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We wish to congratulate the authors for their brilliant and remarkable
piece of work. This is an excellent overview of methods for generating random
variables associated to the stable distribution. We are also impressed by the
number of distributional identities they have singled out and by the useful and
systematic account of the literature in the field. In addition to being of great
interest to Statistics and Probability, the contents of the paper actually are
valuable to a number of research areas beyond these.

As pointed out by the authors, distributional results, and the associated
simulation schemes, for Sα, with α ∈ (0, 1), Lρ,p and Mα are of great useful-
ness in statistical applications. In particular, a number of results displayed in
the paper are relevant for Bayesian nonparametric inference and are closely
connected with a considerable portion of research we have been working on
in the past few years. Here we will focus on two main issues: (a) the use
of some simulation strategies to generate random probabilities, based on α–
stable subordinators or, more generally, completely random measures; (b) the
determination of the probability distribution of linear functionals of Poisson–
Dirichlet random measures. Another noteworthy issue that will not be touched
upon concerns species sampling models where polynomially and exponentially
tilted stable random variates and Mittag–Leffler distributions arise as a result
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of limiting procedures on the number of distinct species as the sample size di-
verges. This topic will be the focus of the allied contribution by S. Favaro and
B. Nipoti to the discussion and completes the picture on the role unilateral
α–stable distributions have in nowadays Bayesian nonparametric inference.

In the sequel, for any measure m on a separable and complete metric space
we set m(f) :=

∫
X f(x)m(dx), where f : X→ R+ is any measurable function

such that m(f) <∞ (almost surely).

1 Random probabilities based on α–stable laws

In Bayesian nonparametric inference, random probability measures represent a
fundamental tool, given their laws can be interpreted as prior distributions on
spaces of probability measures. The most celebrated instance is the Dirichlet
process, which stands out thanks to its analytical tractability. See [9]. Some
relevant generalizations of the Dirichlet process that have appeared in the
literature arise in connection with unilateral α–stable distributions. Examples
include the normalized α–stable random measure, the two parameter Poisson–
Dirichlet process, the normalized generalized gamma process and Gibbs–type
priors. Recent reviews are provided in [21, 6].

1.1 α–stable random measure and related priors

In fact, the definition of the four above mentioned classes of nonparamet-
ric priors can be based on the use of α–stable completely random measures
(CRMs), which we denote by µ̃α. Since we use 1A to denote the indicator
function of set A, µ̃α(1A) is the random mass µ̃α assigns to set A. Hence,
µ̃α is a random element taking values in the space MX of boundedly finite
measures on a separable and complete metric space X, such that the random
variables µ̃α(1A1), . . . , µ̃α(1Ad) are independent for any choice of pairwise dis-
joint measurable sets A1, . . . , Ad and

E [exp {−µ̃α(f)}] = exp {−G(fα)} (1)

where G is a σ–finite measure on X. Hence, an α–stable CRM, µ̃α, is charac-
terized by its parameter α and the measure G. Note that, if G is finite then
µ̃α(1X) <∞ (a.s.). In the sequel G will be assumed to be a non–atomic proba-
bility measure. Within this setup, one can easily define the corresponding ran-
dom probability measure via normalization as p̃α,0 := µ̃α/µ̃α(1X). Simulation
of the trajectories of p̃α,0 is typically achieved by relying on its stick–breaking
representation [22] or, alternatively, by means of the Ferguson–Klass series
representation [10] according to which

µ̃α =
∑
i≥1

Ji δXi (2)
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with the Xi’s being iid from G and independent from the ordered jumps
J1 > J2 > · · · . Furthermore the jumps can be simulatedho visto che qui
hai fatto una frase a parte, ma secondo me non va bene perche’ per parlare
di rappresentazione di FK e’ necessario dire che i salti sono ottenuti mediante
inversione delle intensita’ (e’ quella la FK!). se vuoi possiamo tenere in frasi
diverse la simulazione, ma qualcosa nella precedente bisogna dire sul legame
tra inversione intensita’ e Ji’s by inverting the Lévy intensity associated to
µ̃α. On the other hand, if interest lies in evaluating p̃α,0 on some specific set,
i.e. p̃α,0(1A), the paper provides readily usable simulation tools. In fact, (1)

trivially implies that µ̃α(1A)
L
= G(1A)1/α Sα and one can resort to random

variate generators for Sα in order to simulate µ̃α(1A), for any set A. Thus,

p̃α,0(1A) =
µ̃α(1A)

µ̃α(1A) + µ̃α(1Ac)

so that it is enough to simulate independent stable random variates µ̃α(1A)
and µ̃α(1Ac). This also carries over to the analysis of the posterior distribu-
tion of p̃α. Indeed, if (Xn)n≥1 is a sequence of exchangeable random elements

taking values in X such that (Xi | p̃α)
iid∼ p̃α, a representation of the posterior

distribution of µ̃α in terms of mixtures of exponentially tilted α–stable CRMs
can be given. See [16]. To be more precise, if Un is a random variable such
that Uαn is gamma distributed with shape and scale parameters equal to k
and 1, respectively, then the posterior distribution of µ̃α given Un = u and
the observations X1, . . . , Xn equals the probability distribution of the random
measure

µ̃α,u +

k∑
i=1

Ji,u δx∗
j

(3)

Here, x∗1, . . . , x
∗
k are the k distinct values in the sample X1, . . . , Xn with re-

spective frequencies n1, . . . , nk, the jumps Ji,u’s are independent and gamma
distributed with shape parameter ni − α and scale parameter u and µ̃α,u is a
CRM such that

E [exp {−µ̃α,u(f)}] = exp {−G((f + u1X)α) + uα}

and is also known as generalized gamma process. See [1]. Moreover, the jumps
(Ji,u)i and µ̃α,u are independent. In this case, the simulation of p̃α,u(1A) =
µ̃α,u(1A)/µ̃α,u(1X) amounts to simulating independent exponentially tilted
unilateral α–stable variables, which are referred to as (Sα)∗u in the paper. An
efficient rejection method for their simulation is devised in [7].

It should be noted that µ̃α is also the key ingredient for the definition of
the Poisson–Dirichlet process with parameters (α, θ) ∈ [0, 1) × (−α,∞) that
has been recently popularized as the Pitman–Yor process. In order to define
such a process, let µ̃α,θ be a random measure on X whose probability distribu-
tion on MX, say Pα,θ, is absolutely continuous with respect to the probability
distribution Pα of µ̃α, then (dPα,θ/dPα)(m) = m(1X)−θ Γ (θ+1)/Γ (θ/σ+1).
A Pitman–Yor process with parameters (α, θ), then, corresponds to a random
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probability measure obtained by normalizing µ̃α,θ, i.e. p̃α,θ = µ̃α,θ/µ̃α,θ(1X).
The normalized α–stable random measure is, then, a special case correspond-
ing to (α, θ) = (α, 0). As shown in [21], a representation of type (3) still
holds true and, accordingly, one can simulate exponentially tilted unilateral
α–stable variables for evaluating a posterior Pitman–Yor process on any given
set. Pitman-Yor processes are nowadays highly popular in Bayesian nonpara-
metrics practice thanks to the development of efficient simulation algorithms
that allow to sample from the posterior in complex hierarchical mixture mod-
els. See, e.g., [13, 24, 16]. ho tolto il nostro (citato poche righe prima) e aggiunto
Stephen: però quello di Stephen si riferisce al Dirichlet anche se sappiamo può
essere esteso a stabile e affini. Lo diciamo questo, visto che il titolo del lavoro
stesso enfatizza il Dirichlet? ho aggiunto anche il nostro con lancillotto cosi’
stempera la questione che quello di steve enfatizzi l’MDP e dunque lascerei
cosi’.

1.2 Multivariate α–stable random measures

As the authors concisely mention, a relevant “open problem” is given by the
investigation of multivariate stable laws and related simulation algorithms.
In connection to the above discussion, this may be rephrased as the problem
of specifying vectors of dependent α–stable CRMs that are still analytically
tractable to the extent of allowing the evaluation of Bayesian inferences, at
least approximately via suitable sampling schemes. These have actually be-
come of interest in Bayesian inference since they are useful to define mod-
els that are able to cope with forms of dependence more general than ex-
changeability. A recent proposal in [18, 19] induces dependence by considering
marginal α–stable CRMs µ̃i,α = µ̃i + µ̃0, for i = 1, 2, where µ̃1, µ̃2 and µ̃0 are
independent α–stable CRMs characterized by the following Laplace functional
transforms

E [exp {−µ̃i(f)}] = exp {−z G(fα)} (i = 1, 2),

E [exp {−µ̃0(f)}] = exp {−(1− z)G(fα)}

for any z ∈ [0, 1]. Each µ̃i,α has, then, Laplace functional transform coincid-
ing with (1) and dependence is due to the sharing of a common component
µ̃0. Such a construction is inspired by [11] where a characterization of pairs
of canonically correlated Poisson random measures is provided. The main ad-
vantage of this construction is represented by the availability, under suitable
assumptions, of a simple expression for the joint Laplace transform of the
underlying correlated Poisson random measures.

The resulting normalized CRMs admit an intuitive mixture representation
as

p̃i,α =
µ̃i,α

µ̃i,α(1X)
= wi

µ̃i
µ̃i(1X)

+ (1− wi)
µ̃0

µ̃0(1X)

for i = 1, 2. One can envisage that random variate generators as those pro-
posed in the paper may lead to quite a straightforward simulation of vectors
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of (p̃1,α(1A), p̃2,α(1B)). The only simulation techniques we are aware of in this
setting are based on extensions of the representation in [10]. See [14] and [4],
where the former refers only to the gamma case whereas the latter applies to
the case where dependence is induced through Lévy copulas. Hence, there is no
doubt that the implementation of dependent processes for Bayesian inference
would greatly benefit from further progress on the simulation of multidimen-
sional stable laws.

2 Random means

The specification of a prior on the space PX of probability distributions on X
induces a prior on finite–dimensional features of the distribution of the data.
A noteworthy example is offered by the mean. In other words, if the prior
coincides with the probability distribution of a random probability measure p̃,
one might be interested in identifying the distribution of

p̃(f) =

∫
X
f(x) p̃(dx)

The study of the probability distribution of p̃(f), when p̃ is a Dirichlet process
with base measure cG, where c ∈ (0,∞) and G is a probability measure as in
the previous section, has been initiated in the pioneering papers by D.M. Ci-
farelli and E. Regazzini. See [2, 3]. Their approach relies on the inversion of the
generalized Stieltjes transform of p̃(f) which is determined through the follow-
ing fundamental identity, also known as Markov–Krein or Cifarelli–Regazzini
identity,

E

[
1

(z + p̃(f))c

]
= exp

{
−c

∫
X

log[z + f(x)]G(dx)

}
(4)

for any z ∈ C such that Im(z) 6= 0 if Re(z) < 0. It is interesting to note
that, though the determination of (4) and the inversion of the left–hand–
side has been originally motivated by statistical arguments, interest in the
probability distribution of p̃(f) has emerged in other research areas ranging
from combinatorics to special function theory. See also [5, 15, 20]. Since the
Dirichlet process is intimately related to a gamma structure, we do not linger
further on it and rather focus on its generalizations as displayed in Section 1
wherein the stable structure comes into play.

In fact, the results of the discussion paper are of interest for means of
random probability measures defined through the transformation of a α–stable
CRM. Here Pitman–Yor processes play a prominent role. For instance, p̃α,θ(f)
is related to the excursions of a Bessel bridge under suitable choices of f ad θ.

If θ = α and G = pδ1 + (1− p)δ0, then
∫
x p̃α,θ(dx)

L
= Lα,p with Lα,p denoting

the Lamperti’s second law as in the paper. Nice distributional identities yield
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simple simulation algorithms for sampling from the probability distribution of∫
x p̃α,θ(dx). If θ 6= α, one has

E

[
1

{λ+
∫
x p̃α,θ(dx)}θ+1

]
=

p(1 + λ)α−1 + (1− p)λα−1

{p(1 + λ)α + (1− p)λα} θα+1
.

This leads to more complicated expressions for the density of
∫
x p̃α,θ(dx) and

it would be interesting to have suitable simulation algorithms applicable also
to this case. Furthermore, it would be of great interest to obtain an algorithm
that applies also to the case when G does not necessarily coincides with a
mixture of point masses in 0 and in 1.

Another important issue concerns the direct evaluation of the posterior
distribution of p̃α,θ(f). For the normalized α–stable case, i.e. p̃α,0(f), one can
have a glimpse of the analytical hurdles associated to the determination of the
posterior distribution from [17]. The availability of a simulation algorithm for
the posterior would be of great help. The algorithm in [12] and the double
CFTP method in [8] represent effective solutions to the problem when p̃ is a
Dirichlet process and rely on its conjugacy. In contrast, we are not aware of any
algorithm that can be used for the case of Pitman–Yor means, even for specific
choices of α and θ. Some progress might actually be based on the fact that,
conditionally on the data X1, . . . , Xn featuring k distinct values X∗1 , . . . , X

∗
k

with respective frequencies n1, . . . , nk, the posterior distribution of the mean∫
f dp̃α,θ equals the distribution of

k∑
i=1

wi f(X∗i ) + wk+1

∫
X
f(x) p̃α,θ+kα(dx)

where (w1, . . . , wk) is a k–variate Dirichlet vector with parameters (n1 −
σ, . . . , nk − σ, θ + kσ) and is independent from p̃α,θ+kα. See [23].

In conclusion, we would like to once more congratulate the authors for a
fine and inspiring paper.

References

1. Brix, A. (1999). Generalized gamma measures and shot-noise Cox processes.
Adv. Appl. Probab. 31:929–953.

2. Cifarelli, D.M. and Regazzini, E. (1979). A general approach to Bayesian
analysis of nonparametric problems. The associative mean values within the
framework of the Dirichlet process. II. (Italian) Riv. Mat. Sci. Econom. Soc.
2:95–111.

3. Cifarelli, D.M. and Regazzini, E. (1990). Distribution functions of means
of a Dirichlet process. Ann. Statist. 18:429-442.

4. Cont, R. and Tankov, P. (2004). Financial modelling with jump processes.
Chapman & Hall/CRC, Boca Raton, FL.



Title Suppressed Due to Excessive Length 7

5. Diaconis, P. and Kemperman, J. (1996). Some new tools on Dirichlet pri-
ors. In Bayesian statistics 5 (J.M. Bernardo, J.O. Berger, A.P. Dawid and
A.F.M. Smith, eds.) 97–106. Oxford Univ. Press.

6. De Blasi, P., Favaro, S., Lijoi, A., Mena, R., Prünster, I. and Rug-
giero, M. (2014). Are Gibbs-type priors the most natural generalization
of the Dirichlet process? IEEE Trans. Pattern Anal. Mach. Intell. doi:
10.1109/TPAMI.2013.217

7. Devroye, L. (2009). Random variate generation for exponentially and poly-
nomially tilted stable distributions. ACM Trans. Model. Comput. Simul.
19:18.

8. Devroye, L. and James, L.F. (2011). The double CFTP method. ACM
Trans. Model. Comput. Simul. 21:1–20.

9. Ferguson, T.S. (1973). A Bayesian analysis of some nonparametric prob-
lems. Ann. Statist. 1:209–230.

10. Ferguson, T.S. and Klass, M.J. (1972). A representation of indepen-
dent increment processes without Gaussian components. Ann. Math. Statist.
43:1634–1643.

11. Griffiths, R.C. and Milne, R.K. (1978). A class of bivariate Poisson pro-
cesses. J. Mult. Anal. 8:380–395.

12. Guglielmi, A., Holmes, C.C. and Walker, S.G. (2002). Perfect simulation
involving functionals of a Dirichlet process. J. Computat. Graph. Statist.
11:306–310.

13. Ishwaran, H. and James, L.F. (2001). Gibbs sampling methods for stick-
breaking priors. J. Amer. Statist. Assoc. 96:161–173.

14. Ishwaran, H. and Zarepour, M. (2009). Series representations for multi-
variate generalized gamma processes via a scale invariance principle. Statist.
Sinica 19:1665–1682.

15. James, L.F. (2006). Functionals of Dirichlet processes, the Cifarelli-
Regazzini identity and beta-gamma processes. Ann. Statist. 33:647–660.

16. James, L.F., Lijoi, A. and Prünster, I. (2009). Posterior analysis for nor-
malized random measures with independent increments. Scand. J. Stat.
36:76–97.

17. James, L.F., Lijoi, A. and Prünster, I. (2010). On the posterior distribution
of classes of random means. Bernoulli 16:155–180.

18. Lijoi, A., Nipoti, B. and Prünster, I. (2014). Bayesian inference with de-
pendent normalized completely random measures. Bernoulli doi: 10.3150/13-
BEJ521.

19. Lijoi, A., Nipoti, B. and Prünster, I. (2014). Dependent mixture models:
clustering and borrowing information. Comput. Stat. Data Anal. 71:417–433.

20. Lijoi, A. and Prünster, I. (2009). Distributional properties of means of
random probability measures. Statist. Surveys 3:47-95.

21. Lijoi, A. and Prünster, I. (2010). Models beyond the Dirichlet process.
In Bayesian Nonparametrics (Hjort, N.L., Holmes, C.C. Müller, P., Walker,
S.G. Eds.), Cambridge University Press, Cambridge, pp. 80–136.

22. Perman, M., Pitman, J. and Yor, M. (1992). Size-biased sampling of Pois-
son point processes and excursions. Probab. Theory Related Fields 92:21–39.



8 Antonio Lijoi, Igor Prünster

23. Pitman, J. (1996). Some developments of the Blackwell-MacQueen
urn scheme. In Statistics, Probability and Game Theory (T.S. Ferguson,
L.S. Shapley and J.B. MacQueen, Eds.). IMS Lecture Notes Monogr. Ser.
Vol. 30, Inst. Math. Statist., Hayward, pp. 245–267.

24. Walker, S.G. (2007). Sampling the Dirichlet mixture model with slices.
Comm. Statist. Simulation Comput. 36:45–54.


	Random probabilities based on –stable laws
	Random means

