N
N

N

HAL

open science

State-Based versus Event-Based Specifications for
Information Systems: a Comparison of B and EB3

Benoit Fraikin, Marc Frappier, Régine Laleau

» To cite this version:

Benoit Fraikin, Marc Frappier, Régine Laleau. State-Based versus Event-Based Specifications for
Information Systems: a Comparison of B and EB3. Software and Systems Modeling, 2005, 4 (3),

pp.236-257. hal-00145961

HAL Id: hal-00145961
https://hal.science/hal-00145961
Submitted on 15 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00145961
https://hal.archives-ouvertes.fr

Softw Syst Model (2005) 4: 236—-257 / Digital Object Identifier (DOI) 10.1007/s10270-005-0083-4

State-based versus event-based specifications
for information systems: a comparison of B and Es?

Benoit Fraikin!, Marc Frappierl, Régine Laleau?

LGRIL, Département d’informatique, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1

e-mail: {Benoit.Fraikin,Marc.Frappier}@usherbrooke.ca

2 Laboratoire LACL, Université Paris 12, IUT de Fontainebleau — Département Informatique, Route Hurtault, 77300

Fontainebleau, France
e-mail: laleau@univ-paris12.fr

Published online: 25 May 2005 — © Springer-Verlag 2005

Abstract. This paper compares two formal methods,
B and EB?, for specifying information systems. These
two methods are chosen as examples of the state-based
paradigm and the event-based paradigm, respectively.
The paper considers four viewpoints: functional behav-
ior expression, validation, verification, and evolution.
Issues in expressing event ordering constraints, data in-
tegrity constraints, and modularity are thereby consid-
ered. A simple case study is used to illustrate the compar-
ison, namely, a library management system. Two equiva-
lent specifications are presented using each method. The
paper concludes that B and EB® are complementary.
The former is better at expressing complex ordering
and static data integrity constraints, whereas the latter
provides a simpler, modular, explicit representation of
dynamic constraints that are closer to the user’s point
of view, while providing loosely coupled definitions of
data attributes. The generality of these results from the
state-based paradigm and the event-based paradigm per-
spective are discussed.

Keywords: State-based paradigm — Event-based paradigm

— EB3 — B — Process algebra — Information system — For-
mal specification

1 Introduction

This paper compares two formal methods, B [1] and
EB? [20], for specifying information systems (IS). The pa-
per covers several viewpoints. The first is the ease of de-
scribing the functional behavior of IS, which includes ex-
pressing event ordering, data structures, and modularity,
and enforcing integrity constraints. The second viewpoint
is specification validation, which includes checking the
specification against user requirements by review, inspec-
tion, walk-through, animation, or scenario analysis. The

next viewpoint is specification verification, which consists
in checking the specification against formal properties or
refinement of the specification. Finally, we consider spe-
cification evolution in order to understand the ease with
which a specification can evolve to meet new user re-
quirements. For each viewpoint, we identify the relative
strengths and weaknesses of each paradigm. Ultimately,
this comparison leads us to determine a specification pro-
cess that includes the best of both methods.

Our comparison is domain specific and restricted to in-
formation systems. Information systems differ from other
software systems by their strong dependence on the “real
world” [24]. Firstly, the information they manage neces-
sarily represents elements of this real world that are rele-
vant to the user. This implies that an IS has to faithfully
represent these elements, which leads to the definition of
a great number of complex, interrelated data structures
subject to strong integrity constraints. Moreover, the pro-
grams processing this information are simultaneously used
by a large number of human beings in their work. Thus,
they need to offer appropriate interfaces in order to be
used appropriately or, at the extremum, just to be used.
These programs are often large, managing complex order-
ing constraints among business events, to enforce a busi-
ness process, but they are not necessarily of great algo-
rithmic difficulty. Distribution and real-time constraints
are usually not an issue for the formal specification of IS
user requirements. Although they may be of concern at
the design level, we do not address design issues in this pa-
per. On the other hand, data integrity is a critical issue
for IS, especially with the rapid deployment of the World
Wide Web. Organizations are developing web access to
their IS’s, thereby increasing the need for high-quality sys-
tems. Data integrity becomes a critical issue when ordi-
nary clients can use an organization’s IS.

The B method has been shown to be appropriate for
describing ISs [25, 27, 30] and deriving relational database

B. Fraikin et al.: State-based versus event-based specifications for information systems: a comparison of B and EB® 237

implementations [26, 28]. It supports the whole life cycle,
from requirements specification to implementation; it is
supported by industrial-strength case tools that have
been successfully used on large-scale, safety-critical in-
dustrial applications [4]. EB® has been defined for the
purpose of specifying ISs. It is based on entities, process
algebra, traces, and recursive functions defined on traces.
It is chiefly event-driven, but also includes some state-
oriented constructs in order to facilitate IS specification.

We have chosen B and EB? because they embrace sev-
eral distinguishing features of the state-based paradigm
and the event-based paradigm, while being both adequate
for the specification of ISs. We hope to draw conclusions
that are generally applicable for these two paradigms.
Given their broadness, however, we do not claim to cover
their entire scope.

Our comparison is illustrated by specifying part of a li-
brary management system in both B and EB3. Section 2
provides a textual description of the user requirements.
Section 3 introduces EB® while providing a complete spe-
cification of the library system. Section 4 describes the
same behavior using the B language. Note that, in order
to highlight some features of each language, we have de-
liberately inserted errors in the specifications. Both spe-
cifications contain the same errors, although they take
different forms due to the different characteristics of each
paradigm. The correction of these errors are addressed in
Sect. 5, which compares the two specifications from the
viewpoints of functional behavior description, validation,
verification, and evolution. We conclude in Sect. 6 by pro-
viding a summary of the relative strengths and weak-
nesses of each language, from which an integrated speci-
fication process combining the strengths of each method,
is derived.

2 The user requirements
of a library management system

In this section, we provide a textual description of the
user requirements for a simple library management sys-
tem that caters for book loans and reservations to mem-
bers. Even though they are quite basic, the requirements
are complex enough to illustrate the difference in style
between the event-based and the state-based paradigms.
These requirements are numbered so that we can refer to
them later in the paper.

1. A book can be acquired by the library. It can also be
discarded, but only if it has not been lent or reserved.

2. An individual must join the library in order to borrow
a book.

3. A book can be reserved if and only if it has been lent
or already reserved by another member.

4. A member cannot borrow a book or renew a loan if the
book has already been reserved.

5. If many members have reserved a book, the first one
who reserved it is allowed to take it when it is re-

turned, unless this member has decided to cancel his
reservation.

6. Anyone who has reserved a book can cancel the reser-
vation at anytime before the reservation has been
used.

7. A member can relinquish library membership only
when all his loans have been returned and all his reser-
vations have either been used or canceled.

8. The library system must be able to provide the current
number of loans for a given member, the current bor-
rower of a given book, and the list of books and their
borrowers by book category.

9. A member cannot borrow more than the loan limit de-
fined at the system level for all users.

3 The eB? specification
3.1 An overview of EB®

The EB? method [20] has been specially designed to spec-
ify the functional behavior of ISs. An EB? specification
consists of the following elements:

1. A user requirements class diagram, which includes en-
tities, associations, and their respective actions and
attributes.

2. A process expression (PE), denoted by main, which
defines valid input traces.

3. Recursive functions, defined on the traces of main,
that assign values to entity and association attributes.

4. Input-output rules, which assign an output to each
valid input trace.

The denotational semantics of an EB? specification is
given by a relation R defined on 7 (main) x O, where
T (main) denotes the traces accepted by main and O is
the set of output events. The operational behavior of an
EB? specification may be explained as follows. Let trace
denote the system trace, which contains the valid input
events accepted so far in the execution, let t: :0 denote
the right append of element o to trace ¢, and let [] denote
the empty trace. Then we have:

trace:=[1];
forever do
receive input event o;
if main can accept trace::o then
trace := trace: :o;
send output event o such that (trace, o) € R;
else
send error message;

An action denotes a service of the IS that the user can
invoke. The signature of an action is given by a declaration
y Pm - Tm)

a(p1 ZTl,... s Pn Tn) : (pn+1 2Tn+1,...

where a is called the label of the action, pi,...,p, are
input parameters of types T4,...,7T, and ppi1,.-. ,Pm
are output parameters of types Ty41, ... ,Im. An action

238 B. Fraikin et al.: State-based versus event-based specifications for information systems: a comparison of B and EB3

a(ti, ..., t,) constitutes a process expression. The special
symbol “_” may be used as an actual parameter of an
action to denote an arbitrary value of the corresponding
type. An input event is an instantiation of an action. We
use X to denote the set of input events.

EB? mnotation uses a process algebra similar to
LoTos [7], CCS [32], and CSP [22]. Process expressions
can be combined using the following operators. The se-
quence FEq.Fs first executes Fy. When E; completes its
execution, it transforms itself into PE O, which denotes
successful completion; expression Fo may then start its
execution. The choice E; | F5 can execute either F;
or Fy, as in a regular expression. The Kleene closure
E~x*, also drawn from regular expressions, can execute F
an arbitrary number of times (zero or many). It trans-
forms into @ when it has completed its execution. PE
E, | [A] | B, is the parameterized parallel composition of
FE; and Fs with synchronization on actions that belong to
set A. Drawn from LOTOS, it has the following meaning:
if By (or, dually, E3) can execute o, and the label of o is
not in A, then the composition can execute o. When the
label of ¢ is in A, then F; and E5 must synchronize, that
is, they must both execute o. Operations | | | and || are
the interleave and parallel composition of CSP, respec-
tively; they are syntactic abbreviations of |[...]]. PE
Ey ||| E2 denotes Ey | [1] E2 (i.e., no synchronization
between E7 and F»). PE E; || Es denotes By | [A]] Es,
where A is the intersection of the action labels of £ and
E; (i.e., synchronization between F; and E2 on shared
actions). The guard p ==> FE can execute F if predicate p
holds; otherwise, execution is blocked until p is satisfied.
The truth value of p may evolve over time with the execu-
tion of actions, since p can refer to the system trace. The
process call P(ty, ... ,t,) executes the body of the process
definition of P with actual parameters t1,... ,t,. Quan-
tification (indexing) is permitted for choice (Ix : T : ...),
interleaving (|| lx : T : ...) and parameterized paral-
lel composition (I [...]1lx : T : ...).Forinstance, the
quantification | | 1x : 1,2,3 : a(x) denotes the PE a(1)
[11a(2) ||l a(3). The precedence of operators is, from
highest to lowest: ~*,==> .. |, (I|l, ||, |[...1], which
have the same precedence), and quantified expressions.

The main differences between EB* and LoTos, CSP,
and CCS are i) EB? allows one to use a single state vari-
able, the system trace, in predicates of guard statements;
ii) EB? uses a single operator, concatenation (as in regular
expressions), instead of prefixing and sequential composi-
tion, which makes specifications easier to read and write.
Moreover, the operational semantics of EB? is interested
only in the traces of a process expression. For instance,
PEa.(b| c) and PEa.b | a.c have the same semantics,
which is the set of traces {a, ab, ac}.

The EB® process algebra has an operational seman-
tics; Fig. 1 shows a subset of its transition rules. They
inductively define a transition relation F; = E,, which
denotes that process expression F; can execute action
o and transform into process expression F,. For in-

o /
(eB3-1); LS =Ze =W S Ej U A (EB3-2): 2nE=E —; E
o — [b==>F — F'
o /
(eB3-3); ————— (EB3-4): E”_)—E
E~+ 2 g E~x — E' . E~*
o / o !
(EB3—5)I % (EBS—G): @
El.E2—>E1.E2 m.F — E'
o / o /
(EB3-7): By - Ex (EB3-8): =B _)GEl
Eill1Ex — EV | E2 EilEy — Ef
o / g /
(EB3-9): B — E (eB3-10): LUEQ
E1|||E2—>E1|||Eé E1|E2—>Eé

Fig. 1. A subset of the transition rules for the EB3 process algebra

stance, rule EB3-1 states that an action can execute itself
and transform into @. Rule EB3-5 states that a sequence
E; . E; can execute o if E) can execute o. Moreover, if F{
is the result of executing o on Ey, then Ff . E5 is the result
of executing o on Fj . Fs. The symbol A denotes an inter-
nal action that a process may execute without requiring
input from the environment.

As a simple example of EB? specification, consider the
following requirements:

“The system must accept A, followed by an ar-

bitrary number of B, and then accept C. Out-

put ok is produced for each A or B accepted. (1)
The system must output the number of B’s ac-

cepted when input C is accepted.”

These requirements are represented by the EB? specifica-
tion in Fig. 2. The requirements class diagram has been
omitted. The signature of the actions is the following:
A:void, B:NAT, and C:void. The special type void de-
notes an action with no input-output rule; the output
of such an action is ok if it can be accepted by the PE
main, otherwise its output is error. The process expres-
sion main defines the valid input traces. The recursive
function BCounter computes the number of B’s accepted
from the system trace. A complete description of the re-
cursive functions and their uses can be found in [20]. The
definition of a recursive function is written in a CaML!
style. A trace is represented by a list. Operators last and
front, respectively, return the last element and all but
the last element of a list; they return the special value nil
when the list is empty. Finally, the symbol “_” can match
any value and is consequently used to provide default
instructions. Input-output rule R1 defines the output of
input C.

1 caML is a functional language.

B. Fraikin et al.: State-based versus event-based specifications for information systems: a comparison of B and EB® 239

main = A . B . C

BCounter (trace : VALID_TRACE): NAT =
match last(trace) with
nil -> 0 |
B -> BCounter (front (trace))+1 |
_ => BCounter (front (trace))

Rule R1

input C

output BCounter (trace)
EndRule

Fig. 2. EB? specification for the user requirement (1)

B/ok

(S

B,C/error

C/BCounter<::>
(a)
(D

A,B,C/error

-

A/error

’ Order No. ‘ Input ‘ Output ‘

1 B error
2 A ok
(b)
3 B ok
4 A error
5 (¢ 1

Fig. 3. a The STD of the EB3 specification; b A sample
execution sequence

Figure 3 illustrates this EB® specification by providing
an equivalent state-transition diagram (STD) and a sam-
ple execution sequence. As usual, a transition with input

o and output o is denoted by ¢ a—/o> ¢’ on this diagram.
Note that, following the operational semantics of EB?,
output error is sent when an input cannot be accepted
by main; output ok is produced when there is no input-
output rule for a given input. Table b in Fig. 3 shows the
inputs submitted by the user and the output produced by
the system.

Table b in Fig. 3 denotes the following input-output
pairs, which are elements of relation R.

(A, ok)
(AB, ok)
(ABC,1)

The first element of a pair is a valid trace (i.e., an instance
of the system trace); the second element is the output
produced for that trace. Note that inputs which were not

specification Example [A, B, C, ok, Cout] : noexit
behavior
(
A ; ok ; P [B, C, ok, Coutl
| [B, Cout]]
BCounter [B, Cout] (0)
)
where
process P [B, C, ok, Cout]
C ; Cout 7nbOfB :

: noexit :=
Nat ; stop
1
B ; ok ; P [B, C, ok, Cout]
endproc
process BCounter [B, Cout] (cpt:Nat) : noexit :=
B ; BCounter [B, Cout] (Succ(cpt))
1
Cout !cpt ; stop
endproc
endspec

Fig. 4. The LoTOS specification of requirements (1)

accepted by process expression main are not included in
traces of R, and that outputs are not part of the trace.
Aside from the syntactical distinctions, EB? also dif-
fers from CSP, CCS, and LOTOS in the treatment of
outputs. In EB?, a process expression applies only to in-
puts; outputs are defined by input-output rules. In other
process algebras, both inputs and outputs are managed
using a process expression. In fact, they do not distin-
guish between input and output. Figure 4 shows a LOTOS
specification for the requirements (1) in order to illus-
trate the differences between EB3 and other process alge-
bras. Its main process is defined in the specification
clause. It consists of a parameterized parallel composition
whose first operand executes actions A,B,C (called gates
in LOTOS) using a recursive process P, due to the absence
of Kleene closure in LOTOS. The operator “;”, called ac-
tion prefixing, is one of the LOTOS operators denoting
sequential execution. The second operand calls the pro-
cess Bcounter, which keeps tracks of the number of B’s
accepted. The synchronization between them occurs at
gates B and Cout. Since both inputs and outputs are rep-
resented by gates, the outputs of input events A,B,C are
represented by gates ok and Cout; the value exchanged
at Cout is determined by the synchronisation between
P and BCounter. At this gate, the process BCounter of-
fers the value of the variable cpt, which is denoted by
using the decoration !. The process P synchronizes with
BCounter at this gate and accepts any value, which is
represented by decoration ? on the variable nbOfB. Note
that the syntax of LOTOS requires the declaration, in the
process heading, of the gates (between [and 1) and of
the variables (between (and)) used in the process. The
traces of this LOTOS specification are equivalent to the
input-output pairs of relation R in the EB? specification.
However, note that there is no gate error in the LOTOS
specification nor in the EB? specification. In EB?, error

240 B. Fraikin et al.: State-based versus event-based specifications for information systems: a comparison of B and EB3

reservation

Reserve
Take
Cancel

. | .

book member

bookld : BOOKID
category : String

memberld : MEMBERID
numberOfLoans : NAT

Acquire currentBorrower | Join
Discard R l 0.1 |Leave
DisplayCurrentBorrower . DisplayNumberOfLoans

loan

Lend
Renew
Return

Fig. 5. EB? specification: User requirements
class diagram of the library IS

management is defined by default in the operational se-
mantics. This concept does not exist in the standard se-
mantics of LOTOS.

The operational semantics of EB® states that an out-
put is produced for each input received. This choice, in-
spired from the Cleanroom method [31], stems from the
necessity in IS to inform the user of the result of his re-
quest. The specification of complex output computation
using only a process algebra is very difficult.

An ongoing project at the University of Sherbrooke
aims at automatically generating IS implementations
from EB® specifications. Details on this topic can be
found in [17,18]. The process algebra interpreter de-
veloped so far can execute process expressions with
reasonable performance. In many cases (e.g., the spe-
cification patterns identified in [20]), it can be used as
a substitute for a human-derived implementation of the
specification.

main = (Ill bId : BOOKID : book(bId)~*)
Il C1ll mId : MEMBERID :
|| DisplayBorrowerByCategory() ~*
book(bId : BOOKID) = Acquire(bId,_)
(
(| mId : MEMBERID :

[C Il nId

member (mId) ~*)

Acquire(bookId:BOOKID, category:STRING):void
Discard(bookId:BOOKID) :void
Join(memberId:MEMBERID) :void
Leave (memberId:MEMBERID) : void
Lend (memberId:MEMBERID, bookId:BOOKID):void
Renew(memberId:MEMBERID, bookId:BOOKID) :void
Return(memberId:MEMBERID, bookId:BOOKID) :void
Reserve (memberId:MEMBERID, bookId:BOOKID):void
Cancel (memberId:MEMBERID, bookId:BOOKID) :void
Take (memberId:MEMBERID, bookId:BOOKID) :void
DisplayCurrentBorrower (bookId:BOOKID) :
(memberId:MEMBERID)
DisplayNumberUfLoans(memberId:MEMBERID):
(numberOfLoans :NAT)
DisplayBorrowerByCategory () :
((category:STRING, bookId:BOOKID,
memberId:MEMBERID) “*)

Fig. 6. B2 specification: Signature of actions

3.2 The library specification

Figure 5 shows the user requirements class diagram used
to construct the specification. There are two entity types,
member and book, and two associations between them,
reservation and loan, with their corresponding actions
and attributes. By convention, key entity attributes are
underlined, action names have uppercase initials, process
and function names start with a lowercase, and types
are in uppercase. The signature of the actions are pro-
vided in the Fig. 6. Take and Lend are two distinct ac-
tions; they both allow a member to borrow a book, but
in different circumstances. Lend triggers a ‘regular’ loan,
i.e., the book is available and the member borrows it.

loan(mId,bId)) ~*
MEMBERID :

reservation(mId,bId) "%)

|| DisplayCurrentBorrower (bId) "

)
Discard(bId)

MEMBERID) = Join(mId)
(

member (mId :

C Il bId :
[T C Il bId :

BOOKID :
BOOKID :

loan(mId,bId) “*)
reservation(mId,bId) “*)

|| DisplayNumberOfLoans(mId) ~*

)
Leave (mId)
loan(mId : MEMBERID, bId : BOOKID) =
(Lend(mId,bId) | Take(mId,bId))
reservation(mId : BOOKID) =
Reserve(mId,bId) .

MEMBERID, bId :

. Renew(mId,bId) "* .

(isFirst(trace,mId,bId) ==> Take(mId,bId) |

Return(mId,bId)

Cancel (mId,bId))

Fig. 7. EB? specification: Process definitions

B. Fraikin et al.: State-based versus event-based specifications for information systems: a comparison of B and EB® 241

Take is used in connection with a reservation. When
a book is on loan, a member can reserve it (through ac-
tion Reserve); when the book becomes available, he must
use action Take to borrow it. The output of the action
DisplayBorrowerByCategory is a list, denoted by the
use of operator ~*, which is also a list constructor in the
EB3 type system.

Figure 7 describes the process main, which calls a pro-
cess expression for entity type member and entity type
book. These processes in turn call one process for each
association (loan and reservation). The expression
isFirst (trace,mId,bId) is a function call returning
a Boolean value; it returns true when mId is first in the
reservation queue of book bId; otherwise, it returns false.
Figure 9 provides the definition of this recursive function;
in addition, there is one function for each non-key en-
tity attribute. Note that a recursive function returns nil
when it is undefined for some argument.

Figure 8 provides the input-output rules for the three
actions that do not have void as an output type. Rules
R1 and R2 define the output for actions DisplayCurrent-
Borrower (bId) and DisplayNumberOfLoans(mId) by

category(trace :
match last(trace) with
nil -> nil |
Acquire(bId,cat) -> cat |
Discard(bId) -> nil |

VALID_TRACE, bId :

Rule R1
input DisplayCurrentBorrower (bId)
output currentBorrower(trace,bId)
EndRule

Rule R2
input DisplayNumberOfLoans(mId)
output numberOfLoans(trace,mId)
EndRule

Rule R3
input DisplayBorrowerByCategory ()
output SELECT category, bookId, currentBorrower
FROM book
WHERE currentBorrower IS NOT NULL
EndRule

Fig. 8. EB? specification: Input-output rules

referring to the appropriate recursive function. Rule R3
defines the output for the action DisplayBorrowerBy-
Category(), which is easier to express with a syntax
similar to SQL’s SELECT statement. This statement is

BOOKID): STRING =

_ —> category(front(trace),bId)

currentBorrower (trace
match last(trace) with
nil -> nil
Return(mId,bId) -> nil |
Lend(mId,bId) -> mId |
Take (mId,bId) -> mId |

: VALID_TRACE, bId :

BOOKID) : MEMBERID =

_ -> currentBorrower (front (trace) ,bId)

numberOfLoans (trace
match last(trace) with
nil -> nil
Join(mId) -> 0

: VALID_TRACE, mId :

MEMBERID) : NAT =

Lend(mId,_) -> numberOfLoans(front(trace),mId) + 1
Take(mId,_) -> numberOfLoans(front(trace),mId) + 1
Return(mId,_) -> numberOfLoans(front(trace),mId) - 1
Leave(mId) -> nil

_ -> numberOfLoans (front (trace) ,mId)

reservationQueue(trace : VALID_TRACE, bId :
match last(trace) with
nil -> []
Reserve(mId,bId) -> reservationQueue(front(trace),bId)::mId
Cancel(mId,bId) -> reservationQueue(front(trace),bId) - {mId}
_ -> reservationQueue (front (trace) ,bId)

BOOKID): LIST of MEMBERID

isFirst(trace : VALID_TRACE, mId : MEMBERID , bId : BOOKID): BOOLEAN =
match first(reservationQueue(trace,bId)) with
mId -> true |

_ —-> false

Fig. 9. BB? specification: Function definitions

242 B. Fraikin et al.: State-based versus event-based specifications for information systems: a comparison of B and EB3

applied to the relational database schema that can be
generated from the requirements class diagram using the
algorithm described in [12] (chapter 7) (see [20] for more
details). In particular, this gives the table book with the
attributes bookId, category, and currentBorrower.

The primary use of recursive functions is to extract
information from the system trace. They are used to pro-
vide a response to some input events like the function
currentBorrower (trace,bId), which yields the output
value of action DisplayCurrentBorrower (bId). They
are also quite useful in handling constraints in the spe-
cification with the use of guard as with isFirst in the
process reservation. In this way, the use of functions is
quite similar to a precondition. Further discussion on this
subject is provided in Sect. 5.1.1.

To illustrate how the system trace and the recursive
functions are related, consider the following valid trace

t = Acquire(bl,cl) . Acquire(b2,c2)
Join(ml) . Lend(mil,bl)

Then, we have
currentBorrower (t,bl) = mi
and

current\-Borrower(t,b2) = nil.

4 The B specification

B, a formal method developed by Abrial [1], supports
a large segment of the development life cycle: specifica-
tion, refinement and, implementation. It ensures, through
refinement steps and proofs, that the code satisfies its
specification. B has been used in industrial projects [4]
and commercial case tools are available to help the speci-
fier during the development process. These constitute the
main arguments for using B rather than Z (type checking
and tool assistance in proof, but limited tool support for
refinement and no automated proof). The specification
provided in this paper could also be expressed in a similar
fashion in these state-based languages and others of the
same family (such as ASM [6]).

4.1 Overview of B

In B, specifications are organized into abstract machines
(similar to classes and modules). Each machine encapsu-
lates state variables, an invariant constraining the state
variables, and operations on the state variables. The in-
variant is a predicate in a simplified version of the ZF-
set theory, enriched by many relational operators. In
an abstract machine, it is possible to declare abstract
sets by giving their name without further details. This
allows the actual definition of types to be deferred to
implementation.

Operations are specified in the Generalized Substi-
tution Language, which is a generalization of Dijkstra’s
guarded command notation. Hence, operations are de-

fined using substitutions, which are like assignment state-
ments. A substitution provides the means for identify-
ing which variables are modified by the operation, while
avoiding mentioning those that are not. The generaliza-
tion allows the definition of non-deterministic and pre-
conditioning substitutions. The preconditioning substitu-
tion is of the form PRE P THEN S END, where P
is a predicate and S a substitution. When P holds, the
substitution is executed; otherwise, the result is undeter-
mined and the substitution may abort.

The B notation provides various mechanisms to con-
struct large machines from smaller ones. At an abstract
level, the most useful mechanisms are USES and IN-
CLUDES. A machine 4 may use another machine B:
the variables of B can be used but not modified in A.
A machine A may include another machine B: the vari-
ables of B can be read in A but updated only by using
the operations of B. The aim of these mechanisms and
restrictions is to achieve incremental specifications with
separate consistency proofs.

4.2 The library specification

Each entity and association is specified in separate ma-
chines. B_Member and B_Book (see below) are built in
the same way. Let us explain the first one. The variable
members represents the set of existing members and is in-
cluded in the abstract set M EM BE R, which represents
the set of all possible members. The variable memberId
is defined as a function from members to the type of the
attribute memberlId. It is an injective function (—) since
the attribute is defined as a key. This gives the static part
of B_Member:

MACHINE B_Member
SETS MEMBER; MEMBERID
VARIABLES members, memberld

INVARIANT members C MEMBER A
memberld € members — MEMBERID

Each machine has an INITIALISATION clause that
gives an initial value for each variable.

INITTALISATION members := {} ||
memberld := {}

B_Member is completed by the definition of two ba-
sic operations: B_Join, which creates a new member, and
B_Leave, which deletes an existing member (see below).
The operator || denotes the simultaneous execution of
its operands (which can be any substitution). The opera-
tor ANY allows creation of a non-deterministic substitu-
tion; it chooses an arbitrary value for the variable memb
verifying the WHERE predicate and executes the substi-
tutions specified between the THEN and the END key-
words. The anti-corestriction operator (&) of the opera-
tion B_Leave is defined as follows: re>A = {(a,b) | (a,d) €

B. Fraikin et al.: State-based versus event-based specifications for information systems: a comparison of B and EB® 243

rAb ¢ A}. The ran operator, applied to a relation, gives
its codomain. The notation a — b denotes an element of
a relation. The inverse of rel, where rel stands for a rela-
tion, is denoted rel~!.

OPERATIONS
B_Join(mlId) 2
PRE mlId € MEMBERID —ran(memberld) A
members C MEMBER
THEN
ANY memb WHERE
memb € M EM BER — members
THEN
memberld := memberIdU{memb— mId} ||
members := membersU {memb}
END
END;

)

B_Leave(mld) £

PRE mId € ran(memberId)

THEN
members := members — {memberld—1(mId)} ||
memberld := memberIds{mlId}

END

END;

)

The machine B_Book is defined as follows. Note that
the anti-restriction operator (<) of the operation B_Dis-
cardisdefined as: A<r = {(a,b) | (a,b) erNa¢ A}. E —
F is the set of the total functions from E to F', whereas
E »— F is the set of the total injective functions from FE
to F.

MACHINE B_Book
SETS BOOK; BOOKID
VARIABLES books, bookId, category

INVARIANT books C BOOK A
booklId € books — BOOKID A
category € books — STRING

INITTALISATION books := {} ||
bookId :={} || category :={}

OPERATIONS
B_Acquire(bld, cat) =
PRE bId € BOOKID —ran(bookId) N
cat € STRING A books C BOOK
THEN
ANY book WHERE book € BOOK — books
THEN
bookId := bookIdU{book — bId} ||
category := categoryU{book — cat} ||
books := books U {book}
END
END;

B_Discard(bld) 2
PRE bId € ran(bookId)
THEN
books := books — {bookId~*(bId)} ||
bookId := bookIds{bId)} |
category = {bookId~*(bId)}<category
END

END

Machines B_Reservation and B_Loan (see below)
represent the two associations. The variable reservations
is defined as a relation (<») between the sets of existing
books and existing members, that is, the variables books
and members. As a result, these two variables must be
accessible from the machine B_Reservation, which is
achieved by the USES clause. The variable numReserv is
used to translate requirement 5. It associates each reserva-
tion with an integer that is incremented by one when a new
reservation is created (see the operation B_Reserve). Note
that other solutions are possible, such as defining the as-
sociation reservations as a function that associates each
book with the sequence of members who have reserved the
book in chronological order. For the purpose of the paper,
the choice between all the solutions does not matter. The
DEFINITIONS clause introduces abbreviations used in
predicates, expressions, and substitutions.

MACHINE B_Reservation
USES B_Member, B_Book
VARIABLES reservations, numReserv

INVARIANT
reservations € books <> members N
numReserv € reservations - INTEGER

DEFINITIONS
theMember = memberId—? (mlId);
the Book = bookId=*(bId)

INITTIALISATION
reservations := {} ||
numReserv := {}

OPERATIONS

B_Reserve(mld,bld) 2
PRE mlId € ran(memberld) A
bld € ran(bookId) A
(the Book — theMember) ¢ reservations
THEN
reservations := reservations U
{theBook — theMember} ||
numReserv := numReserv U
{(the Book,the Member)
(mazx(ran(numReserv)U{0})+1)}
END;

244 B. Fraikin et al.: State-based versus event-based specifications for information systems: a comparison of B and EB3

B_Cancel(mlId,bId) £

PRE mlId € ran(memberId) A

bId € ran(bookId) A

(the Book — theMember) € reservations
THEN

reservations := reservations —

{the Book — theMember} ||
numReserv :=
{the Book — the Member}<numReserv
END
END:

The machine B_Loan is built in the same way as
B_Reservation. The variable loans is a partial function
(++) that associates a book with its borrower. The dom
operator, applied to a relation, gives its domain.

MACHINE B_Loan

USES B_Member,B_Book
VARIABLES loans

INVARIANT loans € books -+ members

DEFINITIONS
theMember = memberId =" (mlId);
the Book = bookId=*(bId)

INITTALISATION loans := {}
OPERATIONS

B_Lend(mlId,bld) 2
PRE mlId € ran(memberId) A
bId € ran(bookId) A
the Book ¢ dom(loans)
THEN
loans(the Book) := the M ember
END;

B_Return(mld,bId) £

PRE mlId € ran(memberId) A
bId € ran(bookId) A
(theBook, theMember) € loans

THEN

loans := {theBook}<loans
END;
mld <— B_CurrentBorrower (bld) 2
PRE bId € ran(bookId) A

theBook € dom(loans)
THEN

mlId := memberId(loans(the Book))
END:

nol +— B_Number0fLoans (mld) 2

PRE mlId € ran(memberId) A

theMember € ran(loans)
THEN

nol := card(loans~[{theMember}])
END;

)

report «— B_BorrowerByCategory () 2
BEGIN
report := {cat,bId,mId |bId € ran(bookId) N
bookId=*(bId) € dom(loans) A
cat = category(bookId=1(bId)) A
mlId = loans(bookId=*(bId))}
END

END

Once all the machines describing the state of the IS
have been defined, a new machine, called B_Library (see
below), describing all the services of the IS, is created.
It includes all the previous machines in order to call the
operations that modify the state variables. An operation
available from this machine corresponds to one service
and is either an operation of this machine or a promoted
operation (using the PROMOTES clause) from included
machines. In the operation L_Take, the restriction oper-
ator (<) is defined as follows: A<r = {(a,b) | (a,b) €7 A
a € A}. The operation L_Renew may look quite useless,
since it only has a skip instruction, which means ”do
nothing”, in its body. A real IS would probably update
the expected return date, which, for the sake of simplicity,
we do not take into account.

MACHINE B_Library

INCLUDES B_Member, B_Book,
B_Loan, B_Reservation

PROMOTES B_Join, B_Acquire, B_Cancel,
B_Reserve, B_Lend, B_Return,
B_Current Borrower, B_NumberO f Loans,
B_Borrower ByCategory

DEFINITIONS
theMember = memberId='(mId);
theBook = bookId=(bId)

OPERATIONS

L_Leave(mld) =

PRE mlId € ran(memberId) A
theMember ¢ ran(reservations) A
theMember ¢ ran(loans)

THEN
B_Leave(mlId)

END:

L_Discard(bId) £
PRE bId € ran(bookId) A

B. Fraikin et al.: State-based versus event-based specifications for information systems: a comparison of B and EB® 245

theBook ¢ dom(reservations) A
theBook ¢ dom(loans)

THEN
B_Discard(bId)

END:

L_Take(mlId,bld) 2
PRE mlId € ran(memberId) A
bId € ran(bookId) A
theBook ¢ dom(loans) A
(theBook,the Member) € reservations A
numReserv(the Book, the Member) =
min(numReserv
[{theBook} <dom(numReserv)])
/* This ensures that the first member
to reserve the book checks it out */
THEN
B_Lend(mId,bId)
END;

)

L_Renew(mlId,bld) =
PRE mlId € ran(memberId) A
bId € ran(bookId) A
(theBook, the Member) € loans
THEN
skip
END

END

Finally, a top-level machine, B_Library_Interface, de-
fines the user interface, which means that only the op-
erations of this machine are available to users. It takes
into account error management, that is, each operation
systematically returns a message that reports the result
of the execution of the corresponding service. For each
operation OpLib of the machine B_Library, there is one
operation OpLibInterface in the top-level machine, to
ensure that OpLib is called only if its precondition is veri-
fied. As a result, the precondition of OpLibInterface is
just a parameter-typing precondition. Each conjunct of
the precondition of OpLib is checked by an IF substitu-
tion; a suitable error message is associated with it and
returned through an output parameter.

When an error is detected (the output parameter
result is different from "OK™") in the operation Display-
CurrentBorrower, the output parameter mld is set to
any element of MEMBERID, through the substitu-
tion :€.

MACHINE B_Library_Interface
INCLUDES B_Library

DEFINITIONS
theMember = memberId='(mId);
theBook = bookId='(bId)

OPERATIONS
result «—Leave(mlId) 2
PRE mIde MEMBERID
THEN
IF mId ¢ ran(memberld)
THEN result := "mld is not an identifier of an
existing member"
ELSE
IF theMember € ran(reservations)V
theMember € ran(loans)
THEN result := "the member identified by
mld has an existing reservation or loan"
ELSE L_Leave(mlId) ||
result := "OK™"
END
END
END;

)

result,mId <— DisplayCurrentBorrower(bld) =
PRE bld € BOOKID
THEN
IF bId ¢ ran(bookId)
THEN result := "bId is not an identifier of an
existing book" ||
mld:€ MEMBERID
ELSE
IF thebook ¢ dom(loans)
THEN result := "the book identified by bld
is not lent at this time" ||
mld:€ MEMBERID
ELSE result := "OK" ||
mlId := B_CurrentBorrower(bld)
END
END
END;

END

For space reasons, the definition of the machine B_Li-
brary_Interface is incomplete.

A new variant of the B method, called Event B [2, 3, 8],
has been introduced over the past few years. Its refine-
ment relation allows the introduction of new events (op-
erations). Events do not take any parameter and they
are defined with guards rather than with preconditions.
A precondition in B is non-blocking, which means that
an operation can always be invoked: the operation ter-
minates if its precondition is satisfied; otherwise, it may
abort or produce an arbitrary result. Guards in Event B
are blocking, which means that an event can only occur
when its guard is satisfied. An Event B specification of
the library system would be fairly similar to the one ex-
pressed in classic B, except for the handling of event
parameters.

246 B. Fraikin et al.: State-based versus event-based specifications for information systems: a comparison of B and EB3

5 A comparison of the two specifications
5.1 Ezxpression of functional behavior

In this section, we analyze how the elements of the user re-
quirements have been translated into each specification.
We concentrate on elements that were either particularly
easy or difficult to specify.

The ease of expressing functional behavior is a most
important issue in software specification. Specifications
are first meant to be written, read, and understood by
human beings. They must precisely describe the user re-
quirements and constitute the main input of the design
phase. It is commonly agreed that specification errors
are the most expensive to fix. Therefore, it is critical for
software quality and productivity that a specification lan-
guage be easy to use by human beings in order to properly
express the desired behavior of the software.

5.1.1 The EB? specification

In [20], Frappier and St-Denis described a strategy to cor-
rectly and efficiently design an EB? specification from the
requirements class diagram. They identified several pat-
terns of class diagrams and proposed a corresponding EB>
pattern for each of them. The library specification makes
use of four patterns: each entity satisfies the producer-
modifier-consumer pattern and the multiple-associations
pattern; association loan satisfies the one-to-many pat-
tern and association reservation satisfies the many-to-
many pattern.

Following these patterns, one can take each entity
type (e.g., book and member) and express its ordering
constraints on input events by using a process expression.
The interactions between entities (e.g., when a member
borrows a book, or reserves a book) are naturally ex-
pressed by composing entities in parallel using operator
| | in the process main (Fig. 7). The behavior of an asso-
ciation is also described by a process expression that is
called by each entity. The multiplicity of an association
(e.g., “*,0..1” on the loan association, which means that
a book may have from 0 to 1 borrower, and that a member
may have from 0 to many loans) is expressed by selecting
an appropriate quantification operator to encapsulate the
call to the association process expression (e.g., | when
an entity is related to at most one entity; | | | z when an
entity is related to a number of entities). Several patterns

reservationController(bId : BOOKID, q :

(| mId : MEMBERID : Reserve(mId,bId)
|

(| mId : MEMBERID : Cancel(mId,bId)
|

(| mId : MEMBERID :

have been defined to translate requirements of a class di-
agram into process expressions (see [20]).

Following the structure of the class diagram allows for
the elements 1, 2, 6, and 7 of the user requirements to be
taken into account as well as implicit requirements. For
instance, the fact that two members cannot borrow the
same book at the same time is not stated in the require-
ments, but it is described in the process expression main
(Fig. 7) by the synchronization between books and mem-
bers over the input events of the loan association.

The constraints that are not easy to express in a pure
process algebraic style (i.e., without using recursive func-
tions defined on the system trace) arise from conditions
involving input events from the history of inputs and from
anumber of entities. For instance, to address user require-
ment element 5, the queue of active reservations of a book
must be dealt with. The reservation process is a logical
place to enforce this constraint, but its definition in a pure
process algebraic style is not as obvious as the basic sce-
narios are. It requires defining a controller process that
is synchronized with the reservation process (see Fig. 10).
This controller process, called reservationController,
takes a queue as a parameter and updates it by a recur-
sive call to the process. It must be composed in paral-
lel with the call to process reservation in the process
book. Although this solution is perfectly acceptable, we
have chosen a different solution by using a guard invoking
the recursive function isFirst, as illustrated in Fig. 9.
In general, this style is more appropriate to deal with
complex inter-entity constraints; we shall see additional
examples in Sect. 5.2.

Other specification styles have been studied for pro-
cess algebra expressions in the context of distributed sys-
tems: the monolithic style, the state-oriented-style, the
resource-oriented style, and the constraint-oriented style.
The reader may consult [36] for more details.

Finally, each data attribute is defined by a recursive
function on the system trace. Since the system trace con-
tains the history of input events, any data attribute can
be defined, usually quite easily. In [20], patterns are de-
fined for attributes.

5.1.2 The B specification

Our B specification is structured according to the style
presented in [25, 27], in which a translation between UML
diagrams and B specifications is defined. This style en-

QUEUE of BOOKID) =
. reservationController(bId,enQueue(q,mId)))
. reservationController(bId,remove(q,mId)))

first(q) = mId ==> Take(mId,bId)

reservationController(bId,deQueue(q,mId)))

Fig. 10. EB3 specification alternative: process reservationController

B. Fraikin et al.: State-based versus event-based specifications for information systems: a comparison of B and EB® 247

forces modularity by proposing to create one basic ma-
chine for each entity type and each association; an in-
termediate machine, built on the basic machines, that
defines one operation for each input event; and a top-level
machine managing errors for the user interface. It also
simplifies the discharging of proof obligations required
by the B method. Closely related styles have also been
proposed [30, 34].

The key in writing a simple state-based specification
of an IS is to define a proper state space. The structure
of this state space depends on the input event ordering
constraints and on the data inquiry operations. A class
diagram, with the semantics of the entity-relationship
model, is a good starting point.2 Each class is represented
by a set of instances and each class attribute is repre-
sented by a function from this set to the type of the
attribute. Each association is represented by a relation
between entity sets. Each operation has a precondition
that determines when it can be invoked. Ordering con-
straints are therefore described in the precondition. The
substitution of an operation must properly update the
state variables in order to enable the precondition of the
subsequent actions and to provide data for inquiries.

Complex ordering constraints can rapidly be expres-
sed by defining appropriate state variables, using them in
preconditions, and updating them in substitutions.

5.1.3 Comparison

The contrast between the two specifications is quite
strong; they are quite orthogonal in structure. The EB?
specification is closer to a user scenario description. The
ordering relation between input events is explicit, except
perhaps for expressions combined with ||, which per-
form a synchronization on common actions between the
operands without explicitly listing these actions.

The B specification is closer to a program, except that
its state space is defined with more abstract data types.
The relationship between input events is not explicit; it
is described via state variables, which induces a more
complex form of coupling between specification elem-
ents than in EB3. For instance, consider the L_Discard
operation in the machine B_Library. Its precondition
must refer to state variables from B_Book, B_Loan, and
B_Reservation. Hence, an operation that seems, at first
hand, to involve a book only, is, in fact, intimately related
to state variables from other components. In the EB? spe-
cification, it is sufficient to say that the event Discard oc-
curs after the execution of reservation and loan; there
is no reference to the internal details of these processes.

In the EB? specification, guards referring to functions
defined on the system trace are very close to precondi-
tions of B operations. Hence, for input events subject to

2 This diagram would be similar to a requirements class dia-
gram (e.g., of the EB? specification), with some minor differences
for attributes.

more complex ordering constraints, B and EB? are quite
similar.

The same data attributes usually exist in both speci-
fications, although the B specification may involve more
attributes in order to express ordering constraints. As
a first example, imagine that a book can be acquired only
once; that is, it cannot be reacquired after it has been
discarded. In EB?, this change is made by removing the
Kleene closure operator ~* on the call to process book in
the main process, as follows.

main = (|'I'l| bId : BOOKID : book(bId))

In B, there are a number of ways of expressing this con-
straint. One of them, which involves a minimal number
of changes to the existing B specification, is to define
a new state variable, all Books, which contains the set of
all books acquired so far.

INVARIANT
allBooks C BOOK A
books C all Books

When a book is acquired, it is added both to books
and allBooks; when a book is discarded, it is removed
from books but kept in allBooks. The precondition of
B_Acquire is changed so that a book can be acquired
when it doesn’t belong to the set all Books.

A second example is the specification of the attribute
numReserv in the machine B_Reservation. This at-
tribute is used in the precondition of L_Take to ensure
that only the first member to reserve a book can take
it (requirement 5). Of course, this attribute must be up-
dated in operations that add or cancel a reservation (here
B_Reserve and B_Cancel). In EB?, the ordering con-
straint is specified by the guard isFirst(trace,mId,
bId) in the process definition of reservation. Note that
we could have defined reservations as an ordered asso-
ciation instead of defining a new attribute. In any case,
the above-mentioned remarks would have always been
valid. These two small examples illustrate that express-
ing some simple ordering constraints sometimes induces
unexpected complexities in the state-based specification.

Modularity is also expressed very differently. In B, the
state space is decomposed into a number of machines; op-
erations encapsulate the description of what happens to
the state variables when a transition occurs. In EB?, be-
havior is encapsulated into process expressions and data
values are encapsulated into a function defining the value
of an attribute (of an entity or an association). Hence, it
is very easy in B to determine what happens to state vari-
ables when an input event is processed. Conversely, it is
very difficult to determine how a state variable evolves,
because this information is scattered over all operations
that modify it. In EB3, it is exactly the opposite: it is
difficult to determine the effect of an input event on at-
tributes, because this information is scattered over sev-
eral function definitions, whereas how an attribute is in-
fluenced by input events is immediately evident.

248 B. Fraikin et al.: State-based versus event-based specifications for information systems: a comparison of B and EB3

Error management is implicit in EB® and defined in
the semantics of the language. Error management in B is
explicit; it takes place in the top-level (interface) machine
where operations are coded with IF-THEN-ELSE rather
than PRE-THEN. This approach provides the flexibility
to define precise error messages, rather than the generic
ok and error used in EB3.

Overall, the connection between a B specification and
an EB? specification is the following. The preconditions
of B operations correspond to the process expressions of
the EB® specification. The basic substitutions (i.e., :=)
of B operations correspond to recursive functions on the
system trace and contribute to the definition of ordering
constraints.

These facts lead us to conclude that, in the general
case, the structure of an EB? specification is closer to the
structure of the user requirements than a B specification.
From a user’s point of view, the value of an IS lies in the
information it provides and in the assurance that data
integrity is preserved by event processing. The issue of
checking data integrity is addressed in the next two sec-
tions. For now, we consider the issue of defining the data
and stating how it is updated. In EB3, each data attribute
is defined on its own by a single function. This specifica-
tion style is closer to the user view. Because it is the data
that matters each data attribute can be described inde-
pendently, one by one. In B, the user must consider a par-
tial view of a number of attributes to describe what hap-
pens when an event is executed. For instance, it is easier
for a user to say that the current borrower of a book is the
last to have executed a Lend or Take, and that it becomes
undefined when a book is returned, than to describe all
preconditions and all modifications to attributes when a
Lend occurs. Of course, there are cases in which an event
is naturally seen by the user as a set of effects. For in-
stance, a year closing transaction in an accounting system
is easier to describe as a set of effects on various accounts,
journals, and year-end reports.

5.2 Validation of the specification

We define validation as the activity of ensuring that the
specification is an adequate formulation of the (textual)
user requirements [5]. In other words, validation makes
sure that the specification meets the client’s expectations.
Validation is usually conducted by human inspection and
sometimes supported by specification animation tools to
execute some scenarios.

In the EB? and B specifications of Sects. 3 and 4, some
parts of the user requirements from Sect. 2 are not satis-
fied. They both contain the following errors:

1. A member can borrow a book that has been reserved
by another member.

2. A member can renew a loan even if the book has been
reserved by another member.

3. The borrower can reserve the book he borrowed.

4. A book can also be reserved without being lent or re-
served by someone else.

5. A member can exceed his loan limit.

6. The action Take does not revoke its corresponding
reservation.

Specification errors can be classified in several ways.
From a state-based viewpoint, they can be classified on
the basis of where they occur in the specification, i.e., in
the precondition or in the postcondition of an operation.
From a process algebraic viewpoint, notions of precondi-
tions and postconditions translate into a single concept,
namely event ordering.

Errors can also be classified on the basis of proper-
ties about the specification. In the state-based paradigm,
an invariant describes a property on state variables that
must be preserved by each transition (operation call).
It can be verified by proofs, as we shall see in Sect. 5.3.
A temporal property relates several transitions (i.e.,
event sequences) and can be verified by model checking.
In the process algebraic paradigm, only temporal proper-
ties make sense.

In IS, data integrity is a fundamental requirement re-
lated to both invariants and temporal properties, because
the state must properly reflect the history of what has
happened and must not enable incorrect future events.
Invariants are also called static constraints; temporal
properties are also called dynamic constraints. Data in-
tegrity is often identified with static constraints, as these
were studied first in database theory.

Errors 1, 2, and 4 are precondition problems. They are
not detected by proving an invariant, but they can be de-
tected by verifying temporal properties. Errors 3 and 5
are also precondition errors, but they can be detected by
proving an invariant. Error 6 is a postcondition problem;
it can be detected by proving an invariant. Of course, to
detect these errors, one must find the appropriate invari-
ants or temporal properties, which is not a trivial task.

In this section, we want to analyze and rectify such
errors both in EB® and B. Moreover we will compare
again these languages and try to identify a reasoning style
which will help an analyst in this task.

5.2.1 Error correction in EB®

These errors can be detected by an experienced EB? speci-
fier through a review or walk-through of the specification.
The ordering constraints on Lend, Renew, and Reserve
are expressed in a simple manner; the only potential dif-
ficulty to understanding them lies in the synchronization
between loan and reservation over the action Take or
in understanding the quantifications occurring in book or
member.

The first four errors arise from the difficulty in a pro-
cess algebra to express constraints involving several enti-
ties at the same time. Such constraints occur quite often
in IS. For instance, to prevent the borrowing of a reserved
book, the process expression loan must be “aware” that

B. Fraikin et al.: State-based versus event-based specifications for information systems: a comparison of B and EB® 249

loan(mId : MEMBERID, bId : BOOKID) =

(isNotReserved(trace,bId) ==> Lend(mId,bId) | isFirst(trace,mId,bId) ==> Take(mId,bId))
isNotReserved(trace,bId) ==> Renew(mId,bId)) *

Return(mId,bId)

isNotReserved(trace : VALID_TRACE, bId :
reservationQueue(trace,bId) = []

BOOKID) : BOOLEAN =

Fig. 11. EB3 specification: State-oriented solution to errors 1 and 2

main = (C I'll bId : BOOKID : book(bId) *)
[1 C Il mId : MEMBERID : member (mId) *)
|| DisplayBorrowerByCategory() ~*
|| Controlleri()

Controller1() = ||| bId : BOOKID :

| [Reserve, Take, Cancel]| mId :

MEMBERID :

((Lend(mId,bId) | Renew(mId,bId))"* . (||| mId2 :

MEMBERID : reservation(mId2,bId) %)) *

Fig. 12. EB3 specification: Process-algebraic solution to errors 1 and 2

a Reserve has been executed on the book. In a pure pro-
cess algebraic style, a process can communicate with an-
other solely through synchronization, which is not always
easy to achieve. To facilitate this task, EB? allows for the
use of a single state variable, the system trace, in a pro-
cess expression.

The first two errors contradict requirement 4 in
Sect. 2. The actions causing the errors are Lend and
Renew; Take is not a problem, since it is guarded with
the function isFirst. We can provide two equivalent
solutions for these two errors: one is in a pure process al-
gebraic style; the other uses a guard and a function. As
we already mentioned, the use of guards and functions is
more state oriented; we try to avoid it as much as possible
to make ordering constraints more explicit. Figure 11 pro-
vides the state-oriented solution, while Fig. 12 provides
the purely process algebraic one.

It is interesting to look at the analysis that led to
the creation of the process controllerl in Fig. 12. The
problem was to write a process expression to prevent
the borrowing or renewal of a reserved book. It seems
natural to state this in the following terms: ”a reserved
book cannot be lent out and, if on loan, the book can-
not be renewed.” This formulation cannot, however, be
easily translated into a pure process algebraic style. It
is more suitable for constructing a guard, which would
simply express the negation of this formulation. To pro-
ceed with a pure process algebraic style, one has to rea-
son in terms of what event sequences are allowed, not in
terms of what is prohibited. So it is better to find a posi-
tive formulation of the statement: “a loan and a renewal
only occur before any reservation or after all reservations
have been consumed”. This reveals the need to “spy” on
the actions the other members, which is achieved by the
process Controllerl using an interleave quantification
[1] mId2 for each member mId. These quantifications
are all wrapped in a parameterized parallel composition
| [Reserve,Take,Cancel]| mId, which requires syn-
chronization on Reserve, Take, and Cancel.

Errors 3 and 4 are both related to the Reserve action
and contradict requirement 3. If we correct them with
a guard, the modification is quite straightforward. Fig-
ure 13 provides the guard function and the modification
to the process reservation. One may be surprised to
see that we do not check if the reservation queue already
contains the member. The current specification already
ensures that a member cannot perform two consecutive
reserve actions, just by using the classic operators of
process algebra to express a basic reservation scenario.

It is also possible to correct these errors in a pure pro-
cess algebraic style as we did with errors 1 and 2. Again,
we first need to formulate the requirements in terms of
which event sequences are allowed. Therefore, the follow-
ing formulations of requirement 3 are preferred:

— For the third error, “For a given member and book, the
reservations always occur between loans.”.

— For the fourth, “A book reservation occurs during an-
other member’s loan or reservation cycle.”

Figure 14 provides the Controller2 and Controller3
processes that, respectively, specify these two statements.

canBeReserved(trace : VALID_TRACE, mId :
bId : BOOKID): BOOLEAN =
(currentBorrower (trace,bId) /= nil
and currentBorrower (trace,bId) /= mId
)

or reservationQueue(trace,bId) /= []

MEMBERID,

reservation(mId : MEMBERID , bId : BOOKID) =
canBeReserved(trace,mId,bld)
==> Reserve(mId,bId)

(isFirst (trace,mId,bId) ==> Take(mId,bId)
| Cancel (mId,bId)

Fig. 13. EB? specification: State-oriented solution
to errors 3 and 4

250 B. Fraikin et al.: State-based versus event-based specifications for information systems: a comparison of B and EB3

Controller2() = ||| bId : BOOKID :
(loan(mId,bId) "*

Controller3() =
|1l bId : BOOKID :

| [Lend, Reserve, Take, Cancel, Return]| mId :
MEMBERID - {mId} :

¢ Il mId2 :

[l mId :
. Reserve(mId,bId) "*) "%

MEMBERID :

MEMBERID : /* part O */

((Lend(mId2,bId) | Take(mId2,bId)).
Reserve(mId,bId) “* .

Return(mId2,bId)

)7*)
| [Take] |
(Il mId3 :

/* part 1 */

MEMBERID - {mId} :

(Reserve(mId3,bId) .
Reserve (mId,bId) " * .
(Take (mId3,bId) | Cancel(mId3,bId))

)7*)
)
I

/* part 2 */

(Lend(mId,bId) | Take(mId,bId) |
Return(mId,bId) | Cancel(mId,bId)) * /* part 3 */

Fig. 14. B3 specification: Process algebraic solution to correct errors 3 and 4

They must be inserted in the main process in parallel with
other processes.

Clearly, these process expressions are quite hard to
understand, even for experienced EB? specifiers. Indeed,
if Controller?2 is still understandable, Controller3 is
clearly quite complex. It involves two different spying pro-
cesses (| || mId2and ||| mId3),called part1and part 2,
respectively. Part 1 ensures that a book is reserved dur-
ing a loan. Part 2 ensures that a reservation occurs only
when at least one reservation by another member is ac-
tive. The use of the synchronization operator | [Take] |
between these two processes acts somewhat like a disjunc-
tion operator: a book can be reserved if and only if it has
been borrowed or reserved by another member. Part 3 is
needed to avoid deadlocks with the rest of the Library
specification, since the constraint expressed should only
apply to the Reserve action of a given book bId. Hence,
part 3 allows other loan and reservation actions of bId to
be executed in any order.

Process Controller3 is very complex (in compari-
son with Controller2 and even Controllerl), because
the constraint involves the same action, Reserve, from
different members, which can be initiated in two cases:
during a loan or reservation by another member. The use
of guards and functions seems definitely wiser (and safer)
here.

Figure 15 describes a partial view of the execution of
a sequence of actions in Controller3. It shows the exe-
cution threads of three members (mId=1, 2, and 3 in part
0) during several loans and reservations for bId=10 in the
outermost interleave | | | bId. A blue box denotes an exe-
cution in part 3. A blue triangle in the upper right corner
is an execution in part 1 and a blue triangle in the upper
left corner is an execution in part 2. A box with two upper
blue triangles represents an execution of both parts 1 and
2: this is only possible for a Take action, due to the syn-

Member

Member
mId=3

mId2.

Lend(1,10)

Reserve(2,10)

Return(1,10)

Reserve(3,10)

Take(2,10)

Reserve(1,10)

Fig. 15. Partial thread of execution for controller3

chronization | [Take] | between these parts. Here is the
sequence that concerns us:

1. The first member borrows the book (Lend(1,10)). Its
thread executes this action in part 3. Due to the syn-
chronization on Lend imposed in part 0, the threads of
the second and third members must also execute this
action in part 1 with mId2=1.

2. The second member reserves the book. This is al-
lowed because Reserve (2, 10) is executable in part 1
of its thread (with mId2=1). The threads of the first
and third members execute this action in part 2 with
mId3=2.

B. Fraikin et al.: State-based versus event-based specifications for information systems: a comparison of B and EB® 251

3. The first member returns the book (Returns(1,10)).

4. The third member reserves the book (Reserve(3,
10)). This is allowed, even if the book has not been
borrowed by anyone, because the second member has
a reservation. So, this action is executed in part 2 in
each thread with mId3=2 for the third member and
mId3=3 for the first and second members.

5. The second member takes the book (Take(2,10)). In
the threads of the first and the third members, the ac-
tion is executed in part 1 and part 2, since these two
parts must synchronize on a Take in order to close
a reservation cycle and start a loan cycle.

6. The first member reserves the book (Reserve (1,10)).
Since the book has already been reserved by mem-
ber 3 and borrowed by member 2, this action can (non-
deterministically) be executed in either part 1 (with
mId2=2) or part 2 (with mId3=3). The threads of mem-
bers 2 and 3 execute this action in part 2.

Error 5 is caused by the absence of a guard for actions
Lend and Take. This can be corrected by adding the fol-
lowing guard in the process loan:

numberOfLoans (trace,mId) < maxNbLoan ==>
(isNotReserved(trace,bld) ==> Lend(mId,bId)
| isFirst(trace,mId,bId) ==> Take(mId,bId))

Error 6 is caused by an improper update of the at-
tribute reservationQueue in its defining function. This
can be corrected by adding a line in the recursive func-
tion that computes the value of the reservation queue.
It must suppress the member mId from the reservation
queue when a Take action is met (Fig. 16).

We have provided two kinds of solutions for several
errors (1, 2, 3 and 4): a state-oriented and an event-
oriented. For error 5, however, the event-oriented solution
is so cumbersome that we have only provided a state-
oriented solution. Error 6 is also solved this way. For the
sake of clarity and maintainability, we suggest rearrang-
ing the process expressions of entities and associations
in order to separate the general ordering behavior from
specific constraints. In our example, only the loan and
reservation associations are submitted to constraints,
so that we obtain the new EB? specification of the library
provided in Fig. 17. Here is a summary if its structure:

— The main part and the book and member entities are
unchanged.

reservationQueue (trace
match last(trace) with
nil -> []

Reserve(mId,bId) -> reservationQueue(front(trace),bId)::mId
Take (mId,bId) -> reservationQueue(front(trace),bId) - {mId}
Cancel (mId,bId) -> reservationQueue(front(trace),bId) - {mId}

: VALID_TRACE, bId :

— Each of the 1loan and reservation processes are split
into two processes, a nominal and a controller that
synchronize on the common events.

— The two nominal processes loanNominal and reser-
vationNominal are specified by a pure event process
expression that describes the general behavior of the
association.

— The two controllers loanController and reserva-
tionController include guards related to the con-
straints on the loan and the reservation associations.

The recursive functions are created and corrected as indi-
cated in this section. We do not provide their new version
since there is no major modification.

5.2.2 Error correction in B

Errors related to ordering constraints are detected dif-
ferently in B. It requires checking preconditions of the
operations to determine if they appropriately describe the
desired ordering properties. This requires a sound under-
standing of the state variables. Moreover, a good under-
standing of basic set theory, functions, and relations is
also necessary to express some constraints in precondi-
tions and to compare them with the user requirements.
It can be quite difficult to get a clear view of the pos-
sible execution order of operations. One solution is to use
a specification animator, which is provided by some case
tools supporting B.

Once an error is located, the correction process is
nearly the same as for EB® with guards and functions.
As mentioned, it is natural to write constraints as im-
plications, making them easily translatable into precon-
ditions. Nonetheless, as is shown in the comparison in
the Sect. 5.1.3, some constraints expressed with precon-
ditions may seem quite artificial in B whenever it is easy
to express them in EB3. This is the new definition of the
operation L_Renew with the correct precondition.

L_Renew(mlId,bId) =
PRE mlId € ran(memberId) A
bId € ran(bookId) A
(theBook,theMember) € loans N
theBook ¢ dom(reservations) error 2
THEN
skip
END
Operations B_Reserve and B_Lend were promoted from
B_Reservation and B_Loan in the previous specifica-

BOOKID): LIST of MEMBERID

_ —> reservationQueue(front(trace),bld)

Fig. 16. Correction of reservationQueue (error 6)

252 B. Fraikin et al.: State-based versus event-based specifications for information systems: a comparison of B and EB

main = C 1

book(bId : BOOKID) =

Il C |ll mId : MEMBERID : reservation(mId,bId) "*)
|| DisplayCurrentBorrower (bId) ~*
)
Discard(bId)
member (mId : MEMBERID) = Join(mId) .
(
(|1l bId : BOOKID : loan(mId,bId)) x*
[C Il bId : BOOKID : reservation(mId,bId) "*)

bId : BOOKID : book(bId) *)

C Il mId : MEMBERID : member (mId) %)
DisplayBorrowerByCategory () ~*

Acquire(bId,_)
((| mId : MEMBERID : loan(mId,bId)) *

|| DisplayNumberOfLoans (mId) ~*
)
Leave (mId)

loan(mId : MEMBERID, bId : BOOKID) =
loanNominal (mId,bId) || loanController(mId,bId) *

loanNominal (mId :
(Lend(mId,bId) | Take(mId,bId)) . Renew(mId,bId) * . Return(mId,bId)

MEMBERID, bId : BOOKID) =

loanController (mId : MEMBERID, bId : BOOKID) =

reservation(mId :
reservationNominal (mId,bId)

numberOfLoans (trace, mId) < maxNbLoan
and isNotReserved(trace, bId) ==> Lend(mId,bId)
isNotReserved(trace, bId) ==> Renew(mId,bId)
numberOfLoans (trace, mId) < maxNbLoan ==> Take(mId,bId)

MEMBERID, bId : BOOKID) =

reservationNominal (mId : MEMBERID, bId : BOOKID) =
Reserve(mId,bId) . (Take(mId,bId) | Cancel(mId,bId))

reservationController(mId : MEMBERID, bId : BOOKID) =

canBeReserved(trace,mId,bId) ==> Reserve(mId,bId)
isFirst(trace,mId,bId)) ==> Take(mId,bId)

Fig. 17. EB3 specification: Corrected process definitions

|| reservationController (mId,bId) " *

3

tion. To correct them, we must now refer to variables
from each. This would imply a circular USES relation-
ship between B_Reservation and B_Loan, which is not
allowed in B; we must therefore create new operations in
B_Library.

L_Reserve(mld,bld) =
PRE mId € ran(memberld) A
bId € ran(bookId) A
(theBook,theMember) ¢ reservations A
(theBook € dom(reservations) V
(theBook € dom(loans) A
loans(the Book) # theMember * error 3 *\
)) * error 4%\
THEN
B_Reserve(mlId,bld)
END:

L_Lend(mlId,bld) 2
PRE mlId € ran(memberld) A

bld € ran(bookId) N
the Book ¢ dom(loans) A
the Book ¢ dom(reservations) A \xerror 1*\
card(loans~[{theMember}]) <
maxNbLoan *error 5%\
THEN
B_Lend(mId, bId)
END;

)

Error 3 is also an ordering constraint that is corrected
by adding the conjunct:

loans(the Book) # the Member (2)
to the precondition of operation L_Reserve. Moreover,
we can also strengthen the invariant of the machine B_Li-

brary by adding the conjunct:

loans Nreservations = () (3)

B. Fraikin et al.: State-based versus event-based specifications for information systems: a comparison of B and EB® 253

L_Take(mld,bld) =

PRE mlId € ran(memberid) A bld € ran(bookld) A
theBook ¢ dom(loans) A (theBook,theMember) € reservations A
numReserv(theBook, theMember) = min(numReserv[{theBook}<Idom(numReserv)]) A
card(loans™*[{theMember}]) < maxNbLoan /*error 5%/

THEN

B_Lend(mlId,bld) || B_Cancel(mlId,bld) /*error 6x/

END;

Fig. 18. Correction of operation L_Take (error 6)

Error 3 could therefore be detected, because proof obli-
gations of the operation L_Reserve would fail if the con-
junct (2) were missing in its precondition.

Invariant (3) also allows error 6 to be detected. Indeed,
proof obligations of the operation L_Take will fail and we
must add the substitution that deletes the pair of objects
of the variable reservations that is added in the vari-
able loans by the operation B_Lend. Figure 18 shows the
new operation L_Take.

Error 5 comes from the requirement 9 that expresses
an integrity constraint, which requires the definition of an
additional invariant:

Vm-m € members = card(loans™*[{m}]) < maxNbLoan

(4)
in the machine B_Loan and a new constant maxNbLoan.
To discharge the proof obligations associated with this
integrity constraint, the following precondition has been
added to the operation B_Lend, and then to L_Take and
L_Lend:

card(loans™ ' [{theMember}]) < maxNbLoan . (5)

Of course, all these modifications induce modifications
in the corresponding operations of the B_Library_Inter-
face machine.

5.2.3 Conclusion

For precondition errors, specification validation against
user requirements is easier to achieve in event-oriented
EB® than in state-oriented B for two reasons. First, the
understanding of an EB3 specification can be local, that is,
each process expression can be understood independently
of the others and thus can be individually validated. Sec-
ond, user requirements are expressed more naturally with
a process algebra, since it streamlines the specification of
ordering constraints, at least, when the constraints do not
involve many entities or associations. Indeed, the use of
guards in an EB® specification tends to blur the global
readability of the specification as preconditions do in a B
specification. As an example, consider the following pro-
cess expression:

a.b.c

written in a pure process algebra style. It can be ex-
pressed in a guard-oriented style in EB? as:

(gl==>a) || (g2==>b) || (g3==>c)

where the guard gl expresses that action a is the first
action to be performed and the guard g2 expresses (re-
spectively g3) that action a (resp. actions a and b) has
already been performed. The ordering constraint between
actions a, b, and c is explicitly formulated in the first ex-
pression whereas the guard definitions must be explored
to discover the constraint in the second expression.

It seems, however, that ordering constraints involving
several properties of several entities (e.g., the last error
correction) are quite difficult to express in EB® without
guard, and are definitely less readable than an equivalent
guard-oriented solution. In this case, the guard-oriented
style is the most natural and easiest to write and under-
stand. EB® has a slight advantage over B in this case,
because a data attribute is completely defined by a sin-
gle function, which makes it easier to understand. Never-
theless, this study has shown that some constraints look
more natural in one paradigm while others are more nat-
ural in the other.

Some postcondition errors are not easier to detect in
either method. For instance, error 6 is as difficult to find
in B as EB3, because this kind of error is intrinsically re-
lated to the state-based paradigm.

5.8 Specification verification

We define verification as the activity of checking that
a specification satisfies some properties stated in a formal
language. A property can be checked either by proving it
or by checking it on a finite model of the specification. In
contrast, validation is conducted using informal require-
ments or by the user [5].

5.3.1 Verification in EB®

Since EB? is founded on a process algebra, an EB? specifi-
cation could be verified using model-checking techniques.
Theorem proving is seldom used for the verification of
process expressions. There is currently no model-checking
tool for EB3. Bridges could be defined, however, to tools
developed for other process algebras (e.g., FDR [16] for
CSP, CADP [23] for LOTOS).

Model checking is based on exploration of a model
of the specification. A process expression must first be
translated into a transition system (the model). This
transition system is then explored in order to verify tem-
poral properties or to compare two process expressions

254 B. Fraikin et al.: State-based versus event-based specifications for information systems: a comparison of B and EB3

for equivalence or refinement. The verification is usually
automatic, but it can suffer from combinatorial explo-
sion. For IS specifications, this is particularly severe since
unbounded quantifications are used to represent entities
and associations. Hence, the transition system of an IS is
usually unbounded. For practical verification, the model
must be reduced (e.g., by considering a small number of
books and members) to check a property. When a prop-
erty is satisfied on a reduced model, there is no guarantee
that it is satisfied in the unbounded model. Dually, if
a property fails on a reduced model, then it is usually
not satisfied in the unbounded model, because the verifi-
cation has identified a counterexample. Nevertheless, one
could imagine properties that fail on a reduced model but
succeed in an larger one (e.g., stating that a member can
have up to n active loans). Recent developments in model
checking allow for verification of unbounded models using
a reduced model, in some specific cases (e.g., [13]). These
techniques, however, sometimes require the identification
of an invariant that must be proved for the specifica-
tion. Consequently, the procedure is no longer automatic;
it requires creativity and the use of a theorem prover.
For an example of temporal property verification in pro-
cess algebraic specifications of IS, the reader is referred
to [14].

Expression and verification of static constraints are
more complex in EB? than in B. One approach is to
show that, for each integrity constraint C, 7 (main| |C) =
7T (main), where main is the main process expression and C
is the process expression defining the integrity constraint.
For example, error 5 could be detected by using the fol-
lowing constraint:

C = ||| mId : MEMBERID :
numberOfLoans (trace,mId) < maxNbLoan
==> (Lend(mId,_) | Take(mId,_)) *

To satisfy this constraint, the actions Lend and Take in
the process loan must be guarded by:

numberOfLoans (trace,mId) < maxNbLoan

Combinatorial explosion may prevent a model checker
from detecting the violation of this condition, depending
on the value assigned to maxNbLoan.

Dynamic constraints can also be specified using trace
inclusion. For instance, a safety constraint C' can be writ-
ten such that 7 (main) C T(C), which shows that some-
thing bad (i.e., a trace not allowed by C') cannot happen.
Dually, a liveness property C' may be stated such that
T (main) 2 T(C), which shows that something good (i.e.,
a trace allowed by C') can happen.

Temporal logic could also be used for dynamic con-
straints [29]. For instance, the following formula states
that it is always the case (O) that, when a Lend occurs,
the next events () must not be (=) another Lend unless
(W) a Return occurs before.

VbId-O(Lend(bId,_) =
O (—Lend(bId,_) W Return(bld,_)))

5.3.2 Verification in B

Case tools such as Atelier B [10] provide a prover to han-
dle proof obligations associated with machines and their
refinements. Among proof obligations, the preservation of
the invariant by operations is essential for verifying prop-
erties. B is very nice for specifying static properties about
the data structures. The Atelier B prover was able to
automatically discharge all proof obligations associated
with our B specifications.

In IS, there exist a great number of static constraints
expressed on the state of the system, such as requirement 9
that can be easily specified with the B language in the
invariant clause. Discharging proof obligations associated
with a specification ensures that integrity constraints are
satisfied by the specification. In order to discharge these
proof obligations, suitable preconditions must be defined
in the operations involved by a constraint.

Dynamic constraints are very difficult to express and
verify in B, as explained above. A solution for checking
such constraints is to use the refinement mechanism and
to prove that the B specification is a refinement of the EB>
specification, as presented in [19].

Another approach, presented by Darlot in [11], com-
bines the Event B method with the temporal logic
PLTL [33]. Event B allows an event system to be specified
on which temporal properties are expressed. In addition,
a verification method is proposed: invariant properties of
the system can be checked by theorem proving, using Ate-
lier B, whereas temporal properties are verified by model
checking. The approach does require some adaptation for
application to IS [21].

5.3.3 Conclusion

Static integrity constraints can be explicitly stated within
the invariant of a B machine. They induce proof obliga-
tions that must be discharged by the specifier. When it is
difficult to discharge them, it is usually a good sign that
the invariant is not preserved by an operation; specifica-
tion errors are then uncovered.

The same invariant property could be stated in EB>
using functions defining the entity attributes. Proving
that they are preserved by every operation consists in
proving that they hold for any trace accepted by the main
process. These proofs are more difficult to achieve in EB3,
because there is no explicit formulation of event precondi-
tions. B has a definite advantage over EB? in this regard.

B and EB? currently do not offer any proper support for
the specification and verification of dynamic constraints.
Current model-checking techniques could be applied to
both, with the same level of difficulty and effectiveness,
since verification is conducted on a transition system.

5.4 Specification evolution

We may classify modifications to specification as either
event-ordering modification or data-requirements modifi-

B. Fraikin et al.: State-based versus event-based specifications for information systems: a comparison of B and EB® 255

cation. The latter involves the definition or modification of
data attributes, which may be used for defining ordering
constraints or simply for providing information to the user.

Most of the errors identified in Sect. 5.2 were related
to event-ordering constraints; their correction illustrates
that changing the B specification and the EB® speci-
fication were roughly equivalent in complexity. These
changes did not require the definition of new data at-
tributes. The slight modification to the user requirements
presented in Sect. 5.1.1 (to prohibit the reacquisition of
a book) showed that the B specification required more
changes than the EB> one. It is difficult to generalize this
principle to arbitrary event-ordering requirements modi-
fications. Nevertheless, an event-ordering modification in
EB? can be defined either by providing a new combination
of operators or by defining new attributes and using them
in a guard. In the first case, the modification is simpler
than in B; in the second case, it is roughly equivalent to
the modification in B.

Adding new data requirements, without changing the
ordering constraints, usually involves more work in B
than in EB®. For instance, consider that we need to store
the history of loans for a book, instead of only the current
loan. In both B and EB?, a new attribute must be created.
In EB?, it is quite straightforward: a new definition has to
be created; there is no change to the rest of the specifi-
cation. In the B specification, one must decide if the two
attributes (current loan and history of loans) should be
kept, or if the specification is rewritten to use only the his-
tory of loans as a variable. If two attributes are kept, sev-
eral modifications are avoided. This solution introduces,
however, some redundancy in the state space, along with
the risk that future modifications to the specification will
introduce some inconsistency between them. Stating the
relationship between the two redundant attributes in an
invariant avoids that, but it induces additional work for
discharging invariant preservation proof obligations.

6 Conclusion

We have studied two orthogonal specifications method
for IS. The B method is illustrative of the state-based
paradigm, whereas the EB? method is illustrative of both
the event-based and the state-based paradigms, since it is
an hybrid method.

The EB® method is based on a separation of con-
cerns between input processing and output processing,
which distinguishes it from traditional process algebraic
methods and state-oriented methods. Its process alge-
braic facet fosters the explicit definition of intra-entity
constraints, making them easy to review and understand
for a human being. Complex inter-entity constraints in-
volving the history of input events are better expressed
through its state-oriented facets, using guards and recur-
sive functions on the system trace. The price paid for the
hybrid nature of EB? is the strong difficulty of proving the

preservation of static data integrity constraints, because
the process algebraic facet does not include an explicit
definition of action preconditions and postconditions.

The B method fosters modularity through machine
encapsulation and operation encapsulation. It is very
powerful for expressing complex ordering constraints and
proving the preservation of static data integrity con-
straints. The price paid for this powerful feature is the
difficulty of understanding, for a human being, the or-
dering relationship between input events, because of the
strong data coupling between operations.

Dynamic constraints are as hard to verify in both
methods. The ease of understanding and the weak coup-
ling between actions makes EB> specifications slightly eas-
ier to maintain than B specifications.

One way of exploiting the strengths of each method is
to use EB? to provide an explicit definition of the user re-
quirements and their dynamic constraints and to use B
to provide a powerful mechanism for specifying and ver-
ifying static data integrity constraints. Moreover, B can
be used as a design method to proceed from a require-
ments specification to a complete implementation of the
system [26,28]. The consistency between the EB® specifi-
cation and the B specification can be checked by proving
refinement between them, using B’s refinement relation.
This refinement proof would ensure that the B specifica-
tion satisfies all the ordering constraints prescribed by the
EB? specification. It constitutes an interesting alternative
to model checking, which is often limited by combina-
torial explosion. A strategy for such a refinement proof
has been proposed in [19]. Unfortunately, this refinement
proof is not a trivial task. The idea of combining the state-
based paradigm and the event-based paradigm has been
studied under several forms: CSP OZ [15], Circus [37],
CSP2B [9], and CSP || B [35].

Our future work will address the refinement of an EB>
specification into a B specification, on the basis of the
strategy outlined in [19]. We wish to automate as much as
possible the generation of the B specification from the EB?
one. It should be possible to derive from the EB? specifica-
tion the variables, the gluing invariant and the postcondi-
tions of the operations. The most difficult part is to gen-
erate operation preconditions from process expressions
using the variables corresponding to entity attributes. We
will first investigate the EB® patterns identified in [20].

Acknowledgements. The authors wish to thank the anonymous ref-
erees for their insightful comments and suggestions, which lead to
significant improvements to the paper. The work of Marc Frappier
is supported by NSERC (Natural Sciences and Engineering Re-
search Council) of Canada and by FQRNT (Fonds québécois de la
recherche sur la nature et les technologies) of Québec.

References

1. Abrial J-R (1996) The B-Book. Cambridge University Press,
Cambridge, UK

2. Abrial J-R (1996) Extending B without Changing it. In:
Habrias H (ed) First Conference on the B Method, pp 169-
190, November 1996

256 B. Fraikin et al.: State-based versus event-based specifications for information systems: a comparison of B and EB>

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Abrial J-R, Mussat L (1998) Introducing Dynamic Con-
straints in B. In: Bert D (ed) Second International B Confer-
ence, Lecture Notes in Computer Science, vol 1393. Springer-
Verlag, pp 83-128, April 1998

. Behm P, Benoit P, Faivre A, Meynadier JM (1999) Météor:

A Successful Application of B in a Large Project. In: FM99:
World Congress on Formal Methods, Toulouse, France, Lec-
ture Notes in Computer Science, vol 1708. Springer-Verlag, pp
369-387, September 1999

. Boehm BW (1984) Verifying and Validating Software Require-

ments and Design Specifications. IEEE Software 1(1):75-88,
January 1984

. Boerger E, Staerk R (2003) Abstract State Machines: A Method

for High-Level System Design and Analysis. Springer-Verlag,
ISBN 3-540-00702-4

. Bolognesi T, Brinksma E (1987) Introduction to the ISO Spe-

cification Language LoT0Ss. Computer Networks and ISDN
Systems 14(1):25-59

. Butler MJ, Waldén M (1996) Distributed System Develop-

ment in B. In: Habrias H (ed) First Conference on the B
Method, November 1996

. Butler M (2000) csp2B: A Practical Approach to Combining

CSP and B. Formal Aspects of Computing 12(4):182-198
CLEARSY System Engineering: Aix-en-Provence, France,
http: //www.clearsy.com/

Darlot C (2002) Reformulation et vérification de propriétés
temporelles dans le cadre du raffinement de systémes d’événe-
ments. Ph.D. thesis, Université de Franche-Comté, France
Elmasri R, Navathe SB (2004) Fundamentals of Database Sys-
tems. 4*0 edition, Addison-Wesley

Emerson EA, Kahlon V (2000) Reducing model checking of
the many to the few. In: Proceedings of CADE’2000, Lecture
Notes in Computer Science, vol 1831. Springer-Verlag, pp 236—
354

Evans N, Treharne H, Laleau R, Frappier M (2004) How to
Verify Dynamic Properties of Information Systems. In: Cuel-
lar JR, Liu Z (eds) 2nd IEEE International Conference on
Software Engineering and Formal Methods, Beijing, China,
26-30 September 2004. IEEE Computer Society Press, pp
416-425.

Fischer C (2000) Combination and Implementation of Pro-
cesses and Data: from CSP-OZ to Java. PhD thesis, University
of Oldenburg

Formal Systems (Europe) Ltd. (1997) Failures-Divergences
Refinement: FDR2 User Manual.

http: //www.formal.demon.co.uk

Fraikin B, Frappier M (2002) EB?PAIL an interpreter for
the EB3 specification language. In: FM-TOOLS 2002, The
5th Workshop on Tools for System Design and Verification,
Reisensburg Castle, Giinzburg, Germany, 15-17 July 2002
Fraikin B, Frappier M (2002) Optimizing memory space in
the EB® process algebra interpreter. In: ICCSSEA 2002, Soft-
ware and Systemes Engineering and their Applications, vol I,
Session 4

Frappier M, Laleau R (2003) Proving Event Ordering Prop-
erties for Information Systems. In: Zb 2003: Formal Specifica-
tion and Development in Z and B, Turku, Finland, 4-6 June
2003, Lecture Notes in Computer Science, vol 2651. Springer-
Verlag, pp 421-436

Frappier M, St-Denis R (2003) EB3: an Entity-Based Black-
Box Specification Method for Information Systems. Software
and System Modeling 2(2):134-149, July 2003

Gervais F (2004) EB*: Vers une méthode combinée de
spécification formelle des systémes d’information. Examen de
spécialité, Doctorat Informatique, Université de Sherbrooke,
June 2004

Hoare CAR (1985) Communicating Sequential Processes.
Prentice Hall, Englewood Cliffs

INRIA Rhéne-Alpes: CADP (Caesar/Aldebaran Development
Package),

http: //www.inrialpes.fr/vasy/cadp/

Jarke M, Mylopoulos J, Schmidt JW, Vassiliou Y (1992)
DAIDA: An Environment for Evolving Information Systems.
ACM Transactions on Information Systems 10(1):1-50, Jan-
uary 1992

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Laleau R Mammar A (2000) An Overview of a Method and its
Support Tool for Generating B Specifications from UML No-
tations. In: ASE: 15*® IEEE Conference on Automated Soft-
ware Engineering, Grenoble, France, September 2000, IEEE
Computer Society Press

Laleau R, Mammar A (2000) A Generic Process to Refine a B
Specification into a Relational Database Implementation. In:
7ZB2000: Formal Specification and Development in Z and B,
Lecture Notes in Computer Science, vol 1878, Springer-Verlag,
York

Laleau R (2002) Conception et développement formels d’ap-
plications bases de données. Habilitation Thesis, CEDRIC
Laboratory, Evry, France. Available at
http://cedric.cnam.fr/PUBLIS/RC424.ps.gz

Mammar A (2002) Un environnement formel pour le déve-
loppement d’applications bases de données. Ph.D. the-
sis, CEDRIC Laboratory, CNAM, Evry, France, November
2002. Available at
http://cedric.cnam.fr/PUBLIS/RC392.ps.gz

Manna M, Pnueli A (1992) The temporal logic of reactive and
concurrent systems. Springer-Verlag

Meyer E, Souquitres J (1999) A Systematic approach to
Transform OMT Diagrams to a B specification. In: Wing
JM, Woodcook J, Davies J (eds) Formal Methods (FM’99),
September 1999, Lecture Notes in Computer Science, vol
1708(1), Springer-Verlag, pp 875-895

Mills HD, Linger R.C., Hevner AR (1986) Principles of In-
formation Systems Analysis and Design. Academic Press, Or-
lando, FL

Milner R (1989) Communication and Concurrency. Prentice
Hall, Englewood Cliffs

Pnueli A (1981) The temporal semantics of concurrent pro-
grams. Theoretical Computer Science 13:45-60

Snook C, Butler M (2004) UML-B: Formal modelling and
design aided by UML. Technical Report, Department of Elec-
tronics and Computer Science, University of Southampton,
United Kingdom.

http://www.ecs.soton.ac.uk/people/mjb/

Treharne H, Schneider S (2000) How to drive a B machine.
In: Bowen JP, Dunne S, Galloway A, King S (eds) ZB2000:
Formal Specification and Development in Z and B, LNCS vol
1878, Springer-Verlag, pp 188-208

Vissers CA, Scollo G, van Sinderen M (1988) Architecture and
specification style in formal descriptions of distributed sys-
tems. In: Aggarwal S, Sabnani K (eds) Protocol Specification,
Testing and Verification, VIII, North-Holland, Amsterdam, pp
189-204

Woodcock JCP, Cavalcanti ALC (2002) The Semantics of Cir-
cus. In: ZB 2002: Formal Specification and Development in
Z and B, Grenoble, France, 2002, LNCS vol 2272. Springer-
Verlag

Benoit Fraikin is a Ph.D.
student in computer science at
the Université de Sherbrooke.
He graduated in mathematics
and obtained a DEA in logic
and computer science, both at
Université Denis Diderot (Paris
VII). During his DEA, he worked
on the B method at Matra trans-
port. His Ph.D. thesis concerns
the development of an efficient
interpreter for the EB® process
algebra.

Marc Frappier is a professor of
software engineering at the Uni-
versité de Sherbrooke. He earned
a Ph.D. in computer science from
the University of Ottawa in 1995.
His research interests include
software specification and syn-
thesis, software measurement,
and project management. He
held several positions in indus-
try prior to his academic career,
both at the technical and man-
agement levels.

B. Fraikin et al.: State-based versus event-based specifications for information systems: a comparison of B and EB® 257

Régine Laleau is professor
at the french University Paris
12 and member of the LACL
research laboratory since 2003.
Before she was member of the
CEDRIC-CNAM laboratory
where she has obtained an ha-
bilitation thesis in 2002. Her re-
search domain concerns the use
of formal methods for the an-
alysis and design of databases
applications.

