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Abstract In this work we propose a semiparametric likelihood procedure for the1

threshold selection for extreme values. This is achieved under a semiparametric model,2

which assumes there is a threshold above which the excess distribution belongs to3

the generalized Pareto family. The motivation of our proposal lays on a particular4

characterization of the threshold under the aforementioned model. A simulation study5

is performed to show empirically the properties of the proposal and we also compare6

it with other estimators.7

Keywords Extreme values theory · Fisher consistency · Semiparametric models ·8

Threshold selection9

1 Introduction10

In the context of extreme values theory, the concept of threshold selection has differ-11

ent meanings. For instance, to estimate the extreme value index γ for a Pareto type12

distribution, in his seminar paper Hill (1975) proposed to use observations above a13

threshold u0. Ever since, many others such as Guillou and Hall (2001), also refer to the14

threshold as the number k of largest order statistics that should be used to estimate γ15

to control bias and variance. These two problems, are among those known as threshold16

selection.17
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J. Gonzaleza et al.

On the other hand, Pickands (1975) proved that if the underlying distribution F18

satisfies the extremal limit principle, then the excess distribution above u can be19

approximated by a Generalized Pareto distribution, when u increases to infinity.20

In the context of data treatment, there is an interest in determining the threshold21

value u for which the approximation becomes reliable. Several graphical methods have22

been developed to solve this problem. One way of choosing the threshold is through23

the Mean Residual Plot, see for example Embrechts et al. (1997). Another possibility24

simply consists in choosing a high percentile of the distribution as in DuMouchel25

(1983). Behrens et al. (2004) proposed a Bayesian method for threshold selections,26

while Cabras and Morales (2007) introduced the idea that extreme observations can27

be considered outliers of a specified parametric model. Recently, MacDonald et al.28

(2011) considered the same mixture model we will introduce here, but their inference29

is done under a Bayesian framework. Finally, Wong and Li (2010) also considered a30

mixture model where both densities (above and below the threshold) are modeled in31

a parametrical way.32

Once the threshold is chosen, the data above its value are used to estimate the33

parameters of the tail distribution, the extreme value index being one of them. With34

this problem on mind, Beirlant et al. (1996) suggested to consider a threshold which35

minimizes the bias and the variance of the model. Methods based on resample or36

bootstrap were developed by Hall (1990), and Gomes and Oliveira (2001). Drees and37

Kaufmann (1998) presented a sequential procedure based on the law of the iterated38

logarithm. An exhaustive summary touching upon these and other methods can be39

found in Coles (2001) and Beirlant et al. (2004a,b).40

As pointed out by Davison and Smith (1990) and Coles and Tawn (1994), to properly41

estimate the threshold is not an easy task. If the threshold chosen is too high, only a42

few observations will be used to estimate the tail of the distribution, increasing the43

variance of the estimator. On the other hand, small values for the threshold will lead44

to biased estimators. Therefore, an adequate threshold must achieve a proper balance45

between the variance and the bias of tail estimators. Several authors have studied the46

influence of the choice of the threshold on the parameter estimation of the tail of the47

distribution (see for example, Smith 1987; Frigessi et al. 2003; Coles and Tawn 1996;48

Coles and Powell 1996).49

Most of these sample methods are designed to determine a value that, in general, is50

not even well defined for the entire population, since there is not a proper definition of51

the threshold for the distribution F generating the data. To overcome this limitation,52

in this work we introduce a model where Fu , the excess distribution above u, belongs53

to the generalized Pareto family for u big enough. The stability property of this family54

allows to define the threshold as the smallest value for which the excess distribution is55

a generalized Pareto distribution. Thus, the threshold is defined for each distribution56

in the model. Once this has been established, we provide a characterization of the57

threshold which is used to estimate it from a random sample.58

The paper is organized as follows. Section 2 summarizes the main properties related59

to the excess distribution and the generalized Pareto family. In Sect. 3, we introduce60

the model while some theoretical properties are studied in Sect. 4. The estimation61

procedures are introduced in Sect. 5, followed by an improved version which captures62

the real nature of the threshold. Section 6 includes a Monte Carlo study designed to63
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Threshold selection for extremes under a semiparametric model

evaluate the behavior of the proposed estimators. In Sect. 7, we compare our estimators64

with other methods developed in the literature.65

2 Preliminaries66

Given a random variable X distributed according to F , for each u ∈ R, the excess67

distribution Fu(y) is defined by68

Fu(y) = P(X ≤ y + u|X > u), for y ≥ 0. (1)69

In this way, we get that Fu is the conditional distribution of X − u given that X is70

bigger than u: X − u|X > u ∼ Fu . In extreme values theory it is known that, under71

certain conditions, as u increases to infinity, Fu can be approximated by a generalized72

Pareto distribution. The generalized Pareto family (G.P.F), denoted from now on by73

H, is a parametric model indexed by θ = (σ, γ ), with σ > 0 and γ ∈ R, while for74

each parameter the distribution function Hσ,γ is given by75

Hσ,γ (z) = 1 −
(

1 +
zγ

σ

)−1/γ

+
, z > 076

for γ �= 0, while Hσ,0(z) = 1−e− z
σ , for z > 0; i.e. the exponential family is included77

in the G.P.F.78

The generalized Pareto family satisfies the so called stability property. Namely, it79

states that if for some u0 the excess distribution Fu0 belongs to H, then the same holds80

for any u > u0: if Fu0 = Hσ0,γ , for some σ0 > 0 and γ ∈ R, then for all u ≥ u0 we81

get that Fu = Hσ(u),γ , where σ(u) = σ0 + γ (u − u0).82

Pickands (1975) proved that if the underlying distribution F satisfies the extremal83

limit principle, then the excess distribution can be approximated by a Pareto distribu-84

tion. More precisely, let (X i )i≥1 be a sequence of independent and identically distrib-85

uted (i.i.d.) variables with common distribution F . Assume that there exist normalizing86

constants bn > 0 and an ∈ R such that the sequence b−1
n (max{X1, . . . Xn}− an) con-87

verges in distribution to an extreme value distribution Gγ with the extreme index γ ,88

defined by89

Gγ (x) =

{
exp{−(1 + γ x)−1/γ } for γ �= 0, 1 + γ x > 0,

exp{− exp(−x)} for γ = 0, x ∈ R.
90

Thus the excess distribution can be approximated by a Pareto distribution, in the91

following way: there exists σ(u) such that92

lim
u→x∗

sup
0≤x<∞

∣∣Fu(x) − Hσ(u),γ (x)
∣∣ = 0,93

where γ is the extreme value index associated to F and x∗ is its right boundary:94

x∗ := sup{x : F(x) < 1}.95
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J. Gonzaleza et al.

As we mentioned in the Introduction, we will propose here a model defined by96

those distributions for which there exists a threshold value u0, above which the excess97

distribution belongs to the generalized Pareto family.98

3 The model99

In this work, all distributions to be considered have a density function, and we use fu to100

denote the density associated to Fu . We denote by M the set of distribution functions101

on R having density f , for which there exists u such that the excess distribution Fu102

belongs to the generalized Pareto family. More precisely, there exist σ(u) and γ such103

that Fu = Hσ(u),γ . The stability property of this family guarantees that for any ũ > u,104

Fũ is also in the G.P.F. Then, if F ∈ M we have that Fu ∈ H for all u big enough. For105

F ∈ M, its threshold will be defined as the smallest value u for which Fu belongs to106

H. This definition requires the following consideration.107

Lemma 1 Take F ∈ M. Then,108

inf{u : Fu ∈ H} = min{u : Fu ∈ H}.109

Proof Let u∗ = inf{u : Fu ∈ H}. To prove that the infimum is attained, consider110

un ↓ u∗, with Fun = Hσ(un),γ . Note that the excess distributions are continuous,111

meaning that Fun (y) → Fu∗(y) for all y ≥ 0. Now, if γ = 0, we get that Fun112

is an exponential distribution with the same parameter λ for any un and so, Fu∗ is113

also an exponential distribution with parameter λ, implying that Fu∗ belongs to H,114

as we wanted to prove. For γ > 0, the stability property of the G.P.F. also implies115

that σ(un) = σ(un+1) + γ (un − un+1), which guarantees that σ(un) is a decreasing116

sequence of positive numbers. Let σ ∗ denote its limit. If σ ∗ = 0, we get that Fu∗ is117

the distribution corresponding to the measure concentrated at zero, and so F does not118

have a density. If σ ∗ > 0 we get that Fu∗ = Hσ ∗,γ . When γ < 0 we get that σ(un) is119

an increasing function that can not diverge because F has a density function, and so120

we also get that Fu∗ = Hσ ∗,γ , with σ ∗ = lim σ(un). ⊓⊔121

Now, we are ready to define the threshold, for any distribution in the model M, as122

follows:123

Definition 2 For F ∈ M, the threshold u0(F) is defined by124

u0(F) = min{u : Fu ∈ H} . (2)125

We use θ0 = (σ0, γ0) to denote the parameter associated with the excess distribution126

at the threshold, meaning that127

Fu0(F) = Hθ0 . (3)128

The aim of this work is obtain an estimator of the threshold u0(F) given in the129

previous definition, based on a sample X1, . . . , Xn i.i.d. distributed according to F .130
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Threshold selection for extremes under a semiparametric model

4 Some theoretical considerations131

From now on, we use EF [l(X)] and E f [l(X)] to denote the expected value of l(X)132

when X is distributed according to F or has density f , respectively. Before presenting133

our proposal for the estimation of the threshold, we need to introduce some objects.134

For θ = (σ, γ ), let hθ denote the density function of Hθ . Now, for any distribution G135

(not necessarily in M) with density g and for each u, we choose θ0(u, G) in such a136

way that the distribution Hθ0(u,G) is the closest element in H to the excess distribution137

Gu , minimizing the Kullback–Leibler (KL) divergence. More precisely, if gu denotes138

the excedent density, θ0(u, G) satisfies139

K (hθ0(u,G), gu) ≤ K (hθ , gu) ∀ θ,140

where for any pair of densities g and f , the Kullback–Leibler divergence between g141

and f is given by142

K (g, f ) =

∫

R

ln

(
f (x)

g(x)

)
f (x)dx = E f [ln ( f (X))] − E f [ln (g(X))] . (4)143

This formula guarantees that θ0(u, G) can also be characterized as144

θ0(u, G) = argmax
θ

EG [ln hθ (W − u)|W > u] . (5)145

A second tool to be considered is the application of T (u, θ, g) that is defined as146

follows. Given a density g, u ≥ 0 and θ , T (u, θ, g) is a new density which is equal to147

g below u, but above u it has tail density in the G.P.F. with parameter θ , i.e.148

T (u, θ, g)(x) = g(x)I{x≤u} + {1 − cu(g)}hθ (x − u)I{x>u} , (6)149

where150

cu(g) =

u∫

−∞

g(x) dx .151

Note that if W is a random variable with density g, T (u, θ, g) can also be considered152

as a convex combination of two density functions with disjoint support, in the following153

way:154

T (u, θ, g)(x)= P(W ≤ u)
1

cu(g)
g(x)I{x≤u}+{1−P(W ≤ u)}hθ (x−u)I{x>u}. (7)155

We have introduced all these objects to get the following Lemma, which proof is156

straightforward.157
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J. Gonzaleza et al.

Lemma 3 Consider F ∈ M, with density f . Let u0(F) be its threshold and θ0 =158

(σ0, γ0) the threshold parameter, both introduced at Definition 2. Then,159

1. Fu = Hθ0(u,F), for u ≥ u0, with θ0(u, F) = (σ0 + γ0(u − u0), γ0)160

2. T (u, θ0(u, F), f ) = f for all u ≥ u0(F).161

3. Moreover, by definition of u0(F), if for some θ we get that T (u, θ, f ) = f , then162

u ≥ u0 and θ = θ0(u, F).163

Now, given a random variable X with density f , consider the function164

F(u) = E f [ln T (u, θ0(u, F), f )(X)] . (8)165

As we mentioned, for F ∈ M, T (u, θ0(u, F), f ) = f for all u ≥ u0 and so F(u) =166

F(u0). We will see that F(u) < F(u0) for u < u0(F), meaning that the behavior of167

F changes drastically at u0(F).168

Lemma 4 If F ∈ M, then F(u) = F(u0) for u ≥ u0(F) and F(u) < F(u0) for169

u < u0(F).170

Proof We already proved that F(u) = F(u0) for u ≥ u0(F). In order to study the171

behavior of F(u) for u < u0, note that172

F(u0) − F(u) = E f [ln ( f (X))] − F(u) = K (T (u, θ0(u, F), f ), f )173

and so174

F(u0) − F(u) ≥ 0,175

since K (T (u0, θ0(u0(F), F), f ), f ) ≥ 0. If F(u0) = F(u) for some u < u0, we176

conclude that the Kullback–Leibler divergence between T (u, θ0(u, F), f ) and f is177

zero and so, T (u, θ0(u, F), f ), f ) = f , contradicting the definition of u0(F). ⊓⊔178

From the previous result, we get that the functional M(F) defined by179

M(F) = min
{

u : F(u) = max
s

F(s)
}

, (9)180

is Fisher consistent under the model M for u0(F), meaning that M(F) = u0(F),181

for all F ∈ M. This fact suggests that u0(F) can be estimated through an empirical182

version of M(F). Therefore, if Fn is an empirical version of F , we can consider the183

smallest value that maximizes Fn as an estimator u0(F).184

5 Proposal for the estimation of the threshold185

We can now undertake our first attempt to estimate u0(F) under the model M, based186

on the results and ideas studied in the previous section. We start by constructing Fn(u),187

an empirical version of F , using plug-in estimators and replacing expected values by188
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Threshold selection for extremes under a semiparametric model

averages. More precisely, we will consider a nonparametric estimator of f and the189

maximum likelihood estimator (MLE) of θ0(u, F). This estimation procedure can be190

described in the following steps.191

Step 1: Denote by f̂ a non parametric density estimator of f , based on X1, . . . , Xn .192

Step 2: For each u, consider193

(a) f̂1u(x) =
f̂ (x)1{x≤u}

ĉu
where ĉu = cu( f̂ ) =

∫ u

−∞ f̂ (x)dx .194

(b) p̂u =

∑n
i=1 1{Xi ≤u}

n
.195

(c) θ̂u the maximum likelihood estimator under the G.P.F., based on X i − u, with196

X i > u, which is a consistent estimator of θ0(u, F).197

Step 3: For each u, we estimate T (u, θ0(u, F), f ) with T̂u , given by198

T̂u(x) = p̂u f̂1u(x) + (1 − p̂u)h θ̂u
(x − u)1{x>u}.199

Step 4: Let F̂n(u) = 1
n

∑n
i=1 ln T̂u(X i ).200

Step 5: In the first attempt to estimate the threshold we consider the first point201

where F̂n attains its maximum, i.e.202

ũ0 = inf
{

u : F̂n(u) = max
s

F̂n(s)
}

. (10)203

Remark 5 In Step 1, we can consider any consistent nonparametric density estimator,204

such as a kernel type estimator, splines, orthogonal series, among others. Both in205

the simulation study as in the comparisons with other methods, we will consider206

kernel type estimates introduced by Rosenblatt (1956) and Parzen (1962). It is well207

known that the performance of kernel density estimators depends crucially on the208

value of the smoothing parameter, commonly referred to as the bandwidth. There are209

many methods used to select the bandwidth, such as the plug-in and cross validation210

procedures. Both, the paper of Sheater (2004) and the book of Givens and Hoeting211

(2005) provide a review and a practical description on these methods.212

Note that in Step 4, we are evaluating T̂u at X i . We may also consider T̂u,−i (X i ),213

with T̂u,−i (·) constructed using the sample but leaving out the observation X i , both214

for the non parametric and for the parametric steps.215

At this point, we wish to highlight some computational aspects involving the cal-216

culation of ũ0. First, note that we are looking for the threshold above which the excess217

distribution follows a generalized Pareto law. The model M is inspired in the fact218

that the excess distribution Fu can be approximated by a G.P.D. for large values of219

u. This means that we can expect to see very few observations below u0(F). That is220

why we will only consider the function F̂n for those values of u between the order221

statistics X ([0.75n]) and X (n). We evaluate the function F̂n along an equally spaced grid222

UUU = {X ([0.75n]) = u1 < u2 < · · · < ut−1 < ut = X ([n])}, obtaining the values223

LLL = (L1, . . . , L t ) =
(
F̂n(u1), . . . , F̂n(ut )

)
.224
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Fig. 1 .

In order to illustrate some of the computational details, we consider the following225

example. We generate a random sample X1, . . . , Xn of size n = 2,000 , according to226

the following density function227

f (x) = 0.95
1

5
1{0≤x≤5} + (1 − 0.95) 0.5e−0.5(x−5)1{x>5}.228

If we consider the proposed estimator employing a nonparametric kernel density esti-229

mator f̂ (x), based on the Epanechnicov kernel with h = 0.5, F̂n attains its maximum230

at 4.971, which is close to u0(F) = 5, the true value of the threshold that we want to231

estimate. Figure 1a shows the values of LLL for the mentioned value h of the smooth-232

ing parameter. However, if we consider another smoothing parameter to compute the233

nonparametric density estimator, F̂n may continue to increase, attaining its maximum234

at the final point of the interval that we are considering. This is the case shown in235

Fig. 1b. Nevertheless, in both cases we observe that there is a value ū, above which236

the function F̂n increases very slowly with respect to its behavior below ū. Moreover,237

we can consider that the function F̂n increases until ū, and is almost constant above238

ū, except for stochastic and empirical fluctuations. The analysis of the behavior of F239

presented at Lemma 4 suggests that ū should be the estimator of u0(F) that we are240

looking for.241

Given the need to distinguish the value of ū, we used an heuristic strategy which242

consists in recognizing the value of u from which the function F̂n is approximately243

constant by comparing its value with its partial average value SSS.244

To be more precise, given L = (L1, . . . , L t ), we consider their partial average245

values given by S = {S j : 1 ≤ j ≤ t}, where S j is defined as246

S j =
1

j

j∑

i=1

L i .247
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Threshold selection for extremes under a semiparametric model

The differences D = {D j : 1 ≤ j ≤ t − 1} are given by248

D j = L j+1 − S j , for 1 ≤ j ≤ t − 1.249

The main idea behind this construction, is that the difference between LLL and SSS250

attains its maximum in those positions where F̂n is maximized, or its growth rate251

changes drastically, like in the case shown in Fig. 1b.252

After all these considerations, in order to estimate u0(F) we will compute both253

û0,A = ũ0, the first attempt to estimate the threshold presented at (10), and its mod-254

ified version û0,B = ū using the heuristic strategy presented. Both strategies can be255

summarized as follow:256

1. Concerning the computation of û0,A = ũ0, consider257

J0A = min{ j : L j = max
1≤k≤t

Lk} and û0A = u J0A
. (11)258

2. On the other hand, in order to compute û0,B = ū, we consider259

J0B = min{ j : Di ≤ D j , 1 ≤ i ≤ t − 1} and û0B = u J0B
. (12)260

In Fig. 2 we can see that the heuristic method proposed allows to identify the value261

where the growth of F̂n changes, both in case a) and b) from Fig. 1.262

Even if the extreme index γ plays a relevant role in the field of extreme values,263

in this work we focus on the threshold itself. However, once the threshold is chosen,264

we can estimate γ considering the MLE under a generalized Pareto family. More265

specifically, recalling that θ̂u = (̂σu, γ̂u) is the maximum likelihood estimator under266

the G.P.F., based on X i − u with X i > u, we estimate the extreme value index with267

γ̂0A = γ̂û0,A
and γ̂0B = γ̂û0,B

. (13)268

6 Some simulation studies269

In this section we perform two different simulations to evaluate the behavior of both270

our original proposal and its modified version.271

The uniform—exponential model: The first case to be considered assumes that the272

density of the observations is given by273

f (x) = 0.95
1

5
1{0≤x≤5} + 0.05 0.5e−0.5(x−5)1{x>5},274

as in the example introduced in the previous section. This density implies that (i) the275

threshold is u0 = 5, (ii) with probability 0.95 the observations are below the threshold276

uniformly distributed, (iii) the excess distribution above the threshold is exponential277

with parameter λ0 = 0.5.278

We perform 1,000 replications of sample size n, with n = 500, 1,000, 1,500, 2,000.279

For each sample, we compute F̂n(u) following the steps described in the previous280
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Fig. 2 Solid and dashed lines represent LLL and SSS, respectively: a using bandwidth h = 0.5, b using

bandwidth h = 0.25. c, d DDD using bandwidth h = 0.5 and h = 0.25, respectively

section. Furthermore, at Step 1, we consider a nonparametric kernel density estimator281

f̂ (x), based on different kernels and different bandwidths: (i) h fixed taking the values282

0.1, 0.25, 0.5, 0.75, 1 and the Epanechnikov kernel; (ii) hucv and hbcv bandwidths283

chosen automatically according to the unbiased and biased cross-validation criteria,284

respectively (see Härdle 1991) and a Gaussian kernel. At Step 2, we take advantage of285

the fact that our data have been generated using an exponential model for the excess286

distribution (γ = 0) and so, for each u, we only estimate the exponential parameter287

with the MLE based on those observations above u, considering288

λ̂(u) =

∑n
i=1 1{Xi >u}∑n

i=1 (X i − u)1{Xi >u}
.289
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Threshold selection for extremes under a semiparametric model

Table 1 Mean squared error and Bias of û0A over the 1,000 replications for the uniform-exponential model

h n = 500 n = 1,000 n = 1,500 n = 2,000

MSE Bias MSE Bias MSE Bias MSE Bias

0.10 1.152 0.974 5.684 2.341 10.077 3.145 14.090 3.727

0.25 0.694 0.568 4.338 1.826 7.776 2.489 11.245 3.053

0.50 0.167 0.145 0.651 0.280 0.817 0.278 0.617 0.194

0.75 0.041 0.053 0.047 0.042 0.087 0.050 0.002 0.025

1.00 0.040 −0.071 0.022 −0.041 0.010 −0.023 0.008 −0.018

hucv 0.009 0.025 0.055 0.039 0.086 0.048 0.163 0.065

hbcv 0.003 0.009 0.002 0.015 0.001 0.017 0.001 0.020

Table 2 Mean squared error and Bias of û0B over the 1,000 replications for the uniform-exponential model

h n = 500 n = 1,000 n = 1,500 n = 2,000

MSE Bias MSE Bias MSE Bias MSE Bias

0.10 0.084 0.045 0.027 −0.035 0.004 −0.058 0.005 −0.064

0.25 0.020 −0.023 0.006 −0.049 0.004 −0.060 0.005 −0.067

0.50 0.007 −0.034 0.003 −0.050 0.004 −0.061 0.005 −0.068

0.75 0.006 −0.032 0.003 −0.050 0.005 −0.061 0.005 −0.068

1.00 0.055 −0.124 0.052 −0.126 0.042 −0.121 0.039 −0.122

hucv 0.003 −0.033 0.003 −0.050 0.004 −0.061 0.005 −0.068

hbcv 0.005 −0.044 0.004 −0.053 0.005 −0.063 0.006 −0.070

In this way, we get that F̂n(u) = 1
n

∑n
i=1 ln T̂u(X i ), where290

T̂u(x) = p̂u f̂1u(x) + (1 − p̂u )̂λ(u)e−̂λ(u)(x−u)1{x>u}.291

To summarize the simulation results, we report the mean squared error (MSE)292

and Bias corresponding to both û0,A (Table 1) and û0,B (Table 2), along the 1,000293

replications. In Tables 3 and 4 we present the results corresponding to λ̂0,J = λ̂(̂u0,J ),294

for J = A, B, respectively.295

As we can see in Table 1, the performance of û0A is deficient for small values296

of h. This can be explained because, in most of the 1,000 replications, for small297

values of h the estimator û0,A behaves as we show in Fig. 1b. This fact can not be298

corrected increasing the sample size. For large values of h, for example h = 1, we299

can conclude by comparing Tables 1 and 2, that the MSE for both estimators û0,A and300

û0,B are small and have the same magnitude. In Table 2, we can observe that for small301

values of h, û0,B has a good behavior. λ̂0A seems to perform better when h is chosen302

automatically, while λ̂0B has a good behavior for any sample size and does not seem303

to be very sensitive to the bandwidth selection criterion.304

Even though we started by considering û0A as our first attempt to estimate u0, the305

simulations show that a correction is required to achieve a consistent procedure. We306
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Table 3 Mean squared error and Bias of λ̂0A over the 1,000 replications for the uniform-exponential model

h n = 500 n = 1,000 n = 1,500 n = 2,000

MSE Bias MSE Bias MSE Bias MSE Bias

0.10 0.018 0.046 0.019 0.046 0.017 0.045 0.017 0.042

0.25 0.016 0.035 0.017 0.039 0.015 0.037 0.015 0.035

0.50 0.012 0.015 0.008 0.014 0.005 0.010 0.004 0.007

0.75 0.010 0.007 0.004 0.005 0.003 0.006 0.002 0.003

1.00 0.009 0.005 0.004 0.005 0.002 0.005 0.002 0.003

hucv 0.009 0.006 0.004 0.006 0.003 0.006 0.002 0.004

hbcv 0.009 0.009 0.004 0.007 0.002 0.007 0.002 0.004

Table 4 Mean squared error and Bias of λ̂0B over the 1,000 replications for the uniform-exponential model

h n = 500 n = 1,000 n = 1,500 n = 2,000

MSE Bias MSE Bias MSE Bias MSE Bias

0.10 0.016 0.060 0.009 0.060 0.007 0.066 0.007 0.067

0.25 0.015 0.057 0.009 0.061 0.007 0.067 0.008 0.070

0.50 0.013 0.053 0.009 0.061 0.007 0.068 0.008 0.071

0.75 0.013 0.052 0.009 0.061 0.007 0.068 0.008 0.071

1.00 0.013 0.051 0.008 0.060 0.007 0.068 0.008 0.071

hucv 0.012 0.051 0.009 0.060 0.007 0.068 0.008 0.071

hbcv 0.014 0.057 0.009 0.063 0.008 0.070 0.008 0.073

see that û0B overcomes the limitations displayed by û0A, and so we believe that this307

estimator should be consistent for u0.308

The Gaussian–Pareto model: Now, we consider a truncated normal density below309

u0 and a generalized Pareto distribution above u0. Namely, if g(x, a, b) denotes a310

density function corresponding to a normal distribution N (a, b2), data are generated311

according to the following density function:312

f (x) = 0.93
g(x, a, b)∫ u0

−∞ g(s, a, b)ds
1{x≤u0} + (1 − 0.93)hσ0,γ0(x − u0)1{x>u0}, (14)313

with u0 = 3.480633, a = 2.3, b = 0.8, σ0 = 1.1 and γ0 = 0.3.314

As in the previous case, we generate 1,000 replications of sample size n, with315

n = 500, 1,000, 1,500, 2,000. The nonparametric density estimator was constructed316

as in the previous simulation, using the Epanechnicov kernel for fixed bandwidths and317

a Gaussian kernel for bandwidths automatically selected. At Step 2 c), the maximum318

likelihood estimator θ̂u , based on X i −u with X i > u, was computed using the package319

envir, developed by Mc Neil (2011), in R.320
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Fig. 3 a Histogram of a random sample. The vertical dotted line indicates the true value u0(F) = 3.480633,

while the vertical gray line highlights the estimator û0B = 3.44862. b The dotted and solid lines represent

the true density and the semiparametric estimator f̂ (x, θ̂ , û0B ) = T̂̂u0B
(x) using h = 0.5, respectively

Table 5 Mean square error and Bias of û0A over the 1,000 replications for the Gaussian–Pareto model

h n = 500 n = 1,000 n = 1,500 n = 2,000

MSE Bias MSE Bias MSE Bias MSE Bias

0.10 0.38 0.52 2.50 1.54 5.06 2.21 7.89 2.77

0.25 0.20 0.23 1.69 1.07 3.91 1.77 6.28 2.29

0.50 0.06 0.00 0.24 0.15 0.33 0.15 0.42 0.16

0.75 0.04 −0.05 0.02 −0.01 0.01 −0.01 0.01 −0.00

1.00 0.04 −0.07 0.02 −0.04 0.01 −0.02 0.01 −0.02

hucv 0.06 −0.13 0.05 −0.08 0.03 −0.05 0.07 −0.01

hbcv 0.06 −0.13 0.04 −0.09 0.02 −0.06 0.01 −0.04

Figure 3 shows the true density f (x) defined at (14) and its semiparametric esti-321

mator T̂u1(x), defined at Step 4 of Sect. 5, with u1 = û0A and h = 0.5, based on one322

sample of size n = 2,000.323

Tables 5 and 6 show the MSE and Bias of û0A and û0B , respectively, under different324

scenarios combining the sample size n with the smoothing parameters h, both taken325

fixed or chosen automatically. We see that the MSE of û0A is small for large values of326

h, while û0B performs pretty well and better than û0A for small values of h. When the327

bandwidths are chosen automatically, the results are comparable or even better than328

those obtained using fixed h.329

Tables 7 and 8 show the MSE and Bias of the extreme value index estimators330

presented at (13). We can observe that for all the different scenarios considered, the331

behavior of the estimators of γ is satisfactory. It is important to note that, when the332

bandwidth is selected using an automatic procedure, our recipes give rise to completely333

data driven estimators (Fig. 5).334

7 Comparisons with some other methods335

To conclude this work, we compare our proposals with some other estimators already336

considered in the literature.337
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Table 6 Mean squared error and Bias of û0B over the 1,000 replications for the Gaussian–Pareto model

h n = 500 n = 1,000 n = 1,500 n = 2,000

MSE Bias MSE Bias MSE Bias MSE Bias

0.10 0.15 0.15 1.04 0.70 1.88 0.89 2.47 0.94

0.25 0.09 −0.02 0.27 0.13 0.30 0.09 0.30 0.05

0.50 0.07 −0.09 0.12 −0.04 0.06 −0.09 0.06 −0.09

0.75 0.05 −0.10 0.06 −0.10 0.04 −0.11 0.04 −0.11

1.00 0.06 −0.12 0.05 −0.13 0.04 −0.12 0.04 −0.12

hucv 0.09 −0.01 0.31 0.16 0.36 0.14 0.34 0.08

hbcv 0.05 −0.12 0.05 −0.10 0.03 −0.10 0.03 −0.09

Table 7 Mean squared error and Bias of γ̂A over the 1,000 replications for the Gaussian–Pareto model

h n = 500 n = 1,000 n = 1,500 n = 2,000

MSE Bias MSE Bias MSE Bias MSE Bias

0.10 0.14 −0.07 0.13 −0.07 0.13 −0.08 0.14 −0.10

0.25 0.13 −0.07 0.12 −0.07 0.13 −0.08 0.13 −0.11

0.50 0.12 −0.09 0.07 −0.06 0.04 −0.04 0.03 −0.04

0.75 0.10 −0.08 0.04 −0.05 0.02 −0.03 0.02 −0.01

1.00 0.09 −0.07 0.04 −0.03 0.02 −0.02 0.02 −0.00

hucv 0.14 −0.07 0.12 −0.07 0.13 −0.08 0.14 −0.10

hbcv 0.09 −0.07 0.04 −0.04 0.02 −0.03 0.02 −0.02

Table 8 Mean squared error and Bias of γ̂B over the 1,000 replications for the Gaussian–Pareto model

h n = 500 n = 1,000 n = 1,500 n = 2,000

MSE Bias MSE Bias MSE Bias MSE Bias

0.10 0.10 −0.01 0.07 −0.01 0.07 0.01 0.07 0.02

0.25 0.09 −0.00 0.06 0.02 0.04 0.05 0.04 0.08

0.50 0.09 0.00 0.05 0.04 0.03 0.08 0.03 0.10

0.75 0.08 0.01 0.04 0.05 0.03 0.09 0.03 0.12

1.00 0.08 0.02 0.04 0.07 0.03 0.10 0.03 0.13

hucv 0.09 −0.00 0.06 0.02 0.04 0.05 0.04 0.07

hbcv 0.08 0.02 0.04 0.06 0.03 0.09 0.03 0.12

Comparison 1 Mean Residual Plot. Figure 4 shows the Mean Residual Plot (MRP)338

for the same sample considered in Fig. 3.339

This graphical method provides a classic estimator for the threshold and is motivated340

by the following fact: notice that if Z ∼ Hσ,γ with γ < 1, it follows that E[Z ] =341

σ/(1 − γ ). Then, if Fu = Hσ(u),γ for u ≥ u0, we get that342
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Fig. 4 Mean Residual Plot. The dotted line shows a possible choice of the estimator using the MRP

Fig. 5 Densities fλ for different

values of λ: black solid line for

λ = 0.2, dotted line for λ = 0.06

and gray solid line for λ = 0.02
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e(u) = E[X − u|X > u] =
σ(u0) + γ u

1 − γ
, ∀ u ≥ u0,343

meaning that mean residual function e(u) is linear, for u ≥ u0. Given a random sample344

X1, . . . , Xn the mean residual function can be estimated by345

ê(u) =

∑n
i=1 (X i − u) I{Xi >u}∑n

i=1 I{Xi >u}
.346

Therefore, the MRP is defined as the graph of ê(u), i.e.
{(

u, ê(u)
)

: u < X(n)

}
. Thus,347

once we have this plot, we can choose the threshold as the smallest value of u above348

which ê(u) is almost linear. This method is presented in Coles (2001).349

It is worth noting that the mean residual plot leads to a threshold selection method350

dependent on the particular criterion of the practitioner. Instead, our method provides351

estimators which are not subject to the experience or the ability of the user when the352

bandwidth is selected automatically.353

123

Journal: 10260 Article No.: 0234 TYPESET DISK LE CP Disp.:2013/7/4 Pages: 20 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

J. Gonzaleza et al.

Table 9 Comparison with competing methods (u0’s estimation)

G ûW L ûG H û0A(hucv) û0A(hbcv) û0B (hucv) û0B (hbcv)

MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias

W (1, 0, 5) 0.001 0.00 182.33 10.41 0.033 0.016 0.000 0.007 0.001 −0.021 0.001 −0.022

ε(1) 0.013 −0.03 174.91 9.70 21.703 3.925 1.754 −0.177 0.990 0.183 0.347 −0.117

Ŵ(1, 5) 0.21 −0.16 149.06 6.99 0.819 −0.294 0.646 −0.459 0.484 −0.351 0.542 −0.436

N (10, 1) 0.001 −0.01 144.094 7.03 0.153 0.019 0.002 −0.004 0.003 −0.039 0.003 −0.040

T5 0.006 −0.02 383.53 16.99 0.343 0.033 0.011 −0.025 0.014 −0.064 0.016 −0.068

Mean squared error and Bias of the estimates for the five models

Comparison 2 As in this work, Wong and Li (2010) also considered a mixture model354

where, conditionally on X > u0, the density belongs to the G.P.F. (as in our model),355

while, conditionally on X ≤ u0, the density belongs to a parametric family. Then,356

these authors estimate both the extreme value index γ and the threshold u0, defined357

as in this work.358

In their numerical simulation data are generated according to the following density359

function:360

f (x) = g(x)1{x≤u0} + 0.1h5,0.4(x − u0)1{x>u0}, (15)361

where g(x) = G ′(x), u0 = inf{x : G(x) ≥ 0.9} and hσ0,γ0 is the generalized Pareto362

density with γ0 = 0.4 and σ0 = 5. They consider the distribution G in the Weibull,363

Exponential, Gamma, Normal and Student families, among others. For each case, the364

value of u0 is given by 1.18, 2.3, 7.99, 11.28 and 1.48, respectively.365

Unfortunately, we did not have access to the code corresponding to their estimators,366

neither to those corresponding to the methods used in their comparison. For this reason,367

we present our results combined with those reported in Wong and Li (2010).368

In Tables 9 and 10, we present the MSE and Bias of some estimators of u0 and γ ,369

respectively. We use ûW L and γ̂W L to denote the estimators proposed by Wong and370

Li (2010) and ûG H and γ̂G H for the estimators presented in Guillou and Hall (2001).371

As in the simulation study, our estimators were computed based on a Gaussian kernel,372

while the bandwidths were selected using biased (hbcv) and unbiased (hucv) cross-373

validation criteria. Table 10 includes the Hill estimator of γ given by ûG H (denoted374

by γ̂G H,Hill ).375

Even if the MSE of our estimators are not as small as the MSE of ûW L , they illustrate376

that our procedure is also estimating consistently the threshold. We want to remark377

that our approach is based on a semiparametric model, while the estimator proposed378

by Wong and Li requires to specify a parametric model for the density below the379

threshold. This fact could justify why their proposal has a better performance than380

ours. Related to the extreme index estimation, our results are comparable.381

Comparison 3 To examine the robustness of the proposed procedure to estimate the382

threshold, we decided to perform a simulation study using a family of distributions383
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Threshold selection for extremes under a semiparametric model

Table 10 Comparison with competing methods (γ ’s estimation)

γ̂W L γ̂G H,Hill γ̂G H γ̂0A(hucv) γ̂0B (hucv) γ̂0A(hbcv) γ̂0B (hbcv)

MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias

0.064 0.080 0.125 0.240 0.004 0.030 0.052 −0.059 0.343 0.297 0.053 −0.056 0.397 0.329

0.067 0.070 0.098 0.200 0.015 0.100 0.145 −0.044 0.063 −0.002 0.157 0.141 0.093 0.072

0.072 0.070 0.028 0.050 0.096 −0.300 0.067 0.006 0.071 0.054 0.066 0.023 0.072 0.068

0.064 0.080 0.020 0.000 0.075 −0.270 0.050 −0.050 0.060 0.053 0.050 −0.050 0.061 0.057

0.069 0.080 0.020 0.000 0.129 −0.350 0.060 −0.040 0.067 0.049 0.063 −0.036 0.070 0.055

Mean squared error and Bias of the estimates for the five models presented in the first column of Table 9

which do not belong to the model M, but have a notion of threshold associated with384

them.385

Cabras and Morales (2007) proposed to select the threshold assuming that most of386

the observations, though not all, come from a parametric model, and the threshold is387

chosen as the smallest observation that can be considered as an outlier for the central388

model. Outliers are detected through a Bayesian procedure. In this framework the389

threshold is not identified; they proposed how it should be chosen in terms of the size390

of the sample, the proportion of contamination in the data distribution, and a parameter391

fixed to decide which observations are outliers.392

In their work, they performed a simulation study under different scenarios. To393

compare our proposal with theirs, we chose one of these scenarios, considering N =394

5,000 replications data sets with n = 1,000 observations in each of them, with data395

generated from a standard normal model contaminated (in different proportions) with396

a generalized Pareto distribution. That is, the density of data (depending on u0,n,λ) is397

given by398

fλ(x) = (1 − λ) g(x) + λhσ0,γ0(x − u0,n,λ) , (16)399

where g(x) denotes the density function of a standard normal distribution, hσ0,γ0 is the400

generalized Pareto density with γ0 = 0.5 and σ0 = 1, λ varies between 0.2 and 0.02,401

while u0,n,λ = 2 + �−1
(
(1 − 0.05)1/nλ

)
and �−1(β) is the quantile of the standard402

normal distribution at level β.403

Note that these densities do not belong to the model M, where we give a precise404

definition of the threshold u0. Even so, we will compute MSE and Bias of our estimators405

assuming that the threshold is given by u0,n,λ.406

As in the previous comparison, we only were able to compute our estimators. Thus,407

in Table 11 we present the MSE and Bias reported by Cabras and Morales (̂uC ) for408

different values of λ, together with the MSE and Bias corresponding to our estimators,409

constructed using automatic bandwidths and a Gaussian kernel.410

Despite that our procedure was designed to estimate the threshold under the model411

M, in Table 11 we can observe that the results are comparable (in magnitude) with412

those obtained by Cabras and Morales (2007). It seems that, for small values of λ,413

our procedure can not distinguish between contaminations and observations in the tail414
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of the central distribution. As λ increases, our procedure overcomes this limitation,415

mainly because, even if the densities are not in the model M, they become closer416

to it and higher proportion of data came from G.P.D, providing an improvement on417

estimations of γ (Table 12).418

Once the threshold is determined, we computed γ̂0A and γ̂0B , defined in (13),419

obtaining the following results:420

Comparison 4 To enclose this work, we compare our estimators for the tail index421

with the proposal presented by Guillou and Hall (2001). For that purpose,we generate422

data from a Frechet distribution, which is not in the model M. For this distribution the423

threshold is not defined but its estimator will be computed at each sample to determine424

which observations should be used to estimate the extreme value index γ . Once it is425

chosen, we compute the MLE for γ based on the observations above it, as defined in426

(13).427

We generate 1,000 replications of sample size n = 1,000, from the distribution428

function429

Fγ (x) =

{
0 if x < 0

exp{−x−1/γ } if x ≥ 0,
430

Table 11 Comparison with competing methods—threshold

λ ûC û0A(hucv) û0B (hucv) û0A(hbcv) û0B (hbcv)

MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias

0.2 59.273 7.626 1.938 0.264 0.137 −0.212 0.020 0.001 0.145 −0.217

0.1 9.632 3.076 0.887 −0.041 0.888 −0.361 0.787 −0.203 1.371 −0.481

0.08 2.582 1.312 3.097 −0.746 2.715 −0.840 4.208 −1.222 3.930 −1.166

0.06 0.087 −0.036 6.284 −1.784 5.544 −1.656 8.977 −2.719 7.372 −2.171

0.04 0.066 −0.035 8.368 −2.457 8.338 −2.470 10.676 −3.209 10.621 −3.122

0.02 0.046 0.007 10.355 −2.992 11.996 −3.293 11.840 −3.400 13.565 −3.661

Table 12 Comparison with competing methods—tail index

λ γ̂0A(hucv) γ̂0B (hucv) γ̂0A(hbcv) γ̂0B (hbcv)

MSE Bias MSE Bias MSE Bias MSE Bias

0.2 0.0630 −0.0486 0.049 −0.192 0.018 −0.039 0.049 −0.195

0.1 0.121 −0.0792 0.073 −0.194 0.092 −0.086 0.082 −0.204

0.08 0.185 −0.182 0.119 −0.236 0.223 −0.254 0.148 −0.268

0.06 0.295 −0.349 0.182 −0.302 0.358 −0.496 0.225 −0.351

0.04 0.340 −0.343 0.222 −0.259 0.333 −0.407 0.242 −0.281

0.02 0.179 −0.010 0.103 −0.048 0.118 0.0387 0.066 0.001
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with γ = 0.5. For each data set, we computed the thresholds û0A and û0B , defined in431

(11) and (12), respectively, using a Gaussian kernel and bandwidth hbcv and bandwidth432

hucv . In all cases, the function F̂n behaves as in the case b) of Fig. 1, and thus, we can433

not compute γ̂0A since there are not data above û0A. The MSE and Bias of γ̂0B using434

bandwidth hbcv are given by 0.124 and −0.068, while for bandwidth hucv the MSE435

and Bias are 0.13 and 0.0636, respectively. Also, for each data set we computed the436

estimators of γ proposed in Guillou and Hall (2001), with ccrit = 1.25 and ccrit = 1.5,437

p = 1 in both cases, getting for each ccrit a MSE equal to 0.005 and 0.006, with Bias438

0.056 and 0.064, respectively. As was expected, their method for the estimation of γ439

performs much better than ours since it was designed for such purpose, while in this440

work, we are interested in threshold selection, by itself.441
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