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Abstract We describe an approach to support UML-
based development of embedded systems by formal
techniques. A subset of UML is extended with timing
annotations and given a formal semantics. UML models
are translated, via XMI, to the input format of formal
tools, to allow timed and non-timed model checking and
interactive theorem proving. Moreover, the Play-Engine
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tool is used to execute and analyze requirements by
means of live sequence charts. We apply the approach to
a part of an industrial case study, the MARS system, and
report about the experiences, results and conclusions.
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1 Introduction

We report about our results and experiences on com-
bining a number of formal techniques with UML-based
development. This work has been carried out in the con-
text of the EU project OMEGA (Correct Development
of Real-Time Embedded systems in UML). A general
aim of this project is to improve the quality of software
for embedded systems by the use of formal techniques.

Embedded systems typically have an intensive real-
time interaction with their environment. Although UML
[3] has not been designed originally for such systems, one
can observe an increasing use of object-oriented tech-
niques and UML in this domain. There exists a num-
ber of specialized methods [43,11], a UML profile for
Schedulability, Performance and Time [35] and several
dedicated CASE tools (e.g., Artisan’s Real-time Stu-
dio, Rhapsody of I-Logix, Rational Rose RealTime, and
Telelogic TAU).

Embedded applications typically have strong require-
ments on the correctness of the software. This, however,
is not easy to achieve, since these applications are typi-
cally highly innovative, have intricate assumptions about
the behavior of their environment, and are developed
quite incrementally. Hence, it is important to detect
errors as soon as possible during the development pro-
cess. In this paper, we address the use of formal methods
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to improve the quality of UML-based development of
embedded systems.

There exists already a number of formal techniques
that have been applied to UML [41,30]. Early
approaches to formal verification based on model check-
ing UML models actually only consider single
sub-languages of UML, like statecharts [29,26], and they
effectively verify only a single object in isolation. The
vUML tool [38] provides a predefined set of checks of
invariants, e.g., absence of deadlocks, queue overflows,
and unreachability of invalid states. The specification
language of [44] is the temporal logic of the underlying
model checker, hence far from the level of UML. The
work on model checking of xUML [46] is closest to the
UVE approach described in this paper. A rich set of
UML language concepts and features, like parallelism,
inheritance, object creation/destruction, etc. are sup-
ported by the xUML approach. But it only deals with
closed systems without taking a non-deterministic envi-
ronment into account. Moreover, the used requirement
specification language is restricted to a set of temporal
patterns and has no graphical representation.

Related to the IFx tool considered in this paper for
model checking real-time properties is the translation of
timed UML state machines [24] to Uppaal [28]. Relevant
is also the work in the context of the Fujaba real-time
tool suite for UML-based development on the integra-
tion of Uppaal [7]. To support interactive verification
of untimed UML models, a development environment
has been developed [45], based on the theorem prover
PVS [36]. A proposal for a general framework to inte-
grate tools for UML and formal methods can be found
in [32].

However, most techniques are not coupled to CASE
tools and are based on a very small subset of UML.
Often, it is difficult to express timing properties con-
veniently and at a sufficient level of abstraction, and
assumptions about the environment can usually be
expressed only by including the environment explic-
itly in the model, leading to a closed system. In the
OMEGA project we investigated how this situation can
be improved. We mention a few important points of the
OMEGA approach: a tight integration of formal tech-
niques in the development process, a sufficiently large
subset of UML which allows convenient modeling of
embedded systems, and the combination of techniques.

To be able to integrate formal techniques, we have
established a coupling with commercial UML-based
CASE tools by translating the standard XMI repre-
sentation of a UML model into the format of formal
tools, such as model checkers and theorem provers. In
this way, the formal tools can be applied to a UML
model that has been edited by means of any commercial

UML-based CASE tool which is able to generate XMI.
Although XMI is the XML standard for UML, unfor-
tunately, most current UML tools use slightly different
versions of XMI. In OMEGA we have concentrated on
the XMI versions of Rational Rose and Rhapsody of
I-Logix. The latter has been used for all experiments
described in this paper.

To obtain a coherent set of tools, without having
to deal immediately with the full UML language, we
have defined a convenient subset of UML, called the
OMEGA kernel language, which is close to the core
UML language described in [13]. Basically, this consists
of class diagrams for specifying the structure of the sys-
tem, including structural relationships like generaliza-
tion, association, and composition, and state machines to
describe the behavior of classes. Objects may communi-
cate by means of (asynchronous) signals and operations.

The language has been extended with suitable prim-
itives to express real-time behavior. Timing extensions
have been proposed, called the OMEGA real-time pro-
file for UML, based on the profile for Schedulability,
Time and Performance. Details can be found in [12].
The sequence diagrams of UML have been replaced by
LSCs [8] which are more expressive [25] and also have
been extended with primitives to express timing [19].
LSCs can be captured by the user by means of a sepa-
rate tool, the Play-Engine. Note that our work on UML
was mainly based on UML 1.4, since that was the stan-
dard during most of our project. Because we concentrate
on the core modeling capability of UML, the differences
with UML 2.0 [34] are not very relevant.

Clearly the coherence of this tool set also requires a
common semantic model. Within OMEGA, this led to
extensive discussions and decisions on semantic varia-
tion points and unclear issues in the definition of UML.
Our starting point was an operational semantics [10,9]
which was especially inspired by the execution mecha-
nism of Rhapsody. Whereas many formal methods
require flat state machines, this semantics also includes
hierarchy and orthogonality which is convenient for
modeling. This semantic model, based on labeled tran-
sition systems, turned out to be convenient for the inte-
gration of the commercial tool and model checking.

We reformulated the semantics to make it more suit-
able for interactive theorem proving. For instance, we
abstracted from the pending request table for operation
calls in [9] and used explicit synchronization between
caller and callee. Moreover, the semantics has been
defined in an incremental way, starting from a basic
non-timed semantics. This has been extended with a
continuous notion of time in an orthogonal way. Sim-
ilarly, threads of control have been added in a modular
way. More details can be found in [23], which clarifies a
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number of semantic questions and decisions, e.g., con-
cerning the passing of control and the dispatching of
signal events.

Another relevant aspect of the OMEGA approach is
the combination of various formal techniques, to obtain
flexible support with e.g., various specification styles,
different visualizations, the possibility to deal with both
closed and open systems—with assumptions about the
environment, and both automated checks and user
guided verification, depending on the properties to be
verified. By experimenting with various tools on indus-
trial examples, the aim is to derive guidelines about when
and how to use the formal techniques. In particular, we
consider the support of UML-based development by the
following four formal techniques:

– Live Sequence Charts (LSCs), to capture specifica-
tions, using the Play-Engine tool

– Model checking of functional properties by means
of the UVE tool

– Timed model checking, using the IFx tool
– Interactive verification supported by the PVS theo-

rem prover

More details about these techniques will be given in
Sect. 3.

The main aim of this paper is to describe the appli-
cation of the formal techniques to UML models of an
industrial case study, which has been provided by one of
the industrial partners of the OMEGA project. We pres-
ent the results of applying the first versions of the devel-
oped tools to the original model, leading to an interme-
diate conclusion about what had to be improved. Next
the application has been remodeled and we put more
emphasis on the combined application of the improved
tools.

In general, the emphasis of this paper is on global
results, experiences with the case studies, and general
conclusions. Hence, we will neither expose all features
of the techniques used, nor show the full functionality
of all tools. During the case study we have often used
preliminary versions of the tools, and the experiments
illustrate tool development within the OMEGA project.
Moreover, note that the aim is not to compare the tools,
which would also be difficult because they have different
goals and are rather complementary. Instead, the focus
is on the synergy of the approaches and the possibilities
to exploit the combination of the tools.

The rest of this paper is structured as follows. In Sec-
tion 2 we introduce the industrial case study, the UML
model of a part of it, and the properties to be verified for
this part. Section 3 contains a brief introduction to the
four formal techniques used, illustrated by their applica-

tion to the UML model of the case study. Next, in Sect. 4
we redesign the considered part of the case study, to
facilitate compositional techniques and abstraction, and
apply the OMEGA techniques to this new model. An
evaluation of the specification and verification experi-
ments is presented in Sect. 5. Finally, concluding remarks
can be found in Sect. 6.

2 The MARS system

We describe a selected part of the MARS system
(Medium Altitude Reconnaissance System) from the
NLR.1 This system has been used as a common real-time
embedded application within the OMEGA project.

The system controls the operation of a reconnais-
sance photo camera in an aircraft; ground survey pho-
tographs are taken by the camera during the flight. To
obtain high-resolution images, the MARS system coun-
teracts the image quality degradation caused by the for-
ward motion of the aircraft by creating a compensation
motion of the film during the film exposure, based on
the current aircraft altitude, ground speed, etc. The sys-
tem also performs health monitoring and alarm process-
ing functions. The Reconnaissance Control Unit (RCU)
is responsible for the three major categories of tasks:
camera and film exposure control, film annotation, and
system health monitoring and alarm processing.

In order to perform the camera and film-exposure
control functions the RCU acquires the current altitude
and velocity data from the avionics data bus of the air-
craft. Based on these values it computes the film Frame
Rate to be used and the value for the Forward Motion
Compensation (FMC) signal. The computed values are
sent to the trigger and exposure module via a serial
link. To perform the film annotation functions, the RCU
acquires the current navigation data (latitude, longitude
and heading) as well as the time-of-day value from the
avionics data bus of the aircraft. It formats the data and
sends it to the annotation module via the serial link.
Upon completion of each frame exposure, the camera
halts the film and issues an annotation request to the
annotation module. Upon reception of this request the
annotation module provides the current annotation data
to the camera to annotate the current frame. The anno-
tation cycle must be completed before the next frame
exposure begins.

The navigation and altitude data messages are pro-
vided by the corresponding subsystems of the aircraft.
These data sources are independent and not synchro-

1 National Aerospace Laboratory, the Netherlands, http://
www.nlr.nl.
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nized; they provide data with a period P of 25 ms and a
jitter J of ± 5 ms (i.e. data may arrive up to 5 ms earlier
or later). Data messages may occasionally be lost due to
transmission errors.

The system has hard timing constraints, such as
requirements on the age of data used for exposure con-
trol, on the data acquisition and on processing time
in order to accommodate the data rate of the avionics
data bus. The system is mission-critical as it is used for
medium altitude reconnaissance missions over poten-
tially hostile territories. Corrupted mission results will
involve unnecessary additional risks to both the air-
craft and the pilot in repeated attempts to execute the
mission.

2.1 UML model of part of the MARS system

Here we present only a small part of the complete sys-
tem, namely the data bus manager which is part of the
data acquisition subsystem of the MARS system; the
class diagram is given in Fig. 1. For simplicity, we often
refer to the DatabusManager as the MARS system. The
focus is on the classes ControllerMonitor and Message-
Receiver in an environment represented by the classes
DatabusController, altDataSource, and navDataSource.
The last two actors represent the data sources for alti-
tude and navigation data. The main class is the Mes-
sageReceiver which processes the incoming data. The
controller monitor periodically calls an operation of the
bus controller to obtain its status. In case of an error the

monitor will send the evControllerError signal to the
message receiver. The monitor sends the evControlle-
rOK signal to the receiver if the bus controller indicates
that the error situation is resolved.

For each class the behavior of its objects is defined
by means of a state machine and methods (program
text) for its so-called primitive operations. Non-primi-
tive operations of a class are defined by means of its state
machine (this is not used in the MARS case study).

The state machine of the class DataSource, is depicted
in Fig. 2. It expresses that, non-deterministically, either
data is sent, represented by primitive operation send-
Data, or no data is transmitted. The primitive operation
sendData is overridden by the subclasses altDataSource
and navDataSource to generate events evAltDataMsg
and evNavDataMsg, respectively. This state machine
uses interval conditions on clocks to model the non-
determinism introduced by the starting time and by jit-
ter. All transitions here are interpreted as delayable
according to the terminology of timed automata with
urgency [4], meaning that once they are enabled, they
will be taken before their time guard becomes false
(unless they are disabled by some other discrete tran-
sition). Together with usual non-Zenoness assumption,
this guarantees in this example that the computation
cannot get stalled in any state.

The behavior of the MessageReceiver is modeled by
the state machine diagram depicted in Fig. 3. The speci-
fication of the system expresses that a few failures from
the data sources can be tolerated, but if one of the

Fig. 1 Class diagram of the
data bus manager DatabusManager

MessageReceiver

- altDataTimer: Timer
- navDataTimer: Timer
- AltMsgCount: int
- NavMsgCount: int
- AltMsgTimeoutCount: int
- NavMsgTimeoutCount: int

+ «signal» evAltDataMsg() : void
+ «signal» evNavDataMsg() : void
+ «signal» evControllerError() : void
+ «signal» evControllerOK() : void

ControllerMonitor

- currentStatus: int
- previousStatus: int

DataSource

- cOffset: Clock
- tPeriod: Timer
- cJitter: Clock

altDataSource navDataSource

DatabusController

- status: int

+ controllerStatus() : int

DatabusManager

MessageReceiver

- altDataTimer: Timer
- navDataTimer: Timer
- AltMsgCount: int
- NavMsgCount: int
- AltMsgTimeoutCount: int
- NavMsgTimeoutCount: int

+ «signal» evAltDataMsg() : void
+ «signal» evNavDataMsg() : void
+ «signal» evControllerError() : void
+ «signal» evControllerOK() : void

ControllerMonitor

- currentStatus: int
- previousStatus: int

DataSource

- cOffset: Clock
- tPeriod: Timer
- cJitter: Clock

altDataSource navDataSource

DatabusController

- status: int

+ controllerStatus() : int
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Fig. 2 State machine
diagram of a data source

Init

/cOffset.set(0)

WaitCycle ProduceData

[cOffset <= 25]
/ tPeriod.set(25)

tm(tPeriod) /
begin
  cJitter.set(0);
  tPeriod.set(25)
end

[cJitter <= 10]
/ self.sendData()

[cJitter <= 10]
/* lost data */

ControllerError

BusError

evControllerOK /
NavMsgCount := 0;
AltMsgCount := 0

evControllerError /
navDataTimer .reset () ;

altDataTimer .reset ()

/ NavMsgCount := 0;
AltMsgCount := 0

tm (altDataTimer )/

AltMsgCount := 0;
altDataTimer . set (25)

evAltDataMsg /

if (AltMsgCount < 2 ) then 
   AltMsgCount := AltMsgCount + 1; 
endif ;

altDataTimer . set (35)

tm (navDataTimer )/
NavMsgCount := 0 ;
navDataTimer .set (25)

evNavDataMsg /
if (NavMsgCount <2 ) then 
   NavMsgCount := NavMsgCount + 1;
endif ;

navDataTimer .set (35)

Operational

[NavMsgCount >= 2 and AltMsgCount >= 2]/
NavMsgTimeoutCount := 0;
AltMsgTimeoutCount := 0;

evControllerError /
navDataTimer .reset ();
altDataTimer .reset ()

[ NavMsgTimeoutCount >= 3 or AltMsgTimeoutCount >= 3]/

NavMsgCount := 0;

AltMsgCount := 0;
navDataTimer .reset ();
altDataTimer . reset ();

evNavDataMsg /

NavMsgTimeoutCount := 0;
navDataTimer .set (35);

evAltDataMsg /
AltMsgTimeoutCount := 0;
altDataTimer . set (35)

tm (navDataTimer )/

NavMsgTimeoutCount := NavMsgTimeoutCount + 1;
navDataTimer .set (25)

tm (altDataTimer )/
AltMsgTimeoutCount := AltMsgTimeoutCount + 1;

altDataTimer .set (25)

Fig. 3 State machine diagram of the Message Receiver

sources fails to send data for three consecutive times,
the receiver enters a BusError state. In state Operational
failures are detected by the time-out of timers navDa-
taTimer and altDataTimer. The number of consecutive
failures of each data source is stored into failure coun-
ters NavMsgTimeoutCount and AltMsgTimeoutCount.
If one of these counters has value 3, the receiver enters
the bus error state (note that by the run to completion
assumption adopted in UML, this will be done before
accepting a new signal event).

The receiver recovers from the bus error state if it
receives correct data for at least two consecutive times
from both data sources. In the BusError state, the coun-
ters NavMsgCount and AltMsgCount are used to count
consecutively accepted messages of each type. BusEr-
ror is also the initial state, since the system should only
be in state operational when sufficient messages have
been received from both sources. State ControllerError
is entered and exited based on the events received from
the controller monitor.
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Similarly, the behavior of the ControllerMonitor has
been modeled by means of state machines. Details are
not shown here, since the main focus is on the detection
of failures of the data sources and the response to these
failures.

2.2 Properties of the MARS system

During our verification experiments, we concentrated
on the following two properties of the MARS system:

1. Timely detection of a Databus Controller error,
leading to the ControllerError state of the Message
Receiver, and proper recovery, i.e. returning to state
BusError if the Controller is OK again.

2. Timely detection of an error in the databus, based
on data message arrival monitoring, leading to state
BusError, and proper recovery.

These properties include timing constraints to specify
maximum response times. As shown in Fig. 4, for prop-
erty 2 this can be split into two cases:

– Maximal response time to errors. This is defined
as the upper bound on the time R1 between the
moment the last message has been received from
a faulty data source and the moment of the switch to
state BusError.

– Maximal response time to recovery. This is defined as
the upper bound on the time R2 between the receipt
of the first message in a series of correct messages
and the actual moment of the switch to state Opera-
tional.

2.3 Abstracting from real-time

Often system specifications are split into functional and
non-functional (including timing) requirements. This
provides an opportunity to apply non-timed modeling
and verification to the functional properties. To investi-

gate this on the MARS system, we have extracted a non-
timed version of the message receiver by abstracting
from the setting of timers to particular time-out values.
In order to make message loss observable in this non-
timed model, the signals evNavDataMsgTimeout and
evAltDataMsgTimeout have been introduced. The data
sources non-deterministically choose between sending a
data message or sending a time-out event which models
message loss. The state machine of the message receiver
is depicted in Fig. 5.

3 Applying OMEGA techniques

We briefly describe the OMEGA techniques and mainly
focus on the results of applying them to the MARS case
study. We start with the LSCs in Sect. 3.1, present func-
tional and timed model checking by UVE and IFx in
Sects. 3.2 and 3.3, respectively, and finally describe inter-
active theorem proving by means of PVS in Sect. 3.4.

3.1 LSC

The Play-Engine tool [20,21] supports the specification
and execution of scenario-based requirements. The
underlying language for requirement specification is that
of live sequence charts (LSCs) [8]. Live sequence charts
are a powerful extension of the classical message
sequence charts (MSCs) [48], that while retaining the
intuitive spirit of MSCs, enhances their expressive
power. LSCs distinguish between behaviors that may
happen in the system (existential) from those that must
happen (universal). Among other extensions they also
allow specifying timing requirements [19] and generic
properties using symbolic instances [31]. The Play-
Engine assumes a discrete time model and adopts the
synchrony hypothesis.

As mentioned above, one of the main extensions
in LSCs—relative to classical MSCs—is the ability to
distinguish between possible and mandatory behavior,

: Navigation
Data Source

: Altitude
Data Source

X

Operational BusError Operational

{ 25ms } { 10ms }

{ R1 } { R2 }

idle

sending

idle

sending

:MessageReceiver
.status

jitter

jitter
X X

X

Fig. 4 Response times of the message receiver
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ControllerError

BusError

/NavMsgCount := 0;
AltMsgCount := 0

evControllerOK /
NavMsgCount := 0;
AltMsgCount := 0

evControllerError

evAltDataMsgTimeout /
AltMsgCount := 0 ;

evAltDataMsg /
AltMsgCount := AltMsgCount + 1 ;

evNavDataMsgTimeout /
NavMsgCount := 0 ;

evNavDataMsg /
NavMsgCount := NavMsgCount + 1;

Operational

[NavMsgCount >= 2 and AltMsgCount >= 2 ]/
NavMsgTimeoutCount := 0;
AltMsgTimeoutCount := 0;

evControllerError

[ NavMsgTimeoutCount >= 3 or AltMsgTimeoutCount >= 3]/
NavMsgCount := 0;
AltMsgCount := 0;

evNavDataMsg /
NavMsgTimeoutCount := 0;

evAltDataMsg /
AltMsgTimeoutCount := 0;

evNavDataMsgTimeout /
NavMsgTimeoutCount := NavMsgTimeoutCount + 1 ;

evAltDataMsgTimeout /
AltMsgTimeoutCount := AltMsgTimeoutCount + 1;

Fig. 5 Non-timed state machine diagram of the message receiver

Fig. 6 High level system
behavior of camera control
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using two types of charts. An existential chart describes a
possible scenario in the system. Figure 6 depicts an exis-
tential chart, as denoted by the dashed border, which
represents a high level system behavior of the camera
control. The vertical instances correspond to the partic-
ipating objects—AvionicsDatabus, RCU, Exposu-
reModule, Camera and the external object Control-
Panel. Time progresses from top to bottom, thus the
order of the events in this chart is NavData, AltDa-
ta, ComputeFramerate, ComputeFMC, FrameRate,
FMC, StartFilming, ActivateExposures, trig-
gerExposure and FMC. In general, a scenario defines
a partial order on the events appearing in the chart,
where events on the same object line occur according to
the visual order from top to bottom, and any given mes-
sage can be received only after being sent. Since Fig. 6 is
an existential chart, it specifies that there exists at least
one run of the system which exhibits the sequence of
events described above.

An example of a universal chart appears in Fig. 7. A
universal chart contains a prechart (dashed hexagon),
which specifies the scenario which, if successfully exe-
cuted, forces the system to satisfy the actual chart body.
In Fig. 7 the prechart starts with a time tick, followed
by two assignments (first ADS_Time variable stores the
global time, denoted by Time, and then AltSend vari-
able stores the value of ADS_Time modulo the altitude
data cycle AD_Cycle) and a condition which together
check whether time has reached a multiple of the alti-
tude data cycle AD_Cycle. If this is the case, the behav-
ior specified in the main chart must follow. The main
chart consists of an if-then-else construct; in this case
the condition is a probabilistic choice, where with 95%
probability the altitude message is sent within 5 time
units with no error and with 5% probability there is an
error with the altitude message. In a similar way the
cyclic behavior for the navigation data is specified.

The expressive power of universal charts, based on
the pattern “prechart implies main chart”, forms the
basis of an executable semantics for an LSC require-
ment model. As a response to an external event or time
progress, a prechart may be satisfied, thus triggering the
system events in the main chart to be executed according
to the partial order, and these events may in turn acti-
vate additional universal charts. Play-out, the executable
mechanism implemented in the Play-Engine tool, mon-
itors progress along charts and performs system events
in the main charts for universal charts that have been
activated, trying to complete all universal charts suc-
cessfully. As the events are being executed, their effects
are visualized via a Graphical User Interface (GUI),
thus providing an animation of the system behavior. The
same GUI is used in an earlier stage called “play-in” to

Fig. 7 Universal chart concerning the altitude data source

capture the LSCs by demonstrating the scenarios, while
the Play-Engine records the behavior in the from of an
LSC, thus providing an intuitive way for capturing the
scenario-based requirements. The work described here
addresses the execution and the analysis of the require-
ments rather then on the process of capturing them; the
interested reader is referred to [20] for more informa-
tion on play-in.

Play-out is actually an iterative process where after
each step taken by the user, the Play-Engine computes
a super-step, which is a sequence of events carried out
by the system as its response to the event input by the
user. One of the problems with play-out in its origi-
nal form is related to the inherent non-determinism
allowed by the LSC language. LSCs is a declarative,
inter-object language, and as such it enables formulating
high level behavior in pieces (e.g., scenario fragments),
leaving open details that may depend on the implemen-
tation. This non-determinism, although very useful in
early requirement stages, can cause undesired under-



Supporting UML-based development of embedded systems by formal techniques 139

specification when one attempts to consider LSCs as the
system’s executable behavior. The play-out mechanism
of [20] is rather naive when faced with non-determinism,
and makes essentially an arbitrary choice among the
possible responses. This choice may later cause a viola-
tion of the requirements, whereas by making a different
choice the requirements could have been satisfied.

To address this challenge, [15] introduces a more pow-
erful technique for executing LSCs, called smart play-
out. It takes a significant step towards removing the
sources of non-determinism during execution, proceed-
ing in a way that eliminates some of the dead-end exe-
cutions that lead to violations. Smart play-out [15,16]
uses verification methods, mainly model-checking, to
execute and analyze LSCs. There are various modes in
which smart play-out can work. In one of the modes,
smart play-out functions as an enhanced play-out mech-
anism, helping the execution to avoid deadlocks and vio-
lations. In this mode, smart play-out utilizes verification
techniques to run programs, rather than to verify them.
In another mode, smart play-out is given an existential
chart and asked if it can be satisfied without violating
any of the universal charts. If it manages to satisfy the
existential chart, the satisfying run is played out, provid-
ing full information on the execution and reflecting the
behavior via the GUI.

3.1.1 Results of LSC experiments

We have specified a high-level requirements model for
the MARS application using universal LSCs. To explore
the behavior of the system, the model has been simu-
lated using the play-out capabilities of the Play-Engine.
During play-out the active charts are displayed with a
line which specifies how much progress has been made
by each instance, as shown in Fig. 8.

Existential charts were used to test and verify system
behavior; they do not drive the execution, but can be
traced during play-out mode (depicted by a magnifying
glass containing the letter “T” in the upper left corner)
showing the progress along the scenario as shown in
Fig. 9.

Another example of an existential chart is depicted in
Fig. 10. In this scenario, after AltMsg(True) occurs at
the BusController, the RCU sends receiveExpDa-
ta to theExposureModule. This scenario also includes
a timing constraint; time is stored immediately after
AltMsg(True) occurs and the timed condition speci-
fies that no more than 70 time units should have passed
before the receiveExpData is received.

Being an existential chart, Fig. 10 implies that there is
at least one run of the system satisfying this scenario. In
early system design such charts serve as “sanity checks”

Fig. 8 Example of play-out

showing that certain desirable behavior can be exhibited
by the system. The user can then run play-out mode and
attempt to drive the system behavior to satisfy the chart
by providing the appropriate external events. A system-
atic way to check if a given existential chart can be sat-
isfied by a set of universal charts is by invoking smart
play-out with this query. If a satisfying run is found by
smart play-out it will be displayed to the user, otherwise
smart play-out proves that that it is impossible to satisfy
the existential chart. The ability to prove that an exis-
tential chart cannot be satisfied is an advantage of smart
play-out over the “naive” play-out mechanism. We have
used this capability in our model by setting existential
charts to designate a scenario that should never occur
(anti-scenario); if this existential chart is traced to com-
pletion it indicates a problem in the design or in the
specification of the universal charts. If smart play-out
proves that this existential chart cannot be satisfied, we
are guaranteed that this bad behavior is not allowed to
occur.
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Fig. 9 Tracing an existential
chart

Fig. 10 LSC representation of a timing property concerning
altitude data

An example of such an anti-scenario is shown in
Fig. 11. We have modified the existential chart of Fig. 10
to capture the undesirable behavior in which the
AltMsg(True) occurs at the BusController, and
more than 70 time units pass without the Exposure
Module receiving thereceiveExpData from theRCU.
The forbidden (cold) message receiveExpData at the
bottom of Fig. 11 specifies that if this method occurs
before 70 time units have passed, the chart is exited and
thus not traced to completion (and no problem occurs).
To formally express an anti scenario using the LSC lan-
guage, the forbidden scenario can be placed in the pre-
chart of a main chart which only contains the condition

Fig. 11 Using an existential chart as an anti-scenario

FALSE; this condition can never be satisfied, thus imply-
ing that the scenario described in the prechart should
never happen.

We have used play-out as a simulation tool, to explore
the design, try out different parameter values and gain
a better understanding of the application. To formally
verify properties we used smart play-out. The model
consists of around ten scenarios and the running time of
smart play-out was around 30 min per query, with some
of the queries being answered in less than one min-
ute. This running time includes the translation to the
format of the model checker, and the feedback to the
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Play-Engine in case a satisfying run was found. Apply-
ing smart play-out to larger models remains a major
challenge due to the performance of the underlying
model checkers. The initial experience with smart play-
out allowed the verification of some functional proper-
ties, but also pointed out several problems in the tool,
that will be discussed in Sects. 4.4 and 5.1.

3.2 UVE

The model-checking tool UVE [42] supports bounded
and exhaustive verification of open systems with a non-
deterministic environment. A discrete time semantics [9]
has been implemented, where only the order between
the observable entities is considered. A discrete time
step corresponds to the execution of a transition in a
state machine or the removal of an event from an event
queue. Each action is considered instantaneous. Execu-
tion duration is counted in terms of the number of steps
and this is used to bound the depth of the model explo-
ration and to specify points of time during execution
where conditions should be evaluated.

To formalize requirement specifications one can use
the built-in temporal logic patterns, based on CTL
(Computation Tree Logic) formulas, or the LSC for-
malism of the tool. Both notations use a discrete-time
quantification in terms of steps which makes it possible
to express bounded properties such as “if P then even-
tually Q within X steps”. The UVE tool can be used to
check whether a certain UML model satisfies its speci-
fied functionality. Functional requirements that can be
checked with UVE can be distinguished into universal
properties, which should hold for all system runs, and
existential properties, which require at least one run as
a witness of the property.

UVE supports a subset of the LSCs from Sect. 3.1.
This subset does not contain real-time constraints /con-
ditions, but instead has additional possibilities to put
a bound on the number of steps for which a property
should hold (and thus on the depth of model explora-
tion). UVE also distinguishes between assumption and
commitment LSCs, which are just different roles of the
properties specifications within the verification process.
This is important to restrict the non-deterministic envi-
ronment of open systems.

UVE is based on backward state space exploration
over bounded values of natural numbers. The problem
of scalability, typical for model-checking approaches,
depends not only on the size of the model, but to a large
extent also on the complexity of the property verified,
the concurrency level in the model, and the amount of
non-determinism of the environment.

An execution trace is represented in the form of an
existential LSC, showing the order of communication
events between objects, and a so-called Symbolic Tim-
ing Diagram (STD), which shows for observable execu-
tion steps the changes of variables, states, event queues,
etc. These STDs are similar to the timing diagrams that
have been added to UML 2.0. In UVE, STDs are only
used to visualize verification results, making it easier to
search for the source of an error. Whereas LSCs visu-
alize the interaction between objects, STDs are conve-
nient to show the internal computations of objects which
is often the focus of UVE-based verifications.

3.2.1 UVE experiments on MARS

UVE has been used to verify a number of properties
of a non-timed version of the MARS system, using the
state diagram of the Message Receiver from Fig. 5. The
properties mentioned in Sect. 2.2 have been expressed
as bounded response properties where timing has been
replaced by steps. The correct number of steps for which
a property holds has been obtained by a series of
verification experiments, involving counter-example
analysis and fine-tuning the specified step counts by suc-
cessive approximations. On the average between five
and ten experiments were needed per specified property
depending on the complexity of the generated counter
example.

When a universal property does not hold or an exis-
tential property holds, the UVE tool generates an error
path or a witness path, respectively. The result of a ver-
ification consists of a summarizing text and a generated
path (when available), represented as an STD or an
LSC.

As a simple example, consider the property: “Each
time when the Databus Controller encounters an error,
the Message Receiver will detect this within 1 step.” The
property has been checked with the following assump-
tions: (a) if the Databus Controller encounters an error,
it remains in its error state; (b) the Controller Moni-
tor polls the current system state periodically at least
once every five steps. Figure 12 shows the textual repre-
sentation of a verification result which detects that the
property does not hold.

The STD view of the error path is depicted in Fig. 13.
It shows the values of all elements in the model and
from the property specification (objects, event queue,
attributes, states of state machines, and parts of the spec-
ification, such as assumptions). In particular, at the third
step of the system execution, the premise of the prop-
erty became true (the Databus Controller is in the Error
state), but the conclusion of the property does not hold
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Fig. 12 Text message of
UVE about error found

Fig. 13 STD generated by
UVE after detecting an error

at the next step (the Message Receiver is still in state
Operational). The LSC of Fig. 14 shows the message
exchange between the objects leading to this erroneous
situation.

Next the property has been corrected by increasing
the number of steps necessary for the Message Receiver
to detect an error from the Databus Controller. This
leads to a positive verification result.

For the relatively small models of the MARS exam-
ple, the internal model checker of UVE (called VIS)
takes around 20 min of execution time. In addition, first
the model is translated to the internal format of VIS
and reduced with respect to the property to be verified.
After running VIS, the error or witness trace is trans-
lated from the internal representation into an LSC and
a STD visualization.
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Fig. 14 LSC generated by UVE after an error has been found

3.3 IFx

The IFx tool provides simulation and model checking
capabilities for the OMEGA kernel language and the
OMEGA real-time profile for UML. It is built on top of
the IF toolbox [5,6], and consists mainly of a translator
for UML models to the IF language [33], a simulation
front-end and extensions to the IF toolbox such as the
ability to specify properties using observer automata.

The tool handles closed models, which contain a
description of both the designed system and its environ-
ment. An explicit specification of complex environments
is made possible by using timed or functional non-deter-
minism to model different types of inputs coming from
the environment at arbitrary or otherwise constrained
time moments (e.g., within some periodic interval, or
with some throughput constraints, etc.).

Besides rich interactive simulation capabilities, IFx
allows to model-check a system against timed safety
properties. They are specified in the form of UML
observers, which are accepting automata (extended with
variables and clocks) reacting to events, to conditions
occurring in the system, as well as to time [33]. The tool
supports both discrete and continuous time. In discrete
time, time progress is represented by a tick transition
common to all processes. Continuous time is represented
symbolically, similar to the timed-automata based tools
Kronos [47] and Uppaal [28]. Due to the different repre-
sentations, in discrete time IFx allows more expressive
time properties than in the continuous case. The sym-
bolic representation leads in most examples to much
smaller state spaces. The experiments on MARS were
performed in symbolic continuous time.

The verification procedure is based on forward explo-
ration of the state space, using various optimizations

and abstractions to reduce combinatorial explosion. We
mention here static optimizations (like dead variable
factorization and dead code elimination) which reduce
the state space of a model while fully preserving its
behavior, or dynamic optimizations like partial-order
reduction. The tool supports different kinds of data
abstractions (slicing, queue abstractions, etc.).

Negative verification results are provided with a diag-
nostic trace which can be re-played and debugged in the
simulator.

3.3.1 Timed modeling

The validation experiments were performed on the orig-
inal timed version of the data acquisition subsystem pre-
sented in Sect. 2.1.

On the environment side, as mentioned before, an
important need is the ability to naturally model non-
deterministic behavior. This model should include, for
example, the jitter of the data sender. This has been done
in IFx using a clock and interval constraints, as shown in
Fig. 2. After a few experiments with the model, we real-
ized that a non-deterministic start-up time for the data
sources had to be modeled (see state Init in Fig. 2), as
otherwise the periods of the two sources are implicitly
synchronized and this does not capture the real behavior
of the MARS environment.

3.3.2 Results of IFx experiments

The functional and reactivity properties of the control-
ler have been formalized using observers and verified
against the timed model. Figure 15 shows the observer
checking the upper bound BR1 on the response time R1
between the last message correctly sent by a source, and
the detection of the bus error if the following three mes-
sages are lost (as specified in Sect. 2.2 and illustrated in
Fig. 4). We note that this observer monitors only the mes-
sage loss from a single source (the altitude data source
in this case). Due to symmetry, this can be done without
loss of generality.

The first verification experiments led to state space
explosion beyond the limits of the tool. The source of
this explosion was established to be the existence of too
many parallel, fully de-synchronized, timed behaviors.
Even though the non-timed product of these compo-
nents is of manageable size, the explosion is produced by
the large number of possible configurations for the rela-
tions between time periods of these components (there-
fore producing a large number of symbolic time zones).
Note that verification is very easy when we use only one
source instead of two; this requires only 1084 states, 1420
transitions and less than one second of user time.
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Fig. 15 Timed safety
property specified by means
of an observer

init

wait

match send evAltDataMsg() to dm
[dm @ Operational] //
c.set(0)

match send evAltDataMsg() to dm //
c.set(0)

C

[dm @ ControllerError]

[dm @ BusError]

[ c = BR1 ]

<<error>>
KO

[dm @ Operational]

<<observer>>
PR1

BR1 : int
c : Clock

To reduce the explosion we made the simplifying
assumption that the two data sources are synchronized
(i.e., their period of 25 ms always starts at the same
time; the two types of messages can nevertheless be
sent at different moments due to jitter). It is clear that
this assumption is not conservative with respect to the
verified properties as the reaction time due to message
loss may (and is likely to) be longer when the two data
sources are de-synchronized. But the specification could
be verified, using 99355 states, 151926 transitions and
36 seconds of execution time. With the synchronization
assumption on the environment, the initial MessageRe-
ceiver model presented in Fig. 3 satisfies the reactivity
property above for BR1 = 85 ms (= 3 × P + 2 × J).
In order to fully verify the properties without this non-
conservative assumption, we have used the redesigned
model presented in Sect. 4.

In an attempt to simplify the model and to gain per-
formance, a slightly different variant of the MessageRe-
ceiver was developed. This variant was believed to be
an equivalent refactoring of the initial model. However,
the IFx tool was able to detect that the variant had sig-
nificantly lower reactivity to failures of the data links.
The variant consisted in modifying the state machine
of the Message Receiver (see Fig. 3), so that in state
Operational, instead of counting the reception failures
(one by one up to 3), a long timer of length 85ms was
used to test, for each source, the absence of messages.
The object switched to state BusError upon reception
of any of these two timeouts, and the two timers were
re-initialized when going back to state Operational.

The verification experiments showed that the above
property was satisfied only for a duration BR1 = 95 ms
(still under the simplifying assumption of synchronized

sending windows described before). The cause of this
decreased reactivity of the second variant of the Mes-
sage Receiver could be analyzed on the error traces gen-
erated by the model checker. It comes from the moment
when the timers are initialized when going from BusEr-
ror to Operational: in the first model timers are kept
running as they are in state BusError, while in the sec-
ond one both timers are re-initialized when going from
BusError to Operational because the timeout duration
has to change from 35 to 85 ms.

Although in the more realistic case of completely de-
synchronized sources this property could not be checked
(see also Sect. 4.3), a manual analysis shows that BR1
would have to be greater than 110 ms (= 4 × P + 2 × J)
in this case.

3.4 PVS

To allow general verification of UML models with infi-
nite state spaces, we have experimented with interac-
tive theorem proving. We have used the PVS system, a
general purpose theorem prover which is freely avail-
able [36,37,40]. PVS has a powerful specification lan-
guage, based on higher-order typed logic. Specifications
can be organized as hierarchies of parameterized theo-
ries, which may contain declarations, definitions, axioms,
theorems, etc. Moreover, there is a large set of prede-
fined theories, with e.g., real numbers, several data types,
and many relations and functions.

The user-defined theories may contain theorems and
the user can try to prove these theorems by means of
the proof engine of PVS. To prove a particular goal, the
user invokes proof commands - including powerful deci-
sion procedures and rewrite strategies - which should



Supporting UML-based development of embedded systems by formal techniques 145

simplify the goal until it can be proved automatically by
PVS.

To be able to use the PVS system for the verification
of UML models, we have represented the semantics of
the OMEGA kernel model in PVS [23]. The general idea
is that an execution of the UML model is represented
by a run (i.e., an execution trace) which is a sequence of
the form c0 → c1 → c2 → c3 → · · · where the ci are
configurations, representing a snapshot of the system
during execution and each pair of successive configura-
tions represents a step of a state machine of one of the
objects or a time step. Time steps model the global pro-
gress of time, similar to timed automata (see, e.g., [28]),
using the real numbers of PVS to obtain a continuous
notion of time.

The semantics has been defined in a few PVS theories
which are parameterized by the syntax of a UML model,
including class names, transitions of state machines,
methods, etc. These theories form the core of the tech-
niques used to verify UML models by means of PVS.
The user can model a system in the OMEGA kernel
language using a commercial UML-based CASE tool.
The XMI output of the tool, representing the model in
XML, is first preprocessed to remove a large amount
of XMI information and to get a concise representation.
Next it is transformed into a representation of the syntax
of the model in PVS [27].

Properties of the system under development might
be specified in OCL and can then also be transformed
into the PVS specification language. In the experiments
described here, however, we have specified the proper-
ties directly in PVS because the industrial users were
not acquainted with OCL and they did not have tool
support for it.

To verify that the UML model satisfies a certain prop-
erty, a PVS theory is created which imports the PVS rep-
resentation of the UML semantics, parameterized by the
syntax of the concrete model. It also defines the prop-
erties, expressed as predicates over runs of the model.
Next the user can use the proof environment of PVS to
try to prove the properties in an interactive way.

The focus of the PVS experiments with the MARS
system was on the verification of general properties that
are beyond the scope of model checkers. This concerns
properties that express relations between parameters
for system characteristics such as period, jitter, time-out
values, the number of allowed retries, and the number
of messages needed for recovery. Other work addresses
systems where the number of objects is unbounded [1].

In the next two subsections we first present our
verification experiments with the non-timed model of
MARS, and next describe the attempts to verify the
timed model.

3.4.1 Non-timed model

As a starting point, to get some experience with the
interactive verification of UML properties, we verified
the non-timed model of Fig. 5 in Sect. 2.3. We proved a
simple safety property, namely, that if the data sources
never fail to send messages, then the message receiver
never reaches the bus error location. To give an impres-
sion, we show how this property can be expressed in PVS
as a predicate SafetyPropert1, using the abbrevia-
tions NoSourceErrors and NoBusErrorsDetect-
ed, where r is a run, i is an index in the run (hence
r(i) is a configuration), and event and obj are fields
of a configuration.

We also showed that the message receiver can only move
from the bus error location to state operational if it
receives two successive messages from each source.

The proofs proceed by global induction on the runs,
proving a property for the initial configuration and show-
ing that it is maintained by every step. As usual in
deductive verification, a number of auxiliary invariants
had to be invented and proved. Moreover, properties
had to be strengthened to be able to prove them by
induction on the runs. Altogether this required a lot of
user interaction. For instance, a straightforward proof
of property SafetyPropert1, without any attempt to
shorten proofs or to exploit clever strategies, uses about
50 small lemmas. Most of them required between 10 and
20 user interactions (i.e., proof commands) to complete
the proof. Rerunning the proofs, which is useful to check
the correctness after small changes, requires only a few
seconds.

To improve this, we also experimented with the use of
the TLPVS package [1,39] which has been developed to
reduce user interaction for the verification of properties
expressed in Linear Temporal Logic (LTL). TLPVS pro-
vides a set of theories, defining LTL and corresponding
proof principles, together with powerful strategies that
exploit the proof principles with minimal user interac-
tion. Note that the correctness of the proof principles
has been proved in PVS.

The use of the TLPVS package indeed reduced the
amount of user interaction significantly; the strategies
reduce a proof goal automatically into a number of small
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cases, which often can be discharged by a fixed sequence
of commands. For property SafetyPropert1, the
proof could be reduced to 3 lemmas which together
required around 120 interactions (including calls to
rather complex strategies). Note, however, that the
insight obtained by the earlier proof has been used;
for instance, all required auxiliary properties have been
combined into a single lemma.

3.4.2 Adding time

Our main interest was a general verification of the timed
case, using parameters for the timing values. We use
Tout to represent the time-out value for message loss,
and parameters PN and PA for the maximal processing
time of navigation and altitude messages, respectively.
Moreover, we use parameters N and K for the number
of allowed data losses and the number of consecutive
messages needed for recovery, respectively, to general-
ize the two properties mentioned in Sect. 2.2:

1. The receiver shall move to the bus error location if
and only if one of data sources misses N consecutive
messages

2. The receiver shall recover from a bus error if and
only if both data sources send K consecutive mes-
sages

In the original MARS system, we have N = 3 and
K = 2. We started the verification experiments with
a simple case where N = 1, K = 1, and using a long
time-out Tout (as shown in Sect. 3.3.2 this is less opti-
mal than a sequence of small time-outs). We managed
to prove a safety property, but this required about 50
auxiliary lemmas in PVS and a lot of user interaction
and ingenuity. Positive was the identification of required
relations between the parameters, such as 4 × J < P,
max(PN, PA) < P − 4 × J, and N × P + 2 × J < Tout <

(N + 1) × P − 2 × J. Observe that this implies, for
instance, that jitter J should be relatively small com-
pared to period P and it also gives an upper bound on
the processing times PN and PA.

4 OMEGA techniques applied to a redesign of MARS

Evaluating the verification of the MARS system, it
became clear that for complex examples compositional-
ity and abstraction are essential to improve scalability.
To be able to experiment with these techniques in the
MARS system, we re-model this system. In addition to
facilitating formal techniques, the new model is more
modular and flexible, since it can be easily instantiated

for an arbitrary number of data sources. Instead of using
internal states to represent errors, we make them exter-
nally visible by sending error and operational signals. To
show the essential part, we omit the controller error and
focus on detecting and recovering from bus errors.

The basic idea is that we replace the original mes-
sage receiver, which deals with two data sources, by the
composition of three objects: two instances of a sim-
pler message receiver MR which deals with a single data
source, and an error logic object EL. Each MR object
receives data from a particular source and sends an err
signal to EL if a number of consecutive data items is
missing. When MR observes a recovery of the databus
by receiving a number of successive data items, it sends
an ok signal to EL.

The error logic object EL collects the ok and err sig-
nals; when the system is operating correctly then a single
err signal leads to an error signal. After sending error,
object EL sends signal operational if it is informed that
both MR objects are correct, that is, if for both objects
it has received an ok signal after every err signal.

Finally, we proposed a refinement of each MR object
into two objects:

– A receiver R which receives data items and contains
time-outs to detect the absence of data.

– A monitor M which gets information from receiver R
about the absence or presence of data, counts these
events, and generates the err and ok signals when
needed.

Note that M is non-timed, containing only computa-
tions, whereas component R just detects the presence or
absence of messages during specified time periods.

In the next subsections we apply the OMEGA tech-
niques to this redesign of MARS. In Sect. 4.1 we prove
the correctness of the high-level decomposition of the
design using PVS. Sections 4.2 and 4.3 contain the appli-
cation of functional and timed model checking, respec-
tively. The use of LSCs is shown in Sect. 4.4.

4.1 PVS

For the redesign of MARS, the focus of interactive veri-
fication by means of PVS is on high-level verification
on the level of components. The aim is to show the
correctness of the design at this level, reasoning with
the specifications of components without knowing their
implementation. Hence we consider in this section only
two constructs: parallel composition and hiding of inter-
nal events. To obtain a compositional framework for
reasoning about components, we have changed the PVS
framework in a number of aspects:
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– The semantics has been reformulated to obtain a
denotational (i.e. compositional) semantics for par-
allel composition and hiding. The semantics has been
formulated in terms of traces, which are an abstrac-
tion of the runs in the basic OMEGA semantics.
Since we are dealing with high-level decompositions,
we abstract from all internal details such as internal
objects and the values of their attributes. We only
record the current time of the configurations and the
external events which cause configuration changes.

– To express properties of (part of) a system, we use
logical formulae that define a set of traces. To be able
to formalize intermediate stages during the
top-down design of a system, we have defined a
framework where specifications and programming
constructs can be mixed freely. Refinement corre-
sponds to trace inclusion. This is inspired by similar
work on non-timed systems and related to work on
timed systems [22].

– Compositional proof rules for parallel composition
and hiding have been formulated and proven to
be sound in PVS. The rule for parallel composi-
tion expresses that the composition of two compo-
nents satisfies the conjunction of the specifications
of these components, provided their specifications
only depend on the interface of the corresponding
component.

This compositional framework has been applied to
the high-level decomposition of MARS. First the
required properties have been reformulated in terms of
traces. As an example, we define below when a trace tr
satisfies a property called Prop1. Here d1 and d2 are
concrete data items and d a variable ranging over data
items. i and j are variables over the natural numbers,
used as indices in sequences. T(tr) is the sequence of
time stamps in trace tr and (e@@i)(tr) denotes that
event e occurs at position i in trace tr.2 Constants P
and J, represent period and jitter, respectively, and N is
a parameter for the number of missing data items which
should lead to an error.

First a long time-out is defined as a period of a cer-
tain time length in which no data item occurs (expressed
by abbreviation Never - not shown here). Then Prop1
expresses that if there is a time-out on one of the data
sources, and no error has been generated yet since the
end of this time-out period (using abbreviation Error),
then we generate an err event within DeltaErr.

2 To avoid clashes with the existing PVS syntax we use a double
@ symbol.

We also specify that an error signal should only be sent
if a time-out occurred. Similarly, the occurrence of an ok
signal has been specified. This leads to an overall spec-
ification TwoDataSources(d1, d2, err, ok) of a message
receiver for two data sources d1 and d2. In a similar way,
components are specified by properties of their traces:
MessageReceiver(d, err, ok) specifies a message receiver
for a single source, and ErrorLogic(err1, err2, ok1, ok2,
err, ok) the error logic components.

Since it is rather easy to make errors in the declarative
specifications, we increase the confidence by deriving
some properties that are expected to hold. For instance,
for the message receiver we consider various data
sources DataSource(d) (e.g., an always correct source,
a source which fails to send any data after some point in
time, etc.). Next we show that DataSource(d)‖
MessageReceiver(d, err, ok) satisfies the expected prop-
erties, using the conjunction of the specifications.

To show the correctness of the redesign, we prove
in PVS that the parallel composition MessageReceiver
(d1, err1, ok1) ‖MessageReceiver(d2, err2, ok2) ‖
ErrorLogic(err1, err2, ok1, ok2, err, ok) satisfies the
global top-level specification TwoDataSources(d1, d2,
err, ok), provided certain conditions on timing param-
eters hold. (We omit the hiding of internal events for
simplicity.) This has been proved in PVS using the com-
positional rule for parallel composition mentioned
above, which means that we had to show that the con-
junction of the specifications of the components implies
the desired top-level properties. The proof is highly non-
trivial because suitable intermediate lemmas had to be
found and a few hundred user interactions were needed.
But having proved the correctness of the decomposition,
next the components MessageReceiver and ErrorLogic
can be implemented and checked in isolation, e.g., using
model checking.

4.2 UVE

The aim of the UVE experiments with the redesigned
MARS system was to evaluate modular verification, i.e.,
formal verification of individual components (at differ-
ent levels of abstraction) within the whole system. In
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the UVE context, a component is an object of the root
class together with all its children related to it via com-
position and aggregation associations. The behavior of a
component must be fully specified with state machines
and methods.

In the redesigned MARS system, the components
MR (message receiver) and EL (error logic) have been
considered separately, as well as the smaller subcompo-
nent M and a larger subsystem containing a single data
source, one MR object, and an EL object. The compo-
nents were verified relative to assumptions about input
from the environment. For instance, for the subsystem
R||M, the non-timed component M has been verified
with respect to a specification (with an over-approxima-
tion) of the timed part R.

Different kinds of property specifications were ver-
ified for the chosen system parts (propositional and
temporal formulas, LSCs), making assumptions on the
inputs (order of events, attribute values), and observing
the responses of the component under verification.

Due to restrictions in the tool (e.g., there is no possi-
bility to define or automatically detect component inter-
faces for outgoing events, and the targets of all events
must be specified explicitly in the model), some fur-
ther remodeling has been performed to enable compo-
sitional reasoning. This has been done using standard
elements of UML 2.0 like ports and connections, but
expressed in UML 1.4 since UVE was primary based
on this version of UML. The whole remodeling in UVE
took a few hours of an experienced designer. It was
more difficult (a few days of experimentation) to find
suitable properties for the parts and the proper assump-
tions about the inputs to the ports.

The general observation concerning the redesign is
that the decomposed model became larger due to addi-
tional communication mechanisms (handling communi-
cation abstraction, dealing with explicit targets of the
output events). This increases the verification time of
the entire system, but makes it possible to verify parts
quickly and in a more general context. Analysis results
for a larger model can then be obtained out of the prop-
erties of its parts and the connection structure between
these parts. Without such decomposition, verification
often took too long and sometimes had to be aborted,
especially for models with a lot of concurrency, i.e. with
multiple active objects. Observe, however, that the com-
positional approach requires more specialized modeling
effort from designers.

4.3 IFx

The introduction of the compositional model has
allowed to push forward the analysis with IFx. As men-

tioned before, the original model could not be verified
in case of completely de-synchronized data sources.

The compositional model allows the construction of
a simple abstraction for one of the Data Sources: its cor-
responding MR sends out non-deterministically either
ok or err, at unspecified moments. The specification of
properties has to be adapted accordingly. For example,
the property “if there is no message from one of the Data
Sources for more than T time units, then the Message-
Receiver is in state BusError at the end of this interval”
(introduced in Sect. 3.3) becomes “if there is no mes-
sage from the concrete Data Source for more than T
time units, then the MessageReceiver is in state BusEr-
ror at the end of this interval”. Using the symmetry of
the two Data Sources, this property implies the original
one.

The use of this abstraction brought the state space to a
manageable size and allowed the verification of all prop-
erties, while effectively over-approximating the general
case of de-synchronized Data Sources. The verification
took 155166 states, 263368 transitions and 1 min and 21 s
of execution time.

The experiments pointed out a problem with the pro-
posed redesign: the fact that an MR object does not send
the err signal is not sufficient for recovery. For instance,
if the MR misses a single data item, then this does not
lead to err, but a global recovery does not allow any
miss; it requires that all data must have been received.
There are several solutions to this: either weaken the
initial specification, or adapt the design by adding for
example a miss signal, or use parameterized signals to
represent the presence of the last N messages (instead
of the simple ok and err messages).

4.4 LSC

The Play-Engine has been applied to the redesign of the
MARS system in three phases: model construction, ver-
ification, and synthesis. The first phase involved mostly
constructing an LSC model using play-in and simula-
tion using play-out. We have modified our original LSC
model and then used play-out to simulate the behav-
ior for various types of data sources, including models
where both sources never fail, where only one of the
sources may fail, and where a source that fails never
recovers and does not send any data. We have also
changed the probability for failure in the original model
and used play-out to see the effect on the behavior.
In the second phase, we have applied smart play-out
to formally verify properties of the LSC model. After
extending smart play-out to support time and forbidden
elements [16], we managed to verify timed properties of
the model.
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Fig. 16 Synthesized state machine for the non-timed part of the
message receiver

The problem of synthesis, i.e. constructing a program
from a specification, is a long-known general and fun-
damental problem. In our case, the specification is rep-
resented by the LSC model and the aim is to synthesize
a state machine. As a first step, we have applied syn-
thesis algorithms from LSCs to statecharts, as described
in detail in [14,17]. We observed that the remodeled
MARS application is more suitable for this synthesis
than the original model, mainly because the require-
ments are more structured and there is a clear separation
between the timed and non-timed aspects of the mes-
sage receiver. A state machine synthesized by our tool
for the non-timed part of the message receiver appears
in Fig. 16. Transitions that have no trigger are called null
transitions and are taken spontaneously as part of the
run-to-completion step, once the source state is entered.

5 Evaluation

In the next subsections we evaluate the experiments on
the MARS case study for each of the OMEGA tech-
niques.

5.1 LSC

Although building an application-specific GUI is often
convenient for capturing external user requirements and
play-out, we have not used it for the MARS applica-
tion because the data manager component that we con-
sider only interacts with other objects of the system.
Hence, we have used the internal object diagram sup-
ported by the Play-Engine, which is a variant of an object

model diagram. Play-in is performed by pointing and
clicking on the various objects, attributes and methods.
This turned out to be a very convenient solution for our
model, since it allows a quick specification and execution
of LSCs without spending much time on the construc-
tion of a GUI. The positive experience of working with
internal objects suggests that it will be very beneficial
to improve the tool support in this respect, allowing the
use of multiple diagrams and the application of layout
algorithms. We still think that building a GUI is very
worthwhile, especially for larger scale projects, because
it makes it easier for additional stakeholders to par-
ticipate in the requirements elucidation phase. To this
goal, our experience showed that it would be helpful
to improve the tool support for constructing GUI’s for
Play-Engine models, and indeed future work is planned
in this direction.

When using smart play-out for verifying properties of
the model we have faced several difficulties. Initially the
subset of the LSC language supported by smart play-out
did not include several of the important features used in
the MARS model, such as time and forbidden elements.
Smart play-out has then been extended to support these
features as described in [16]. Smart play-out currently
supports a discrete time model, where global time can be
stored in time variables which can be used in conditions.

Another issue involves the type of queries supported
by smart play-out. Given an existential chart and a set
of universal charts (an execution configuration) smart
play-out can be asked to try to satisfy the existential
chart without violating any of the universal charts.
Before our work on the MARS system, smart play-out
allowed system events appearing in the existential chart
to be taken in a spontaneous manner, even if the event
does not appear in the main chart of an activated univer-
sal chart. As a result of our experience, we now support
an additional mode that does not allow spontaneous
system events to occur. Then an existential chart can
be satisfied only if the system events in the existential
chart indeed appear in the main chart of an activated
universal chart. This mode is more useful for verifying if
a design can exhibit a certain behavior, while the mode
in which system events can occur spontaneously is useful
during initial stages of building the requirement model,
to check if a certain behavior is not contradicted by the
existing universal charts or to make sure that a certain
‘bad’ behavior is explicitly ruled out.

Our experience with the application of synthesis to
the MARS model pointed out that additional work is
required both in terms of improving the efficiency of
the algorithms, extending the LSC subset supported
by the synthesis tool, and improving the stability and
usability of the tool. Another issue is the relationship
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between manually designed state machines and auto-
matically synthesized ones. Although the synthesized
model is guaranteed to be correct with respect to the
given requirements, a manual design may have other
advantages in terms of efficiency and the ability of the
designer to understand and modify the model if neces-
sary. Having said that, tool support for synthesizing even
a relatively small model from LSCs into state machines
and run it in a powerful UML tool like Rhapsody, opens
up exciting development opportunities which we plan to
continue exploring.

Additional information on using LSCs and the Play-
Engine for other case studies in OMEGA appears
in [18].

5.2 UVE

The UVE tool is intended to be used during the develop-
ment of individual components, allowing the verification
of executable models at different levels of abstraction.
It has been found useful for estimating the relative dis-
crete timing of the different entities in the model and for
gaining insight into the step interleaving of model com-
ponents as part of the total model behavior. The major
problem of the application of UVE to a UML model, as
observed during the experiments on MARS, is the sig-
nificant decrease in performance while verifying more
complex properties.

The complexity of the model-checking task depends
on many parameters: the size of the model (the num-
ber of objects and links between them), the levels of
non-determinism (e.g., due to multiple active objects,
concurrency in state machines, and a non-determinis-
tic environment), the complicated arithmetic (including
loops, dynamic branching, etc.), the complexity of the
temporal property under verification (e.g., long execu-
tion paths specified by different events and conditions,
or many assumptions on the environment).

The experiments showed that it is difficult for the user
to assess the verification complexity and to set the rele-
vant parameters to reduce this complexity. For instance,
it is difficult to find reasonable assumptions (both on
the environment and on the system parts outside the
verification scope) to reduce external non-determinism.
The same holds for finding the correct step boundaries
in properties.

To be able to verify components with UVE, a well-
structured model is needed, e.g., communication
between components must be asynchronous by means of
signals. We strongly recommend to separate concurrent
threads of control into different components, because
verification of a component with multiple threads often
meets complexity problems, not yet resolved in the tool.

The design of each component should be incremental.
A system containing a small number of components can
only be verified at a quite high level of abstraction. After
subcomponents have been refined with detailed imple-
mentations (and with specified connectors to their envi-
ronments), they can be verified individually against the
properties used as assumptions for the higher level of
abstraction.

The most effective use of the tool is for verification
of high-level models, or partial models of the critical
parts only. The tool may provide effective feedback to
early functional design decisions taken. Being already
integrated with the industrially used Rhapsody tool, the
UVE tool is potentially suitable for industrial accep-
tance. The learning curve for an effective use of the tool
is quite steep; reasonable levels may be achieved within
few weeks. On the other hand, the tool performance
and the ability to deal with larger models and complex
property specifications is highly dependable on the avail-
able hardware resources and can easily reach the current
platform limits.

5.3 IFx

Like many explicit model-checking tools, IFx is quite
effective for the verification of the functional aspects of
reactive, concurrent systems. However, the experiments
showed that the domain in which the tool becomes par-
ticularly interesting is the validation of timing conditions
- where it can help in finding subtle errors like the reac-
tivity degradation discussed in Sect. 3.3.2.

The tool is based on timed automata-theoretic meth-
ods and implements state of the art optimization and
reduction techniques. However, timed verification is
notoriously difficult and resource intensive, and thus the
IFx tool is best used for solving isolated, hard timing
problems in a UML design.

The ability to specify bounded or unbounded time
non-determinism was found very useful for modeling
realistic system environments, like the two Data Sources
or the bus controller failures. However, bounded time
non-determinism is the foremost cause of state space
explosion. A rule of thumb is that the tool can handle
up to about eight non-deterministic cyclic behaviors in
parallel (if the different time-bounds are in the same
order of magnitude).

Relaxation of timing conditions was found to be a
simple and efficient abstraction technique: removing the
bounds on a non-deterministic element provides an easy
to specify over-approximation of its behavior—mean-
ing that the resulting specification defines a superset of
the executions of the initial one. This transformation
is conservative for the satisfaction of safety properties
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(including timed ones): if the resulting model satisfies a
property, the initial one will too.

Applying this form of abstraction may drastically
improve the analysis performance, as the state space
of the resulting model is much smaller; due to the use
of a symbolic representation of time, many, previously
distinct, states are represented by the same symbolic
state. The downside is that it can introduce false negative
results. In the MARS example we have used this form
of abstraction; when verifying properties concerning the
detection of Data Sources failures, we have removed
the bounds on the ControllerMonitor polling period,
making the polling completely non-deterministic. This
allowed a proof of the properties, while reducing the
state space by at least two orders of magnitude (a pre-
cise number cannot be produced, since the analysis of
the system without this abstraction did not terminate).

The experiments with IFx show that, generally, spec-
ification of properties using observers is intuitive and
verification may be performed by a non-specialist after
a relatively short learning period. This form of specifi-
cation is limited to timed safety properties; it would be
possible to interpret observers as Büchi automata for
expressing liveness properties, but this leads to complex
and error-prone specifications. For liveness properties
we therefore recommend a temporal logic style of spec-
ification (e.g., using the µ-calculus evaluator of IF).

Some methodological guidelines for writing observ-
ers and for using the toolbox have been developed as a
side result of the teamwork within OMEGA. The ver-
ification experiments also suggested several new useful
features for the tool, like informal actions and inter-
observer communication. Informal actions can be used
as observation conditions, without affecting the behav-
ior of the original model. Inter-observer communication
allows a more intuitive and less complicated specifica-
tion of complex properties, compared to the use of a
single observer.

While currently exhibiting a more academic, non-
industrial way of use, the IFx tool proves to be very
effective in providing early feedback to the design deci-
sions and their effect on timing matters. The tool has
significant added value in cases of timing non-determin-
ism of the system environment. The fact that the tool
is, in principle, usable in combination with any com-
mercial UML tool capable of exporting XMI, facilitates
its potential introduction into the industrial software
development process. The learning curve for the effec-
tive tool use can be characterized as medium, with a
rough estimation of 4 to 5 weeks. This is mainly due
to the involvement of internal tool information in user
interaction, which obscures the UML-level overview.
Moreover, the error messages are mostly at the level of

the underlying IF tool and not at the level of the UML
model. While acknowledging the named issues, the IFx
tool has a potential of effective and beneficial use in the
industrial environment.

5.4 PVS

In the PVS-based verification experiments, we first
showed that it is possible to prove general properties of
the non-timed version of MARS. In contrast to model-
checking techniques, there are no limitations on finite-
ness of the UML model or the properties to be verified.
The first attempts required quite some user interaction,
which could be improved by the use of the TLPVS pack-
age. Still, expert knowledge and good skills in the use of
the tool are required for the application of such interac-
tive theorem provers.

The PVS-based verification experiments on MARS
revealed that global, non-compositional verification of
a timed version of the original model is difficult. In
general, interactive verification of UML models is very
complex because we have to deal with a number of fea-
tures simultaneously, such as timing, synchronous oper-
ation calls, asynchronous signals, threads of control, and
hierarchical state machines. Hence, modularization of
semantic definitions is important to allow the use of the
minimal semantics for the features needed in a partic-
ular case study. For instance, if there are no asynchro-
nous signals, then the complexity of manipulating event
queues can be removed.

The compositional verification of the redesigned
MARS example shows that PVS is more suitable for
the correctness proof of high-level decompositions, to
obtain relatively small components that are suitable
for model checking. Observe that the compositional
approach requires substantial additional effort to obtain
appropriate specifications for the components. More-
over, finding suitable specifications is difficult and it
is easy to make mistakes in declarative specifications.
Hence, it is advisable to start with finite-state high-level
models of the components and to simulate and to model-
check them as much as possible. Interactive verification
should be applied only when sufficient confidence has
been obtained. Finally, it is good to realize that inter-
active verification is quite time consuming and requires
detailed knowledge of the tool.

6 Concluding remarks

We have used the MARS case study to experiment with
various forms of formal support for UML-based devel-
opment. This includes requirements capturing by LSCs,
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timed and non-timed model checking, using IFx and
UVE, and interactive verification by means of PVS.

Clearly, scalability is an important problem for all
techniques. In the MARS example, small models lead
to state explosion problems for model checkers, e.g.,
due to the asynchronous data sources. Moreover, the
large number of features in UML (such as synchronous
and asynchronous communication, threads of control,
and hierarchical state machines) creates an additional
layer of complexity, since the semantics of all these fea-
tures has to be included in the tools. This makes, for
instance, non-compositional verification of small exam-
ples in PVS already very complex and user intensive.

The work on the redesign of the MARS system shows
that a clean modular design allows compositional PVS-
based reasoning and improves the abstraction possibili-
ties for model checkers. A high-level decomposition of
the system into a set of components that communicate
by asynchronous message passing (similar to the ROOM
approach [43]) increases the size of the models that can
be verified by a fruitful combination of tools, together
with compositionality and abstraction.

To exploit the combination, we propose to use LSCs
to capture high-level requirements and to specify the
behavior of internal objects. Next, the correctness of
high-level decompositions can be proved by theorem
proving in PVS. Since it is usually difficult to find suit-
able specifications for components, it is important to pre-
cede the time consuming interactive verification task by
experiments with the model-checking tools to simulate
and to check finite instances of the decomposition. By
modeling the behavior of components by abstract state
machines, more insight can be obtained which will make
it more easy to formulate suitable declarative compo-
nent specifications. In this way, the efficiency of interac-
tive theorem proving can be improved.

After proving the correctness of a decomposition by
means of PVS, one may repeat the process to further
decompose a component or, when relatively small com-
ponents have been obtained, to prove the correctness of
a detailed component design with respect to the high-
level specification. This last step can again be done by
means of a combination of formal techniques, using
UVE for the non-timed, finite part, IFx for the finite
timed part and PVS for the infinite aspects. An interest-
ing topic, which requires further research, is the possi-
bility to synthesize a state machine automatically from
an LSC specification.

In general, we observed that the effectiveness of for-
mal verification techniques, can be increased by design-
ing well-structured models and applying verification
already at the abstract levels, using assumptions about
the non-implemented parts of the model, in addition to

assumptions on the environment. Compositional veri-
fication can decrease the complexity of system analy-
sis by wiring properties of small components together
and deriving global requirements without analysis of
the individual implementations. But this requires addi-
tional efforts concerning model (re)design and might
introduce overhead to obtain a suitable abstraction of
the communication between components. Hence, it cre-
ates an additional burden for industrial development
process, and one has to investigate whether this is bene-
ficial. In the MARS example, the redesign had positive
side-effects on the re-usability, flexibility (e.g., for chang-
ing the error logic) and extendability (e.g., to more data
sources) of the system.

We have used many different specification formal-
isms, such as LSCs, temporal logic patterns, proposi-
tional logic, higher-order logic, and observer state
machines. As expected, industrial users within the
OMEGA project usually prefer the visual - more oper-
ational - descriptions, such as LSCs and observer state
machines, to the declarative logic formulations. For
instance, OCL has not been used because the limited
amount of tool support for this notation in our project
and the required learning time.

A disadvantage of the broad spectrum of specification
languages is that specifications had to be reformulated
manually when moving from one technique to the other.
This was especially inconvenient during later stages of
the OMEGA project, when there was more emphasis
on the combinations of tools. Automatic translations
between specification formalisms is very well conceiv-
able, but out of the scope of the OMEGA project and
a topic of future research. Besides an improved cou-
pling at the syntactic level, e.g., using XML, also more
research is needed to establish a coherence of the seman-
tics. The current implementations of the semantics of the
OMEGA kernel language have not been validated in a
systematic way, but within the OMEGA project research
has been started to include a description of this seman-
tics in XML format, using the so-called Rule Markup
Language (RML) [2].
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