Bridging the Gap between IEEE 1471, Architecture Description Languages and
UML

Mohamed Mancona Kandé, Valentin Crettaz, Alfred Strohmeier, Shane Sendall

Swiss Federal Institute of Technology Lausanne (EPFL)
Software Engineering Laboratory
1015 Lausanne EPFL, Switzerland

email: {Valentin.Crettaz, Mohamed.Kande, Alfred.Strohmeier, Shane.Sendall} @epfl.ch

ABSTRACT A lot of attention has been paid to soft-
ware architecture issues in both the software engi-
neering research community and standardization
organizations working in the software area. On one
hand, IEEE 1471 makes a clear distinction between
the architecture and the architectural description of
a software system. The software architecture
research community, on the other hand, has focused
on the creation and improvement of special-pur-
pose languages, architecture description languages
(ADLs). ADLs have the advantage of being mathe-
matically founded, facilitating analysis of architec-
tural models, but they have also the disadvantage of
lacking adequate support for separating various
kinds of stakeholders' concerns along different
viewpoints. ADLs do not address the clear differ-
ence between software architecture and its repre-
sentations, as does the IEEE 1471. To help improve
the situation, we propose a UML-based approach
to software architecture that instantiates the con-
ceptual framework defined in IEEE 1471 and com-
plements the abstractions and mechanisms found in
current ADLs.

In this paper, we introduce the ConcernBASE
approach to software architecture description and
discuss how to integrate it with SADL, a particular
ADL. We validate the mapping in ConcernBASE
Modeler, a UML-based tool prototype, by integrat-
ing SADL tools.

KEYWORDS Software Architecture, Architecture
description, UML, ADL, IEEE 1471, SADL,
Advanced Separation of Concerns, MDSOC, Views,
Viewpoints, Concern space.

1 Introduction

Software architecture is concerned with understanding
and describing complex software-intensive systems at dif-
ferent levels of abstraction. The attention paid to issues of
software architecture is increasing in both the software
engineering research community and standardization orga-
nizations working in the software area. However, in spite of
the number of books and research papers found in the liter-
ature, architectural concerns still continue to be one of the
most contentious issues in the construction of complex sys-
tems.

IEEE 1471 defines an architecture as "the fundamental
organization of a system embodied in its components, their
relationships to each other, and to the environment, and the
principles guiding its design and evolution". In addition, it
refers to an architecture description as "a collection of
products to document an architecture"[1]. By these defini-
tions, IEEE 1471 makes clear the distinction between the
architectural description and architecture of a software-
intensive system.

On the other hand, the software architecture research
community, essentially academics, has focused on the cre-
ation and improvement of special-purpose languages,
known as architecture description languages (ADLs)
[71[81[9]. In the past few years, numerous ADLs have been
specially designed to represent different aspects of archi-
tectures of software systems. ADLs have the advantage of
being mathematically founded, facilitating analysis of
architectural models, but they have also the disadvantage of
lacking adequate support for separating various kinds of
stakeholders' concerns along different viewpoints. Due to
their formal nature, ADLs can be hard to understand and to
use, as developers in need of ADL-based software architec-
tures will have to learn the mathematical models of soft-
ware systems. This is perhaps a reason why ADLs are not
so widely used in industry [14]. In addition, ADLs do not
address the clear difference between software architecture
and its representations, as does the IEEE 1471.

To help improve the situation, we propose a general
approach, which aims at integrating fundamental issues
addressed in IEEE 1471 with some effort accomplished in
the software architecture research community. We refer to
this approach as ConcernBASE!, a particular UML-based
approach to software architecture that instantiates the con-
ceptual framework defined in IEEE 1471 and complements
the abstractions and mechanisms found in current ADLs,
allowing for simultaneous separation of possibly overlap-
ping concerns. To support users, ConcernBASE has also
focused on providing tools for supporting architecture-cen-
tered software development.

1.ConcernBASE stands for Concern-Based and
Architecture-centered Software Engineering [20]

In this paper, we introduce the ConcernBASE approach
to software architecture description and discuss how to
map a ConcernBASE architectural description, written in
UML, onto an architectural description developed in a par-
ticular ADL, called SADL (Structural Architecture
Description Language). Our motivation for doing this map-
ping was to make available the verification capabilities of
SADL tools for ConcernBASE. The mapping has been val-
idated in ConcernBASE Modeler, a UML-based tool proto-
type that supports the ConcernBASE approach and its
integration with SADL tools [21].

The paper is organized as follows: section 2 gives some
background on our work and the related work done by oth-
ers. Section 3 introduces the ConcernBASE approach. Sec-
tion 4 illustrates the application of the ConcernBASE
approach on a compiler example, which is based on the ref-
erence model for compiler construction. Section 5 briefly
presents the key concepts of SADL. Section 6 presents a
method for translating ConcernBASE models to SADL
specifications. Section 7 gives a concise overview of the
tool for the ConcernBASE approach. Finally, section 8
summarizes the paper and discusses future work.

2 Background and Related Work

The Unified Modeling Language (UML) is a widely
used standard and a general-purpose language, which pro-
vides a large number of well-known techniques and con-
cepts for modeling various kinds of software artifacts from
different perspectives or viewpoints. Unfortunately, UML,
in its current state, is not sufficient for an explicit software
architecture description as argued in [11]. To gain the bene-
fit of software architecture description with UML, UML
needs to provide first-class support for some key ADL con-
cepts, such as connectors and styles.

Several strategies have been proposed to map ADL con-
structs to UML elements [10][14]. To make use of the
expressive power of a specific ADL, each of these strate-
gies has focused on analytical evaluation of architecture
descriptions. Although the result of such mappings is an
important means to provide an overall view of the system
at hand, they often have no associated tool support. There-
fore, it is very difficult to make any judgement about the
feasibility of such approaches. On the other hand, the strat-
egies used have focussed on increasing the popularity of
existing ADLs, rather than addressing some key issues that
motivate advances in UML 1.x, allowing UML 2.x to be a
better standard. Moreover, despite the significance of the
notion of multiple views in software architecture, as a fun-
damental principle for structuring architectural descrip-
tions [15][16][17], ADLs and their mapping to UML do
not address this issue. Fortunately, the standard IEEE 1471
[1] has proposed to improve the situation by introducing

the concept of multiple viewpoints in software architecture
descriptions. These viewpoints allow one to separate the
stakeholders' concerns into different sets of related con-
cerns; each set represents a certain aspect of the system that
can be "seen" from a particular viewpoint.

In previous work [2], we proposed a UML-based
approach to software architecture description using the
IEEE 1471, which focused on incorporating key abstrac-
tions, found in nearly all-existing ADLs, into UML. This
resulted in the definition of a structural viewpoint of soft-
ware architecture, whose viewpoint language we called a
UML profile for the structural description of software
architectures.

This profile has been integrated into ConcernBASE to
define its Structural Viewpoint. ConcernBASE is centered
around the mechanisms of multi-dimensional separation of
concerns (MDSOC) [6][12], an advanced form of separa-
tion of concerns. MDSOC is a conceptual framework that
allows one to identify, simultaneously separate and manip-
ulate software concerns along multiple dimensions (kinds
of concerns). It includes some mechanisms for composing
and decomposing software concerns and addresses the
ability to handle new concerns, and new dimensions,
dynamically, as they arise throughout the software lifecy-
cle. However, unlike other implementations of MDSOC,
ConcernBASE uses the standard UML notation whenever
possible. In addition, it addresses some fundamental limita-
tions of UMLI1.x by providing necessary extensions to
UML to enable a "concern-driven" approach to software
architecture description.

The Structural Architecture Description Language
(SADL) [4] is a particular ADL that focuses on under-
standing, specifying and refining the representation of
structural concerns in complex software systems. SADL is
different from other ADLs, such as Wright [13], as it sup-
ports structural decomposition at multiple levels. This is
called refinement of high-level system structures in the
SADL terminology. However, SADL is only capable of
providing support for structural decomposition along a lim-
ited number of dimensions (e.g., components, connectors,
configurations, as introduced in section 4). The SADL sup-
port for behavioral modeling is very restricted.

3 The ConcernBASE Approach

According to IEEE 1471, a viewpoint is a specification
of the conventions for constructing and using a view, while
a view is a representation of a whole system from the per-
spective of a related set of concerns. Concerns, as defined
in [1], are those interests which pertain to the system devel-
opment, its operation or any other aspects that are critical
or otherwise important to one or more stakeholders. Con-
cerns can be logical or physical concepts, but they may also

include system considerations such as performance, reli-
ability, security, distribution, and evolvability. These are
important and standard definitions that are considered in
the remainder of this paper. IEEE 1471 helps us understand
intuitively the need to separate the set of all concerns
involved in a software system into different viewpoints, but
it does not specify how an architect should identify, catego-
rize, and encapsulate the concerns that pertain to individual
viewpoints. Furthermore, it remains intentionally silent on
how to represent concerns in architectural views.
ConcernBASE provides a particular approach to soft-
ware architecture description that aims at addressing these
issues, by using UML and instantiating both the MDSOC
and IEEE 1471 conceptual frameworks. One important
goal of ConcernBASE is to provide a UML-based instanti-
ation of both conceptual frameworks. Another goal is to
provide mechanisms to produce software architecture
descriptions in a flexible and incremental way, allowing
one to identify, separate, modularize and integrate different
software artifacts based on various kinds of concerns.
Throughout the approach, we take the premise that soft-
ware architecture is multidimensional in nature. That is,
when constructing complex software, an architect will have
to represent the system in many different ways in order to
be able to understand, communicate and reason about its
high-level properties, from different viewpoints. Each way
of representing the system may be considered as a different
view of the architecture of the system that consists of one
or more models. Each model allows us to reflect some
aspects of the system, while hiding others from view.

3.1 Key Concepts in ConcernBASE

In ConcernBASE, a viewpoint is defined in a template
called viewpoint schema that fulfills the requirements of
IEEE 1471. To fulfill these requirements, a viewpoint
schema:

 defines a unique identifier for the viewpoint at hand;

* identifies a set of stakeholders along with a set of the
various kinds of concerns that pertain to those stake-
holders;

* provides an approach to facilitate the choice or defini-
tion of modeling elements that any associated represen-
tation language needs to support;

* identifies the associated architectural view that repre-
sents the stakeholders' concerns in one or more archi-
tectural models;

¢ and provides the sources for key information used in or
related to the viewpoint definition.

In addition to the requirements of IEEE 1471, Concern-
BASE allows one to define the rationale for a viewpoint
and provide some relationships between the different kinds

of concerns to be addressed, using a viewpoint schema.
One example of an architectural viewpoint defined in Con-
cernBASE is the structural viewpoint.

A new concept introduced by ConcernBASE is the
notion of concern spaces. A concern space represents a
conceptual repository that contains all relevant information
related to a particular viewpoint. The concern space takes
the viewpoint schema as an input and refines the informa-
tion it contains. ConcernBASE allows us to structure the
set of concerns into different kinds of concerns (or dimen-
sions), to specify the relationships between these catego-
ries and maintain changes in the concern structure. A
concern space can be considered as a "multi-dimensional
model of system considerations" that pertains to a software
architect from a particular perspective.

Different elements of the set of concerns addressed by
the viewpoint can be represented in different models by
means of projections. A projection is an architectural
abstraction that defines the relationship between a view-
point and a view (i.e., models of a view). It consists of a set
of rules that specifies how to encapsulate (one or more)
concerns into (zero or more) model elements, taking into
account that some concerns might not have adequate repre-
sentations in the language at hand. A model element can be
simple or composite. A simple model element can be, for
example, any basic UML elements, such as a link,
attribute, parameter, etc. Examples of composite model
elements include classes, subsystems, packages, and any
type of a UML diagram. Basically, a projection can be any
set of rules that specifies how to decompose, organize,
structure software according to a specific dimension. Dif-
ferent projections along different dimensions result in dif-
ferent models, but also different projections along the same
dimension may result in the same or different models. All
sets of rules defining projections are defined and main-
tained as parts of the concern space.

A view of the software architecture of a system is a par-
tial architecture description of that system that may have
one or more architectural models. The architecture descrip-
tion of the whole system may be considered as a set of dif-
ferent architectural views. In the same way, we consider
the system concern space as the union of all concern spaces
of individual viewpoints.

Introducing viewpoint schemas in ConcernBASE has
two main benefits:

* Viewpoint schemas allow us to define concern spaces.
A viewpoint schema provides a large amount of infor-
mation that can be further refined, structured and stored
in a conceptual repository for the viewpoint.

e Concern spaces improve our understanding of the rela-
tionship between architecture and its description. Con-
cernBASE, by introducing concern spaces, provides a

means to understand and illuminate, to some extent, the
relationship between a viewpoint and a view. Using a
concern space, a viewpoint can be characterized as an
approach or an architectural mechanism for separating,
analyzing and using software concerns. On the other
hand, a view associated with a viewpoint can be charac-
terized as a particular work product that can be manipu-
lated. A view consists of a set of architectural models
that each represent some set of software concerns. Tak-
ing into account the definitions of architecture and
architecture description given in [1], and considering
both a viewpoint as a set of abstractions, rules and
guidelines and a view as a work product, we decided to
recognize viewpoints as parts of the architecture, while
recognizing views as parts of the architecture descrip-
tion. Thus, given a concern space and a model (view)
that represents a set of concerns (viewpoint), it should
be possible to define a set of rules (projection) that
specifies the relationship between the viewpoint and its
associated view. This reasoning can be generalized to
improve our understanding of the relationship between
architecture and its description. However, it does not
always work the other way, because some concerns
cannot be represented in a given language.

3.2 Structural Viewpoint

The structural viewpoint is an example of a particular
ConcernBASE viewpoint, whose specification is shown in
Figure 1. The structural viewpoint addresses concerns
related to static, behavioral and configurational structure.
In this example, we first show how to use the Concern-
BASE viewpoint schema; then we discuss how the infor-
mation it contains can be used as an input for defining a
viewpoint language and the structural concern space. We
choose this example as it allows one to understand the key
idea behind the ConcernBASE approach to software archi-
tecture description, while introducing some concepts
needed for mapping ConcernBASE to SADL.

The structural viewpoint schema, depicted in figure 1,
consists of 8 sections (titled in bold). The first section gives
the name of the viewpoint, structural viewpoint. The sec-
ond and third sections identify the lists of concerns and
stakeholders to which the concerns pertain, respectively.
The structural concerns listed in the second section corre-
spond to those typically found in most ADLs. They all per-
tain to the architect. But some of them can be of interest to
developers, for instance, the realization of a specific com-
putation can be assigned to a particular developer. The
assignment of the computation to the developer represents
an example of information that can be taken from the
schema, refined, structured and stored in the concern space.
The fourth section provides the rationale for the structural
viewpoint. Section 5 is the most important part of the view-

point schema. It provides an approach to specifying the key
characteristics of the viewpoint, by considering the view-
point as a module of the architecture whose concerns can
be affected by and/or affect other concerns. Each concern
addressed by the viewpoint can be used in one of the fol-
lowing three situations: motivating the need for new deci-
sions (as an incentive factor); allowing one to specify what
decisions to take (as a decisional factor); and describing the
degree of satisfaction with the decisions taken together
with their impacts on the architecture (as a resultant fac-
tor).

To identify the incentive factors in practice, it is often
useful to ask a number of questions [20]. For example, the
incentive factors listed in figure 1 have been identified
from questions, such as: What carries the interactions
among computational elements? What characteristics does
it need to have? What axioms and design principles can be
reused? In the subsection for decisional factors, an answer
to each of these questions will require some stakeholders to
make decisions and document them in the schema. In the
example, looking for a response to the first question led us
to separate different kinds of interactions and to modular-
ize them into a Connector dimension. Having defined a
dimension as a decisional factor does not require it to be a
first-class model element in the viewpoint language. For
instance, a viewpoint language does not need to support
connectors as a first-class model element. Depending on
the impact of the Connector (as a dimension) on the archi-
tecture and the background of the architect (or an ADL
designer), connectors can be added to the resultant factors,
as a candidate meta-type that needs to be either selected
from an existing description language or defined in a new
one.

Some relationships between particular concerns (with-
out curly brackets) or between the kinds of concerns (with
curly brackets) are described in section 6 of the schema.
Section 7 of the schema provides some important informa-
tion sources related to the viewpoint; and finally Section 8
of the schema identifies the architectural view whose mod-
els need to be supported by the viewpoint language.

3.3 Structural View

The structural view is the most abstract representation of
all significant structural concerns that are relative to the
structural viewpoint. It focuses on what kind of architec-
tural components, connectors, constraints and styles are
needed to understand and reason about the system's struc-
ture. The structural view abstracts from many details of the
system components and connectors and does not provide
any information on how the communication among the
architectural components is implemented or on the internal
structure of those elements. The elements represented at
this level often need to be refined in other models. To get

more details, the structural view needs to establish some
refinement techniques that support 3 types of model: static,
behavioral, and configurational.

Viewpoint name

Structural viewpoint

Concerns

Computation, data store, interaction, configuration, constraints,
reuse (of axioms and design principles)

Stakeholders

Architects, developers, maintainers, acquirers

Rationale

To identify, understand, specify, represent and reason about the
structural characteristics of a software-intensive system

system

Incentive factors

The computational and data elements that make up the

The static and dynamic organization of computational and
data elements

The protocols/roles used for communication
The carrier of interactions among computational elements
The axioms and design principles that are reused

Approach Decisional factors

1. Separation/modularization of architectural concerns into
dimensions of interest, expressed as:
{set of various kinds of concerns} — Dimension. This means,
for structural concerns,
{computation, data store} - Component,
{multiple kinds of interactions} —» Connector,
{configurations} —» System,
{axioms, design principles} — Style,
{constraints} — Property
2. Organization of groups of structural concerns into models
(here 3 different models):
. {static structures, dynamic structures, configurational
structures} — model

Resultant factors

A set of architectural units characterizing the viewpoint language:

= {components, connectors, system, style, properties}
Satisfaction: each structural concern can be modularized
Impacts: support for decoupled units of computation/data store
Noteworthy: one dimension per architectural unit

Unsatisfactory: Insufficient support for modeling crosscutting
concerns (e.g., extra-functional aspects)

. . {constraint})
Relationships among

configuration IsMotivatedBy ({computation}, {interaction},

{constraint} AppliesTo {{computation}, {interaction},

Concerns . f
{configuration}}
({computation}, {interaction}, {constraint}) MemberOf style
Source ADL [8], IEEE-Std-1471 [1], MDSOC [12], Quality Attributes [18]

Resulting View

Structural view::{Static, behavioral, configuration}

Figure 1: Structural Viewpoint Schema

3.3.1 Static Model

The static model describes the static structure of the
components and connectors composing the system. Com-
putational components represent subsystems, system-level
reusable modules with well-defined interfaces, or plug-in
capabilitiesl. A computational component is a locus of def-
inition of some computation and data concerns, which usu-
ally do not crosscut the boundaries of a single subsystem or
module. Some components may have internal structures
that can be represented at subsystem or lower levels using a

1.As described later, dynamically attaching and detaching con-
nection points to components, as defined in system configura-
tions, enable our component model to describe plug-in
capabilities.

number of representation units. Thus, the representation
units that compose a specific component must pertain to
those computation and data concerns which are modular-
ized by the same component.

The UML Profile for SADL defined for ConcernBASE
supports the specification of computational components by
using a class-like notation. To visually distinguish compu-
tational components from other components, such as
classes, the keyword <<computational>> or the computa-
tional icon (placed in the upper right hand corner of the
class name compartment) are used. LexicalAnalyzer, shown
in figure 4 is an example of a computational component.

The interface of a component is specified as a collection
of several interface element types, each of which defines a

logical interaction point between the component and its
environment. The interface elements of a component can
be of three different types: operational, signal or stream.
An <<operational>> interface element type of a component
describes a set of operations that can be required by or pro-
vided to other components, whereas a <<signal>> interface
element type specifies a set of signals that can be sent to or
received from other components. A <<stream>> interface
element type enumerates a collection of streams that can be
consumed by or produced for other components, as well as
a set of quality of services to be guaranteed by those
streams. There is a composition association between a
component type and its interface element types.

A connector is a locus of modularization for component
interconnections and communication protocols. Basically,
the static structure of a connector consists of connection
points and a connection role. A connection point describes
a point at which a component can join a connector to com-
municate with other components. Thus, it represents an
element of the connector interface through which the par-
ticipation of a component in an interconnection can be
defined. A connection role is an abstract representation of
the channel between compatible connection points. It also
specifies the protocol of interactions between connection
points.

3.3.2 Behavioral Model

The behavioral model describes the dynamic (or behav-
ioral) properties of all architecturally significant elements
of the system under development. The behavior of a com-
putational component is specified by the component inter-
face protocol (CIP). A CIP defines the temporal ordering of
data flows, call events, and signal events that can be
received or sent by the component. It is defined by compos-
ing the protocol statemachines of all interface elements.
Composition is defined by "anding" all statemachines of
the interface, i.e. the statemachine of each interface ele-
ment runs concurrently to all the others.

The behavior of a connector type is defined by specify-
ing the protocol of interactions for each connection role
and the behavior associated to the connection points. Both
of these are described using UML protocol statemachines.

3.3.3 Configuration Model

The configuration model describes the organization of
the system in terms of component and connector type
instances. An instance of a connector type has two catego-
ries of elements: dynamic ports and links between these
ports. The dynamic ports are instantiations of connection
points, whereas the links are instantiations of connection
roles. Similarly, when a component type is instantiated, its
interface element types are instantiated as static ports that
are parts of the boundary of the component instance. Two

or more component instances can then be interconnected to
define a configuration of the system by attaching dynamic
ports of the connector instance(s) to the component
instances. Before a dynamic port is attached to a compo-
nent, we have to check that its contract is fulfilled.

4 Compiler Example

This section presents an example that illustrates the ben-
efits of the ConcernBASE approach by applying its tech-
niques to a well known compiler example. Figure 2 depicts
an informal representation of a Level-3 Compiler architec-
ture taken from [4], which uses the reference model for
compiler construction.

Despite the box-and-arrow architecture representation,
figure 2 shows that the compiler has a batch-sequential
architectural style. The main component coordinates the
correct execution sequence of the components composing
the compiler system. First, it transfers the control to the
LexicalAnalyzer, then to the Parser, then to the AnalyzerOpti-
mizer, and finally, to the CodeGenerator. The rounded-edge
components, SymbolTable and Tree, are shared-memory
components. The former holds binding information and
makes it available to the LexicalAnalyzer and AnalyzerOpti-
mizer. The latter keeps abstract syntax trees and is accessed
by the Parser, AnalyzerOptimizer and CodeGenerator. Note that
some components have read and write access, while others
are only granted read or write access. The Parser compo-
nent is directly receiving tokens from the LexicalAnalyzer via
the unidirectional pipe relating them and not through
shared-memory components.

i D |

v o, [v | v
LexicalAnalyzer)

write(binding)

read(binding)
= Pipe Connector

— Control transfer Connections
-~ Call connections /Ordering constraints

@ Outputport () Data Structure Component
> Inputport [Functional Component

Figure 2: Compiler Architecture: take

Figure 3 depicts the set of significant concerns that
define the structural view of the compiler system. It con-
tains six components: LexicalAnalyzer, Parser, AnalyzerOpti-
mizer, CodeGenerator, SymbolTable and Tree, which are all
connected via a complex connector, named CompilerConnec-
tor. As shown below, the connector plays a central role in
this example. It mediates different kinds of communica-
tions between the components of the system and encapsu-
lates all the communication paths. The CompilerConnector

also coordinates the interactions among participant compo-
nents. Therefore, it may enforce a particular communica-
tion protocol among the components.

~<-tarchComponenti=>= B3 <-tarchComponent:>=>- B3
Far=er AnalyzerJptimizer
-
<-archComponent>> £a - - - hi .
k. - arc amponent == EI
Lexicaldnalyzer . - CodeCeneratar
L t -~
— — -, - e —
rEconnectarsx -
s -
L ilerZonnector
o
- .
-~ *a
- ™~
ra .
.l
~-archZomponants>> EI ~-archComponsnt>> E'

SvmbolTable

Trees

Figure 3: Structural View of the Compiler System

Figure 4 illustrates the static structure of the LexicalAna-
lyzer component. Its component interface is composed of
five interface elements, where each element defines a logi-
cal interaction point between the component and its envi-
ronment. The ExecutionControl interface element provides
the operation start with the meaning that another compo-
nent can activate the LexicalAnalyzer, i.e. starts it by imple-
menting this interface. The MemoryAccessControl interface
element requires two operations: read and write. This means

that the LexicalAnalyzer requires these operations to be pro-
vided by another component. The ControlFlowSignaling inter-
face element declares incoming and outgoing signals
necessary to control the execution of the LexicalAnalyzer,
while the MemoryFlowSignaling interface element enumer-
ates signals needed for communication with the shared-
memory components.

<<operational=x [y <=<computational=:> ba <ustraamx> [§]
Execution Contral LexicalAnakyzer Dataflow
Provides Operational Qos
startistring dew) B el +/ lex Mem Ctrl:Mem oryAccessControl no token lost
Requires +!lex CtrliExecution Control no character lost
Signal 5 - Ino binding lost
+!lex Gtrisig: ControlFlowSignaling Produce s
+ilexMemSig:MemoryFlowsignaling tokens:StreamTaoken
Stream binds:StreamEBinding
+) lex5tr: Dataflow Consume s
chars:Stream Character
) i binds:5StreamBindin
4+ ez MeriCirl +i lex CriSig HlexMemsig =l
<signal=> D
== tional>x> Y i
aperationa =<signal=>x D D =] T
MemoryAccessControl ControlFlowsignaling T
Provid - Qutgoing
rovide s
omgmr.lg writeRequest{String dev, String mem)
Require s startAccepted(String dew) readRequestiString dev, String mem)
readiString mem, Stream kind) Incoming Incom ing
write(String mem, Stream kind) starthequestedistring dev) writeAcceptediString dew)
readAcceptediString dev)
Figure 4: Static Structure Model of the LexicalAnalyzer

Lastly, the Dataflow interface element defines two
streams produced by the LexicalAnalyzer, namely a stream of

tokens and a stream of bindings, as well as two consumed
streams conveying characters and bindings. It is important

to remark that bindings are both produced and consumed
by the component, showing the similarity with figure 4,
where the LexicalAnalyzer component reads and writes bind-
ings, i.e. produces and consumes them. As shown below,
all these interface elements are involved in a composition
relationship with the component that realizes them. Fur-
thermore, the interface elements are externally visible parts
of the component.

The use of communication-specific interface elements
clearly exhibits separation of concerns when defining spe-
cialized interaction points (referred to as static ports in the
configuration model), since each interface element type is
responsible for a particular communication type.

To illustrate a portion of the configuration model of the
compiler system, we instantiate the LexicalAnalyzer and
Parser components and the simple connectors. The result-
ing configuration is shown in figure 5, which depicts a part
of the configuration model of the compiler system. In
figure 5, we can see one instance of the LexicalAnalyzer
component and one instance of the Parser component. Each
interface element owned by the component is shown as a
static port on its boundary. We distinguish three connectors
instances, which are used to mediate the communication
between components. One connector links the <<opera-
tional>> static ports of ExecutionControl together, another
relates the <<stream>> Dataflow ports, and another the <<sig-
nal>> ControlFlowSignaling ports.

Figure 5: Configuration View of the Compiler System

5 Overview of SADL

This section gives a brief introduction to the concepts of
SADL. Figure 6 shows a portion of the architecture
description of the compiler_L1 example in SADL. The top-
most section of an SADL architectural description is called
ARCHITECTURE; it encloses other lower-level SADL sec-
tions. We can see that an architecture section is referenced
by the identifier compiler_L1. The architecture description
given after the ARCHITECTURE keyword includes
exchanged data with its environment using input and out-
put ports. The compiler_L1 has an input port, named
char_iport, and an output port, called code_oport. char_iport
receives a sequence of characters (SEQ(character)), and
code_oport sends code data. To apply SADL to definitions
that are externally defined, an architecture description must

first import them. This is achieved by the using the key-
word IMPORTING, indicating where the definitions can be
found. In our example, IMPORTING Function FROM
Functional_Style tells us that Function is imported from an
SADL style named Functional_Style. In order to be imported
into an SADL architecture, an SADL definition has to be
exported using the EXPORTING statement. For instance, the
declaration EXPORTING start specifies that the start function
is made available to other architectures wanting to utilize
that function.

An SADL architecture description contains three differ-
ent sections dealing with various aspects of its software
architecture, namely COMPONENTS, CONNECTORS and
CONFIGURATION. The first and the second sections contain
the declaration of the components and connectors, respec-
tively, whereas the third section defines constraints on the
configuration of the architectural elements defined in the
first and second sections.

The COMPONENTS section contains mainly elements
like ARCHITECTURE, Function, Variable and Operation. In
SADL, all of those elements are considered as being com-
ponents. The ARCHITECTURE section allows us to define
sub-architectures that can be contained in a higher-level
architecture. For instance, in figure 6, lexicalAnalyzerModule
is a sub-architecture contained in the compiler_L1 architec-
ture. Note that through this feature, SADL provides a sup-
port for modularization.

Functionality of architectures can be expressed through
the definition of Function components. As an architecture
element, a Function component may have input and output
ports through which data can be received or sent. In
figure 6, the sub-architecture lexicalAnalyzerModule contains
a function called lexicalAnalyzer representing the main func-
tionality of the sub-architecture.

Operation and Function components have similar mean-
ings. The difference between them lies in the fact that the
input ports of an Operation are seen as the parameters and
the output port as the return value of the operation. How-
ever, the number of output ports of a Function component is
limited to one.

Variable components are used to hold different types of
data and make them available to other components in the
sense of shared-memory, which is local to a sub-architec-
ture. One component is only able to keep a single type of
data, which means that we need different Variable compo-
nents for different types of data. For instance, the lexicalAna-
lyzerModule contains three different Variable components
(character-, token- and bindingVariable), the only three that are
used by the sub-architecture.

The CONNECTORS section contains the definitions of
different kinds of connectors, these are, e.g., Pipe and
Enabling_Signal. Connectors enable communication among
components. A Pipe connector carries data from an output

port of one component to an input port of another. The
transmitted data must be of the same type supported by the
related output and input ports. An Enabling_Signal connector

mediates signal communication that is likely to occur
between two components.

IMPORTING Function FROM Functional_ Style
compiler 1] : ARCHITECTURE [chars_iport : Finite Stream(Character) -> code oport : Finite Stream(code)]
BEGIN
COMPONENTS
lexicalAnalyzerModule : ARCHITECTURE
[chars iport : Finite Stream(Token), bind iport: Finite Stream(Binding) ->
bind oport: Finite Stream(Binding), token oport : Finite Stream(Token)]
BEGIN
COMPONENTS
lexicalAnalyzer : Function
[chars iport : Finite Stream(Token), bind iport: Finite Stream(Binding) —>
bind oport: Finite Stream(Binding), token oport :
characterVariable : Variable(Character)
tokenVariable : Variable (Token)
bindingVariable : Variable (Binding)
CONNECTORS
CONFIGURATTION
token read : CONSTRAINT = Reads (lexicalAnalyzer, tokenVariable)
token write : CONSTRAINT = Writes(lexicalAnalyzer, tokenVariable)
END
CONNECTORS
tokenPipe : Pipe[Finite Stream(Token)]
CONFIGURATION
tokenFlow : CONNECTION = Connects (tokenPipe, lexicalAnalyzerModule!token oport,parserModule! token iport)

Finite Stream(Token)]

Figure 6: Extract of the Level-3 Compiler SADL Specification

The CONFIGURATION section defines the configuration
constraints on the previously defined components and con-
nectors. These constraints may state, for instance, which
Function or Operation component has read/write access to a
Variable component, which component sends a signal,
which component receives it, the direction of the data flow
between two components, and from which component an
Operation is called. We use two different types of state-
ments, namely CONNECTION and CONSTRAINT. The former
defines data flow connections and the latter specifies all
other kinds of constraints.

6 Mapping ConcernBASE to SADL

This section presents our approach for translating a Con-
cernBASE architectural description written in UML into a
textual form written in SADL.

The mapping consists of 5 steps. The first step identifies
all data types utilized in the ConcernBASE architectural
description and maps them to SADL. The second step
requires that all the architectural components be found and
mapped to SADL. The third step requires that all the inter-
face elements of each architectural component be found
and mapped to SADL. The fourth step identifies data flow
connections and maps them to SADL. And finally, the fifth
step puts the pieces together.

6.1 Mapping Data Types

To perform this task, we use an SADL feature that
allows SADL styles to be defined anytime [4]. Figure 7
shows an SADL style which defines the data types used in
the level-3 compiler (see section 5).

Basically, we define a new style that consists of all data
types contained in the current architectural description. To
do this, we have to look at every stream interface in the

LexicalAnalyzer Parser

static model of all the components and connectors. Then,
we build up the data types list by gathering every data type
supported by the different streams. Then, we simply define
a new style having the name of the current architecture
appended with the suffix Types in a file having the name of
the style with the extension ".sadl".

ArelyzerOpfirrizer

<«stream»> [§]
Dataflow

<«streamr> [4]
Dataflow

wxstreamxx [§]

Dataflow

oS
no token lost
no character lost
no binding lost

Oos

no asts lost
no tokens lost

Goj
no ast lost
no binding lost

Produce s

token=:StreamToken
binds:5treamBinding

Produce s
astz:StreamAst

Produce s

asts:FtreamAst

Consumes

tokens:5treamTaokean

Consume s
binds:5treamBinding

Consume s asts;StreamAst

chars:5tream Character
binds:5treamBinding

CooeGenerator SymbolTable Tree
westreamxx [§] <cstreamrx [§] wrstreamrx]
Dataflow Dataflow Dataflow
008 Qo3 Qo
no code lost no bind lost no ast lost
no ast lost Produce s Produce s
Produces binds:Stream Binding asts:StreamAst
codes;Stream Code Consumes Consumes
Consumes binds:5tream Binding asts:5treamhst

astz:StreamAst

EXPORT ALL
Compiler_Types : STYLE
© BEGIN
Token : TYPE
Character : TYPE
Binding : TYPE
Ast : TYPE
Code : TYPE
END
A
ﬂ

Figure 7: Compiler_Types.sadl

6.2 Mapping Architectural Components

Before mapping ConcernBASE components to SADL,
we look at the structural view and identify all the architec-
tural components that are contained in the system.

We translate every architectural component (subsystem)
as an SADL sub-architecture with the suffix Module and
declare it in the COMPONENTS section of the main architec-
ture. We then declare a Function component with the same
name as the component and the same input and output
ports. The Function represents the main functionality of the
sub-architecture and will be referred to as the sub-architec-
ture's main component. However, this mapping strategy
does not exclude that other UML artifacts (for instance,
high-level connectors) can be modeled as components.

Such artifacts will be discovered during the next steps.
Figure 8 shows how the structural view is translated into
SADL.

6.3 Mapping Component Interfaces

To translate the component interface, we have to look at
its static model. The component interface is composed of
three different interface element types, each of which sup-
ports a different communication pattern.

<~archComponenti=:- B3

LexicalAnalyzer

‘ A

| K

~EconnectarFr - =
¥

ilerConnector

<~archComponenti=:- B3

Parzer

COMPONENTS
lexicalAnalyzerModule : ARCHITECTURE

Figure 8: Translating Architectural Components

6.3.1 Stream Interface Type

Clearly, the <<stream>> interface element type is the eas-
iest type to map, since it is equivalent to a SADL port. A
stream interface element may produce and consume differ-
ent kinds of streams, e.g., video and audio streams. Each
stream declared in the Produces and Consumes compart-
ments is translated into an output and an input port of the
component, respectively. Figure 9 illustrates this idea.

Also, we declare a Variable component in the COMPO-
NENTS section of the sub-architecture for every different
type of stream. A Variable component simply holds the data
and acts as a shared-memory component within the sub-
architecture. Moreover, it should only be accessed by inter-
nal components of the sub-architecture that owns it, using
Reads/Writes predicates. These are configuration con-
straints that need to be specified in the sub-architecture
itself. The reason for doing so is to differentiate between
functional and data-holding concerns of components. In
this way, all data consumed by a component is directly
stocked into a Variable component dealing with the corre-
sponding data type.

6.3.2 Operational and Signal Interface Types

SADL lacks precise formalism for the definition of
operational connectors, i.e. connectors that mediate opera-
tion calls between two components. However, the SADL

style, Procedural_Style, contains the definition of the
Called_From predicate taking the invoked Operation and the
calling COMPONENT as parameters. For instance,
Called_From(B!start,A) means that the component A calls the
operation start implemented by component B. Note that start
is declared as an Operation in the COMPONENTS section of
the sub-architecture B.

The Outgoing compartments of the <<signal>> interfaces
of a component allow us to identify the set of signals
defined by that component. We therefore declare the sig-
nals in the CONNECTORS section of the sub-architecture
representing the architectural component. To retain the
behavior, we have to translate the ordering constraints on
the signals. To do this we analyze the behavioral model,
which provides all information we need to get the correct
sequencing of signals. Figure 10 shows the translation of
the behavior of a component into SADL with respect to the
mediation of signal and operational communication. The
static model is helpful for identifying operations and sig-
nals, while the behavioral model helps discover the tempo-
ral ordering of signals and operation calls.

Furthermore, C1 sends the signal sigl and enters state B.
The component C2 (not shown in the figure) receives sigl
and immediately sends sig2, which is in turn received by
C1. Upon reception of sig2, C1 calls the operation op1 and
sends the signal sig3. The ordering is translated by means

of SADL predicates (Sender, Receiver, Called_From) indicat-
ing the kind of relationship existing between the predicate's
arguments. For instance, Sender(c1Module!sigl,c1Module)
means that c1Module is the sender of the signal sigl. Outgo-

ing signals are declared within the sub-architecture. The
constraints that specify the correct sequencing of the sig-
nals are declared in the CONFIGURATION section of the
main architecture.

<= computational=x> EI COMPONENTS
Parser
= parserModule : ARCHITECTURE
Operational . P
[tokens iport : Finite Stream (Token)->
Signal asts_oport : Finite Stream(Ast)]
Stream BEGIN
+/par=5tr: Dataflow COMPONENT'S
parser : Function
+iparsstr @ [tokens iport : Finite Stream(Token)-
asts_oport : Finite Stream(Ast)]
<<streamr [§] — tokenVariable : Variable (Token)
Dataflow — astVariable : Variable(Ast)
QoS CONF'IGURATION
no ast lost . .Reads (parser, tokenVariable)
no tokens lost . .Writes (parser, tokenvariable)
Produce 5 . .Reads (parser, astVariable)
asts:StreamAst . .Writes (parser, astVariable)
Consume s END
tokens:StreamToken CONNECTORS

Figure 9: Translating stream interface type

Translating the behavior of connectors is another very
important thing that has to be taken into account in order to
retain the semantics of the source model. ConcernBASE
and SADL differ on the fact that connectors may have
behavior, too. We cannot specify the behavior of a connec-
tor in SADL. In section 6.2, we have mentioned that we
may have to create an additional SADL component to rep-
resent a ConcernBASE connector with behavior. For
instance, in the level-3 compiler, the CompilerConnector is
responsible for controlling the execution flow of the com-
ponents being part of the compiler system. In SADL, we
would model this feature as a component that would trans-
fer the control to each component in a sequential manner
(see the main component in figure 2). This simply means
that we create an SADL sub-architecture for each simple
ConcernBASE connector that has behavior. To achieve
this, we have to find all state machines of a connector that
do not transfer signals and operation calls further. Such an
SADL component, standing for a ConcernBASE connec-
tor, has no precise functionality and therefore does not own
any internal component (Functions, Operation or Variable
component). This new component is only responsible for
transferring the control to other components, much like a
main procedure calling other sub-procedures to delegate
different sequential sub-tasks.

6.4 Putting It All Together

The last thing to do is to add IMPORTING and EXPORT-
ING statements before the declaration of the main architec-
ture as depicted in figure 12. An IMPORTING statement
allows the use of architectural elements defined in other
specifications and makes them available for the definition
of the current architecture and sub-architectures. An
EXPORTING statement allows an architecture to make its
elements available to other architectural descriptions.

6.5 Mapping Connections

In the SADL formalism, a connection represents a data
link between two components. It is further specified as
being a CONNECTION constraint relating an output port of a
component with an input port of another component via a
data connector (e.g., a Pipe).

We have shown how to identify SADL ports in
section 6.3.1, and now we show how to relate those ports
together to allow data exchange between two components.
The only thing we have to do is to look at the configuration
model and identify the simple stream connectors between
any two components. Figure 11 illustrates this concept by
showing that C1 produces a finite stream of characters, C2
consumes this stream, and the connector between the
<<stream>> static ports carries it. The connector and the

connection are respectively declared in the CONNECTOR
and the CONFIGURATION sections of the main architecture.

QOMPCONENTS
5 cIlModule : ARCHTTECTURE
wwcomputational=-
cl [ce. —> .o]
Operational BEGIN
+ioperational: Qperational CQOMPCNENTS
Signal o cl : Function
+i=ignal:5ignal
Stream {@E [... > ...]
O ool : Operation
+izignal +f tional
=ign al Qperational ZL\SH [. - ..]
CQONNECTORS
<ssignalxr [<xoperationalzx [} N C c . .
Signal Operational sigl, sig3 : Enabling Signal
Outgoing Provide s 7 END
siglh opli) CONNECTORS
sig3h Requires
Incoming QONFIGURATTION
sig2 .. .Sender (cIlModule!sigl, clModule)

/"sigl sig2/opl"sigl3
H‘—» @4%@

o oo

.. .Receiver (cIModule!sigl, c2Module)
.. .Sender (c2Module! sig2, c2Module)

.. .Receiver (c2Module! sig2, clModule)
...Called Fram(cIModule!opl, clModule
.. .Sender (c1Module! sig3, clModule)

Figure 10: Translating Behavioral Aspects

7 Tool Support

The ConcernBASE Modeler is an integrated tool for
developing architectural descriptions using the Concern-
BASE approach (described in section 3). The tool allows
one to translate UML architectural models into SADL
descriptions, providing at the same time a new and elegant
way to supply verification support for UML models using
the existing SADL tools. Tool pro-activeness supports the
developer in modeling because it actively manages the con-
sistency between different overlapping views. For instance,
when the user wants to instantiate a component type in the
configuration model, the tool proposes a list of components
that have been defined in the structural view. When the user
is modeling the behavior of architectural elements by

means of state machines, the trigger and call event lists are
populated with signals and operations that already exist,
i.e. that have been defined in the corresponding interface
elements. These features reduce user accidents and errors.

The software is single project-based, which means that it
only allows one architecture to be modeled at a given time.
One project may contain several model files depicting the
architecture. The structural view is shown as a high-level
model that can be refined by defining more detailed mod-
els; each architectural element declared in the structural
view has its own static model and behavioral model in the
same file; the configuration structure is also defined as sep-
arate model. All models are saved on disk using the stan-
dard XMI file format.

==stream=> [%] <=stream>> [%]
Dataflow: Dataflouwe
Qo5 Oons
Produce s Produce s

char=:5treamChar

Consume s

Consumes y
chars:Streamchar 2 ©
g

=-computational>=>=

+icl:C1

(£]

~-=computational>>

+ic2: 22

CCOMPONENTS
cIModule : ARCHITECTURE
[= chars oport :
BEGIN
QOMPONENTS
CQONNECTORS
END
c2Vicdule : ARCHITECTURE
[chars iport : Finite Stream(Character) —]
BEGIN
QOMPONENTS
CQONNECTORS
END
CONNEICTORS
streanPipe : Pipe<Finite Stream(Character)>
CONFTIGURATTION
streanFlow : CONNECTION =
Camects (streanPipe, clModule! chars oport,
c2Module!chars iport)

Finite Stream(Character)]

Figure 11: Translating Data Connections

The graphical user interface is simple, usable and intui-
tive. It has a menu bar that provides different options, a tool
bar containing frequently-used functions, a left pane dis-
playing a structured view of the architecture, a right pane
allowing one to graphically and easily modify architectural
diagrams, and a message pane keeping the user informed
of what is going on within the system. The interface is

completely event-driven and all resources, i.e. labels, texts,
messages, images, etc., are internationalized; this means
that the aspect of the interface can be changed and local-
ized without having to rebuild the system. Finally, a com-
plete built-in help system offers information on the system
itself, its functionalities, and its application domain (Con-
cernBASE and SADL).

IMPORTING
IMPORTING
IMPORTING
IMPORTING
IMPORTING

Character,Binding, Ast, Token, Code FROM Compiler_Types

Function FROM Functional_Style

Operation,Called_From FROM Procedural_Style

Sender, Receiver,Before, Enabling_Signal FROM Control_Transfer_Style
Pipe,Finite_Stream FROM Process_Pipeline_Style

IMPORTING Variable,Reads,Writes FROM Shared_Memory Style
compilerL3 : ARCHITECTURE [-> ... 0]
BEGIN
COMPONENTS
lexicalAnalyzerModule : ARCHITECTURE [->]
BEGIN
COMPONENTS
lexicalAnalyzer Function [->]
start Operation [Lo=> L]
tokenvariable Variable (Token)
END
CONNECTORS

Figure 12: Putting everything together

8 Summary and Future Work

ADLs provide expressive notations that many architects
would like to integrate with UML. Therefore, different
strategies have been proposed for mapping ADL constructs
into UML. Then again, architectural viewpoints and views,
as standardized in IEEE 1471, have been used in various
architectural approaches to support the understanding and
description of different aspects of the software architecture
of systems. In this paper, we have proposed a particular
way of establishing a bridge between ADLs, UML and the
IEEE 1471. We have called this ConcernBASE and pre-
sented a method for translating into SADL specifications
the IEEE 1471 concepts implemented in ConcernBASE
using UML. The mapping discussed in this work enabled
us to make use of SADL verification tools and integrate
them with the ConcernBASE Modeler tool. The Concern-
BASE approach and the tool supporting it are both under-
going refinement and improvement, but they are already
being applied. Although the tool is not yet complete, one
can already develop models, translate them to SADL, edit
and syntax-check the resulting SADL descriptions and
save the models to disk.

In future work, we plan to provide support for simulta-
neous separation of concerns at multiple levels of abstrac-
tion. Further, we plan support for runtime reconfiguration,
an important feature that allows one to change dynamically
the configuration of a system.

9 Acknowledgement

This work was partially supported by the Defense
Advanced Projects Research Agency (DARPA) under con-
tract F30602-00-C-0087. Valentin Crettaz would also like
to thank the SRI System Design Laboratory and in particu-
lar Robert Riemenschneider for their support. Finally, the
authors would like to thank Rich Hilliard for his detailed
comments on the conformance of ConcernBASE to IEEE
1471.

References

[1] The Institute of Electrical and Electronics Engineers (IEEE)
Standards Board. Recommended Practice for Architectural
Description of Software-Intensive Systems (IEEE-Std-1471-
2000). September 2000.

[2] M. Kande and A. Strohmeier. Towards an UML Profile for
Software Architecture Descriptions. UML2000 - The Uni-
fied Modeling Language: Advancing the Standard, Third
International Conference, York, UK, October 2-6, 2000, S.
Kent, A. Evans, B. Selic (Ed.), LNCS (Lecture Notes in
Computer Science)

[3] M. Kande and A. Strohmeier. On The Role of Multi-Dimen-
sional Separation of Concerns in Software Architecture.
Position paper for the OOPSLA2000 Workshop on
Advanced Separation of Concerns. (Online at http:/lgl-

www.epfl.ch/~kande/Publications/role-of-mdsoc-in-
swa.pdf)

[4] M. Moriconi and R. Riemenschneider. Introduction to SADL
1.0. SRI Computer Science Laboratory, Technical Report
SRI-CSL-97-01, March 1997.

[5] OMG Unified Modeling Language Revision Task Force.
OMG Unified Modeling Language Specification. Version 1.4
draft, February 2001. http://www.celigent.com/omg/umlrtf/

[6] P.Tarr, H. Ossher, W. Harrison, and S. Sutton Jr. N Degrees
of Separation: Multi-Dimensional Separation of Concerns.
Proceedings of the International Conference on Software
Engineering - ICSE'99 (May 1999).

[7]1 D. Garlan, R. T. Monroe and D. Wile. ACME: An Architec-
ture Description Interchange Language. Proceedings of
CASCON '97 (1997).

[8] N. Medvidovic and R. N. Taylor. A Classification and Com-
parison Framework for Software Architecture Description
Languages. 1EEE Transactions on Software Engineering,
Vol. 26, No.1, January 2000.

[9] P. Clements. A Survey of Architecture Description Lan-
guages. 8™ International Workshop on Software Specifica-
tion and Design, Germany, March, 1996.

[10] D. Garlan and A. Kompanek. Reconciling the Needs of
Architectural Description with Object-Modeling Notations.
In UML 2000 - The Unified Modeling Language: Advancing
the Standard, Third International Conference, S. Kent and A.
Evans (Ed.), LNCS, York, UK, October 2-6, 2000.

[11] O. Weigert (moderator). Panel: Modeling of Architectures
with UML. In UML 2000 - The Unified Modeling Language:
Advancing the Standard, Third International Conference, S.
Kent and A. Evans (Ed.), LNCS, York, UK, October 2-6,
2000.

[12] P. Tarr and H. Ossher. Multi-Dimensional Separation of
Concerns and The Hyperspace Approach. In Proceedings of
the Symposium on Software Architectures and Component
Technology: The State of the Art in Software Devel-opment.
Kluwer, 2000. (To appear.)

[13] R. Allen. A Formal Approach to Software Architecture.
Ph.D. Thesis, Carnegie Mellon University, School of Com-
puter Science, available as TR# CMU-CS-97-144, May
(1997).

[14] J. E. Robbins, N. Medvidovic, D. F. Redmiles and D. S.
Rosenblum: Integrating Architecture Description Languages
with a Standard Design Method. In Proceedings of the 20th
International Conference on Software Engineering
(ICSE'98), pp. 209-218, Kyoto, Japan, April 19-25 (1998).

[15] P. B. Kruchten: The 4+1 view model of architecture. IEEE
Software, 12(6):42-50, (1995).

[16] L. Bass, P. Clements, R. Kazman: Software Architecture in
Practice. Addison-Wesley (1998).

[17] C. Hoffmeister, R. Nord, D. Soni: Applied Software Archi-
tecture. Addison-Wesley (1999).

[18] P. Clements, R. Kazman, M. Klein: Evaluating Software
Architectures.Addison-Wesley (2002).

[19] R. Hilliard: Viewpoint modeling. ICSE Workshop on
Describing Software Architecture with UML (2001).

[20] ConcernBASE: http://Iiglwww.epfl.ch/research/concern-
base/index.html

[21] V. Crettaz, M. M. Kandé, S. Sendall and A. Strohmeier: Inte-
grating the ConcernBASE Approach with SADL. UML 2001
- The Unified Modeling Language: Modeling Languages,
Concepts and Tools, Fourth International Conference, Tor-
onto, Canada, October 1-5, Martin Gogolla (Ed.), LNCS
(Lecture Notes in Computer Science), no. 2185, Springer
Verlag, 2001, pp. 166-181.

	Bridging the Gap between IEEE 1471, Architecture Description Languages and UML
	1 Introduction
	2 Background and Related Work
	3 The ConcernBASE Approach
	3.3.1 Static Model
	3.3.2 Behavioral Model
	3.3.3 Configuration Model

	4 Compiler Example
	5 Overview of SADL
	6 Mapping ConcernBASE to SADL
	6.3.1 Stream Interface Type
	6.3.2 Operational and Signal Interface Types

	7 Tool Support
	8 Summary and Future Work
	9 Acknowledgement

