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Abstract Although aspect-oriented programming is
becoming popular, support for the independent descrip-
tion of aspect designs and for the incremental design of
aspects themselves has been neglected. A conceptual
framework for the design of aspects is presented, where
aspects are viewed as augmentations that map an exist-
ing design into a new one with changes or additions. The
principles of a Concern Architecture model are defined
both to group designs of aspects, and to make explicit
their dependencies and potential interferences in the
design of a system with multiple aspects. The aspects
are described generically, where any design element can
be either required or provided. The required elements
resemble formal parameters, and their binding to an
existing design shows the context in which the provided
parts are to modify that design. Overlap and a partial
order among aspects and concerns are visualized in a
Concern Architecture Diagram. An instantiation of the
ideas as a UML profile is outlined, and the design of a
digital sound recorder is used to demonstrate the utility
of the approach.
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1 Introduction

Aspect-oriented programming (e.g., [33]) isolates code
dealing with a concern of a system into modules. With-
out aspects, the code would cut across usual class or
process hierarchies. In our view, on the design level
an aspect provides augmentations to existing designs by
mapping an existing design into a new one with more de-
tails or modifications. However, although some current
design approaches enable a limited modular treatment
of augmentations or modifications to existing artifacts,
hardly any support is provided for the incremental de-
sign of aspects themselves, or for treating combinations
of aspects that can either cooperate or interfere with
one another.

As in conventional software architectures, which
emphasize relationships among components constitut-
ing the software, the relationships among aspects of
the system need to be made explicit. This is generally
difficult because it cannot be assumed that aspects are
always orthogonal, i.e., independent of each other. In
order to do this, aspects will be grouped according to
the names of concerns from the requirements defini-
tion activity of software development. Although the
term ‘aspect’ is sometimes used at the Requirements,
Design, and Programming stages, here we distinguish
between concerns that originate as requirements of a
system, and aspects at the Architectural and Design
stages (while the implementation in programming lan-
guages is not treated here). A concern relates to any
“conceptual matter of interest” and is simply a name
indicating a grouping of requirements, whether from a
separate Requirements Definition stage, or that arise
later during system development. This name will be
reused in the architecture description to group the
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aspects treating that concern. On the other hand, an
aspect is the design of a module to be implemented con-
taining treatment of a concern.

Consider an aspect design for treating the concern
of overflow of integer data values and another that
encodes values as part of treating a security concern.
These aspects can both involve the same methods or
fields of an underlying object-oriented design, and may
even overlap in the modifications applied. Such overlap
in the aspect solutions arises even when the concerns
at the requirements level seem disjoint. Such overlap
between different aspects introduces a new type of prob-
lem, not seen in conventional languages, where it is clear
to which class or module each language segment belongs.
It is also a major source of complexity when composing
and maintaining the aspects.

In this paper, based on an earlier conference paper
[20], we define a concern architecture that groups aspect
designs and can be seen as a software architecture view-
point. Often, a viewpoint might correspond to a par-
ticular concern. Here, the organization of the aspects
treating system concerns are themselves the focus of the
viewpoint. In a concern architecture the aspects serve
as building blocks that can be assembled incrementally
to form more complex aspects from simpler ones. Each
concern is addressed in a modular way by a collection of
aspects, which can be composed when needed. The over-
lapping parts treating the different concerns are given
explicitly by the aspects common to them.

Ideally, each aspect describes only a small increment.
This allows on-demand creation or remodularization of
aspects by composing different collections of aspects to
match whatever concern is needed. In the case of over-
lapping concerns, less reconciliation is needed because
the explicitly defined overlapping facilitates automatic
composition.

In addition to the concern architecture description, a
general approach to describing the designs of the aspects
themselves is presented. The aspect designs are generic
and reusable, and have required parts that correspond
to assumptions about other entities with which they can
be combined. Rules are shown for combining aspect
designs according to the concern architecture.

One possible approach for aspect-oriented design is
to introduce new constructs to model specific Aspect-
Oriented Programming constructs. For example, aspects
and join points as defined by AspectJ [33], the most
popular aspect-oriented programming language, could
be modeled. However, in our opinion, the mechanisms
needed at the implementation level and those appropri-
ate for the design levels are different. In particular, at
the design level there should be no need for a reflective
join point mechanism to capture the behavior of the base

program that triggers the aspect code. Instead, we advo-
cate an approach where aspects are seen as mappings
between original and augmented design artifacts. Just
as programming level pointcuts describe where advice
should be activated and also expose context to be used
by the advice, on the design level, (as will be shown) any
element of the modeling language can be used to define
the context and applicability conditions of an aspect.
This decouples the design from intricacies of a particu-
lar programming language and even allows implement-
ing the system in a conventional non-aspect language if
needed.

There are basically two main categories of aspect-
oriented design and programming languages [15].
Asymmetric approaches, particularly those influenced
by AspectJ, make a separation between a conventionally
structured base, e.g., classes with inheritance and other
relations, and aspects that cut across its units. On the
other hand, symmetric approaches, such as Hyper/J [26],
consider systems to be composed of aspects, or slices,
that potentially cut across each other. The approach here
can either be used as a layer of aspects added on to a
regular object-oriented design, or in a symmetric con-
text where everything is an aspect. Examples of both
types will be shown.

Because the concern architecture model is concep-
tual, it must be instantiated for some design language,
similarly to the Hyperspace model [26,32]. A UML pro-
file is sketched to illustrate the instantiation. The rest of
the paper is structured as follows. In Sect. 2 the prin-
ciples of the conceptual model are elaborated, showing
how to model an aspect design, rules for combining such
designs, and the concern architecture diagram for visu-
alizing dependencies and overlap among aspects treat-
ing concerns. Sect. 3 discusses the UML instantiation
of each of those elements. In Sect. 4 the approach is
demonstrated with an example showing an embedded
system design that includes feature interactions. Sect. 5
discusses the approach in the light of related work and
Section 6 draws conclusions.

2 Principles of aspect modeling

The first principle of our approach, already discussed
above, advocates integrating aspect modeling into exist-
ing modeling languages whenever possible. This is done
by providing minimal syntactic extensions to model the
aspects themselves, and expressing the relationships
among aspects and concerns in a new diagram. Thus the
expressive power for modeling aspects is inherited from
the underlying language. Since languages vary in their
semantics and mechanisms, some customization may be
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needed. We will demonstrate the instantiation for UML
in the following section.

As noted in the Introduction, we emphasize the dis-
tinction between concerns and software or other design
artifacts implementing them (as suggested in [31]).
Concerns are conceptual matters of interest from the
requirements definition, such as data security. They can
be treated by one or more aspects, perhaps using differ-
ent techniques for different parts of the system, and
modifying various values in distinct ways. We use the
term aspect for a module that is potentially able to encap-
sulate software or design artifacts treating an otherwise
cross-cutting concern. Aspects are often shared by more
than one concern but can be composed when needed to
form a composite aspect matching the treatment of a
single concern.

2.1 Aspects and overlapping

Although current aspect-oriented approaches provide
a modular way to augment or modify existing artifacts,
there is only some preliminary support for designing
aspects by composing simpler aspects [30]. However,
aspects themselves can be complex, and must be adapted
over time to changing requirements, and thus need to be
designed incrementally. Moreover, collections of
aspects have interrelations and cooperate to treat vari-
ous concerns of the system, and these relations need to
be explicit.

As will be demonstrated, the overlapping parts of
different composed aspects may have been composed
from aspects interesting in their own right. Moreover,
such aspects may sometimes address concerns not ini-
tially identified but which become important during the
software life cycle. This often justifies a remodulariza-
tion where the common parts and the specialized parts
are treated in separate aspects.

For example, consider again a system implemented
in a conventional non-aspect language with two over-
lapping system-wide concerns: providing security of key
variables and preventing overflow of variables. The secu-
rity concern is addressed by encrypting and decrypt-
ing some values at sensitive points and the overflow by
checking in advance that the needed data manipulations
stay within a fixed range of values. However, the artifacts
addressing these two concerns are closely intertwined,
in that the encryption can assume values within those
provided by the code implementing the overflow con-
cern, and needs to provide decrypted values within those
limits.

Initially there may be no separately identified concern
dealing with either security or overflow. A remodular-
ization could make the locations and tasks dealing with

these concerns identifiable and separable from the rest
of the system. When treatment of the two concerns is
isolated into aspects to ease maintenance, it becomes
clear that the aspects must overlap and cannot be com-
pletely orthogonal. Interest then turns to this overlap
which again can be isolated into an aspect included in
both security and overflow concerns. Identification of
the new aspect can be vital if, for instance, the security
scheme is changed and seamless co-operation with the
overflow prevention must be guaranteed.

2.2 Composing aspects

Below we show in greater detail how to compose indi-
vidual aspect designs into more complex designs.

2.2.1 Required, provided, and hidden parts

An aspect describes an increment to existing designs
that potentially cuts across elements of the design, and
formally defines a mapping from an existing design to an
augmented one. For example, consider a design artifact
in an object-oriented language, consisting of classes C
and D. A simple aspect A might add classes E and F,
subclasses of C, and introduce a method m to D. This
in effect maps the artifact to an augmented one consist-
ing of D including the method m, and C together with
its subclasses E and F. Similarly, more cross-cutting and
complex increments could be given.

As used here, aspects are inherently generic, i.e., they
are parametric, and can be bound and instantiated mul-
tiple times. To support reuse, they are split into two
disjoint parts, as also seen in [23]. The required part
describes the “join points”, to which the aspect is to be
applied as well as their wider context, and can be seen
as parametric elements, but of design artifacts rather
than just variables, methods, or other program elements.
The provided part introduces the augmentations. For
instance, in the case of a generic version of the aspect
A, above, the required part could consist of classes C
and D, and the provided part of subclasses E and F, and
method m. A could be instantiated for any artifact con-
taining two classes, by binding C and D to the classes and
renaming E, F, and m if needed to avoid name clashes.

Moreover, some elements provided by an aspect can
be labeled as hidden from other aspects. This means
that other aspects cannot bind elements to the hidden
ones. In effect, provided elements not hidden from other
aspects define an interface of the aspect. Similarly to
interfaces in conventional languages, this permits inter-
nal modification of the hidden part without affecting the
architecture composed of aspects. It should be noted
that hiding an element also hides the elements inside its
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“namespace”. For instance, hiding a class hides all the
methods and variables of the class.

Besides describing the points to attach new structure
or behavior, the required part can be used to restrict the
context in which the aspect is applicable. For instance,
consider an aspect encapsulating an algorithm which
detects termination of a computation in a distributed
system, e.g. [8,21]. The required part can state the struc-
tural and behavioral assumptions about the underlying
system which guarantee that the aspect is applicable, i.e.,
that termination can be detected. In the example above,
because C and D are separate classes inside a single
aspect, they cannot be bound to the same class. How-
ever, this would be possible if the classes were given in
separate aspects. Note also that an aspect can be instan-
tiated and utilized several times in one system, each time
augmenting different classes or other design elements.

2.2.2 Regular binding

Composition of aspects is based on superimposition,
which is an operation in which one aspect augments
another one. A superimposition where aspect B aug-
ments A is denoted by B/A. Applying B/A to an under-
lying system S is equivalent to first applying A to S, and
then applying B to the result. If there is no binding be-
tween the elements, then B/A = A/B. However, if some
element in B is bound to an element in A, B may depend
on A, thus breaking symmetry so that B may have to
augment A, but not vice versa.

For example, if an aspect for monitoring a system
defines new counter variables to record how often a vari-
able is referenced, and an aspect treating overflow needs
to consider all numerical variables, clearly the overflow
aspect augments (and is applied after) the one for mon-
itoring, even though this means that any additions in
the aspect for treating overflow will not be monitored.
On the other hand, if the monitoring aspect only prints
values occasionally, and has no new variables, then the
two aspects can be applied in either order. The indepen-
dence of the aspects in this case is easy to see if, say, x
is monitored, while y is treated for overflow. In fact, it
holds even if both treat the same field, but then depends
on the fact that monitoring does not modify the field.

Generally, when B augments A, the elements in the
required part of B can be bound to the elements in the
required and provided parts of A. This is called regu-
lar composition binding and is illustrated on the left
side of Fig. 1. For instance, for Overflow/Monitoring, the
required elements of Overflow include the numerical
variables or methods to be treated for overflow. These
can be bound to the elements of the aspect for Moni-
toring, including the new counters it provides, and the

numerical variables which it may use from the underly-
ing system to which it is applied. The required part of
the composite aspect consists of the required part of A
and unbound elements of the required part of B. The
elements provided by B using the bound elements (e.g.,
methods inside bound classes), must be added to the
corresponding elements in A. The unbound elements of
B are added to A as such.

As defined above, a required element of an aspect can
serve as an abstraction of a complex structure provided
by some other aspect. In this case, the simple element is
bound to the complex structure when the corresponding
aspects are composed.

Whether bound or not, a provided element is an ele-
ment in its own right, not necessarily a generic entity
(for instance, a generic class that should be instantiated).
However, from the binding point of view, required ele-
ments can be seen to serve the role of placeholders.

2.2.3 Replacement and unification binding

To provide greater flexibility and accommodate design
maintenance, in addition to the regular binding
described above, we allow a special type of binding
among the elements provided by the aspects in B/A.
An element a provided by A can be replaced by ele-
ments b1, .., bn provided by B, if it is shown that the
properties of A (presumably from its specification) that
need to be preserved are indeed preserved. Note that
this can also include replacing a single relation (e.g., an
arrow representing a transition) by a substructure (e.g.,
an encoding algorithm). Using the binding to replace a
provided element with a structure consisting of several
elements corresponds to a sort of refinement. This is
illustrated in the middle part of Fig. 1.

When an element name appears both in A and in B,
or renaming is used to make previously distinct names
identical, they are unified by the replacement binding.
This is illustrated on the right side of Fig. 1. Renaming
can also be used to prevent unifying elements that in A
and B just happen to have the same name but are unre-
lated. Note that unification is simply a particular form
of replacement, and is merely syntactic sugar added for
convenience.

2.3 Concern architecture

In concern architectures the aspects are used as building
blocks. Each concern is addressed in a modular way by
a collection of aspects, partially ordered by the depend
relation. As already mentioned, a binding between ele-
ments of two aspects indicates a potential dependency
between the aspects. In fact, as was seen in the Overflow/
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Fig. 1 Binding mechanisms illustrated

Monitoring example, if the aspects use the bound var-
iable in complementary ways, there may not be a real
conflict. However, here we conservatively define aspects
as dependent if they cannot be shown independent. In
addition, there might be some other reasons for a depen-
dency. A more detailed analysis of possible restrictions
on orderings can be found in [29].

To deal with a concern, the aspects within it can either
be applied to a given underlying system one after the
other in any order that satisfies the dependencies, or the
aspects can be combined first among themselves into a
complex aspect, that in turn is applied to an underlying
system. Note that an aspect without any required ele-
ments is simply a regular design. Thus, if desired, any
underlying system design can be viewed as an aspect,
supporting the symmetric view that everything is an
aspect. On the other hand, if a clear distinction between
classes and aspects is natural for design and implemen-
tation, the concern architecture can be seen as a layer of
aspects to be added to an existing object design.

Consider our earlier example with security and over-
flow concerns. In the absence of other concerns, the
architecture could contain only three aspects: an aspect
C with the parts addressing both concerns, and two oth-
ers, S, with elements addressing exclusively security, and
O, addressing overflow. The situation is illustrated in
Fig. 2. For instance, if there is a common class with
a method addressing security and another addressing
overflow, the class itself would be provided in C and
the methods addressing security and overflow in S and
O, respectively. In the required parts of S and O there
would be a class corresponding to the one provided in

C

OS
<<aspect>> <<aspect>>

<<concern>>
Security

<<concern>>
Overflow

<<aspect>>

Fig. 2 Concern architecture

C. Other elements addressing both concerns would be
provided in C.

By treating the overlapping parts of the different
concerns explicitly in the aspects common to them, it
becomes easier to reason about the effects on one aspect
caused by the changes in some other aspect of the same
system. In the example, the treatment of the security and
overflow concerns correspond to the collections {C, S}
and {C, O}, respectively.

The only restriction on the order in which the aspects
are composed are the dependencies between them. In
the example, the classes in the required parts of S and
O must be bound to the one in the provided part of C.
A design addressing both concerns is obtained by com-
posing the aspects in either order, S/O/C or O/S/C.

2.4 Aspects in the software development process

Although we believe that there is an optimal concern
architecture for each system so that the common parts
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of the different aspects are addressed explicitly and
only once, it should be acknowledged that finding one
may not be the first goal when developing the system
from scratch. In fact, this is a reason for allowing uni-
fication binding, defined above, between elements in
composition.

In iterative software processes, which have replaced
traditional waterfall models, some aspects are designed
incrementally from scratch while others involve reus-
ing archived ones from previous projects. During early
iterations some aspects treating different concerns may
be overlapping in the sense that they provide common
elements. However, in the course of the iteration, the
common elements could be identified and moved into
aspects shared by the concerns. The (changed) origi-
nal aspects would then depend on the new aspects and
require the moved elements. Naturally, whenever a new
aspect is added to the system the parts of it provided
by some existing aspects should be identified and the
architecture remodularized accordingly.

Concerning the maintenance phase, if each aspect
describes only a small detail of the system we could
compose a collection of aspects to match whatever con-
cern arose whenever needed. In this case the concern
architecture would define a space for aspects created on
demand by a remodularization.

2.5 Relations to software architecture description

In recent years the importance of multiple, concurrent
“views” of software design and architecture has been
recognized [6]. Various stakeholders at different stages
of the software life cycle need to view the system from
different perspectives. UML as well as the IEEE recom-
mended practice for architectural descriptions (IEEE-
Std-1471 [36]), documenting current architectural
practices and research, are based on this paradigm.

In software architecture, concerns from the require-
ments stage are treated as first-class entities used to
drive the conceptualization of an architecture. Concerns
are first identified from the system stakeholders. These
concerns form the basis for selecting architectural view-
points with which to model the systems architecture. A
viewpoint specifies the types of elements and relation-
ships which can be used to describe a software archi-
tecture from a particular perspective. Each concern is
allocated to one or more viewpoints and the resulting
views address those concerns.

In our viewpoint, the concerns to be treated by aspects
are considered. The concern architecture model can be
seen as an aspect analysis viewpoint for analyzing the
organization, overlap, and dependencies among aspects.

Obviously, it is not suggested to replace any previ-
ously existing viewpoints. In particular, it is valuable
sometimes to view all effects of a method call, or of a
class with the aspects and concerns woven in. Such slices
avoid the problem of scattering parts of the effect of a
system action that aspects can create while solving other
scattering and tangling problems. If the organization of
the aspects were our only viewpoint, the system design
could also unnecessarily reflect the history of application
of aspects, even when this is irrelevant to the present
design.

2.6 Instantiation

Because the model described above is language inde-
pendent, it has to be instantiated for some design lan-
guage before it can be applied. More specifically, in order
to support the model, the following well-formedness
definition should hold for any design language L that
defines well-formedness rules for artifacts given in that
language:

Definition 1 (Well-formedness of an aspect) An aspect
is well formed if and only if the corresponding arti-
fact in language L obtained by ignoring the required/
provided/hidden tags is well formed.

The definition implies that any ill-formed artifact in
a particular language is also an ill-formed aspect. By
basing the well-formedness definition for aspects on the
well-formedness definition for the artifacts in the partic-
ular language, existing techniques and tools for checking
artifacts in the language can be exploited.

Because composing two well-formed aspects does not
necessarily result in a well-formed composite aspect, the
following definition for composability of two aspects is
given:

Definition 2 (Composability) A well-formed aspect B
can augment another well-formed aspect A with given
bindings if and only if the resulting composite aspect B/A
is well formed.

Additionally, rules should be given to ensure that the
binding preserves the structure of superimposed ele-
ments (similarly to [28]). For example, if a class C is
bound to another class E, a method in C (either provided
or required) can either be left unbound or be bound only
to a method in E. Similarly, rules for conflict resolution
could be given, for instance in the case where the base
language does not support multiple inheritance. Such
rules could be used to compose well-formed aspects that
otherwise would not result in a well-formed composite
aspect.
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Obtaining greater automation in applying aspects
often requires restricting their generality. For instance,
the DisCo method [18,34] can be seen as an instance of
the model. The composition operation, which is defined
somewhat differently than here, is fully automatic. How-
ever, a layer, which corresponds to an aspect, can contain
assignments only to variables introduced in the same
layer, which limits incremental development of an as-
pect. The Open Module extension to OPM/Web seen in
[28] also has elements of aspects.

3 Instantiation for UML

In the sequel, an instantiation of the concern architec-
ture model for UML is sketched in the form of a UML
profile. Profiles are UML’s built-in extension mechanism
consisting of stereotypes, tag definitions, and constraints.
Compared to direct extension to the UML metamodel
(for instance in [4]), profiles should preserve the integ-
rity of the UML semantics by construction, and provide
better interoperability between different extensions.1

Among other things, the instantiation introduces new
syntactic elements to UML diagrams that are called an
aspect and a concern. For brevity, we refer to the col-
lection of aspects treating a concern simply as a con-
cern, ignoring the underlying requirements that actually
define the concern.

3.1 Views consisting of aspects and concerns

The fundamental decisions concerning a instantiation
for UML are how to represent individual aspects (includ-
ing how to denote provided, hidden, and required ele-
ments), how to represent collections of aspects treating
concerns, and how to represent aspect and concern inter-
relationships. Following lines similar to [4], for individ-
ual aspects we introduce a new stereotype “�aspect�”
of package, but with a new more general format for all
UML diagram types rather than emphasizing the (most
common) class diagrams. Packages are a general group-
ing mechanism and thus allow aspects to contain all dia-
gram types. However, nesting of aspects should not be
necessary because aspects can contain regular packages
which can be nested.

1 Our instantiation conforms to the UML standard version 1.5
[25]. In the forthcoming UML 2.0, the extension mechanism has
been defined more formally. However, from the point of view of
the instantiation, the changes should be merely syntactic. UML
2.0 also introduces new diagram types that should be addressed by
the profile when defining a full instantiation, but this lies outside
the scope of this paper.

A concern treated by a collection of aspects is mod-
eled as a stereotyped package diagram, combining
aspects. Unlike aspects, concerns can be nested. Instead
of using the standard icon for packages, concerns are
depicted as irregularly shaped encircling lines surround-
ing the corresponding collections of aspects. The depen-
dency between aspects is denoted by the standard UML
dependency relationship.

The interrelationships among aspects and concerns
are captured by expressing multiple, overlapping con-
cerns in the new concern architecture diagram. A dia-
gram for concerns was originally proposed in [14],
extending UML’s component diagrams. By contrast, in
our approach diagrams consist of aspects, dependencies
between them, and collections of them matching con-
cerns. For example, the concern architecture depicted in
Fig. 2 illustrates the overlapping concerns in the case of
the example system in Sect. 2.3. Furthermore, because
of the overlapping, concerns use aspects but do not own
them as model elements. Instead, the contents of a con-
cern are always imported, meaning that there should be
a repository common to all concerns that actually owns
the contents.

Because for every concern name, there is always some
aspect (usually composite) which treats the concern, we
allow the clients or suppliers of dependencies in a con-
cern architecture diagram to be concerns rather than
aspects. So, if a client of a dependency is a concern,
there is at least one aspect included in the concern
that could be used as a client instead. Similar consid-
erations hold for the supplier concerns. To avoid clut-
tering, the overall concern architecture of a non-trivial
system is illustrated using several diagrams, which dis-
play only selected subsets of the aspects, dependencies
and concerns.

Composition of aspects corresponds to “zooming-
out” in a concern architecture diagram. When two
aspects are composed they and any dependency between
them are replaced by a composite aspect. A previous
dependency from a non-component client to an aspect
that is part of a composition is replaced by a dependency
from the original client to the composite aspect, and sim-
ilarly for a dependency from a component aspect to a
non-component supplier.

3.2 Sequential structures

When composing sequential structures, e.g., sequence
diagrams, the component sequences are considered to
be partial orderings that the composite sequence must
satisfy. Special care is needed to ensure that the result
of composition is a well-formed structure and that the
selected interleavings are consistent with the rest of the



M. Katara, S. Katz

Table 1 Stereotype definitions for aspects and concerns

Stereotype Base class Description Constraints Icon

�aspect� Package Aspect describes Aspects cannot be nested Package
a potentially cross-cutting
augmentation

�concern� Package Concern encapsulates Concern can only include Encircling lines
the aspects addressing imported concerns, aspects and surrounding the
some conceptual matter dependency relationships imported aspects
of interest between aspects

Table 2 Stereotypes for bindings between elements of aspects in composition

Stereotype Base class Parent Description Constraints Icon

Composition Dependency none Binds Can only be used Dependency
binding elements between elements of aspects

between two
aspects

Regular Dependency Composition In B/A, binds Client must be a required Dependency
composition binding an element of element of B
binding B to an
�bind� element in A
Replacement Dependency Composition In B/A, binds Both client and supplier must be Dependency
composition binding an element of provided elements
binding B to an
�replace� element in A
Unification Dependency Replacement Binds elements See parent Dependency
composition composition representing
binding binding the same concept
�unify�

model. As already mentioned, existing analysis
techniques can be utilized in detecting such cases. For
example, in describing procedural flow of control
between a non-recursive call/return pair, the caller is
suspended after a call until control returns to it. In prac-
tice, this affects what orderings are possible in combin-
ing sequence diagrams, so that a suspended caller cannot
receive a new call until the previous call has returned.
Also, for instance, it is easy to produce sequences of
“become flows” that are semantically inconsistent.

3.3 Stereotypes and tag definitions

As discussed above, aspects and concerns are modeled
using stereotyped packages. The actual stereotype defi-
nitions are listed in Table 1.

Similarly, the binding between elements of aspects
in composition utilizes stereotypes of the UML depen-
dency relationship, as defined in Table 2. To accommo-
date the three kinds of bindings described in Sect. 2.2.2
and 2.2.3, we define a common parent stereotype “com-
position binding” of the dependency relationship. The
stereotype is constrained so that such a dependency
can only be used between elements inside aspects. The

children of the parent stereotype are regular composi-
tion binding denoted by “�bind�” and replacement
composition binding denoted by “�replace�”. Fur-
thermore, replacement is used as a parent stereotype for
unification composition binding. If one element needs to
be bound to a set of elements, this is modeled as a set
of dependency arrows with a common client or supplier
element.

Elements required by an aspect are distinguished from
provided ones by a tag “{required}”. All elements not
tagged as “{required}”, are assumed to be provided.
However, a tag “{provided}” can be attached to a model
element for legibility.

Additionally, a tag “{hidden}” is used for those pro-
vided elements that should not be included in the
aspect’s interface. To avoid cluttering, hiding an element
implicitly hides also other elements not meaningful to
remain in the interface, as discussed in Sect. 2.2.1.

Previously, we have used different colors to indicate
required and provided elements [20]. Tags can only be
associated with model elements so, multiplicities, for
instance, cannot be marked as required. However, com-
pared to colors, tags conform to the standard notation
of UML and produce better results in black and white
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printing. In practice, a CASE tool recognizing the tags
can be used to highlight the corresponding model ele-
ments using colors.

3.4 Well-formedness rules

In addition to the constraints given in English prose in
conjunction with the stereotype definitions, some of the
most important well-formedness rules are stated for-
mally below in OCL, a constraint language defined by
the UML standard:

Concerns can only include aspects, concerns, and their dependencies:
context Package inv:

self.isStereotyped(’concern’) implies
self.contents->forAll(c |

(c.oclIsTypeOf(Package) and (c.isStereotyped(’aspect’) or
c.isStereotyped(’concern’))) or

c.oclIsTypeOf(’Dependency’))

Concerns do not own elements:
context Package inv:

self.isStereotyped(’concern’) implies
self.allImportedElements = self.contents

The client of a regular binding dependency must be a required element:
context Dependency inv:

self.isStereotyped(’bind’) implies
self.client.taggedValue->exists( t | t.type.name = ’required’)

Replacement binding must not involve required elements:
context Dependency inv:
self.isStereotyped(’replace’) implies not
(self.supplier.taggedValue->exists( t | t.type.name = ’required’) or

self.client.taggedValue->exists( t | t.type.name = ’required’))

4 Example

As an example of a concern architecture and the UML
instantiation, a simplified design of a digital sound
recorder is presented. The example has been adapted
from [27], where the design of the system is shown in
standard UML. The digital sound recorder is a small
embedded device, a dictating machine, with a digital
memory capable of recording, playing, and deleting mes-
sages. The device can also be used as an alarm clock.
The hardware, described and encapsulated using wrap-
per classes, consists of six standard components: micro-
phone, speaker, display, simple keyboard, timer, and
battery.

The modularity of the original design is based on sub-
systems, where scattering and tangling of important con-
cerns is evident. Thus we will decompose this system
into aspects grouped into concerns. To show the ideas,

in addition to concern architecture diagrams, we con-
centrate on class diagrams to describe structural exten-
sions or changes, sequence diagrams for inter-object
dynamic relations, and statecharts for internal object
behavior.

As discussed above, we could view the system as
composed of aspects only. However, we have chosen
to model some parts in a regular object-oriented design
to illustrate the flexibility of the approach. There are
many ways to decompose the system and it is basically a

design decision to choose which entities are modeled as
aspects and which as objects. Moreover, some elements
inside aspects could be placed in other aspects instead
and extra required elements could be added to increase
context sensitivity of an aspect.

4.1 Basic features

Considering the system bottom-up, each of the hard-
ware components is modeled as a black box, i.e., as a
class denoted as required, which is a wrapper for the
hardware component, and a statechart (also denoted
required) specifying its minimal expected behavior. In
this way, the new design can facilitate hardware/
software codesign by using aspects. The aspects we con-
sider do not need further design of these components,
which are naturally treated as classes. In a pure
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<<aspect>>
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<<aspect>>

<<aspect>>

GUI
<<aspect>>

<<concern>>

Recording
<<concern>>

Playing
<<concern>>

Fig. 3 Concern architecture: main features

symmetric approach they would be refined as aspects
themselves.

Similarly to hardware components, some fundamen-
tal classes can be identified describing the low-level
software, e.g., UserInterface, AudioController and Au-
dioBlock. Each of these singleton classes is denoted as
required.

Turning to a top-down analysis, the concerns of the
system, from the requirements, can be divided into
Recording, Playing, and Alarmclock functionality. We
consider these concerns as collections of aspects, espe-
cially since they cut across several of the hardware or
low-level software classes already identified. In Fig. 3,
one possible concern architecture diagram consisting of
the main features is depicted. In the diagram, the sim-
plest aspects have been left out. The concerns are all
overlapping because they all include the GUI
aspect. Also, the Memory and Output aspects are both
shared by two different concerns. The Recording and
Playing concerns both include one aspect exclusive to
the concern (Record and Play, respectively), while the
Alarmclock concern includes two such aspects (Clock
and Alarm).

Another kind of modularization in an asymmetric
style would have been achieved by treating Recording,
Playing, and Clock as basic functionality designed using
plain object-orientation, with the needed parts of the
GUI, Memory, and Output built into the appropriate
classes. Then Alarm could have been seen as the only
aspect cutting across many classes of the base design.

Now the details of the component aspects are con-
sidered. The main functionality of the graphical user
interface is captured in one aspect, called GUI. The class
diagram of the aspect in Fig. 4 requires a class UserInter-
face (which could be empty), a class Keyboard contain-
ing a public operation getLastKey and a class Display

containing public operations on and off.2 The aspect
provides six new classes and several operations and rela-
tions. For instance, a public setUserMode operation is
added to the UserInterface class. Additionally, behav-
ioral diagrams could be given specifying the behavior of
instances of both required and provided classes.

The common parts treating recording and playing are
captured by a Memory aspect describing how messages
are represented in the memory. The Memory aspect
illustrated in Fig. 5 requires the AudioController class,
and introduces three classes and four relations.

The Record aspect, in Fig. 6, provides the AudioInput
class and adds new operations to the AudioController,
Message (from the Memory aspect), and AudioBlock
classes which are needed to implement the recording
feature. The required association between the Audio-
Controller and Message classes serves as an abstrac-
tion of a more complex relationship provided in the
Memory aspect. The aspect provides new relations be-
tween classes and adds a new state Record-on (as well
as relevant transitions) to the statechart of class Audio-
Controller. Furthermore, the aspect introduces a new
subclass RecordingUserMode for the UserMode class
introduced in the GUI aspect. The sequence diagram
included in the aspect illustrates recording of a message.

The Output aspect in Fig. 7 captures the common
parts of playing and alarm clock features related to out-
putting sound. The aspect introduces the AudioOutput
and Synthesizer classes.

The Play aspect, in Fig. 8, adds new operations to
the AudioController, Message, and AudioBlock classes

2 Technically, because visibility is not a model element, we can-
not tag it as required in UML 1.5. However, in the composition
of aspects, a regular binding between operations having different
visibility would result in an ill-formed composite aspect.
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Fig. 4 GUI aspect
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Fig. 5 Memory aspect

which are needed to implement the feature. It also pro-
vides a new state Play-on in the statechart of the Audio-
Controller class. Furthermore, the aspect introduces a
new subclass PlayingUserMode for the class UserMode
provided by the GUI aspect. Finally, the sequence dia-
gram illustrates playing a message.

We have divided the design of the Alarmclock con-
cern into two aspects, in addition to the GUI and the
Output. The Clock aspect describes the clock using the
hardware timer. The aspect is depicted in Fig. 9. It
provides Time and Date classes to encapsulate the rep-
resentation of time. Additionally, two new subclasses
SettingTimeUserMode and SettingDateUserMode of
UserMode are introduced for inputting the correspond-
ing information.

The Alarm aspect (Fig. 10) requires the Time and
Date classes introduced in the Clock aspect. Among

other things, it provides the AlarmClock class with oper-
ations to set the alarm and to query the time, date, and
state of the alarm.

4.2 Feature interactions

After depicting the aspects comprising the prime con-
cerns of the system, the concerns and aspects defining
the interactions of the concerns are given next. Because
of the physical characteristics of the device, playing and
recording features cannot interfere with each other.
However, the alarm clock feature interferes with both
of them. It must be decided what should happen if the
alarm occurs while the user is playing or recording a
message.

Each of the problematic feature combinations is
resolved in a concern treated by a single new aspect
in addition to the interacting concerns. This may often
prove to be a valuable design strategy. In the case of play-
ing and sounding the alarm, the alarm is given priority.
This is indicated in the statechart of the AudioController
class by adding a transition from state Play-on to state
Alarm-on, triggered by a playAlarm event. However, we
do not add a transition in the opposite direction, which
means that the system does not automatically resume
playing after an alarm. The aspect, depicted in Fig. 11,
includes a sequence diagram illustrating the scenario
when the alarm occurs while playing a message, while
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Fig. 6 Record aspect

a corresponding concern architecture diagram is shown
in Fig. 12.

Similarly, an aspect (Fig. 13) and a concern (Fig. 14)
are given to specify what should happen if the alarm
occurs while recording a message. The situation here
is somewhat different from alarm/playing interference.
Because there are separate sound channels for
inputting and outputting audio, it might be feasible to
just let the alarm sound while recording. However, to

ensure that a recording is not ruined because of the
alarm, we have decided only to display the alarm indi-
cator on the display and not to output sound. When
the user stops recording, the AudioController goes to
state Alarm-on and starts to play the alarm sound. (To
stop the alarm, the user has to push the stop button
again.) This behavior is modeled by adding two sub-
states to the statechart of AudioController. Substate
AlarmInRecord-on indicates displaying the alarm
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indicator. If the alarm does not occur while record-
ing, the stop event (of recording) triggers the transi-
tion to the Idle state (where the transition now has the
new guard condition “IN Normal”, denoted explicitly
as provided). However, if the alarm has been activated,
the stop event of recording (with the guard condition

“IN AlarmInRecord-on”) triggers the transition to the
Alarm-on state.

The design of the complete system is obtained by com-
posing all the aspects addressing the concerns.
Figure 15 illustrates the composed AudioController
statechart, and can be seen as part of a different
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Fig. 9 Clock aspect
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Fig. 12 Alarm while playing
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viewpoint, described in regular UML. It contains all the
states, transitions, triggering events, and guard condi-
tions added in various aspects. If some element has been
provided by more than one aspect, unification binding
is used in their composition. This applies, for instance,
to the stop operation, corresponding to the stop event,
in class AudioController. Alternatively, the operation
could have been introduced in a separate aspect and
included in the required parts of the aspects defining re-
cordMessage, playMessage, and playAlarm operations.

Additional observations about the example will be
given in the conclusions (Sect. 6).

5 Related work

Recent years have witnessed emergence of a number
of new approaches to aspect-oriented design and archi-
tecture. Below, we relate our work to the most relevant
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and closely matching ones. Further analysis can be found
from extensive surveys in [2,7].

The Hyperspace approach [32,26] has a similar goal
of aspect orientation at a higher level of abstraction. In
the Hyperspace conceptual model (where aspects cor-
respond to hyperslices), slices can be composed (recur-
sively) to hypermodules which contain composition
rules for the component slices. Hyper/J [26] is an instan-
tiation of the approach in the Java language. However,
in contrast to our approach, that work does not define an
architecture diagram that clarifies relationships among
hyperslices in terms of the concerns treated, and does
not clearly separate assumptions from provided
elements.

The concern architecture model is based on ideas of
superimposition [3,8,21] in distributed systems, which
has a close connection with aspect orientation [22,29].
In particular, [29] describes somewhat related ideas of
dependency and interference in the context of a pro-
gramming language and proofs of properties. Superim-
position, like other methodologies based on stepwise
refinement, provides support for traceability of cross-
cutting concerns across the intermediate design descrip-
tions obtained by applying the steps (aspects).

In addition to DisCo and OPM/Web, the main aspect-
oriented development approach with explicitly defined
aspect relationships is Aspect-Oriented Component
Engineering (AOCE) [9,10] which supports aspect ori-
entation throughout the life-cycle of software compo-
nents. Aspects are used to describe systemic properties,
like distribution, security and persistence, that compo-
nents provide or require from other components [10].
The provided and required parts in our approach cor-
respond to the provided/required services method in
AOCE and grouping of aspects provided by AOCE can
be used to capture concerns. However, instead of utiliz-
ing these techniques only for components, our approach
defines a more generally applicable model which can be
instantiated for different domains, and provides support
for concern architectures.

Just as Theme [4,5] can be seen as an instance of the
Hyperspace model, we have outlined an instantiation
of our conceptual model for UML. Compared to tem-
plate parameters used in Theme, the required elements
approach is more expressive for describing the context
in which aspects are applicable. Also, we do not de-
fine “composition patterns” as separate entities. Instead,
behavioral inter-aspect relationships in composition can
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be captured as aspects and new concerns in the design, as
was demonstrated in the example. Furthermore, Theme
does not provide architectural support, other than that
of standard UML, for describing interactions and possi-
ble conflicts or cooperation among aspects.

Kandé [19] suggests a concern-oriented view of soft-
ware architecture using multidimensional artifacts and
encapsulation of concerns. Towards this end, an archi-
tectural framework called Perspectival concern-spaces
(PCS) is defined. That framework can also be seen as a
kind of instantiation of the Hyperspace model in UML,
focusing on architecture and conceptual issues.
Additionally, the approach conforms to the IEEE
recommended practice for architectural descriptions
(IEEE-Std-1471 [36]). That work attempts to cover a
much wider scope of architecture and variety of
viewpoints than our approach which elaborates one
particular viewpoint built around a general purpose
composition operation for aspects, based on superim-
position. However, the applicability of our approach
would similarly benefit from explicit compliance with
IEEE-Std-1471, which remains as future work.

6 Conclusions

The concern architecture model provides an aspect-ori-
ented perspective on software design. The model can
also be seen as an aspect analysis viewpoint for ana-
lyzing impacts of changes or trade-offs in concerns to
be addressed by aspects. Other viewpoints can be used
to show all changes that will occur when a method is
called, or everything within a class, with functionality
added by aspects implanted in the various UML dia-
grams. This overcomes the common objection to aspect
orientation, that it becomes difficult to track all changes
from the various aspects. When, for example, all actions
taken in reaction to a method call are of interest, aspects
themselves cause scattering. But by changing the point
of view to a relevant slice with all the aspects incorpo-
rated, the scattering is eliminated. Moreover, as demon-
strated with the example in the UML context, aspects
can contain several UML diagram types thus modular-
izing multiple views.

Using the concern architecture view it is easy to trace
requirements in the design, because the collection of
aspects addressing each concern is made visible, as was
shown in the example. Moreover, to support reusabil-
ity, the required part can express the context in which
the aspect is applicable. For instance, in a symmetric
approach, the GUI and Memory aspects could be easily
reused in a totally different design.

To minimize change propagation, the overlapping
parts of the different cross-cutting concerns are stated
explicitly. Thus, if a cross-cutting concern needs to be
changed, disjoint concerns should be unaffected. More-
over, the effects on the overlapping concerns can be
examined using the concern architecture diagram. If the
changes are made to an aspect that is not shared between
concerns, for instance the Play aspect in the example, it
reduces to the case with disjoint concerns. However, if a
change is made to a shared aspect, for instance the GUI
aspect in the example, the effects on the concerns shar-
ing the aspect must be dealt with. In [1], change man-
agement utilizing a similar architecture in the DisCo
setting is discussed in depth. Moreover, combined with
patterns, the concern architecture approach has been
used to document maintenance activities in [12].

“Mix-and-match” of features to suit different mem-
bers of a software family is achieved by composing
different collections of the aspects constituting the fam-
ily (similarly to [24]). For instance, a lower-end version
of the digital sound recorder, not including the alarm
clock feature, can be obtained by excluding the Alarm-
clock concern and any aspects unique to it (here, the
Alarm and Clock aspects) from the composition of the
aspects. Alternatively, a high-end product containing
hierarchical memory supporting compressed messages
could be modeled by replacing the Memory aspect with
one describing the new design and conforming to the
interface defined by the original aspect.

Furthermore, a concern architecture model enhances
parallel development. It can be used to coordinate teams
working on different concerns. Only the common
aspects of overlapping concerns need to be decided
jointly by the teams, and thus those aspects effectively
define an interface between the concerns. As with con-
ventional interfaces, it must be anticipated that some
iteration is needed before the common aspects are
established.

The aspects at the design level can and should be
reflected in the programs, by using programming level
constructs for aspects. Otherwise, most of the power of
aspect orientation is lost. Towards this end, we envi-
sion mapping our design aspects to AspectJ (possibly
with extensions such as superimposition steps of SuperJ
[30]), or to modules of MixJuice [17].

Concerning tool support, the MADE tool [11,13]
combines our approach with patterns to enhance the
separation of concerns in pattern-based development.
Because patterns are inherently cross-cutting, tech-
niques and tools for instantiating them can be reused for
aspects as well. In composition, the required elements
are seen as pattern roles that can be bound to elements
in a base design semi-automatically. The MADE tool
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has been implemented on the Eclipse platform [35], and
Rational Rose [16] is used for viewing composed UML
diagrams.

In summary, aspect-oriented software development
provides new possibilities for composing and decompos-
ing software artifacts. However, while providing solu-
tions for some fundamental issues concerning
modularity, new types of problems are introduced, such
as expressing aspects as design artifacts, detecting and
describing dependencies among aspects, and treating
overlapping concerns. In this paper we have addressed
these problems at the design level through the concern
architecture model. The applicability of the approach
was illustrated with an example utilizing an instantia-
tion outlined for UML.
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Architectures and Component Technology. Kluwer, Dordr-
echt (2001)

27. Paltor, I.P., Lilius, J.: Digital sound recorder: a case study on
designing embedded systems using the UML notation. Tech-
nical Report 234, TUCS - Turku Centre for Computer Science.
Available at http://www.tucs.fi/ (1999)

28. Reinhartz-Berger, I., Dori, D., Katz, S.: Open reuse of com-
ponent designs in OPM/Web. In: Proceedings of COMPSAC
2002, pp. 19–24. IEEE Computer Society Press, Oxford (2002)

29. Sihman, M., Katz, S. A calculus of superimpositions for
distributed systems. In: Proceedings of 1st International



A concern architecture view for aspect-oriented software design

Conference on Aspect-Oriented Software Development,
pp. 28–40. ACM Press, Enschede, The Netherlands (2002)

30. Sihman, M., Katz, S.: Superimpositions and aspect-oriented
programming. Comput. J. 46(5), 529–541 (2003)

31. Sutton, S.M. Jr, Tarr, P.: Aspect-oriented design needs con-
cern modeling. Position paper in AOSD 2002 workshop on
aspect-oriented design, Enschede, The Netherlands (2002)

32. Tarr, P., Ossher, H., Harrison, W., M. Sutton, Jr, S. N degrees
of separation: Multi-dimensional separation of concerns. In:
Proceedings of 21st International Conference on Software
Engineering, pp. 107–119. ACM Press, Los Angeles (1999)

33. The AspectJ Team. AspectJ WWW site: Available at http://
www.eclipse.org/aspectj

34. The DisCo Project. DisCo WWW site: Available at http://
disco.cs.tut.fi

35. The Eclipse Consortium. Eclipse WWW site: At http://
www.eclipse.org on the World Wide Web

36. The Institute of Electrical and Electronics Engineers (IEEE):
IEEE recommended practice for architectural description of
software-intensive systems, IEEE-Std-1471-2000 (2000)

Author’s biography

Mika Katara obtained M.Sc.
(Eng.) and Doctor of Tech-
nology degrees from Tampere
University of Technology
(TUT), Finland in 1996 and
2001. In 2002 he visited the
Computer Science Depart-
ment of the Technion – Israel
Institute of Technology as a
Postdoctoral Fellow. He cur-
rently holds a Senior Re-
searcher position at TUT
where he is in charge of
the software testing training,
heads an industrial research
project on model-based GUI

testing, and organizes testing seminars for students and the local
industry. Katara’s current research interests include model-based
testing and aspect-oriented software development.

Shmuel Katz received a
B.A. from UCLA, and an
M.Sc. and Ph.D. from the
Weizmann Institute of Sci-
ence (1976). He has been on
the faculty of the Computer
Science Department of the
Technion – Israel Institute
of Technology since 1981.
He has written over 70
journal and conference pa-
pers on program verification,
specification, and methodol-
ogy. His research interests
include aspect-oriented pro-
gramming and software

development, program verification, partial order reductions in
verification, and translations among verification and modeling
tools. He is the head of the Formal Methods Lab of the AOSD-
Europe Network of Excellence, coordinating work on formal
methods and semantics for aspects.


	A concern architecture view for aspect-orientedsoftware design
	Abstract 
	Introduction
	Principles of aspect modeling
	Aspects and overlapping
	Composing aspects
	Required, provided, and hidden parts
	Regular binding
	Replacement and unification binding
	Concern architecture
	Aspects in the software development process
	Relations to software architecture description
	Instantiation
	Instantiation for UML
	Views consisting of aspects and concerns
	Sequential structures
	Stereotypes and tag definitions
	Well-formedness rules
	Example
	Basic features
	Feature interactions
	Related work
	Conclusions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


