
Softw Syst Model (2009) 8:163–164
DOI 10.1007/s10270-009-0117-4

EDITORIAL

Why Johnny can’t model
Editorial for the SoSyM Issue 2009/02

Robert France

Published online: 24 March 2009
© Springer-Verlag 2009

I recently taught an undergraduate C++ course for second
year undergraduate students. Teaching this course provided
me with some insight into why some students have difficulty
grasping the abstraction and modeling concepts introduced
in the advanced software development courses we offer to
third and fourth year students.

While grading their programming assignments it became
evident that students were not thinking of their solutions in
an object-oriented (OO) manner. The students were becom-
ing skilled at stringing together C++ statements to produce
working programs, but they were having problems thinking
about solutions in terms of collaborating objects. Many stu-
dents used objects more as passive maintainers of data rather
than as active participants in a collaborative effort to accom-
plish functional goals. For example, classes with references
to other classes were rare; many classes had only basic get
and set methods, and had attributes that uniquely identified
objects. What was surprising was the extensive use of glob-
ally declared data structures in some of the programs.

If students do not understand how to effectively use OOP
concepts to solve problems then it is not surprising that they
have problems building good models of OO solutions. Their
underdeveloped OOP skills make it difficult for them to dis-
tinguish good and bad OO abstractions.

The link between modeling and programming skills
should not be undervalued. A good modeler should also be a
skilled programmer. A great modeler is invariably an expert
programmer. On the other hand, good programmers are not
necessarily good modelers. Highly-skilled programmers may
rely on mentally-held patterns and abstractions when con-

R. France (B)
Colorado State University, Fort Collins, CO, USA
e-mail: france@cs.colostate.edu

structing programs, but using those patterns and abstractions
to produce good models is an acquired skill.

Good programming knowledge should not be equated to
good knowledge of the syntax and semantics of a program-
ming language. A few students in my C++ class did have
good knowledge of the C++ syntax and semantics, but they
also had poor OOP skills. Learning how to program is not the
same as learning the syntax and semantics of a programming
language. Similarly, learning how to model is not the same
as learning the syntax and semantics of a modeling language
such as the UML.

As an analogy, consider how abstractions are developed
and used in mathematics. For example, Category Theory pro-
vides abstractions over mathematical structures (e.g., sets)
and their relationships (e.g., functions). The developers of
these abstractions had in-depth knowledge of the mathemat-
ical structures (including in-depth knowledge of their manip-
ulations) they were abstracting over. Few will argue that
effective use of these abstractions requires at least a good
understanding of the mathematical structures that the theory
abstracts over. Attempting to use Category Theory without
such knowledge can confuse rather than enlighten.

Given the above, how we can better lay the foundation on
which students develop good modeling skills? We should cer-
tainly continue to expose students to programming concepts
as early as possible in the curriculum. A problem with many
introductory programming courses is that emphasis has been
more on covering programming language syntax and seman-
tics at the expense of material that addresses how abstrac-
tions provided by a programming language can be used to
develop good quality solutions. The growing complexity of
programming languages is partially to blame for this state of
affairs, but I would argue that teaching students how to pro-
gram trumps the need to expose students to a wide range of
program language features. The decision to cover a language

123

164 R. France

feature in a lower-level programming course should be driven
by a desire to expose students to (1) an approach for building
good solutions using the feature, or (2) problems that can be
encountered when the feature is used inappropriately.

The use of software models to visualize coded solutions
can help enhance the learning experience of novice program-
mers. For example, sequence models can be used to visual-
ize different ways of distributing functionality across classes
when discussing on the pros and cons of alternative solu-
tions. Students can also use these models to plan how they
will distribute functionality across the classes. The good stu-
dents I have encountered tend to think first in terms of behav-
ior, and they find it more useful to develop sequence models
before developing class models. After they have figured out a
“good” way of distributing functionality they are better able
to construct a supporting class model.

I am encouraged by the growing number of introductory
programming texts that do use models to visualize code. At
the same time, I am disappointed by the lack of variety in
the models used: Most introductory textbooks limit their use
of models to visualizing structure using, for example, UML
class models. Very few make good use of sequence models.

Students entering more advanced software development
courses should be expected to have a good understanding of
programming and familiarity with basic software modeling
notation. If we broaden the focus of introductory program-
ming courses as outlined above, we are more likely to have
students that are better prepared for advanced courses that go
beyond the use of models to visualize code.

Contents in this issue

In this issue, we present seven papers that present interesting
research results.

In the regular paper “Redesign of UML Class Diagrams:
A Formal Approach” by Piotr Kosiuczenko, a formal method
for refactoring OO specifications in a manner that preserves
specified properties is described.

The regular paper “Qualifying Input Test Data for Model
Transformations”, by Benoit Baudry, Franck Fleurey, Pierre-
Alain Muller, and Yves Le Traon, tackles the difficult prob-
lem of testing model transformations. The authors propose
a set of framework for assessing the quality of input models
used to test model transformations.

The regular paper, “Use Case Maps as a Property Spec-
ification Language”, by Jameleddine Hassine, Juergen Ril-
ling, and Rachida Dssouli, describes how use case maps can
be used to describe property specifications. Property spec-
ification patterns are used to bridge the gap between users
not skilled in writing properties in temporal logic and model
checking tools.

In the regular paper, “Reusing Semi-Specified Behavior
Models in Systems Analysis and Design” the authors Iris
Reinhartz–Berger, Dov Dori, and Shmuel Katz, present a
reuse approach using OPM, which combines structure and
behavior (objects and processes) in a single diagram. OPM
enables reusing behavioral modules and organizing their
dynamic aspects into complete applications. A set of inter-
and intra-weaving rules determines how to define and how
to combine reusable generic modules.

In the regular paper “A UML and OWL Description of
Bunge’s Upper-Level Ontology Model” the author Joerg
Evermann goes back to a high-level ontology which was pub-
lished by Mario Bunge in the 1970s. This is a very general
ontology which tries to cover most real world phenomena and
therefore is an interesting candidate for a foundation capa-
ble of supporting various languages and concepts. The paper
formalizes this ontology in UML and OWL.

In the regular paper “Variability Modeling for
Questionnaire-based System Configuration” the authors
Marcello La Rosa, Wil M.P. Aalst, Marlon Dumas, and Arthur
H.M. ter Hofstede, a formal foundation for representing sys-
tem variability for the purpose of generating questionnaires
that guide users during system configuration is presented.
The generated questionnaires are interactive, in the sense that
questions are only posed if and when they can be answered,
and the space of allowed answers to a question is determined
by previous answers. The approach has been implemented
and tested against a reference model from the logistics
domain.

In the regular paper “A UML-based Quantitative Frame-
work for early Prediction of Resource Usage and Load in
Distributed Real-Time Systems”, the authors, Vahid Garousi,
Lionel Briand, and Yvan Labiche, present an approach that
supports analysis of resource usage in distributed real-time
systems. The prediction is done on models consisting of
UML sequence diagrams adorned with additional timing
information.

123

	Why Johnny can't model

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

