ = 1 (39)

Conversely, form (37)�(39) su�es for ψ⋆
to be the solution.

The solutions A, b and c of equations (37)�(39) are always unique, as disussed in Setion B.1

below. Moreover, the ondition that, as τ → θ,

sup
x∈Dv

|Λτ (x) − Λθ(x)|+ sup
x∈cDv

|Λτ (x) − Λθ(x)|
|Λθ(x)|

−→ 0 (40)

where Dv = {x ∈ Ω | ct ≤ AtΛt(x) ≤ bt + ct for t = τ or t = θ }, has been veri�ed by Kohl (2005),

Lemma 2.3.6, in the ase ∗ = v, k = 1, for L2 di�erentiable exponential families. Thus, the one-step

onstrution is valid.

B Auxiliary Results And One Proof

B.1 Boundedness, Uniqueness, Continuity Of Lagrange Multipliers

We disuss boundedness, uniqueness, and ontinuity of the Lagrange multipliers A, a = Az, b and c
in the optimally robust IC ψ⋆

. These properties are, on one hand, reassuring for the onvergene of

our numerial algorithms. On the other hand, they imply the ontinuity in sup-norm (27) required

for the onstrution.

Boundedness Given r > 0, bounds for the solutions A, a = Az, b and c of (18)�(20) and (37)�(39),
respetively, are derived in Kohl (2005), Setion 2.1.3. For example, |a| ≤ r2b holds.

Uniqueness The Lagrange multipliers (like the separating hyperplanes) need not be unique; on-

fer Rieder (1994), Remark B.2.10 (a). But, at least, trA, b, and c in (18)�(20) and (37)�(39),

respetively, are unique sine, in terms of the unique ψ⋆
,

trA = MSE(ψ⋆, r) , b = ω∗(ψ
⋆) , c = infP ψ

⋆
(41)

If k = 1 and medP (Λ) is unique, then a is unique; Rieder (1994), Lemma C.2.4. In ase k = 1 and

medP (Λ) is non-unique, then a is unique for r < r̄ (the so alled lower ase radius); onfer Kohl

(2005), Proposition 2.1.3.

In ase ∗ = c, k ≥ 1, uniqueness of A and a is ensured by the assumption that

supportΛ(P ) = R
k

(42)
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onfer Rieder (1994), Remark 5.5.8. A and a are unique also under the more impliit ondition

that, for any hyperplane H ⊂ R
k
,

P (Λ ∈ H) < P (|ψ⋆| < b) (43)

whih ertainly is satis�ed if P (Λ ∈ H) = 0 for any hyperplane H ; that is,

e ∈ R
k , α ∈ R , P (e′Λ = α) > 0 =⇒ e = 0 (44)

onfer Rieder (1994), Setion 5.5.3. Both (42) and (44) imply that I ≻ 0.

Continuity in θ: Denote by ψ⋆
θ the MSE solution to variable parameter θ ∈ Θ and �xed radius

r ∈ (0,∞). Then, under assumption (31), we obtain

trAτ −→ trAθ , bτ −→ bθ , cτ −→ cθ (45)

as τ → θ. Provided that Aθ and aθ are unique, moreover

Aτ −→ Aθ , aτ −→ aθ (46)

Confer Kohl (2005), Theorem 2.1.11.

Continuity in r: Continuity in r is needed for the rmx estimator. Denoting by Ar, ar = Arzr,
br, and cr the solutions of (18)�(20) and (37)�(39), respetively, for �xed θ and variable r ∈ (0,∞),
Kohl (2005), Proposition 2.1.9, says that

trAs −→ trAr , bs −→ br , cs −→ cr (47)

as s→ r. Moreover, in ase that Ar and ar are unique,

As −→ Ar , as −→ ar (48)

For the rmx estimator, in addition some monotoniity in r is needed and supplied by Rukdeshel and Rieder

(2004), Kohl (2005), and Rieder et al. (2008).

B.2 Proof of Theorem 1

minmaxMSE = E |η|2 + r2b2 = −E η′(Y − η) + E η′Y + r2b2 with the abbreviations η := ψ⋆
,

Y := AΛ, where E η′Y = tr E ηY ′ = trA′ = trA sine E ηΛ′ = Ik.

∗ = c: In this ase, η 6= Y i� |Y | > b, and thus E η′(Y − η) = bE(|Y | − b)+ = r2b.
∗ = v, k = 1: In this ase, E η(Y − η) = bE(c− Y )+ = r2b2.
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