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Abstract We contribute to the discussion of the paper by Devroye and James, by
reviewing some of the most meaningful results that relate the unilateral stable distri-
bution with the asymptotic behavior of the so-called Ewens-Pitman sampling model.
Our focus is then on how these results have been exploited in the context of Bayesian
nonparametric inference for species sampling problems.
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We congratulate Luc Devroye and Lancelot James for their comprehensive and stim-
ulating paper on stable laws. The paper provides a useful survey on properties and
distributional results for the stable law, as well as for related distributions, and exact
sampling algorithms. We aim at contributing to the discussion of the paper by Devroye
and James with a review of some of the most meaningful results that relate the unilateral
stable distribution with the asymptotic behaviour of the so-called Ewens-Pitman sam-
pling model introduced by Pitman (1995). These results have recently found several
applications in the context of Bayesian nonparametric inference for species sampling
problems arising from ecology, biology, genetic, linguistic, etc. In such a context
exact sampling algorithms for polynomially tilted positive stable distribution provide
a useful tool in order to concretely implement some inferential procedures.
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366 S. Favaro, B. Nipoti

1 Asymptotics for the Ewens–Pitman sampling model

Among various definitions of the Ewens–Pitman sampling model, a simple and intu-
itive one was introduced by Zabell (1997) in terms of the following urn scheme. Let
α ∈ (0, 1) and consider an urn that initially contains a black ball with mass θ > 0. Balls
are drawn from the urn successively with probabilities proportional to their masses.
When a black ball is drawn, it is returned to the urn together with a black ball of mass α

and a ball of a new color with mass (1−α). The color of the new ball is sampled from
a nonatomic probability measure ν. When a non-black ball is drawn, it is returned to
the urn with an additional ball of the same color with mass one. Let (Xi )i≥1 be the
sequence of non-black colors, then

P[Xn+1 ∈ · | X1, . . . , Xn] = θ + jα

θ + n
ν(·) + 1

θ + n

j∑

i=1

(ni − α)δX∗
i
(·), (1)

where (X∗
1, . . . , X∗

j ) are the j distinct colors with frequencies n = (n1, . . . , n j ).
The predictive distribution (1) was introduced in Pitman (1995) for any α ∈ (0, 1)

and θ > −α, and it is referred to as the Ewens–Pitman sampling model. In particular,
Pitman (1995) showed that the sequence (Xi )i≥1 generated by (1) is exchangeable and
its de Finetti measure corresponds to the distribution of the two parameter Poisson–
Dirichlet process P̃α,θ in Perman et al. (1992). Formally,

Xi | P̃α,θ
iid∼ P̃α,θ i = 1, . . . , n

P̃α,θ ∼ �, (2)

for any n ≥ 1. As α → 0 the urn model generating the Xi ’s reduces to the one
introduced by Hoppe (1984), and the Ewens–Pitman sampling model reduces to the
celebrated sampling model by Ewens (1972). Accordingly, as α → 0 the two para-
meter Poisson–Dirichlet process reduces to the Dirichlet process by Ferguson (1973).
The Ewens–Pitman sampling model plays an important role in various research areas
such as population genetics, machine learning, Bayesian nonparametrics, combina-
torics and statistical physics. See the monograph by Pitman (2006) and references
therein for a comprehensive account on these sampling models.

According to (1) and (2) a sample (X1, . . . , Xn) from P̃α,θ induces a random
partition of the set {1, . . . , n} into Kn blocks with frequencies Nn = (N1, . . . , NKn ).
See Pitman (1995) for details. The unilateral stable distribution arises in the large
n asymptotic behaviour of Kn . Specifically, for any α ∈ (0, 1), let fα be the density
function of the unilateral stable random variable, and consider a random variable Zα,q ,
for any real q > −1, with density function

fZα,q (z) = �(qα + 1)

α�(q + 1)
zq−1−1/α fα(z−1/α). (3)
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The random variable Z−1/α
α,q is the so-called polynomially tilted unilateral α-stable

random variable. For any α ∈ (0, 1) and θ > −α, Pitman (1996) showed that, as
n → +∞,

Kn

nα

a.s.−→ Zα,θ/α. (4)

Furthermore, let Mn(l) be the number of blocks with frequency l ≥ 1 such that
Kn = ∑

1≤l≤n Mn(l) and n = ∑
1≤l≤n l Mn(l). Then Pitman (2006) showed that, as

n → +∞,
Mn(l)

nα

a.s.−→ α(1 − α)(l−1)

l! Zα,θ/α, (5)

where (a)(n) := a(a + 1) · · · (a + n − 1). Weak convergence versions of (4) and
(5) can also be derived from general asymptotic results for urn model with weighted
balls. See Proposition 16 in Flajolet et al. (2006) and Theorem 5 in Janson (2006) for
details. The fluctuation limits (4) and (5) display the crucial role of the parameter α

in determining both the clustering structure and the large n asymptotic behaviour of
Kn : the bigger α the flatter is the distribution of Kn .

2 On species sampling problems in Bayesian nonparametrics

From a Bayesian perspective, the hierarchical framework (2) provides a nonparamet-
ric model for the individuals Xi ’s of a population with infinite species X∗

i , where �

is the prior distribution on the species compositions. Under this framework, a novel
Bayesian nonparametric approach for making inference on species sampling problems
was introduced in Lijoi et al. (2007). Such an approach consists in evaluating, condi-
tionally on the random partition (Kn, Nn) induced by an initial sample (X1, . . . , Xn)

from P̃α,θ , the distribution of statistics of interest from an additional unobserved sam-
ple (Xn+1, . . . , Xn+m). Lijoi et al. (2007) focussed on the conditional distribution of
the number K (n)

m of new species in (Xn+1, . . . , Xn+m), whereas Favaro et al. (2013)
considered the problem of determining the conditional distribution of the number
M (n)

m (l) of species with frequency l ≥ 1 in (X1, . . . , Xn+m). Expected values of these
conditional, or posterior, distributions take on the interpretation of the Bayesian non-
parametric estimators of the number of new distinct species and the number of district
species with frequency l generated by the additional sample. Throughout this section
we write X | Y to denote, with a slight abuse of notation, a random variable whose
distribution is the conditional distribution of X given Y.

Let (X1, . . . , Xn) be a sample from P̃α,θ featuring Kn = j species with corre-
sponding frequencies Nn = n. The large m asymptotic behaviour of K (n)

m | (Kn =
j, Nn = n) is studied in Favaro et al. (2009). Specifically, for any j ≤ n, we introduce
the random variable Z (n)

α,θ, j := B j+θ/α,n/α− j Zα,(θ+n)/α where Ba,b is a Beta random
variable with parameter (a, b) and Zα,q is a random variable, independent of Ba,b,
and distributed as in (3). Then, as m → +∞,

K (n)
m

mα
| (Kn = j, Nn = n)

a.s.−→ Z (n)
α,θ, j . (6)
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368 S. Favaro, B. Nipoti

The large m asymptotic behaviour of M (n)
m (l), conditionally on the random partition

(Kn, Nn), follows from (6) and Corollary 21 in Gnedin et al. (2007). Specifically, as
m → +∞,

M (n)
m (l)

mα
| (Kn = j, Nn = n)

a.s.−→ α(1 − α)(l−1)

l! Z (n)
α,θ, j . (7)

The fluctuation limits (6) and (7) take on the interpretation of the posterior counterpart
of (4) and (5), respectively. See Favaro and Feng (2014) for a generalization of (6) to
the total number of species generated by the additional sample, namely the number
K (n)

m of new species plus the number of species which coincide with species already
detected in the initial observed sample. See also Theorem 4 in Favaro et al. (2013) for
weak convergence versions of (7).

The fluctuation limits (6) and (7) provide a useful tool in order to approximate,
for large m, the posterior distributions of K (n)

m and M (n)
m (l). Indeed, as pointed out in

Favaro et al. (2009) and Favaro et al. (2013), there are situations of practical interest
where j , n and m are very large and the computational burden for evaluating these
posterior distributions becomes overwhelming. As an example, Favaro et al. (2009)
and Cesari et al. (2012) applied (6) and (7) in order to obtain asymptotic credible
intervals for posterior estimators of K (n)

m and M (n)
m (l), respectively. Their approach

consisted in evaluating, via simulation, appropriate quantiles of the limiting posterior
distributions in order to obtain an approximate evaluation of the credible intervals.
Of course such a procedure involves sampling from a random variable with density
function (3). To this end, one can either resort directly to the exact algorithm for
sampling from polynomially tilted positive stable distributions in Devroye (2009)
or alternatively, by means of a gamma-type augmentation, on can exploit the exact
algorithms for exponentially tilted positive stable distributions in Devroye (2009) and
Hofert (2011).

3 Concluding remarks

While our discussion focussed on the Ewens–Pitman sampling model, the unilateral
stable distribution also arises in the study of the asymptotic behavior of a more general
class of sampling models, the so-called Gibbs-type sampling models introduced by
Gnedin and Pitman (2006). This class generalizes the Ewens–Pitman sampling model
as follows. Let α ∈ (0, 1) and let V = (Vn, j ) j≤n,n≥1 be nonnegative weights satisfying
Vn, j = Vn+1, j+1+(n− jα)Vn+1, j , with V1,1 = 1. Then, a Gibbs-type sampling model
with parameter (α, V ) is defined as

P[Xn+1 ∈ · | X1, . . . , Xn] = Vn+1, j+1

Vn, j
ν(·) + Vn+1, j

Vn, j

j∑

i=1

(ni − α)δX∗
i
(·) (8)

for any n ≥ 1, with X∗
1, . . . , X∗

j being the j distinct observations in (X1, . . . , Xi ) with
frequencies (n1, . . . , n j ). If Vn, j = ∏

0≤i≤ j−1(θ + iα)/(θ)(n), for any θ > −α, then
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(8) reduces to (1). Pitman (2003), and more recently James (2013), provided details
for generalizing (4) and (6) to the framework of Gibbs-type species sampling models.
Accordingly, the corresponding generalizations of (5) and (7) can be easily derived
by a direct application of Corollary 21 in Gnedin et al. (2007).
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