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Abstract Functional data are occurring more and more often in practice, and var-
ious statistical techniques have been developed to analyze them. In this paper we
consider multivariate functional data, where for each curve and each time point a
p-dimensional vector of measurements is observed. For functional data the study of
outlier detection has started only recently, and was mostly limited to univariate curves
(p = 1). In this paper we set up a taxonomy of functional outliers, and construct new
numerical and graphical techniques for the detection of outliers in multivariate func-
tional data, with univariate curves included as a special case. Our tools include sta-
tistical depth functions and distance measures derived from them. The methods we
study are affine invariant in p-dimensional space, and do not assume elliptical or any
other symmetry.

Keywords Depth · Diagnostic plot · Functional data · Graphical display · Heatmap ·
Robustness

1 Introduction

Functional data are occurring more and more often in practice, and various statistical
techniques have been developed to analyze this type of data. Standard references on
functional data include Ramsay and Silverman (2002, 2006) and Ferraty and Vieu
(2006). A functional data set typically consists of n curves observed on a set of time
points t1, . . . , tT . In this paper we consider multivariate functional data, where for
each curve and each time point a p-dimensional vector of measurements is observed.
Several examples of multivariate functional data can be found in the literature. Popu-
lar examples include the bivariate gait data set containing the simultaneous variation
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of the hip and knee angles of 39 children (Ramsay and Silverman, 2006). Berren-
dero et al (2011) analyzed daily temperature data measured at 3, 9 and 12 cm below
ground during 21 days. Another example is the multi-lead ECG data set analyzed by
Pigoli and Sangalli (2012) for which p = 8. Here, the data contain measurements of
the human heart activity at 8 different places on the body.

Nowadays statisticians are well aware of the potential effects of outliers on data
analysis, and there is an extensive literature on finding outliers and developing meth-
ods that are robust to their influence; see e.g. Rousseeuw and Leroy (1987) and
Maronna et al (2006). But for functional data the study of outlier detection has started
only recently, and was mostly limited to univariate curves, i.e. p = 1. Febrero-Bande
et al (2008) identified two reasons why outliers can be present in functional data.
First, gross errors can be caused by errors in measurements and recording or typ-
ing mistakes, which should be identified and corrected if possible. Second, outliers
can be correctly observed data curves that are suspicious or surprising in the sense
that they do not follow the same pattern as that of the majority of the curves. Us-
ing recorded NOx levels in Barcelona as a case study, Febrero-Bande et al (2008)
proposed the following outlier detection procedure for univariate functional data (i.e.
p = 1), consisting of three main steps:

1. For each curve, calculate its functional depth (several versions exist);
2. delete observations with depth below a cutoff C;
3. go back to step 1 with the reduced sample, and repeat until no outliers are found.

Step 3 was added in the hope of avoiding masking effects. The cutoff value C was
obtained by a bootstrap procedure.

A different approach was taken by Hyndman and Shang (2010) who noted that the
above method lacks sensitivity to curves whose pattern is different from the majority
but whose values at each time point look inconspicuous. Hyndman and Shang (2010)
considered the observed curves (Yi(t1), . . . ,Yi(tT )) as multivariate observations in T
dimensions and applied a robust PCA method to them, keeping the first two princi-
pal components. Next they computed the bagplot (Rousseeuw et al, 1999) of these
bivariate points, or their highest density regions (Hyndman, 1996). However, it is not
guaranteed that outliers can be detected by looking at the first two principal scores.

To visualize univariate functional data and investigate their spread as well as pos-
sible outliers, Sun and Genton (2011) proposed the functional boxplot. This new
boxplot is a generalization of the univariate boxplot using functional depth as a re-
placement for the traditional univariate ranks. It shows, as a function of time, the
deepest curve, the 50% central region (i.e. the envelope of the 50% deepest curves),
and the fence. The latter is obtained by inflating the central region by 1.5 times its
range. In this approach a curve is considered outlying if it ventures outside the fence
in at least one time point.

The aims of this paper are twofold. We first set up a taxonomy of functional
outliers in order to be able to classify different types of outlying behavior. Secondly,
we construct new tools for the detection of outliers in multivariate functional data,
with univariate curves included as a special case. These tools will aid in handling
and interpreting outlying curves. For instance, curves with local gross errors should
not necessarily be flagged as completely outlying, as this would lead to a substantial
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loss of information. The proposed methods will be affine invariant in p-dimensional
space, an important theoretical and practical benefit for multivariate curves. Also, we
will not assume elliptical or any other symmetry.

In the next section we will discuss different types of functional outlyingness and
set up a taxonomy. In Section 3 we discuss halfspace depth and extend its use to detect
outliers in multivariate and functional data. Section 4 introduces the skew-adjusted
projection depth and a new diagnostic plot. In Section 5 we apply our new techniques
to real data sets, before presenting our conclusions.

2 Functional Outliers

2.1 Taxonomy of functional outliers

Functional observations can be deviating from the majority of the curves in various
ways. First of all, we distinguish isolated outliers that exhibit outlying behavior dur-
ing a very short time interval. For univariate curves this type of outlyingness reduces
to one or more spikes or peaks. An illustration is given in Figure 1 which plots pro-
ton nuclear magnetic resonance (NMR) spectra of 40 different wine samples (Larsen
et al, 2006). The full data set contains measurements in the spectral region from 6.00
to 0.50, but for clarity we focus on the region between wavelengths 5.62 and 5.37
only, for which T = 397 measurements are available for each curve. The red curve
37 has large peaks around wavelength 5.4 and can be considered an isolated outlier.
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Fig. 1 NMR spectra for 40 wine samples with one isolated outlier.

The opposite of isolated outliers are persistent outliers, which we define as func-
tional observations that are outlying on a large part of the domain, the most extreme
case being the whole domain. Within this group we distinguish shift, amplitude and
shape outliers. Shift outliers have the same shape as the majority, but are moved away.
As an example we consider the tablets data set, depicted in Figure 2. This data set
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consists of near infrared spectroscopy responses for a batch of pills, measured at
wavenumbers between 7398 cm−1 and 10507 cm−1. (Note that wavenumbers are ex-
pressed in units of inverse length.) They have been analyzed in Dyrby et al (2002) and
can be downloaded from http://www.models.kvl.dk/tablets. The full data set
consists of tablets of different sizes and different amounts of the active ingredients.
We select the 70 observations corresponding to tablets weighing 90 mg (shown in or-
ange) and add 20 randomly selected observations of the tablets weighing 250 mg (in
purple). These two groups of tablets also differ in the amount of active components
they contain. In the main group of the 90 mg tablets, we note that the lowest curves
are very similar to the others but display a downward shift, hence we can classify
them as shift outliers. The 250 mg tablets show an upward shift but they are also
more wiggly around wavenumber 8224. This difference becomes more pronounced
when we consider the first derivatives of the curves in Figure 3. We now see that the
blue curves have a different shape around wavenumber 8900. Compared to the main
group of the 90 mg tablets we can consider the 250 mg tablets as shape outliers, i.e.
curves whose shape differs from the majority without necessarily standing out at any
time point.
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Fig. 2 The tablets data with the 90 mg tablets col-
ored orange and the 250 mg tablets colored purple.
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Fig. 3 Derivatives of the tablet curves, with the
same color coding.

Another possibility is that a functional observation is outlying in an amplitude
sense, i.e. the curve may have the same shape as the majority but its scale (range,
amplitude) differs. This type of outlyingness is typically found in periodic processes.
An example of an amplitude outlier will be discussed in Section 2.2.

Of course it will often happen that an abnormal curve exhibits a combination of
outlying behavior. It can e.g. have several spikes in the first half of the domain, and
a persistent outlying behavior in the second half. Or it can be shape outlying on one
part of the domain and shift outlying on another.

Often functional data are preprocessed with a baseline correction, a warping pro-
cedure or other techniques, see for example Ramsay and Li (1998) and Wang and
Gasser (1997). As a result it might happen that an outlying curve is transformed into
a regular one. Baseline corrections will for example typically transform shift outliers
into regular observations. In this case it can be useful to apply outlier detection tech-
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niques to the curves defining the transformation (such as the warping functions) or
to include these curves in the analysis. This will be illustrated on the tablets data in
Section 5.

2.2 Functional outlier detection

All examples shown so far are univariate functional data, for which outliers can often
be detected just by looking at the curves. Automatic detection of isolated and shift
outliers can then easily be carried out with standard outlier detection methods for uni-
variate data applied to the measurements at each time point. For shape and amplitude
outliers more advanced techniques are needed, such as those mentioned in Section 1.
For multivariate functional data the problem is much harder. None of the outliers de-
fined in Section 2.1 will necessarily be outlying in one of the marginals, hence it is not
sufficient to analyze the components separately. An example is presented in López-
Pintado et al (2014) where height and weight curves for boys separately do not show
any marginal outlier, but a bivariate analysis flags one unusual infant. This illustrates
that the correlation structure between the components should not be ignored. See also
Hubert et al (2012) for other examples.

We illustrate this issue on the bivariate writing data which is a part of the Char-
acter Trajectories data set included in the UCI machine learning repository (Bache
and Lichman, 2013). The data measure the horizontal and vertical coordinates of a
pen tip while a person writes the letter ‘i’ (without the dot) n = 174 times. The ob-
served data were first interpolated to obtain T = 100 equally spaced time points. The
resulting bivariate functional observations are displayed in Figure 4 for the horizontal
coordinates and in Figure 5 for the vertical ones. When we plot both coordinates as in
Figure 6 the character ‘i’ is clearly visible, but this representation does not show the
speed of writing. We highlighted three outlying curves with different behavior on all
three figures. The dot-dashed red curve (case 67) roughly has the same shape as the
regular curves, but it has a smaller scale. This curve can be classified as an amplitude
outlier. The dashed blue observation (curve 41) deviates from most of the trajectories
during a long period, especially in the vertical component. This is an example of a
shape outlier, which stands out in one component during a substantial time period.
Yet another shape outlier is the solid black curve 132. This curve does not stand out
in the marginals but it is a multivariate outlier during a long time period. To illustrate
this, Figure 7 shows a bivariate scatterplot of the coordinates at t = 5. On this plot we
see that trajectory 132 deviates from the other curves.

To detect outliers in functional data and classify them according to our taxonomy
we will propose several approaches. By analogy with the non-functional case, we
will first estimate the central tendency of the curves using a method which is robust
to outliers. To this end we will use the multivariate functional median based on depth.
Then we will construct an appropriate distance to compute the deviation of the curves
from this center.
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Fig. 4 Time profile of the horizontal coordinate of
the writing data set.
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Fig. 5 Time profile of the vertical coordinate of the
writing data set.
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Fig. 6 Trajectories of the writing data set.
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Fig. 7 Cross-sectional scatterplot of the writing
data set at time point 5.

3 Outlier detection based on halfspace depth

3.1 Multivariate (functional) halfspace depth

To measure the centrality of a point relative to a multivariate sample, Tukey (1977)
introduced the halfspace depth. For simplicity of notation, we provide the definition
in the population setting. Let Y be a random variable on Rp with distribution PY ,
then the halfspace depth of any point x ∈ Rp relative to PY is defined as the minimal
probability mass contained in a closed halfspace with boundary through x:

HD(x;PY ) = inf
||v||=1

PY
{

v′Y > v′x
}
.

Halfspace depth satisfies the requirements of a statistical depth function, as defined
by Zuo and Serfling (2000a): it is affine invariant, attains its maximum value at the
center of symmetry if there is one, is monotone decreasing along rays emanating
from the center and vanishes at infinity. For any statistical depth function D and for
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any α ∈ [0,1] the α-depth region Dα contains the points whose depth is at least α:

Dα = {x ∈ Rp ; D(x;PY )> α}. (1)

The boundary of Dα is known as the α-depth contour. The halfspace depth regions
are closed, convex and nested for increasing α . The halfspace median (or Tukey me-
dian) is defined as the center of gravity of the smallest non-empty depth region, i.e.
the region containing the points with maximal halfspace depth. The finite-sample def-
initions of the halfspace depth, the Tukey median and the depth regions are obtained
by replacing PY by the empirical probability distribution Pn.

Properties of halfspace depth have been studied extensively. Donoho and Gasko
(1992) derived many finite-sample properties, including the breakdown value of the
Tukey median, whereas Romanazzi (2001) derived the influence function of the half-
space depth. Massé and Theodorescu (1994) and Rousseeuw and Ruts (1999) stud-
ied several properties of the depth and the depth contours at the population level.
The asymptotic distribution of the Tukey median was given in Bai and He (1999),
whereas He and Wang (1997) and Zuo and Serfling (2000c) studied the convergence
of the depth regions and the contours. Continuity of the depth contours and the Tukey
median was investigated in Mizera and Volauf (2002). Struyf and Rousseeuw (1999)
showed that the halfspace depth function of a sample completely characterizes its
empirical distribution, and this was later extended to the population case.

To compute the halfspace depth, several affine invariant algorithms have been
developed. Exact algorithms in two and three dimensions and an approximate al-
gorithm in higher dimensions have been proposed by Rousseeuw and Ruts (1996)
and Rousseeuw and Struyf (1998). Recently Liu and Zuo (2014) proposed exact al-
gorithms which are feasible up to p = 5. Algorithms to compute the halfspace me-
dian have been developed by Rousseeuw and Ruts (1998) and Struyf and Rousseeuw
(2000). To compute the depth contours the algorithm of Ruts and Rousseeuw (1996)
can be used in the bivariate setting, whereas the algorithms developed in Hallin et al
(2010) and Paindavaine and Šiman (2012) extend their applicability to at least p = 5.

The bagplot (Rousseeuw et al, 1999) generalizes the univariate boxplot to bi-
variate data. As an example, Figure 8 shows the bagplot of the writing data at time
t = 5. The bag is the smallest Dα which contains 50% of the data points, and is dark-
colored. The halfspace median is plotted as a red diamond. The fence, which itself
is never drawn, is obtained by inflating the bag by a factor 3 relative to the median,
and the data points outside of it are flagged as outliers and plotted as stars. The light-
colored loop is the convex hull of the points inside the fence. This bagplot has the
nice property not to depend on any symmetry assumption: it works just as well for
skewed data. That is, the bag need not be elliptically shaped and the median need not
be positioned in the middle of the bag. In Figure 8 we see a moderate deviation from
symmetry.

With the rise of functional data the notion of depth has been extended to this
more complex situation. For univariate functional data the first proposals include the
integrated depth of Fraiman and Muniz (2001), the h-modal depth of Cuevas et al
(2006) and the random projection depth (Cuevas et al, 2007). The latter could also
be applied to bivariate functional data. Later López-Pintado and Romo (2009, 2011)
defined the (modified) band depth and the (modified) epigraph index. Recently the
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Fig. 8 Bagplot of the bivariate writing data at time t = 5.

band depth was extended to multivariate functional data by Ieva and Paganoni (2013)
and López-Pintado et al (2014). The latter approach can be seen as a particular case
of the multivariate functional depth introduced and studied by Claeskens et al (2014).

We consider the observed curves as a realization of a p-variate stochastic process
{Y (t), t ∈U} on Rp with U = [a,b]. We assume that it generates continuous paths
in C(U)p, the space of continuous functions from U to Rp. Following Claeskens
et al (2014), with D a statistical depth function on Rp and w a function on U which
integrates to one, the Multivariate Functional Depth (MFD) of a curve X ∈ C(U)p

with respect to the distribution PY is defined as

MFD(X ;PY ) =
∫

U
D(X(t);PY (t)) w(t) dt. (2)

where PY (t) is the distribution of Y at time t. The MFD thus combines the local depths
at each time point. By incorporating a weight function w(t) one can emphasize or
downweight certain time regions. Similarly to the multivariate setting, the functional
median Θ(t) is defined as the curve with maximal MFD. The multivariate functional
halfspace depth (MFHD) is obtained by taking the halfspace depth as the underlying
depth function in (2). Properties of MFD, MFHD and the resulting medians have
been studied by Claeskens et al (2014). In particular, if the multivariate depth D has
a unique maximum at each time point, say θ(t), then the MFD median Θ(t) equals
θ(t) and the curve is continuous.
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For a functional data sample (Y1, . . . ,Yn) measured at (not necessarily equidistant)
time points t1, . . . , tT the finite-sample MFD of a curve X is given by

MFDn(X ;Pn) =
T

∑
j=1

D(X(t j);Pn(t j))Wj (3)

with Wj =
∫ (t j+t j+1)/2

(t j−1+t j)/2
w(t)dt (and t0 = t1, tT+1 = tT ) and Pn(t j) the empirical distri-

bution of the observed curves at time t j. For simplicity a uniform weight function will
be used throughout this paper.

Since depth functions give an outward-center ordering, we expect that outliers
will have a low depth value. The ‘vanishing at infinity property’ of a statistical depth
function ensures that an observation will receive zero depth when it moves away from
the center. The same holds for the MFD when the curve goes to infinity at almost all
time points in the domain. Simulations in Claeskens et al (2014) have illustrated that
several types of outliers, among which shifted outliers, indeed obtain a low MFHD
depth. So it seems natural to use functional depth values for outlier detection. This
was the underlying idea in Febrero-Bande et al (2008) where critical values were
derived in a nonparametric way. A parametric approach was considered in Dang and
Serfling (2010) but requires knowledge about the data distribution.

However, the depth values alone do not always provide sufficient information for
outlier detection. First of all, not all observations with a low depth are indeed outly-
ing. For example, observations on the boundary of the convex hull of a multivariate
sample only have depth 1/n. In the functional setting the problem is even more chal-
lenging. In particular, isolated outliers will be very hard to detect using the MFD
alone, as they will have a small multivariate depth value in only a small part of the
domain. For instance, the hugely outlying curve 37 in Figure 1 has an MFHD value
of 0.0973 while 5 of the 40 observations have a lower MFHD value.

Additional insight can be obtained by looking at the values of the depth at each
time point. We illustrate this on the Octane data set consisting of 39 near infrared
(NIR) spectra of gasoline samples (Esbensen, 2001; Rousseeuw et al, 2006). It is
known that observations 25, 26 and 36-39 have a very different spectrum as they
contain added ethanol, which is required in some states. Figure 9 clearly shows the
six shape outliers, which are persistently outlying from wavelength 1390 onward.

When we order the spectra according to their MFHD, the six outliers have ranks
16, 3, 12, 10, 5 and 15 respectively, hence they do not have the lowest functional
depth. On the other hand spectrum 34 has the smallest depth since most of the time
it lies near the lower edge of the regular data. Let us also look at the cross-sectional
depth values by constructing a heatmap with n rows and T columns. Each cell of
this map is colored according to HD(Yi(t j)) for i = 1, . . . ,n and j = 1, . . . ,T , with the
smallest depth value shown as white and the overall highest depth value colored dark
green. On the vertical axis we rank the curves from top to bottom according to their
MFHD value, thereby putting the deepest curve at the bottom. The color of the cell
on the ith row and the jth column thus shows the halfspace depth at time t j of the
curve with ith smallest MFHD. This yields the halfspace depth heatmap in Figure
10.
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Fig. 9 Octane data set with 6 shape outliers.
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Fig. 10 Halfspace depth heatmap of the octane data.

Even with the HD heatmap it is still not easy to flag the outlying curves. We note
several light regions in the heatmap, but they are scattered over many rows (curves)
while some of the outliers (e.g. curve 25) even have a higher HD at the higher wave-
lengths than some of the regular curves. This is of course caused by the nature of
halfspace depth which ranks the data from the outside inwards without considering
their distance from the median. When the focus is on outlier detection, including
a distance-based ranking is thus indispensable. This motivates the construction of a
distance measure based on halfspace depth.
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3.2 The bagdistance

We first define a new statistical distance from a multivariate point x ∈Rp to a random
variable Y , based on the halfspace depth. This distance uses both the center and the
dispersion of Y . As in the bagplot we define the bag B as the 50% central region.
This is the smallest depth region with at least 50% probability mass, i.e. B = Dα̃ with
PY (B) > 0.5, and PY (Dα) < 0.5 for all α > α̃ . Next, we consider the ray from the
halfspace median θ through x, and we define c(x) := cx as the intersection of this ray
and the boundary of B. The bagdistance of x to Y is then given by the ratio between
the Euclidean distance of x to the halfspace median and the Euclidean distance of cx
to the halfspace median:

bd(x;PY ) =
‖x−θ‖
‖cx−θ‖

. (4)

The denominator in (4) accounts for the dispersion of Y in the direction of x. It is
obvious that the bagdistance does not assume symmetry and is affine invariant.
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Fig. 11 Illustration of the bagdistance between an arbitrary point and a multivariate sample.

The finite-sample definition is similar and is illustrated in Figure 11. The gray
colored bag is the smallest depth region that covers half of the sample points. For two
points x1 and x2 their Euclidean distance to the halfspace median (red diamond) is
marked with a dark blue line, whereas the orange lines correspond to the denominator
of (4) and reflect how these distances are scaled differently. Whereas the lengths of the
blue lines are the same, the bagdistance of x1 is 2.01 and that of x2 is only 0.63. These
values reflect the position of the points relative to the sample, one lying somewhat
away from the most central half of the data and the other lying well within the central
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part. Note that the bagdistance is implicitly used in the bagplot, as the fence consists
of the points whose bagdistance is at most 3. Also note that the bagdistance is a
very different notion from the halfspace-outlyingness OH(x;PY ) = 1− 2HD(x;PY )
defined by Dang and Serfling (2010). The OH contains exactly the same ranking
information as HD and is not very helpful for outlier detection either, as noted by the
authors.

To compute the bagdistance of a point x with respect to a p-variate sample we
can indeed compute the bag and then the intersection point cx. In small dimensions
computing the bag is feasible, and it is worth the effort if the bagdistance needs to
be computed for many points. In higher dimensions computing the bag is hard, and
then a simpler and faster algorithm is to search for the multivariate point c∗ on the
ray from θ through x such that

HD(c∗;Pn) = median
i
{HD(xi;Pn)}.

Since HD is monotone decreasing on the ray this is fairly fast, e.g. by means of the
bisection algorithm.

When applied to elliptically symmetric distributions, the bagdistance is propor-
tional to the Mahalanobis distance:

Theorem 1 If PY is an elliptically symmetric distribution with center µ and shape
matrix Σ , i.e. f Y (y) ∼ |Σ |−1/2h((x−µ)′Σ−1(x−µ)) for some nonnegative function
h, then bd(x;PY ) = k

√
(x−µ)′Σ−1(x−µ) for some constant k.

Proof We first note that under elliptical symmetry the halfspace median equals µ .
Next it is well-known that the halfspace depth regions are ellipsoids Dα = {x; (x−
µ)′Σ−1(x− µ) 6 kα} for some constant kα depending on α , see e.g. Massé (2004),
from which the result follows. �

The bagdistance can be used to construct a metric on the space Rp in the following
way. Assume that the halfspace median is contained in the interior of the bag, that
is, there exists a ball of radius ε > 0 with center θ which lies entirely inside the bag.
Then define the function

g : Rp→ Rp : x 7→ g(x) =
{

0 if x = θ

(x−θ)/||cx−θ || elsewhere

with cx as in (4). The function g is well-defined since our assumption implies that
||cx − θ || > 0 for every x 6= θ . Now define the bagdistance between two arbitrary
points as

bd(x1,x2) = ||g(x1)−g(x2)||. (5)

Theorem 2 If the halfspace median θ of a distribution P lies in the interior of the
bag, the bagdistance (5) is a metric on Rp.

Proof It is clear that bd(x1,x2) is well-defined and symmetric in its arguments. The
triangle inequality follows readily from the triangle inequality for the Euclidean dis-
tance. Finally we note that bd(x1,x2) = 0 implies g(x1) = g(x2). Since the multivari-
ate points g(x1) and g(x2) have the same direction it follows that cx1 = cx2 implying
x1 = x2. �
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This result continues to hold in the finite-sample case. We can also extend the
bagdistance to the functional setting. The functional bagdistance of a curve to (the
distribution of) a stochastic process Y is defined as

f bd(X ;PY ) =
∫

U
bd(X(t);PY (t))dt. (6)

Note that in general it is possible that this distance becomes infinite.
As in the multivariate setting, the functional bagdistance can be extended to a

distance between two arbitrary continuous functions X1 and X2 using the formula

f bd(X1,X2) =
∫

U
bd(X1(t),X2(t))dt . (7)

Under some weak conditions this is a metric:

Theorem 3 Assume Y generates continuous paths in C(U)p such that

m := inf
t∈U

inf
x∈Rp

||cx−Θ(t)||> 0 (8)

with Θ(t) the MFHD median. Then the functional bagdistance (7) is a metric on
C(U)p.

Proof Condition (8) implies that the bagdistance is defined for every t ∈U . Without
loss of generality we assume that Θ(t) = 0. Since X1,X2 ∈C(U)p and U is compact, it
follows for all t ∈U that ||X1(t)−X2(t)||6 ||X1(t)||+ ||X2(t)||6M for some M < ∞.
Therefore

f bd(X1,X2) =
∫

U
bd(X1(t),X2(t))dt =

∫
U

dE

(
X1(t)
||cX1(t)||

,
X2(t)
||cX2(t)||

)
dt

6
∫

U

||X1(t)||
m

+
||X2(t)||

m
dt 6 2

∫
U

M
m

dt .

Since U is compact the latter integral is finite. Clearly f bd is symmetric and the
triangle inequality holds. Finally f bd(X1,X2) = 0 implies that bd(X1(t),X2(t)) = 0
for almost every time point since bd is positive. This in turn implies that X1(t) =X2(t)
at almost every time point, and since they are continuous, X1 = X2. �

The multivariate and functional bagdistance now allow us to construct a diagnos-
tic plot which shows the global outlyingness of the curve as well as the local outly-
ingness at each time point. We again construct a heatmap, where now we color the
cells of each row according to the cross-sectional bagdistance of the corresponding
curve. The rows are sorted in decreasing order of their functional bagdistance, so that
the outliers should typically be on top (as in the depth heatmap). The color of the cell
on the ith row and the jth column thus corresponds to the bagdistance at time t j of
the curve with ith largest functional bagdistance. To emphasize that this plot focuses
on the outlyingness of curves we use red tints. The depth heatmap of Section 3.1 used
green tints instead, as it shows the degree of centrality.

The bagdistance heatmap of the octane data set in Figure 12 now clearly flags the
six outliers. They have the highest functional bagdistance, and they become outlying
from the same time point onward.
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Fig. 12 Bagdistance heatmap of the octane data set.

4 Outlier detection based on adjusted outlyingness

4.1 Skew-adjusted projection depth

As an alternative to the HD based heatmaps, we also construct diagnostic plots based
on a different depth function. Since the introduction of halfspace depth various other
affine invariant depth functions have been defined, among which simplicial depth
(Liu, 1990) and projection depth (Zuo, 2003) which is essentially the inverse of the
Stahel-Donoho outlyingness (SDO). An overview of depth functions can be found in
Mosler (2013). The SDO is based on the geometrical insight that a multivariate outlier
should be outlying in at least one direction. The idea is to project the data onto many
lines and to use a robust univariate measure of outlyingness on the projections (Stahel,
1981; Donoho, 1982). The population SDO of an arbitrary point x with respect to a
random variable Y with distribution PY is defined as

SDO(x;PY ) = inf
||v||=1

| v′x−median(v′Y ) |
MAD(v′Y )

from which the projection depth is derived:

PD(x;PY ) =
1

1+SDO(x;PY )
. (9)

Since the SDO has an absolute deviation in the numerator and uses the MAD in its
denominator it is best suited for symmetric distributions. For asymmetric distribu-
tions Brys et al (2005) proposed the adjusted outlyingness (AO) in the context of
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robust independent component analysis. The AO uses the medcouple (MC) of (Brys
et al, 2004) as a robust measure of skewness. The medcouple of a univariate dataset
{z1, . . . ,zn} is defined as

MC(z1, . . . ,zn) = median
i, j

(z j−mediank zk)− (zi−mediank zk)

z j− zi
(10)

where i and j have to satisfy zi 6mediank(zk)6 z j and zi 6= z j. Note that−1 < MC <
1 and MC = 0 for symmetric distributions, whereas MC > 0 indicates right skewness
and MC < 0 indicates left skewness.

The adjusted outlyingness AO is defined as:

AO(x;PY ) = sup
||v||=1


v′x−median(v′Y )

w2(v′Y )−median(v′Y ) if v′x > median(v′Y )
median(v′Y )−v′x

median(v′Y )−w1(v′Y )
if v′x < median(v′Y )

(11)

where

w1(Z) = Q1(Z)−1.5e−4MC(Z) IQR(Z)

w2(Z) = Q3(Z)+1.5e+3MC(Z) IQR(Z)

if MC(Z)> 0, where Q1(Z) and Q3(Z) denote the first and third quartile of a univari-
ate random variable Z, and IQR(Z) = Q3(Z)−Q1(Z). If MC(v′Y ) < 0, we replace
v by −v. The denominator of (11) corresponds to the whiskers of the univariate ad-
justed boxplot proposed by Hubert and Vandervieren (2008). Other applications of
the AO were studied by Hubert and Van der Veeken (2008, 2010).

We now define the skew-adjusted projection depth (SPD) as

SPD(x;PY ) =
1

1+AO(x;PY )
. (12)

Theorem 4 Let P be the set of all probability distribution functions on Rp. The
mapping D(·, ·) : Rp×P → R : (x,P) 7→ SPD(x,P) is a statistical depth function
according to Definition 2.1 of Zuo and Serfling (2000a) and its depth regions are
convex.

Proof It is clear that D(·, ·) is bounded and non-negative. Since AO is affine invariant,
the skew-adjusted projection depth will be so as well. It is further evident that SPD
vanishes at infinity. Note that being an H-symmetric distribution about a unique point
θ ∈ Rp is equivalent to saying that median(v′Y ) = v′θ for any unit vector v ∈ Rp

(Zuo and Serfling, 2000b). Maximality at the center and monotonicity relative to the
deepest point follow immediately.

The convexity of the depth regions follows from the convexity of the adjusted out-
lyingness function AO(· ;P). For univariate data, the AO is a piecewise linear function
composed of a downward sloping line ending in the point (median(P),0) and an up-
ward sloping line starting in the same point, so it is convex. For multivariate data, the
AO relative to a single direction v is thus convex too. Therefore the multivariate AO
is a supremum (over all v) of convex functions. �
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To compute the finite-sample SPD we have to rely on approximate algorithms as
it is infeasible to consider all directions v. A convenient affine invariant procedure
is obtained by considering directions v which are orthogonal to an affine hyperplane
through p+ 1 randomly drawn data points. In our implementation we use 250p di-
rections.

Since the SPD is a bona fide depth function, we can plug it into (2) yielding
the multivariate functional skew-adjusted projection depth (MFSPD). The MFSPD
therefore satisfies the properties in Claeskens et al (2014). In particular, the resulting
median is continuous when at each time point the multivariate depth D has a unique
maximum.

On the other hand we can also integrate the AO itself, yielding the functional
adjusted outlyingness

FAO(x;PY ) =
∫

U
AO(X(t);PY (t)) dt. (13)

Throughout this paper we will use the skewness-adjusted AO and SPD and their
functional versions instead of the original SDO and PD, because the new tools can
deal with symmetric as well as asymmetric data, and they have the same good proper-
ties. This is a kind of ‘insurance policy’ against skewness. As suggested by a referee,
we could easily monitor the amount of skewness over time, for instance by plotting
the largest absolute value of the medcouple encountered in the computation at each
time point.
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33       2120       3222       2918       137       243       1628       3110       3019       278       5
12       1417       4
9       156       3523       3439       3625       3738       26

1100 1164 1228 1292 1356 1420 1484 1548

wavelength

0.25
0.50
0.75
1.00

SPD

Fig. 13 Skew-adjusted projection depth (SPD) heatmap of the octane data.
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Similar to the heatmaps based on halfspace depth and the bagdistance we can
construct the skew-adjusted projection depth heatmap and the adjusted outlyingness
heatmap. The SPD heatmap of the octane data is shown in Figure 13. The six outliers
are now clearly identifiable. In this example the outliers also have the lowest MFSPD,
as they have a high AO over a rather long period.

The AO heatmap of the wine data is shown in Figure 14. Instead of showing all 40
rows of the heatmap, which would make the labels harder to read, we have zoomed
in on the top 24 rows. Curve 37 jumps out immediately, as the two peaks we clearly
saw in the raw data are dark colored. To make the details of the other curves more
visible, we also display the same heatmap by setting the colors of curve 37 to white,
and rescaling the colors of the other cells. The result is in Figure 15. We now also see
the wiggly behavior of several curves.

Let us now take a closer look at the curves 35, 23, 3, and 2 which are at the top of
the heatmap. Curves 35 and 23 show increased cross-sectional outlyingness around
wavelengths 5.37, 5.43 and 5.50. At other wavelengths these spectra have almost
constant outlyingness. In Figure 16 we see that they are mild shift outliers. Curves 2
and 3 have an even more stable adjusted outlyingness profile. They can be recognized
as the bottom curves in Figure 16.

4.2 Centrality-stability plot

The relation (12) between SPD and AO will allow us to construct another diagnostic
plot. We start by rewriting the MFSPDn of a curve X as

MFSPDn(X ;Pn) =
T

∑
j=1

SPDn(X(t j);Pn(t j))Wj

=
T

∑
j=1

1
(1+AO(X(t j);Pn(t j))W−1

j

= T
[

hmean
j

(
(1+AO(X(t j);Pn(t j))W−1

j

)]−1

where we use the abbreviation hmean j for the harmonic mean over j = 1, . . . ,T .
The MFSPD can thus be seen as the inverse of the harmonic mean of the weighted
adjusted outlyingness in cross-sections. When we make a scatterplot of(

MFSPDn(Yi;Pn) ; ave
j

(
(1+AO(Yi(t j);Pn(t j))W−1

j

))
(14)

for all i = 1, . . . ,n, the points are bounded from below by the function z→ T
z since

the arithmetic mean is always larger than or equal to the harmonic mean.
This scatterplot is shown in Figure 17 for the octane data and in Figure 18 for the

wine data. The red curve is the theoretical lower bound. We see in both examples that
the outliers stand out very clearly on the vertical axis. To understand this behavior,
we reconsider the relation between the hmean and the arithmetic mean of a set of
positive values. These means can only be equal if all values coincide. Therefore a
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Fig. 14 Adjusted outlyingness (AO) heatmap of the wine data (top 24 rows).
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Fig. 15 Wine data: rescaled AO heatmap (by blanking out the top row).
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Fig. 17 Scatterplot of (14) for the octane data.
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Fig. 18 Scatterplot of (14) for the wine data.

curve would be represented by a point on the lower bound if and only if its AO values
would be constant over time. The vertical deviation from the lower bound thus reflects
the variability of the degree of outlyingness over time.

Finally we construct the centrality-stability plot as the scatterplot of(
1−MFSPDn(Yi;Pn) ; ave

j

(
(1+AO(Yi(t j);Pn(t j))W−1

j

)
− T

MFSPDn(Yi;Pn)

)
for all i = 1, . . . ,n. The horizontal axis thus measures a curve’s overall deviation from
centrality, and the vertical axis its AO’s deviation from stability. The deepest curves
will lie in the left part of the plot, while the less central ones are to the right. Typically
an isolated outlier will be in the upper region, as it is well-known that the arithmetic
mean of positive numbers is more sensitive to outlying values than the harmonic
mean. We expect shift outliers in the lower right region of this diagnostic plot (as they
have a rather constant AO) and shape/amplitude outliers in the upper right region.

Figure 19 shows the centrality-stability plot of the wine data. The isolated out-
lier 37 is again very visible. This curve is not very central either, as also outside of
the two peaks it is in the outskirts of the curves. Curves 2, 3, 23 and 35 are at the
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Fig. 19 Centrality-stability plot of the wine data.

bottom right of the plot. We already noted in Figure 16 that curves 2 and 3 have sta-
ble adjusted outlyingness profiles across wavelengths. This is confirmed by their low
vertical coordinates in the centrality-stability plot.

5 Real data analysis

Whereas the examples in Sections 3 and 4 were univariate functional data sets, we
now apply our new methodology to two multivariate data sets.

5.1 Writing data

The writing data were introduced in Subsection 2.2, where we also described the out-
lying behavior of some of the curves (41, 67 and 132). The centrality-stability plot of
this bivariate functional data set is shown in Figure 20, the trajectories are displayed
in Figure 21 and their marginals in Figures 22 and 23. In the centrality-stability plot
observations 41 and 132 indeed stand out. The MFSPD depth of the blue curve 41
is not extremely small (as seen on the horizontal axis of the centrality-stability plot),
but its outlyingness is quite variable, resulting in a high vertical coordinate in Figure
20.

The solid black curve 132 has the lowest MFSPD although it does not look very
outlying in the marginals, but it is outlying in the multivariate sense as we saw in Fig-
ures 7 and 8. From its vertical coordinate in the centrality-stability plot we conclude
that the cross-sectional outlyingness does vary somewhat over time. The dot-dashed
red curve 67 is in the outskirts of the data judging from its MFSPD on the horizontal
axis in Figure 20, and its vertical position in that plot tells us that its AO values are
quite variable. Curves 30 (dashed green), 95 (solid purple) and 121 (dot-dashed or-
ange) are even higher in the centrality-stability plot, and we see that they are mostly
outlying in the right hand side of Figure 21.
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Fig. 20 Centrality-stability plot of the writing data.
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Fig. 21 Writing data with some outliers colored.
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Fig. 22 Horizontal coordinate of the writing data
with some outliers colored.
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Fig. 23 Vertical coordinate of the writing data with
some outliers colored.

5.2 Tablets Data

As explained in Subsection 2.1 the tablets data consists of two groups of pills, and the
data contains shift outliers and shape outliers. A common practice in chemometrics
is to first apply a baseline correction, so from each curve we subtract its mean (over
all wavenumbers). These baseline corrections are constant functions shown in Figure
24. The corrected spectra are displayed in Figure 25. From this plot it can already be
seen that the lower curves (the shift outliers) are transformed to regular curves. If we
do not want to lose the information that some of the curves were outlying prior to the
preprocessing step, we can include the baseline functions in our analysis. Moreover,
to increase the potential of finding shape outliers, we include the derivatives of the
curves (shown in Figure 3) as well. All together we thus perform our analysis on a
three-dimensional functional data set.

First we look at the SPD heatmap in Figure 26 and the AO heatmap in Figure 27.
Both show the top 50 rows out of 90. These heatmaps reveal interesting structures in
the data. Curves 71 through 90 show an increased cross-sectional outlyingness be-
tween wavenumbers 8850 and 8950. Among the rows with the highest functional AO
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Fig. 25 The baseline-corrected spectra.

we also find curves 1 through 10. A similar pattern can be seen in the depth heatmap.
However, there is a difference between these two groups. The cross-sectional ad-
justed outlyingness of the first 10 observations is mostly stable across wavenumbers,
whereas the other outliers show more variability in their AO values.

This difference becomes more explicit in the centrality-stability plot (Figure 28).
We clearly distinguish three groups of observations: regular ones, curves with low
depth and stable outlyingness, and those with low depth and highly variable AO val-
ues. They correspond nicely to the three types of curves that could be seen on the
raw data: the 90 mg pills (orange), the downward shifted 90 mg (red), and the 250
mg (purple), see Figure 29. As expected the shifted outliers have an almost constant
deviation from the functional median and thus are situated in the lower right corner of
the centrality-stability plot. The wiggly behavior of the 250 mg tablets causes them
to be located in the upper right part.

One might wonder whether these groups could also be found by applying existing
univariate outlier detection tools to the marginal curves. We first apply the functional
boxplot of Sun and Genton (2011) to each of the three univariate functional data sets.
On the baseline functions (Figure 24), observations 1, 2, 4-6, 71-74, 79, 83, 88 and
90 are flagged as outliers. On the baseline-corrected spectra the functional boxplot
indicates tablets 1, 4, 73, 76, 79, 83 and 90 as outliers. Applied to the derivatives it
flags observations 1, 4, 5, 71-84 and 87-90. Even if we combine the results from the
three components, tablets 3, 7-10, 85 and 86 are not detected.

Next we apply the outliergram which has recently been proposed by Arribas-Gil
and Romo (2014). It combines two univariate functional depth methods: the modified
band depth (MBD) and the modified epigraph index (MEI). Arribas-Gil and Romo
(2014) show that for each curve

MBD6 a0 +a1MEI+a2n2MEI2

with a0, a1, a2 depending on n only. Using this relation they propose to plot the
depths of the observations in the (MBD,MEI)-plane. They then define shape outliers
as those observations whose distance di = a0+a1MEIi+a2n2MEI2

i −MBD is flagged
as an outlier on the boxplot of the di.
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Fig. 26 SPD heatmap of the tablets data (top 50 rows).
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Fig. 28 Centrality-stability plot of the tablets
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Fig. 29 Raw tablet curves colored according to
their type.

If we apply this technique to the marginals of our three-dimensional functional
data set, no outliers are detected from the baseline functions or the baseline-corrected
spectra. Figure 30 shows the outliergram (right) of the derivatives of the spectra (left).
Only observation 90 is flagged as a shape outlier and is marked on the left plot. Our
multivariate analysis is thus much more powerful here.

6 Conclusion and outlook

We extend the toolbox of multivariate functional data analysis by new techniques for
outlier detection. Functional data can have various kinds of outlyingness. A curve
can have isolated or persistent outlying behavior, and the latter can be of the shift,
amplitude, or shape variety, or a combination of those. The multivariate nature of the
data makes these harder to detect than in the univariate functional case.
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Fig. 30 Derivatives of the tablet spectra (left) and their outliergram (right). Curve 90 is shown in black in
the left panel.
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Our new tools are based on depth-related notions so they do not have to assume
any symmetry. We introduce the bagdistance, a metric based on halfspace depth.
Even in the simpler case of multivariate nonfunctional data this is a new concept.
The functional bagdistance carries more numerical information than the functional
halfspace depth alone, and the new bagdistance heatmap helps to distinguish between
isolated and persistent outlyingness.

A second approach is to extend the well-known projection depth to skewed dis-
tributions by basing it on the adjusted outlyingness (AO). In the multivariate case
this skewness-adjusted projection depth (SPD) satisfies the depth axioms of Zuo and
Serfling (2000a) and has convex depth regions. Integrating the SPD over time yields
the functional SPD, as well as the SPD heatmap which can reveal detailed structure
in the data. Combining information from the AO with the functional SPD we obtain a
new diagnostic plot, which we call the centrality-stability plot because it contrasts the
overall depth of a curve with the time-variability of its cross-sectional outlyingness.
In the examples we illustrate the power of these multivariate functional tools, also
compared to univariate analysis of the marginals.

We are currently working on a package for R and a corresponding toolbox for
MATLAB implementing the techniques described in this paper. In future work we
will investigate how these new tools can be used for other purposes such as supervised
classification of multivariate data and of functional data.
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López-Pintado S, Romo J (2009) On the concept of depth for functional data. Journal
of the American Statistical Association 104:718–734
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Massé JC (2004) Asymptotics for the Tukey depth process, with an application to a
multivariate trimmed mean. Bernoulli 10(3):397–419
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