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Abstract The paper deals with the introduction of empirical prior information in
the estimation of candidate’s ability within computerized adaptive testing (CAT). CAT
is generally applied to improve efficiency of test administration. In this paper, it is
shown how the inclusion of background variables both in the initialization and the
ability estimation is able to improve the accuracy of ability estimates. In particular,
a Gibbs sampler scheme is proposed in the phases of interim and final ability estima-
tion. By using both simulated and real data, it is proved that the method produces more
accurate ability estimates, especially for short tests and when reproducing boundary
abilities. This implies that operational problems of CAT related to weak measurement
precision under particular conditions, can be reduced as well. In the empirical exam-
ples, the methods were applied to CAT for intelligence testing in the area of personnel
selection and to educational measurement. Other promising applications would be in
the medical world, where testing efficiency is of paramount importance as well.

Keywords Adaptive testing · Empirical prior information · Gibbs sampler ·
Measurement precision

1 Introduction

In recent years, we have seen a rapid development of computer-based testing in the
field of educational and psychological measurement, especially in adaptive testing.
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The basic idea of computerized adaptive testing (CAT) is to adapt the item difficulty
to the estimated ability level of the candidate, so that the test becomes person-tailored.
In this way, the test length is shortened with respect to standard test administration,
such as paper and pencil tests, keeping the same measurement accuracy.

Despite its increasing use, CAT has a number of operational problems like item
pool maintenance (Ariel et al. 2004, 2006; Belov and Armstrong 2009), test assembly
(van der Linden 2005), item exposure control (e.g., Sympson and Hetter 1985; van der
Linden and Veldkamp 2004, 2007; Barrada et al. 2009), item parameter uncertainty
(De Jong et al. 2009; Veldkamp 2012), and recovery from unforced errors during the
beginning of CAT (Guyer 2008).

From a statistical point of view, one of the most important issues is the choice of the
ability estimator. The maximum likelihood (ML) estimator, as well as the Warm (1989)
weighted likelihood estimator (WLE), does not produce finite estimates for perfect
response patterns (all endorsed or all not endorsed items). On the other hand, Bayes-
ian estimators, such as expected a posteriori (EAP), maximum a posteriori (MAP),
and Bayes modal (BM), depend on the choice of the prior distribution for the ability.
Especially in the beginning of the test, or when the test length is fixed to be short,
the choice of the prior distribution is crucial. In fact, a wrongly located prior may
lead the ability estimate far from the true value which will be hardly recovered in the
subsequent few steps (see e.g. van der Linden and Pashley 2010).

In order to overcome these limitations, in this paper we propose a fully Bayesian
estimation of the ability via Markov chain Monte Carlo (MCMC) methods with empir-
ical prior information about the candidates. A Bayesian approach is chosen to avoid the
problem of ML estimation for perfect response patterns, while collateral information
is introduced to guide the prior distribution especially in the initial ability estimation.
Nowadays, collateral information about the candidates is regularly collected during
assessments and its inclusion in CAT administration is straightforward. In the paper of
van der Linden (1999) it is shown how prior information can be included in the ability
initialization. The purpose of this paper is to show how collateral information can be
used even more efficiently by introducing it both in the initialization and in the ability
estimation. Furthermore, the paper describes how the empirical prior can be integrated
in the estimation process within the Gibbs sampler scheme. By using simulated data,
we show how efficiency of CAT is improved under different settings, e.g. fixed and
variable length, and we compare our proposal to alternatives where prior information
is introduced at different levels. To further prove the effectiveness of the approach, an
empirical application with personnel selection test data is discussed.

The paper is organized as follows. Section 2 reviews the main features of computer-
ized adaptive testing, with a particular reference to the current state of methodological
and computational aspects involved in the CAT phases. In Sect. 3, our proposal is
introduced by first motivating the introduction of empirical information in CAT, and
then developing a Gibbs sampler scheme for ability estimation with an empirical prior
distribution. In Sect. 4, the advantages of our approach are discussed through a set
of comparative simulation studies, by using first a variable-length termination crite-
rion, and then a fixed-length one. The number of items needed to complete the CAT
and the level of ability precision are evaluated in case empirical priors are introduced
instead of standard priors. In Sect. 5, the results of two empirical CAT applications are
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presented in the context of intelligence testing for personnel selection and of educa-
tional testing. Finally, Sect. 6 concludes the paper with a discussion.

2 Computerized adaptive testing

The theoretical framework of computerized adaptive testing (CAT) was developed
since the early 1970s (Lord 1970; Owen 1969, 1975) and it is now formalized (see,
e.g., van der Linden and Glas 2000, 2010; Wainer et al. 2000). Unlike linear testing,
where the same set of items is submitted to a sample of individuals, CAT is based on
adaptive item selection and administration in analogy to an oral examination. In fact,
most oral examinations start with an initial item and, depending on the examinee’s
response, proceed with a more difficult or easier item, until the examinee’s grade of
proficiency becomes sufficiently precise. Analogously, in computerized adaptive test-
ing a first item is submitted to the test-taker: if the item is endorsed, a more difficult
item is presented, otherwise an easier one is selected by the algorithm to be submitted.
The procedure ends when a pre-specified criterion is met. Finally, the estimated ability
is reported as a measure of the examinee’s proficiency.

CAT relies on the presence of an item pool containing items with particular psycho-
metric properties. Therefore, item response theory (IRT) models are employed (see,
e.g., Lord and Novick 1968). IRT models describe the mathematical function link-
ing the individual response probability to a set of item parameters, denoting the item
psychometric characteristics, and the individual ability. After a test administration, a
particular IRT model is chosen to estimate the item parameters based on data nature and
fit. Once the item parameters have been estimated with sufficient precision, items with
target features are included in the item pool. Moreover, during CAT administration,
the response process is assumed to follow the chosen IRT model. The choice of the
model depends on different issues such as item format, dimensionality specification,
and fit.

For the purpose of this study, the unidimensional two-parameter normal ogive
(2PNO) model (Lord 1952; Lord and Novick 1968) is assumed to underlie the response
process. The model has been designed for binary observed data, employing a cumu-
lative standard normal distribution to express the probability of a correct response to
an item j , with j = 1, . . . , k items, as a function of ability and item parameters, as
follows

P(Y j = 1|θ) = Φ(α jθ − δ j ) =
α j θ−δ j∫

−∞

1√
2π

e−z2/2dz, (1)

where Y j is the random response variable for item j , taking the value 1 for a correct
response and 0 otherwise, α j and δ j are the item discrimination and difficulty respec-
tively, and θ is the unidimensional ability. Model (1) assumes unidimensionality, i.e.,
a single latent trait accounts for the individual responses. The model is identified by
fixing the mean ability equal to zero and its variance equal to one. Depending on
the data characteristics, other models such as multidimensional models are possible
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and have been employed in CAT (Segall 1996; Veldkamp and van der Linden 2002;
Reckase 2009, chapter 10).

2.1 The phases of CAT

Once the items have been calibrated according to an IRT model, the item parameters
are typically treated as known. Afterwards, CAT works with the following different
steps:

1. ability initialization
2. item selection
3. item administration
4. ability estimate update.

Given J calibrated items in the pool, indexed by j = 1, . . . , J , the rank of selected
items is denoted as k = 1, . . . , K . Hence, when choosing the kth item to be adminis-
tered: jk is the index of the chosen item, Sk−1 = { j1, j2, . . . , jk−1} is the set of selected
items and Rk = {1, . . . , J } \ Sk−1 is the set of remaining items in the pool. In the
following, the index i = 1, . . . , n of examinees is omitted and the test administration
is referred to a generic candidate i implicitly.

The first phase deals with the ability initialization, where an initial proficiency level
of the candidate is defined. A typical choice is to initialize the ability to its expected
mean value, i.e. θ0 = 0. An alternative to a fixed initialization is a random one.
Otherwise, when information about the candidate can be inferred from a set of covar-
iates, an empirical initialization is possible as well (van der Linden 1999). Even if it
is well known that the convergence of the algorithm is not affected by the choice of
starting values, a rough initial inference about ability may cause a very slow conver-
gence (Guyer 2008). Clearly, the efficiency of CAT is strongly affected by the ability
initialization when a short number of items is submitted.

In order to proceed with the item selection (Step 2), various criteria have been pro-
posed in literature. The most popular method is the maximum-information criterion
(Birnbaum 1968). When selecting the kth item, the method works by choosing the
item which maximizes Fisher’s expected information function at the current ability
value θ = θ̂k−1, as follows

jk ≡ arg max
j

{I j (θ̂k−1); j ∈ Rk}. (2)

The form of the information function depends on the particular chosen IRT model.
According to model (1), the information function is

I j (θ̂k−1) = α2
j

[(2π)−1/2 exp(−η2
j/2)]2

Φ(η j )[1 − Φ(η j )] , (3)

where η j = α j θ̂k−1 − δ j and Φ(·) is the standard normal cumulative distribution
function. The method is widely used also in linear testing, where the most informative
items are included in operational tests. Nevertheless, within an adaptive environment,
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the maximum-information criterion associated with a fixed ability initialization leads
to the problem of item overexposure, because the same item is always selected as the
first one. Alternative item selection rules are based on Kullback–Leibler information
(Chang and Ying 1996; Lehman and Casella 1998, Section 1.7), likelihood-weighted
information criterion (Veerkamp and Berger 1997), and Bayesian criteria (Owen 1969,
1975; van der Linden 1998; Veldkamp 2010). For a review on item selection criteria,
see van der Linden and Glas (2007), van der Linden and Pashley (2010).

Following the CAT algorithm through Step 3, the chosen item is administered
to the test-taker and the answer is recorded. The response is subsequently used in
Step 4, when ability should be estimated. One crucial issue in CAT certainly is the
measurement precision of ability estimates. Typically, standard errors of ability score
estimates are not negligible and efforts in the direction of improving the accuracy of
ability estimates should be done. In fact, the task of obtaining an accurate ability esti-
mate is particularly hard when poor information comes from the responses or when
the examinee’s level of proficiency is extreme (very high or very low).

In adaptive testing, a number of methods for the ability estimation are in use. These
include maximum likelihood (ML) procedures or Bayesian methods. After the admin-
istration of k-1 items, the ML estimator is defined as

θ̂ M L
k−1 ≡ arg max

θ
{L(θ |y j1 . . . y jk−1) : θ ∈ (−∞,+∞)}. (4)

An alternative is the weighted likelihood estimator (WLE) proposed by Warm
(1989). The maximum of the likelihood function is not always unique for particular IRT
models, such as the three-parameter logistic model. In linear testing, the ML estimator
owns the properties of correctness and asymptotic efficiency. In CAT, the ML estima-
tors cannot rely on asympotic properties. Small-sample properties depend on the item
distribution within the pool and the item selection criterion (van der Linden and Pashley
2010). Because ML estimates stay undetermined until a mixed response pattern is
observed, Bayesian methods could be preferred for ability estimation. Bayesian meth-
ods are based on the posterior distribution of the ability θ . The full posterior distribution
of θ can be used as ability estimator, and its variance as a measure of uncertainty about
θ . However, updating the posterior distribution after the responses to k − 1 items, the
formulation of the likelihood based on IRT models such as model (1) does not allow to
choose a prior from a conjugate family. A restricted Bayesian approach was proposed
by Owen (1969), assuming a normal prior distribution for θ and replacing the updated
posterior distribution by a normal distribution with the same parameters as the true pos-
terior. However, Owen’s proposal is based on an approximation which, even though
it was proved to be reliable, may not fit all cases. Among different Bayesian point
estimators, maximum a posteriori (MAP) and expected a posteriori (EAP) estimators
proposed by Mislevy (1986) and Bock and Mislevy (1988) respectively, are most
frequently used in CAT:

θ̂ M AP
k−1 ≡ arg max

θ
{g(θ |y j1 . . . y jk−1) : θ ∈ (−∞,+∞)}, (5)

θ̂ E AP
k−1 ≡

∫
θg(θ |y j1 . . . y jk−1)dθ. (6)

123



M. Matteucci, B. P. Veldkamp

For a uniform prior, the MAP estimator is equivalent to the ML estimator. Otherwise,
the properties of the MAP estimators depend on the shape of the prior distribution
which could also be multimodal. In this case, a local maximum can be found by using
Eq. (5). Differently, the EAP estimator always exists for a proper prior distribution.
From a computational point of view, Owen’s approximation does not involve iterative
procedures and it is computationally feasible. The MAP estimator requires an itera-
tive procedure, such as Newton–Raphson, while the EAP estimator involves numerical
integration. Among Bayesian CAT researchers, Owen’s method is very popular and the
normal approximation is used also for the item selection in a Bayesian sequential updat-
ing of the posterior distribution of θ . However, we should underline that the method
is based on an approximation, restricting the potential of a fully Bayesian approach.
In the past, the use of Owen’s method was justified by its computational feasibiliy.
Nowadays, the availability of modern computers has strongly reduced computational
limitations related to fully Bayesian estimation and we believe that new approaches
should be experienced.

To complete CAT, Steps 2–4 of the algorithm are repeated iteratively until a stop-
ping rule is satisfied (Wainer et al. 2000). In variable length CAT, items are being
administered until the measurement error is below a certain threshold, whereas in
fixed length CAT, a fixed number of items is being administered. Fixed length CAT
is often applied when the test has to meet a number of specifications with respect to
content, or other attributes.

2.2 Empirical information in CAT

During test administrations, besides the candidates’ responses on a target test, a set
of individual covariates may be available. Background variables may include scores
obtained by the examinees on other tests or testlets, socio-economic, or demographical
variables. Moreover, response times can represent an effective source of information
about individual ability (van der Linden 2008; van der Linden and Pashley 2010).
Given the availability of such information, its inclusion in the investigation of candi-
dates’ ability might make sense.

Whether and how collateral information about examinees may be included in IRT
ability estimation within linear testing has been discussed by various authors (see e.g.
Zwinderman 1991, 1997). In CAT, the introduction of empirical information has been
discussed especially for ability initialization and item selection (Gialluca and Weiss
1979; van der Linden 1999, 2008). In the paper of van der Linden (1999), an empirical
initialization of the ability estimator is proposed. To this aim, a relation between the
ability θ and a set of P individual covariates {X p}, with p = 1, . . . , P , is assumed in
the form of a linear regression, as follows

θi = β0 + β1 Xi1 + · · · + βP Xi P + εi , (7)

where the error terms are assumed to be independent and normally distributed as
εi ∼ N (0, σ 2) with i = 1, . . . , n individuals. The assumption of a linear regression
model is translated into a normal conditional distribution of θi given the covariates, as
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θi |Xi1, . . . , Xi P ∼ N (β0 + β1 Xi1 + · · · + βP Xi P ; σ 2). (8)

Equation (8) represents an informative prior distribution for ability. When regres-
sion (7) is estimated with satisfying precision, the estimated regression coefficients
may be used in order to initialize the ability in CAT for a generic examinee i with
realizations (xi1, . . . , xi P ), as follows

θ̂i0 = β0 + β1xi1 + · · · + βP xi P . (9)

As a consequence, a better provisional ability estimate is provided and the first item
is selected closer to the true ability of the person. Equation (9) can be used also in
item selection based on a point estimate for θ .

3 MCMC CAT with empirical information

In order to improve the efficiency of CAT, we propose a fully Bayesian approach
based on MCMC ability estimation with empirical prior information. In the proposed
approach, there are mainly two elements of novelty. First of all, empirical information
is introduced not only in the ability initialization, but also in the ability estimation,
allowing for further improvements in the efficiency of the CAT algorithm. Moreover,
unlike the existing literature about the use of empirical information in CAT, the effec-
tiveness of the approach is explored by using comparative simulation studies. Secondly,
the Gibbs sampler algorithm is used for ability estimation in CAT. Despite MCMC
methods are becoming very popular for the estimation of item and ability parame-
ters in IRT models within linear testing, their implementation in CAT is completely
unexplored. A fully Bayesian approach is chosen to overcome the limitations of ML
estimation for perfect response patterns. However, Bayesian methods depend on the
choice of a prior distribution, which may be misleading especially in the initial ability
estimation. To prevent this situation, we propose the use of empirical information in
setting the parameters of the prior.

3.1 A joint use of empirical information in CAT

As reported in van der Linden and Pashley (2010), one reason for introducing collat-
eral information about the candidates in adaptive testing is CAT weakness in ability
estimation when dealing with short tests, caused by a possible bad start in the ability
initialization. Here, we propose a joint use of empirical information in Step 1 and Step
4 of the CAT algorithm. In fact, besides the ability initialization, collateral informa-
tion may be integrated in the ability estimation phase through the introduction of an
empirical prior distribution within a fully Bayesian approach. The research is moti-
vated by the increasing amounts of background information that becomes available
about the candidates via all kinds of databases. For example, bio data, educational
level, and information about work experience might be available in a job selection
context. In educational settings, results on previous tests, social economic status, or
the educational level of the parents might be available. In medical testing, a patient’s
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health record could be used. Besides, it often happens that a whole battery of tests is
administered to the candidate during an exam, or during a psychological screening.

Following the approach of van der Linden (1999), a linear relationship is assumed
between the ability θ and a set of covariates, as described in Eq. (7). As a consequence,
Eq. (8) becomes an informative normal prior distribution for θ to be included in the
ability estimation phase.

When using collateral information in CAT ability initialization and estimation, two
different problems are solved. First of all, the test length is reduced. Additionally, bias
due to unforced errors during the beginning of CAT (Guyer 2008) is reduced as well,
since the impact of these errors on ability estimation is much smaller due to the use of
an informative prior. Within this approach, initial values may be much more reliable
and accurate initial inferences about ability could be able to shorten time to conver-
gence significantly. As discussed in van der Linden and Pashley (2010), the choice of
the prior distribution should be taken carefully. In fact, in the initial phase of CAT no
response data are available and the choice of the first item is completely determined by
the empirical information. When the prior is not reliable, the examinee’s initial ability
may be located far from the true ability and needs more time to be recovered. However,
this consideration is also valid for fixed initialization: when θ̂0 = 0 is imposed as the
initial ability estimate for all candidates, the recovery of the true ability for examinees
with high or low θ values is seriously compromised within short tests.

3.2 MCMC ability estimation in CAT

In order to proceed with the ability estimation in CAT, a Gibbs sampler scheme is
proposed. Recently, MCMC methods, and particularly the Gibbs sampler (Geman and
Geman 1984), have been applied extensively in IRT estimation because they are able
to provide flexible algorithms for a large variety of models, such as unidimensional
models (Albert 1992; Johnson and Albert 1999; Patz and Junker 1999), multidimen-
sional models (Béguin and Glas 2001; Sheng and Wikle 2007, 2008) and models with
a hierarchical structure (Fox and Glas 2001; Sheng and Wikle 2008; Natesan et al.
2010). Basically, the advantages of using MCMC are twofold. Firstly, the method is
able to integrate all dependencies between variables and allows the specification of
different prior distributions depending on the researcher’s previous knowledge. This
particular aspect makes the Gibbs sampler a flexible and powerful statistical tool.
Secondly, MCMC is free from the technical limitations of the Gaussian quadrature
involved in the marginal maximum likelihood (MML) estimation (Béguin and Glas
2001; Sheng and Wikle 2007). Moreover, with modern computers, MCMC computa-
tional limitations have been strongly reduced. For unidimensional IRT models, MCMC
computational intensiveness is no longer an obstacle.

In the current problem, the algorithm is modified to estimate ability in adaptive
testing with the inclusion of an informative empirical prior. First of all, the presence of
the binary response variable Y j is modeled by introducing continuous underlying vari-
ables Z j , which are independent and identically distributed as Z j ∼ N (α jθ − δ j ; 1).
The relation between the observed and the underlying variables is
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Y j =
{

1 if Z j > 0,

0 if Z j ≤ 0.
(10)

According to Eq. (10), the continuous variable Z is greater than zero if and only if
the corresponding observed response is a success, i.e. Y = 1; the underlying variable
approach (Bartholomew 1987; Bartholomew and Knott 1999) describes the partition
of the continuous variable Z in order to represent the dichotomy of Y .

From a fully Bayesian perspective, the joint posterior distribution of interest is

P(Z, θ, ξ ,β, σ 2|Y ,X) = P(Z|θ, ξ ,Y )P(θ |β, σ 2,X)P(ξ)P(β)P(σ 2), (11)

where ξ is the vector including all item parameters. In linear testing, given the data
on the responses and the observed covariates, the Gibbs sampler would have worked
iteratively sampling from the following single conditional distributions:

1. Z|θ, ξ

2. θ |Z, ξ ,β, σ 2

3. ξ |θ,Z

4. β|θ , σ 2

5. σ 2|θ ,β.

On the other hand, in adaptive testing both item and regression parameters are
treated as known; therefore, their conditional distributions are not needed in the
scheme. In CAT, the Gibbs sampler works only with the conditional distribution of the
underlying response variables Z j (distribution in Step 1) and the posterior distribution
of the ability θ (distribution in Step 2), in order to proceed with the ability estimation.
The single conditional distributions, compared to the joint posterior, are treatable and
easy to draw samples from.

With regard to the first conditional distribution, a classical result (see, e.g., Johnson
and Albert 1999, chapter 3) is that the distribution of each Z j given the ability and the
item parameters is a truncated normal, as follows

Z j |θ, ξ ∼
{

N (η j , 1) with Z j > 0 if Y j = 1,

N (η j , 1) with Z j ≤ 0 if Y j = 0.
(12)

The conditional distribution of the underlying variables Z j is normal, with expected
value equal to η j = α jθ − δ j and variance 1, truncated by 0 to the left if Y j = 1
(correct response to item j) and to the right if Y j = 0 (incorrect response to item j).

The second conditional distribution is obtained combining the likelihood and the
informative prior distribution, according to Bayesian conjugate families of distribu-
tions. Starting from the normal regression model Z j = α jθ−δ j +υ j for j = 1, . . . , J ,
we obtain

Z j + δ j = α jθ + υ j , (13)

where υ j are independent and identically distributed as N (0, 1). Equation (13) is sim-
ply the regression of the terms on the left side Z j + δ j on the independent variable
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α j , where θ is the regression coefficient. Hence, the likelihood function of the ability
θ follows a normal distribution, as

θ ∼ N (θ̂; ν), (14)

where θ̂ = (α′
jα j )

−1α′
j (Z j + δ j ) is the least square estimate of θ and ν = (α′

jα j )
−1

is the variance. Practically, the variance can be calculated as ν = 1/
∑J

j=1 α2
j and the

expected value as θ̂ = ∑J
j=1 α j (Z j + δ j )/

∑J
j=1 α2

j . The prior distribution for the
ability is the empirical normal prior (8) and the combination of likelihood and prior
leads to a normal posterior distribution, as follows

θ |Z, ξ ,β, σ 2 ∼ N

(
θ̂/ν + Xβ/σ 2

1/ν + 1/σ 2 ; 1

1/ν + 1/σ 2

)
. (15)

By introducing the empirical prior within MCMC, the posterior distribution becomes
candidate-tailored and more precise ability estimates can be obtained. After the kth
item has been administered, the Gibbs sampler is able to simulate ability as follows:

1. start with known item parameters ξ and a provisional estimate of θ
(0)
k , θ

(0)
k ≡ θk−1,

and sample Z(0) from distribution (12), with j ∈ Sk

2. use Z(0) and known ξ , β, σ 2 to sample θ
(1)
k from distribution (15)

3. repeat Steps 1, 2 with the updated values, iteratively.

The steps describe the estimation of the interim ability. Simply, after the last item
has been administered, the same steps may be applied with the updated likelihood in
order to obtain the final ability estimate. The Gibbs sampler has been implemented in
the software MATLAB (The MathWorks Inc 2005).

4 Simulation studies

In order to compare the accuracy of ability estimates in adaptive testing by using dif-
ferent criteria for the initialization and the ability estimation, simulation studies are
conducted under different conditions. The first simulation study is designed to com-
pare the performances of the algorithm with and without empirical prior for a variable
length CAT. In the second study, the focus is on the impact of empirical prior informa-
tion for fixed length CAT of different lengths. In the third study, different settings are
evaluated for a short test of length equal to 10. In particular, the estimation results are
compared for the MCMC CAT proposed by the authors, CAT without empirical prior,
and CAT with only empirical ability initialization. Finally, the results of a short study
on the algorithm convergence are reported to justify the number of iterations used in
the simulations.

In all studies, a normal distribution is chosen as prior for the ability θ . Despite the
easiness of implementation of noninformative and improper priors, they may cause
instability in the posterior estimates and convergence problems when the Gibbs sam-
pler is used (Ibrahim and Chen 2000). Among informative and proper priors, the
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normal distribution is chosen because it allows to work with Bayesian conjugate fam-
ilies of distributions, due to the fact that the measurement model is represented by
model (1). Moreover, we would like to compare our approach to existing literature
about Bayesian estimation of IRT models, where a standard normal distribution is
usually chosen for θ .

4.1 A study in a variable length CAT

The purpose of the first simulation study is to show the potentiality of the empirical
prior in reducing the test length within the Gibbs sampler scheme. To this aim, two
different CAT designs are compared: the first one follows the common practice of
initializing the ability at zero and assuming a standard normal as a prior for the ability
distribution, whereas the second one adopts an empirical prior both in the initializa-
tion and in the ability estimation, as shown in the previous section. For simplicity of
description, the former approach is denominated standard whereas the latter is called
fully empirical. In both cases, item selection is conducted by using the maximum-
information criterion.

In the study, an item bank of 500 items is employed, with item parameters sampled
as α j ∼ U (0.7; 2) and δ j ∼ U (−4; 4), for j = 1, . . . , k. When the fully empirical
approach is adopted, the linear relation θ = 0.2 + 0.7X + ε with ε ∼ N (0; 0.3) is
assumed between the ability θ and a single covariate X . Responses are simulated for
different levels of ability from −3 to 3 according to model (1). Given the true θ , the
X -values are simulated for each replication from (θ − 0.2 − ε)/0.7.

The Gibbs sampler with a chain length of 5,000 iterations and burn-in of 500
is employed for the ability estimation. The output consists of the mean and stan-
dard deviations sampled from the posterior distribution of ability. The choice of the
chain length and the number to discard iterations is motivated by the convergence
study described in the end of this section. All chains showed fast convergence and
good mixing properties. In order to compare the efficiency of the two different ap-
proaches, especially in terms of number of items needed to complete the CAT algo-
rithm, the stopping rule is set to a test information above 10 at the current ability
estimate.

For all ability levels within each approach, a number of 100 replications have been
conducted. The mean number of items needed to complete the CAT over replications
has been recorded together with the corresponding standard deviation (SD items).
With respect to ability, the expected posterior estimate, bias and standard deviation
(SD) are reported. The results of the simulations are shown in Table 1.

As can be seen from the mean test length, the fully empirical solution is able to
reduce the mean number of items needed respect to the standard one, and the two
approaches are comparable only for ability levels close to zero. By using empirical
information, CAT tests are shortened and, as a consequence, item overexposure is
also reduced. Furthermore, the recovery of the true ability is more precise in the fully
empirical approach in terms of both bias and estimate stability, which can be assessed
by looking at the SD. In fact, the standard solution fails to recover the ability levels
when deviating from θ = 0.
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Table 1 Final test length and ability parameter recovery for fully empirical and standard solutions

True θ Fully empirical Standard

Mean n. items SD items θ̂ Bias SD Mean n. items SD items θ̂ Bias SD

−3 9.91 1.84 −3.04 −0.04 0.24 12.49 2.85 −2.79 0.21 0.31

−2.5 6.69 1.14 −2.50 0.00 0.23 9.42 1.84 −2.33 0.17 0.31

−2 5.45 0.64 −1.99 0.01 0.25 7.65 0.98 −1.89 0.11 0.30

−1.5 5.11 0.40 −1.54 −0.04 0.29 6.71 0.74 −1.41 0.09 0.26

−1 5.17 0.45 −1.02 −0.02 0.28 6.16 0.53 −0.95 0.05 0.28

−0.5 5.46 0.87 −0.49 0.01 0.23 5.77 0.75 −0.46 0.04 0.27

0 5.24 0.45 0.04 0.04 0.26 5.29 0.56 0.02 0.02 0.25

0.5 5.28 0.55 0.47 −0.03 0.25 5.32 0.63 0.46 −0.04 0.25

1 5.17 0.43 1.03 0.03 0.26 5.58 0.83 0.84 −0.16 0.33

1.5 5.18 0.41 1.52 0.02 0.28 6.38 0.84 1.40 −0.10 0.31

2 5.49 0.64 2.03 0.03 0.23 7.64 1.03 1.89 −0.11 0.31

2.5 7.05 1.47 2.49 −0.01 0.28 9.72 1.84 2.37 −0.13 0.31

3 10.15 2.11 3.05 0.05 0.30 12.51 2.59 2.77 −0.23 0.33

4.2 A study with different test lengths

In the second simulation study, the same item pool and conditions of the previous
study are maintained, but a fixed length CAT is used. In fact, in order to get results for
tests consisting of different numbers of items, the CAT stopping rule is defined fixing
the test length (T ) at 10, 15 or 20 items. As usual, a number of 100 replications have
been conducted in the simulation.

Besides the expected a posterior estimate and the standard deviation, also the aver-
age bias and the root mean square errors (RMSE) have been calculated. Table 2 pro-
vides the results of the simulation study in case of a short test consisting of 10 items.

Table 2 Ability parameter recovery for fully empirical and standard solutions (T = 10)

True θ Fully empirical Standard

θ̂ SD Bias RMSE θ̂ SD Bias RMSE

−3 −3.06 0.25 −0.06 0.25 −2.94 0.36 0.06 0.36

−2.5 −2.57 0.25 −0.07 0.26 −2.45 0.29 0.05 0.29

−2 −2.01 0.22 −0.01 0.22 −1.93 0.27 0.07 0.28

−1.5 −1.47 0.18 0.03 0.18 −1.44 0.24 0.06 0.25

−1 −0.98 0.22 0.02 0.22 −0.97 0.25 0.03 0.25

−0.5 −0.52 0.20 −0.02 0.20 −0.45 0.19 0.05 0.20

0 −0.01 0.22 −0.01 0.22 −0.01 0.24 −0.01 0.24

0.5 0.52 0.18 0.02 0.18 0.49 0.22 −0.01 0.22
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Table 2 continued

True θ Fully empirical Standard

θ̂ SD Bias RMSE θ̂ SD Bias RMSE

1 1.00 0.19 0.00 0.19 0.94 0.24 −0.06 0.25

1.5 1.51 0.21 0.01 0.21 1.46 0.20 −0.04 0.20

2 2.06 0.24 0.06 0.25 1.98 0.28 −0.02 0.28

2.5 2.60 0.26 0.10 0.27 2.47 0.30 −0.03 0.30

3 3.05 0.27 0.05 0.27 2.94 0.33 −0.06 0.34

Table 3 Ability parameter recovery for fully empirical and standard solutions (T = 15)

True θ Fully empirical Standard

θ̂ SD Bias RMSE θ̂ SD Bias RMSE

−3 −3.05 0.21 −0.05 0.22 −2.91 0.26 0.09 0.28

−2.5 −2.54 0.21 −0.04 0.21 −2.46 0.22 0.04 0.22

−2 −2.03 0.18 −0.03 0.18 −1.96 0.21 0.04 0.21

−1.5 −1.51 0.15 −0.01 0.15 −1.45 0.19 0.05 0.20

−1 −1.00 0.14 0.00 0.14 −1.01 0.20 −0.01 0.20

−0.5 −0.48 0.17 0.02 0.17 −0.46 0.15 0.04 0.15

0 0.01 0.18 0.01 0.18 0.01 0.17 0.01 0.16

0.5 0.48 0.18 −0.02 0.18 0.47 0.17 −0.03 0.17

1 0.98 0.17 −0.02 0.17 1.01 0.14 0.01 0.14

1.5 1.52 0.17 0.02 0.18 1.48 0.18 −0.02 0.18

2 2.05 0.20 0.05 0.21 2.00 0.23 0.00 0.23

2.5 2.58 0.23 0.08 0.24 2.50 0.29 0.00 0.29

3 3.08 0.28 0.08 0.29 2.96 0.30 −0.04 0.31

As can be easily noticed, compared with the standard version of CAT, the parame-
ter recovery of empirical CAT is more accurate in terms of RMSE, and the estimates
are more stable because the are associated with lower standard deviations, especially
when deviating from θ = 0. Bias is comparable between the two approaches. Tables 3
and 4 show the results of the simulations conducted for adaptive tests of 15 and 20
items, respectively.

Due to the increasing number of items, standard CAT becomes more precise, and the
two approaches become comparable, even if for T = 15 the fully empirical approach
maintains lower standard deviation and RMSE, especially for extreme abilities. The
comparison of true and simulated values for central abilities suggests that there are no
considerable differences in reproducing the ability values between the two approaches.

From this simulation study it can be learned that the introduction of an informa-
tive prior leads to an improvement of measurement precision in the individual ability
assessment. This improvement becomes very evident for short tests and when shift-
ing to boundary ability values. This cannot be generalized to the case of longer test
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Table 4 Ability parameter recovery for fully empirical and standard solutions (T = 20)

True θ Fully empirical Standard

θ̂ SD Bias RMSE θ̂ SD Bias RMSE

−3 −3.07 0.20 −0.07 0.21 −2.96 0.23 0.04 0.23

−2.5 −2.53 0.21 −0.03 0.21 −2.50 0.19 0.00 0.19

−2 −1.98 0.17 0.02 0.17 −1.97 0.17 0.03 0.17

−1.5 −1.51 0.15 −0.01 0.15 −1.47 0.13 0.03 0.14

−1 −0.96 0.14 0.04 0.15 −0.96 0.16 0.04 0.16

−0.5 −0.52 0.15 −0.02 0.15 −0.46 0.16 0.04 0.16

0 −0.02 0.15 −0.02 0.16 0.02 0.14 0.02 0.14

0.5 0.49 0.14 −0.01 0.14 0.49 0.16 −0.01 0.16

1 1.01 0.16 0.01 0.16 1.02 0.15 0.02 0.15

1.5 1.52 0.14 0.02 0.14 1.45 0.16 −0.05 0.16

2 2.06 0.18 0.06 0.19 2.00 0.17 0.00 0.17

2.5 2.58 0.19 0.08 0.20 2.53 0.22 0.03 0.23

3 3.06 0.24 0.06 0.24 2.98 0.21 −0.02 0.21

(e.g., more than 20 items): when the test length increases, the prior distribution lacks
in strength and the two solutions become more and more similar.

4.3 Introduction of prior information at different levels

According to the findings of the previous study, the use of prior information in CAT
shows its maximum effectiveness in case of short tests. In this simulation study, the
focus is on the comparison of different levels of prior information for a target test con-
sisting of 10 items. Results of Table 2 regarding fully empirical and standard CAT are
compared to an intermediate solution, named empirical initialization, where empirical
information is used only in the initialization of the ability estimate. Table 5 illustrates
the results of the simulation.

The empirical initialization CAT shows an intermediate behavior with respect to
the other two approaches. This approach obtains standard deviations which are more
comparable to the fully empirical approach than the standard one. On the other hand,
estimates are biased, even more seriously than the standard solution especially for
θ = −3 and θ = 3. As can be clearly seen in Fig. 1, which shows the RMSEs across
the ability true values for the three approaches, the empirical initialization solution
performs better than the standard approach but worse than the fully empirical one.

For the fully empirical solution, the RMSE curve is always below or at most close
to the curves associated with the standard and the empirical initialization approaches.
The difference in precision is particularly significant for ability levels in the tails of
the distribution.
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Table 5 Ability parameter recovery for fully empirical, empirical initialization and standard solutions
(T = 10)

True θ Fully empirical Empirical initialization Standard

θ̂ SD Bias RMSE θ̂ SD Bias RMSE θ̂ SD Bias RMSE

−3 −3.06 0.25 −0.06 0.25 −2.92 0.26 0.08 0.27 −2.94 0.36 0.06 0.36

−2.5 −2.57 0.25 −0.07 0.26 −2.45 0.25 0.05 0.25 −2.45 0.29 0.05 0.29

−2 −2.01 0.22 −0.01 0.22 −1.92 0.25 0.08 0.26 −1.93 0.27 0.07 0.28

−1.5 −1.47 0.18 0.03 0.18 −1.44 0.21 0.06 0.22 −1.44 0.24 0.06 0.25

−1 −0.98 0.22 0.02 0.22 −0.91 0.21 0.09 0.23 −0.97 0.25 0.03 0.25

−0.5 −0.52 0.20 −0.02 0.20 −0.46 0.20 0.04 0.21 −0.45 0.19 0.05 0.20

0 −0.01 0.22 −0.01 0.22 −0.02 0.26 −0.02 0.26 −0.01 0.24 −0.01 0.24

0.5 0.52 0.18 0.02 0.18 0.48 0.22 −0.02 0.22 0.49 0.22 −0.01 0.22

1 1.00 0.19 0.00 0.19 1.01 0.23 0.01 0.23 0.94 0.24 −0.06 0.25

1.5 1.51 0.21 0.01 0.21 1.44 0.20 −0.06 0.21 1.46 0.20 −0.04 0.20

2 2.06 0.24 0.06 0.25 1.95 0.23 −0.05 0.23 1.98 0.28 −0.02 0.28

2.5 2.60 0.26 0.10 0.27 2.46 0.25 −0.04 0.25 2.47 0.30 −0.03 0.30

3 3.05 0.27 0.05 0.27 2.88 0.30 −0.12 0.33 2.94 0.33 −0.06 0.34
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Fig. 1 Root mean square error (RMSE) for the three different approaches (fully empirical, empirical
initialization and standard) when the test consists of 10 items

4.4 The choice of the number of iterations

One of the most critical issues in MCMC estimation is assessing the convergence of
the algorithm, which is also needed to decide the number of total and to discard itera-
tions. To this aim, diagnostic tools are employed (for a review, see Cowles and Carlin
1996; Gelman et al. 2004). The first intuitive diagnostic tool is the inspection of the
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Table 6 Estimated accuracy of simulation across different number of iterations

N. iter Burn-in Fully empirical Standard

θ̂ SD 5 % SD MC error θ̂ SD 5 % SD MC error

1,000 100 −0.119 0.393 0.020 0.023 0.070 0.422 0.021 0.025

2,000 200 −0.101 0.391 0.020 0.013 −0.048 0.417 0.021 0.018

5,000 500 0.303 0.411 0.021 0.011 −0.135 0.427 0.021 0.008

10,000 1000 0.048 0.373 0.019 0.006 −0.107 0.410 0.021 0.008

trace plot of the simulated random draws. Even if convergence cannot be ensured by
simply looking at the iteration history, a clearly situation of non-convergence can be
detected immediately by identifying trends in the samples. Another diagnostic tool is
represented by the study of autocorrelation, because patterns of serial correlations in
the chain are responsible of slow convergence of the algorithm. After computing the
posterior mean and the standard deviation, a measure of the standard error of estimate
should be calculated. As suggested in Gelman et al. (2004), an approximate measure
of the accuracy of the sample mean estimate is the standard deviation divided by the
square root of the number of simulations, which is nothing but the posterior deviance.
Moreover, an estimate of the Monte Carlo standard error should be computed. One
possibility is to calculate the square root of the spectral density variance estimate
divided by the number of actual iterations (time-series diagnostic), as proposed by
Geweke (1992) in order to provide an estimate of the asymptotic standard error. The
basic idea is that the mean and the variance of the parameter posterior distribution
should be equal in the first and in the second half of the chain. As a rule of thumb,
the estimated Monte Carlo error should be less than 5 % of the standard deviation.
Sensitivity analysis should be conducted to verify that, starting from difference over-
dispersed points, the behavior of the chains is the same. To this end, the Gelman-Rubin
R diagnostic could be used to compare the variances within and and across the chains.

In order to decide the necessary number of iterations for obtaining an acceptable
accuracy, a study has been conducted. In particular, the simulation design of the sec-
ond study is drawn on in the case of ability θ = 0 and test length T = 10, using a
different number of iterations (1,000, 2,000, 5,000 and 10,000). The estimate of the
Monte Carlo (MC) standard error proposed by Geweke (1992) is considered. Table 6
shows the results both for the fully empirical and the standard approaches.

The number of iterations is specified in the first column, while the number to discard
iterations (burn-in phase) is contained in column 2. Besides the posterior mean and the
standard deviation, an estimate of the MC error is reported, which has been calculated
by using the R package BOA. One single replication, depending on the number of iter-
ations in the chain, took only few seconds to complete (from 1 to 7 s) on a 2.66 GHz
Intel Core2 Quad desktop. The simulations conducted by using 1,000 iterations do
not satisfy the accuracy condition of MC error less than 5 % of the standard deviation,
while the solution with 2,000 iterations slightly satisfies it. On the other hand, running
5,000 or 10,000 iterations turns out with MC errors significantly lower than the 5 %
of standard deviation and are thereby considered a good standard of accuracy. As a
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consequence of these results, the adopted number of iterations was settled to 5,000.
For each replication of the simulation studies described in the section, the MC error
was assessed to be less than 5 % of standard deviation. Trace plots were inspected,
showing random fluctuations of the sample values around the mean, without trends.
Absence of autocorrelations was observed at lags greater than 5. Finally, by using
multiple chains, the Gelman-Rubin R statistic was computed. Values close to 1 were
found, suggesting that stationarity had been reached.

The chosen chain length represents a good compromise between speed of the algo-
rithm and accuracy. Of course, we should also mention that the model implemented is
rather simple, because it is a unidimensional model for binary indicators. Probably, the
extension of the algorithm to more complicated model, as multidimensional models,
would come out with a slower convergence.

5 Empirical examples

The MCMC CAT described in previous sections provides a useful strategy for improv-
ing the quality of measurement precision and has a good potentiality in real applications
of adaptive testing. In order to show the effectiveness of the method in practice, two
case studies were chosen in the field of intelligence and educational testing.

5.1 An application in intelligence testing

Data regarding a computer adaptive intelligence test for personnel selection, the Con-
nector Ability (Maij-de Meij et al. 2008) were available. The test aims at measuring
the general intelligence factor (G-factor) by using different types of cognitive, non-
verbal items. The complete test consists of three different subscales: Number series
(NS), Figure series (FS), and Raven’s matrices (RM). For each item, the candidate is
required to identify the missing element that completes a pattern. All items measure
general mental ability, in particular the candidate’s capacity for analyzing and solving
problems, abstract reasoning, and the ability to learn. The Connector Ability has been
developed for applications in the area of HRM, for example for job selection or for
career development.

The item bank for the Number series test consisted of 499 items calibrated with
the 2PNO model (Maij-de Meij et al. 2008). Some descriptive statistics on the item
parameters included in the item bank are shown in Table 7.

Discrimination parameters vary in the interval [0.180; 1.470], with a mean value
around 0.7. The item discrimination parameter reflects the capability of the item to
differentiate candidates with different ability. Items with high discrimination parame-
ters are preferred in CAT, because they are also more informative, as demonstrated by
the information function in Eq. 3. Items included in the item pool are rather discrimi-
nating. Difficulty parameters are included in the range [−2.290; 2.300] with a mean
of −0.4. Difficulty parameters are on the same scale of the ability θ , and optimal item
pools contain items with different levels of difficulties in order to estimate the ability
of different candidates accurately. The pool contains different items with respect to
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Table 7 Descriptive statistics
on the item parameters included
in the item bank

Discrimination
parameters

Difficulty
parameters

Mean 0.745 −0.411

Median 0.727 −0.410

Standard deviation 0.309 0.748

Minimum 0.180 −2.290

Maximum 1.470 2.300

difficulty. However, we should note that the median and the mean values are close to
−0.4, denoting a slight asymmetry in favour of easy items.

Test results, including ability estimates for each of the three subscales, were avail-
able for a sample of 660 real examinees. The sample consists of about 61 % females
and 39 % males. The majority (56 %) of the candidates comes from an higher voca-
tional education, while the remaining 44 % from a university track. Also, the 40 %
of the sample is Dutch native, the 44 % is western immigrant and the remaining part
is non western immigrant. The mean ability in the RM subscale was equal to 0.01
(SD = 0.69), while the mean ability in the NS subscale was −0.24(SD = 0.70).

The relation between the RM and NS subscales was estimated, based on the reported
abilities estimated for the subscales, resulting in the following empirical prior distri-
bution

θ |X1 ∼ N (−0.243 + 0.394X1; 0.414), (16)

where θ is the ability in the NS subscale and X1 is the ability in the RM subscale. Given
the standard normal scale of ability, the estimated regression coefficient β̂1 = 0.394
shows a positive and moderate effect of the RM ability on the performance in the NS
subscale.

To determine whether the introduction of the prior distribution (16) is effective in
this case study, an adaptive version of the NS test is simulated using the reported ability
estimates for the group of 660 real examinees as true abilities for the candidates.

For each examinee, the adaptive test is replicated 10 times, and the ability estima-
tion is performed by using 5,000 MCMC iterations with the usual burn-in of length
500. The algorithm stopping rule is established as test information at the current ability
estimate above 10, which is the equivalent of a standard error less or equal to 0.32 for
a population with a standard normal ability distribution. For each candidate, the mean
number of submitted items over replications is recorded. As usual, the three MCMC
CAT approaches (fully empirical, empirical initialization and standard) are compared.
The simulation results for the three different approaches are shown in Table 8.

Before looking at the mean number of items needed in CAT, a remark on the setting
of the item parameters with respect to the examinees being simulated is needed. As can
be observed from the first column of Table 8, 16 equal spaced intervals of ability from
−2.4 to 2.4 are constructed in order to present aggregated results. The second column
shows the number of items with difficulty parameters falling in each interval while
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the third column contains the number of simulees in each ability range. Three items in
the bank have difficulty parameters in the range [−2.4;−2.1], but no examinees in the
same ability range were simulated. Eight items in the bank had difficulty parameters
above 1.5, where also no examinees were simulated.

With regards to low ability intervals, the fully empirical solution performs better
than the others, with a mean number of items needed in test administration sensi-
bly lower while the standard solution presents the worst results. While approaching
intermediate ability levels, the number of items needed in the simulation reduces and
the three approaches show similar performances, even if the empirical initialization
and the standard solutions still seem the weakest. For high ability intervals, the fully
empirical solution performed better than the empirical initialization and the standard
CAT. The results of the MCMC CAT applied to a real item bank regarding intelligence
tests show that the inclusion of empirical prior information, especially in the estima-
tion of the candidate’s ability, is effective in reducing the test length for the same test
information level. The application also demonstrates that the quality of results depends
much on the quality of the item bank itself in terms of size and item properties.

5.2 An application in educational testing

In this study, data refer to the mathematics test administered by the Italian National
Evaluation Institute for the School System (INVALSI) to students at the end of lower
secondary school (eight grade). The test consists of 22 items and it is administered
in the traditional linear fixed form. The test contains multiple-choice, open and close
constructed-response items which have been recoded as binary items. The item param-
eters of the test items have been estimated according to model (1) by using a random
sample of 4,865 students. The sample consists of about 51 % females and 49 % males,
and the majority of students are Italian (93,7 %). Descriptive statistics on the estimated
item parameters are reported in Table 9.

Item discrimination is moderate while item difficulties are included in the range
[−1.113; 1.252], denoting that the items are more informative for abilities that do not
diverge too much from zero. Moreover, the test is characterized by rather easy items
as can be inferred by the negative mean and median of the difficulty parameters.

Besides the mathematics test, a test on Italian language is administered to the same
students. The test consists of 25 items about reading comprehension and grammar.
The idea is to use information from the Italian test in the empirical distribution for

Table 9 Descriptive statistics
on the item parameters for the
mathematics INVALSI test

Discrimination
parameters

Difficulty
parameters

Mean 0.600 −0.210

Median 0.569 −0.446

Standard deviation 0.173 0.684

Minimum 0.388 −1.113

Maximum 0.905 1.252
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Table 10 Ability estimates for the empirical and standard solution on the mathematics INVALSI test

True θ Empirical (T = 5) Empirical (T = 10) Standard (T = 22)

θ̂ SD Bias θ̂ SD Bias θ̂ SD Bias

−2 −2.13 0.60 −0.13 −2.09 0.56 −0.09 −1.68 0.41 0.32

−1.5 −1.48 0.51 0.02 −1.57 0.51 −0.07 −1.29 0.47 0.21

−1 −1.02 0.55 −0.02 −1.04 0.46 −0.04 −0.83 0.45 0.17

−0.5 −0.57 0.57 −0.07 −0.47 0.55 0.03 −0.47 0.41 0.03

0 0.09 0.51 0.09 0.03 0.50 0.03 −0.02 0.47 −0.02

0.5 0.48 0.52 −0.02 0.48 0.52 −0.02 0.52 0.50 0.02

1 0.97 0.53 −0.03 1.07 0.48 0.07 0.91 0.44 −0.09

1.5 1.51 0.51 0.01 1.60 0.52 0.10 1.40 0.52 −0.10

2 2.10 0.61 0.10 2.11 0.58 0.11 1.77 0.58 −0.23

the ability in mathematics. Therefore, we estimated the linear relation between the
mathematics ability score (θ) and the Italian ability score (X1) on the random sample
of 4,865 students. The results provided the following empirical prior distribution

θ |X1 ∼ N (0.78X1; 0.53). (17)

The estimated regression coefficient β̂1 = 0.78 shows a positive and strong relation
between the two ability scores.

In order to demonstrate the effectiveness of our proposal, we treat the mathematics
items as a small item pool for adaptive testing and we compare different methods in
estimating student abilities in the range [−2; 2] by intervals of width 0.5. As usual,
our approach is denoted empirical and consists in the introduction of the information
derived from distribution (17) both in the initialization and in the ability estimation.
The approach is compared to the standard solution, where a standard normal is used
as prior distribution for θ and the ability initialization is fixed in θ0 = 0. Differently
to the previous study, we apply a fixed-length stopping rule where the total number of
submitted items is 5 and 10 for the empirical approaches and 22 (the total test length)
for the standard solution. For each ability value, 100 replications were used. The results
in Table 10 are summarized in terms of estimated ability θ̂ , standard deviation among
the replications (SD) and Bias.

As can be clearly seen, the results show that the empirical approaches outperform
the standard one in terms of bias. In fact, with only 5 items, the introduction of empirical
information about the student performance in the Italian test is effective in reproducing
the student ability in mathematics precisely. This is especially true for ability levels out
of the range [−0.5; 0.5], where the performance of both approaches are comparable.
These results are direct consequences of the choice of the prior ability distribution and
the ability initialization. In fact, the choice of a standard normal distribution as prior
and of the ability initialization at θ0 = 0 leads to a precise estimation of candidates
abilities close to zero, even if a larger number of items (T = 22) is used. On the
other hand, the empirical approach is based on a variable initialization, improving the
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estimation also with a short number of items. Finally, it can be noticed that the role
of the prior is much more evident in the shorter test (T = 5), when likelihood has a
lower weight in the estimation.

6 Discussion

The study focused on increased efficiency of computerized adaptive testing. It also
introduced the problem of ability estimation in computerized adaptive testing under
particular situations of uncertainty about the candidate’s level of proficiency. Exam-
ples are CAT consisting of a small number of items or candidates with latent ability
far from average. The introduction of prior information in the algorithm resulted in
more accurate ability estimates or, analogously, in a reduction of the test length at a
given level of precision, and strengthened the applicability of CAT for extreme ability
levels and for short CATs. This approach was developed within the MCMC methods,
particularly adopting the Gibbs sampler to integrate likelihood with empirical prior
information about the candidate. The use of MCMC in ability estimation allows to
overcome both the technical limitations of the Gaussian quadrature in estimation and
the problem of non-mixed patterns in CAT.

The main purpose of the study was to compare the precision of ability estimates
among different specifications and uses of prior distributions. Therefore, a fixed-length
termination rule was applied in the simulation studies more intensively. However, a
study was conducted also adopting a variable-length termination rule which was used
to compare the number of items needed in order to obtain the same precision of mea-
surement.

The findings of simulation studies suggest that the introduction of informative pri-
ors is effective in improving the accuracy of ability estimates, especially when dealing
with rather short tests and when the ability is far from zero. In particular, the mea-
surement precision is improved when empirical priors are introduced both to initialize
and to estimate ability. The use of empirical information is highly recommended with
rather short tests, where the standard approaches based on a standard normal prior fail
to reproduce stable ability estimates. When using a variable length CAT, it was dem-
onstrated that the test could be shortened and, as a consequence, the item overexposure
could be reduced as well.

Despite the great availability of background variables concerning the individu-
als, the quality of information remains a fundamental issue. The usefulness of the
described approach depends highly on the predictive capability of the collateral vari-
ables. In many applications in psychological measurement, it would be acceptable to
use background variables to increase measurement precision. For example, in person-
nel selection, companies are just interested in selecting the best candidates based, and
test efficiency is a major issue. Besides, adaptive tests are becoming more and more
used in the area of medicine, where tailored tests are proposed to patients in order to
infer their physical and mental health. Covariates about patients such as psychologi-
cal status can be introduced as empirical prior information in these settings. In many
medical, clinical or diagnostic applications, reducing the burden of test administra-
tion for both patients and doctors/psychologists is an important topic. In educational
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applications, it might be an issue to use collateral information. In high-stakes tests
like exams or admission tests, the use of collateral information would not be accepted.
However, when such problems of fairness arise and empirical information cannot be
used in the ability estimation, an initial inference which is as close as possible to the
true ability value is recommended, i.e., an empirical CAT initialization is desirable.
This approach solves the issue of overexposure of the first item, observed in CAT
combining a fixed initialization (e.g., ability equal to zero) and maximum-informa-
tion criterion for item selection. Because good performances of MCMC CAT have
been recorded when background variables are used both in the initialization and in the
ability estimation, another possibility would be to exclude the use of prior information
only from the final ability estimation in order to prevent the method from potential
criticism due to fairness issues.

MCMC CAT might also provide other advantages which can be used in further
research. In the current study, the item parameters were assumed to be fixed and
known. However, these parameters result from a calibration study and have been esti-
mated with uncertainty. In a Bayesian estimation procedure, this uncertainty can be
taken into account. In this way, unrealistically high precision of ability estimates due to
the assumption of known item parameters might be dealt with in future applications.
Moreover, the Gibbs sampler represents a flexible tool which can be implemented
for more complex IRT models and with different specifications for the prior distribu-
tion, depending on the available empirical covariates. In particular, we believe that an
MCMC approach would be even more useful when the abilities of the respondents do
not have a normal distribution, or when the distribution is skewed (see e.g. Woods and
Lin 2009). Finally, future research may deal with the introduction of Bayesian item
selection methods, as used in van der Linden (1998), Veldkamp (2010).
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