
Softw Syst Model (2010) 9:375–402
DOI 10.1007/s10270-009-0136-1

SPECIAL SECTION PAPER

Code generation by model transformation: a case study
in transformation modularity

Zef Hemel · Lennart C. L. Kats ·
Danny M. Groenewegen · Eelco Visser

Received: 11 November 2008 / Revised: 5 September 2009 / Accepted: 24 September 2009 / Published online: 6 November 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract The realization of model-driven software devel-
opment requires effective techniques for implementing code
generators for domain-specific languages. This paper identi-
fies techniques for improving separation of concerns in the
implementation of generators. The core technique is code
generation by model transformation, that is, the generation
of a structured representation (model) of the target program
instead of plain text. This approach enables the transfor-
mation of code after generation, which in turn enables the
extension of the target language with features that allow
better modularity in code generation rules. The technique
can also be applied to ‘internal code generation’ for the
translation of high-level extensions of a DSL to lower-level
constructs within the same DSL using model-to-model trans-
formations. This paper refines our earlier description of code
generation by model transformation with an improved
architecture for the composition of model-to-model normal-
ization rules, solving the problem of combining type analy-
sis and transformation. Instead of coarse-grained stages that
alternate between normalization and type analysis, we have
developed a new style of type analysis that can be integrated
with normalizing transformations in a fine-grained manner.

Communicated by Jeff Gray, Alfonso Pierantonio, and Antonio
Vallecillo.

Z. Hemel · L. C. L. Kats · D. M. Groenewegen · E. Visser (B)
Software Engineering Research Group,
Delft University of Technology, Delft, The Netherlands
e-mail: visser@acm.org, E.Visser@tudelft.nl

Z. Hemel
e-mail: Z.Hemel@tudelft.nl

L. C. L. Kats
e-mail: L.C.L.Kats@tudelft.nl

D. M. Groenewegen
e-mail: D.M.Groenewegen@tudelft.nl

The normalization strategy has a simple extension interface
and integrates non-local, context-sensitive transformation
rules. We have applied the techniques in a realistic case
study of domain-specific language engineering, i.e. the code
generator for WebDSL, using Stratego, a high-level trans-
formation language that integrates model-to-model, model-
to-code, and code-to-code transformations.

Keywords Transformation · Transformation engineering ·
Term rewriting · Webapplication DSL · Combination of
analysis and transformation

1 Introduction

Model-driven software development aims at improving
productivity and maintainability of software by raising the
level of abstraction from source code in a general purpose
language to high-level, domain-specific models such that
developers can concentrate on application logic rather than
the accidental complexity of low-level implementation
details [36,53,54]. The essence of the approach is to shift
the knowledge about these implementation details from the
minds of programmers to the templates of the code gener-
ators that automatically translate models into implementa-
tions.

While model-driven software development should make
developing end-user applications easier, the effort of under-
standing and appropriately using the implementation plat-
forms is shifted to domain-specific language engineering,
that is, the design and implementation of domain-specific
languages (DSLs). DSLs must incorporate the implementa-
tion patterns of a complete application domain rather than
those sufficient for a single application, possibly amounting
to a significantly larger effort. This effort can be amortized

123

376 Z. Hemel et al.

by using a language in many projects, and/or by reducing the
cost of creating and maintaining domain-specific languages
and their generators. Thus, effective methods and techniques
for domain-specific language engineering are crucial for real-
izing model-driven software development. A DSL engineer-
ing approach should not only reduce the effort of the initial
creation of a DSL, but also the effort needed for maintenance
tasks such as the adaptation to a new implementation plat-
form, or the extension with new abstractions.

As a realistic case study in the application of transforma-
tion techniques to the systematic development of domain-
specific languages for model-driven software development,
we are developing WebDSL, a domain-specific language for
modeling web applications with a rich data model. In ear-
lier work we described the process of designing WebDSL,
to contribute to a method for systematic development of new
DSLs [62].

In this paper, we describe the techniques for improving
separation of concerns in the implementation of code
generators for domain-specific languages, based on our
experience with the implementation of WebDSL. The core
technique is code generation by model transformation, that
is, the generation of a structured representation (model) of the
target program instead of plain text. This approach enables
the transformation of code after generation, which in turn
enables the extension of the target language with features
that allow better modularity in code generation rules. The
technique can also be applied to ‘internal code generation’
for the translation of high-level extensions of a DSL to lower-
level constructs within the same DSL using model-to-model
transformations.

This paper refines our earlier description of the code gen-
eration by model transformation approach [26] with an
improved architecture for the composition of model-to-model
normalization rules. In particular, in our previous paper [26]
we discussed the difficulty of combining type analysis and
rewriting. Instead of coarse-grained stages that alternate
between normalization and re-application of type analysis,
we have developed a new style of type analysis that can
be integrated with normalizing transformations in a fine-
grained manner. The new normalization strategy has a sim-
pler interface, which makes it easier to extend with rules
for new language extensions. Furthermore, the strategy inte-
grates non-local, context-sensitive transformation rules
for aspect weaving to support separation of concerns
in WebDSL.

1.1 Outline

In the next section, we give a brief introduction to WebDSL.
In Sect. 3, we discuss the architecture of the implementation
of WebDSL. The core of the approach is based on code gener-
ation by term rewriting (Sect. 4), which employs term rewrite

rules with concrete object syntax to transform DSL models to
code models. The implementation of the approach is based on
Stratego/XT, a language and toolset for program transforma-
tion [10,60]. Stratego is a high-level transformation language
that integrates model-to-model, model-to-code, and code-to-
code transformations. The language provides rewrite rules
for the definition of basic transformations, and programma-
ble strategies for building complex transformations that con-
trol the application of rules.

The use of concrete object syntax [59] in the definition of
transformation rules improves the readability of rules, guar-
antees syntactic correctness of code patterns, and supports
the subsequent transformation of generated code. In Sect. 5
we show how this can be used to extend the target language
to make it better suited for code generation. For example, we
have created an extension of Java with identifier composi-
tion, interface extraction, and partial classes and methods to
simplify code generation rules.

The WebDSL language described in Sect. 2 provides basic
abstractions for data models, user interfaces, and actions.
While this provides a significant abstraction from the imple-
mentation platform, the language still requires repetive code
and does not provide optimal separation of concerns. In
Sect. 6 we discuss high-level abstractions for web applica-
tions that can be expressed by transformation to the base lan-
guage. We illustrate this using examples of modules, modular
data model definitions, user interface templates, high-level
polytypic user-interface elements, declarative access control
rules [25], and workflow procedures [27], which can all be
implemented using model-to-model transformations.

The extended language is implemented by means of com-
pilation by normalization, a transformation process in which
high-level constructs are gradually transformed to constructs
of the base language. The implementation of these trans-
formations often requires more than simple local-to-local
rewrite rules. Sect. 7 discusses the implementation of model-
to-model transformations using rewrite rules, and discusses
techniques for realizing local-to-global and global-to-local
transformations such as needed for aspect weaving.

The implementation of the range of language extensions
requires the composition of the model-to-model transforma-
tions that implement them. A natural approach is to stage
the transformations according to level of abstraction, that is,
starting with the highest level constructs, gradually trans-
form down to the base language level. However, it turns out
that interaction between transformations makes staging of
normalization rules cumbersome. In particular, the interac-
tion between type analysis and normalization requires many
re-applications of type analysis in a staged setting [26]. In
Sect. 8 we present an approach for combining model-to-
model transformations into a single normalization strategy
that is modularly extensible with rules for new language con-
structs. In Sect. 9 we present an approach for fine grained

123

Code generation by model transformation 377

Fig. 1 Blog data model entity Blog {
title :: String1 (name)
entries <> List2<BlogEntry>
authors -> Set3<User>

}
entity User {
username :: String
password :: Secret

}

entity BlogEntry {
blog -> Blog (inverse4=Blog.entries)
title :: String (name)
author -> User
created :: Date5

content :: WikiText6

}

Fig. 2 Blog page definitions define page blog(b : Blog) {
title { outputString7(b.title) }
section8 {
header9 { outputString(b.title) }
for10(entry : BlogEntry in b.entries order by entry.created desc) {
section {
header { outputString(entry.title) }
par { "by " outputString(entry.author)

"at " outputDate(entry.created) }
par { outputWikiText(entry.content) }
navigate(editBlogEntry(entry))11 { "Edit" } } }

navigate(createBlogEntry(b)) { "New Blog" } } }

Fig. 3 Blog data manipulation define page createBlogEntry(b : Blog) {
title { "Create Blog Entry for " outputString(b.title) }
var BlogEntry be12 := BlogEntry {

author := securityContext.principal
be.blog := b }

section {
header { "Create Blog Entry for " outputString(b.title) }
form13 {
table {

row { "Title:" inputString(be.title)14 }
row { "Content:" inputWikiText(be.content) } }

action15("Save", save()) } }
action save16() {
be.created := now();
be.save();
return blog17(b); } }

combination of type analysis and transformation, based on a
refactoring of the type analysis strategy.

2 WebDSL

WebDSL is a textual domain-specific language for the imple-
mentation of web applications with a rich data model. The
language provides sublanguages for the specification of data
models, for the definition of custom pages for viewing and
editing objects in the data model, and for the manipulation
of data. Manipulation of data is defined by actions which
are contained in pages. This section describes each of these

sublanguages using the implementation of a small blogging
application as illustration (Figs. 1, 2, 3).

2.1 Data model

A data model specification introduces entity definitions (e.g.,
Blog, BlogEntry, and User in Fig. 11), consisting of
properties with a name and a type. Types of properties are
either value types (indicated by ::) or associations to other

1 The code examples in this paper, contain callouts to help the reader.
These underlined superscripts connect code fragments in the text to
code fragments in the example.

123

378 Z. Hemel et al.

entities defined in the data model. Value types are basic
data types such as String1 and Date5, but also domain-
specific types that carry additional functionality. For example,
the WikiText6 type implies the use of a wiki rendering
engine on display of a value of the type. Associations are
composite (the referer owns the object, indicated by <>) or
referential (the object may be shared, indicated by ->). One-
to-many and many-to-many relationships between entities
are defined through the use of the Set3 and List2types.
The inverse4annotation on a property declares a relation
with automatic synchronization of two properties.

2.2 User interface

Page definitions consist of the name of the page, the names
and types of the objects used as parameters, and a presenta-
tion of the data contained in the parameter objects. For exam-
ple, the definition blog(b : Blog) in Fig. 2 defines a
page showing all blog entries for blog b. WebDSL provides
basic markup operators such as section8 and header9

for defining the structure of a page. Data from the object
parameters (and the objects they refer to) are injected in the
page by data access elements such as outputString7.
Collections of data can be presented using the iterator
construct for10, which can filter and sort the elements of a
collection. Navigation among pages is realized using the
navigate11 element, which takes a page with parameters
and a link text as arguments.

2.3 Data operations

Data can be manipulated by declaring page actions. The sub-
language used in these page actions is a Java-like impera-
tive language with a simple API. The createBlogEntry
page in Fig. 3 shows a page that allows the user to create
blog entries for a specific blog. Data input elements inside a
form13, such as inputString14, are used to let the user
enter information. The save16 action stores the blog entry.
Execution of an action can result in page navigation, initi-
ated by the return17 statement. An action15 element in
a page is used to connect a button with the caption in its
first argument to the action call in its second argument. This
page also shows that pages can have variables to be used for
initialization of data, in this case the var be12of type Blog-
Entry.

3 Implementing WebDSL by code generation

The architecture of the WebDSL generator follows the
four-level model organization presented by Bézivin [7] as
illustrated in Fig. 4. At the M3 level we define the SDF meta-
metamodel, which is the grammar of the Syntax Definition

Fig. 4 Organization of models and artifacts of the WebDSL generator

Formalism SDF, which is defined in (and thus conforms to)
itself [58]. At the M2 level we define the WebDSL meta-
model, i.e., the grammar of WebDSL defined in SDF. At the
M1 level we define WebDSL models of web applications,
consisting of entity and page definitions. At the M0 level we
define the web applications consisting of Java classes and
XHTML pages, which represent the models at the M1 level.

In the implementation of WebDSL that we have real-
ized [62], the M0 systems were initially based on the
Java/Seam architecture, consisting of high-level application
frameworks, such as the Java Persistence API (JPA) [19],
JavaServer Faces (JSF) [13], and the Seam web framework
[37]. Currently, alternative back-ends generating plain Java
servlets [16] and Python (for the Google AppEngine plat-
form [1]), are under development. In this paper, we will only
consider the original Java/Seam back-end. The other back-
ends use similar techniques even if the details of the trans-
formations are different.

For each entity definition, a corresponding entity class is
generated with fields, accessors, and mutators for the prop-
erties of the entity, annotated for object-relational mapping
(ORM) according to the JPA. Figure 5 shows an example
transformation of a WebDSL entity Blog18to a JPA entity
Java class Blog21. The title19 property is transformed
to a class property _title22, the accessor getTitle23,
and the mutator setTitle24. The second property,
entries20, also generates annotations to define static map-
ping to tables (@OneToMany25) and dynamic behaviour
such as save cascading [@Cascade(SAVE_UPDATE)26].

For each page definition, a JSF XHTML page, an Enter-
prise JavaBeans (EJB) [18] session bean, and the required

123

Code generation by model transformation 379

Fig. 5 Transformation of a
WebDSL entity definition to a
JPA class

entity Blog18 {
title19:: String
entries20<> List<BlogEntry>

}

⇒

@Entity public class Blog21 {
protected String _title22 = "";
public String getTitle()23 {

return _title;
}
public void setTitle(String value)24 {

_title = value;
}
@OneToMany25 @Cascade(SAVE_UPDATE)26

protected List<BlogEntry> _entries;
public List<BlogEntry> getEntries() {

return _entries;
}
public setEntries(List<BlogEntry> b) {

_entries = b;
}

}

Fig. 6 Transformation of a
WebDSL page to a JSF page
with a backing bean

define page editBlogEntry(e27 : BlogEntry)28 {
form { table { row { "Title:" inputText(e.title) }

row { "Content:" inputWikiText(e.content) }
action("Save", save())29 } }

action save()30 { e.save(); } }

⇓
<html><body>
<h:form><table>
<tr><td><h:outputText value="Title: "/></td>

<td><h:inputText value="#{editBlogEntry.e.title}"31/></td></tr>
<tr><td><h:outputText value="Content: "/></td>
<td><h:inputTextarea value="#{editBlogEntry.e.content}"/></td></tr>

</table><h:actionLink32 action="#{editBlogEntry.save()}"/></h:form>
</body></html>

@Stateful @Name("editBlogEntry")33

public class EditBlogEntryBean implements EditBlogEntryBeanI {
@In @Out private BlogEntry e;34

public void setE(e) { this.e = e; }
public BlogEntry getE() { return this.e; }
public String save()35 { entityManager.persist(e); } }

@Local36 public interface EditBlogEntryBeanI {
public void setE(e);
public BlogEntry getE();
public String save(); }

interface are generated. Figure 6 shows the WebDSL page
definition editBlogEntry28 with its transformation to
JSF and Java. The page’s arguments become properties of the
session bean which make them available to the JSF Expres-
sion Language (EL). In this example the WebDSL argu-
ment e27 is transformed to the java property e34 which can
be used in JSF EL expressions, e.g. to show its title with
editBlogEntry.e.title31. The connection to the cor-
rect session bean is made by referring to the name specified
in the @Name33 Java annotation, in this case editBlog-

Entry. The save30 action defined in the page becomes
the save35 method of the session bean. The action can be
executed using the actionLink32 JSF element which is
generated from the action29 call in the WebDSL page.
Finally, an interface is generated for the session bean which
makes the methods available and specifies that the bean can
be accessed locally36.

WebDSL is a textual, domain-specific language and its
M2 metamodel is a grammar describing the valid sentences of
that language. From the grammar, we automatically generate

123

380 Z. Hemel et al.

a parser that transforms the textual representation of a model
to an abstract syntax tree (AST). The AST conforms to a
regular tree grammar, another M2 metamodel that defines a
set of valid trees, and which is obtained automatically from
the grammar. All subsequent transformations are applied to
the AST corresponding to the textual representation of the
model. The WebDSL generator transforms high-level mod-
els into low-level Java code and XML files. These target
languages are also described by a grammar and a derived
abstract syntax definition. All transformations are expressed
in Stratego/XT [10], which can apply transformations to any
models with an abstract syntax definition.

In the following sections we discuss the organization of
the generator as a pipeline of model-to-model transforma-
tions, and the idioms used to realize these transformations.

4 Code generation by term rewriting

Most model-driven engineering approaches accomplish code
generation by simply writing strings to text files. Sometimes
template engines are used to make this process easier. In
contrast, in the code generation by model transformation
approach, code generation is just another model transfor-
mation step. Rather than printing strings to a file, source and
target models are represented by means of first-order terms,
and code generation is expressed by means of term rewriting.
For the implementation of WebDSL we use Stratego [10,60],
a transformation language with a combination of features that
makes it suitable for code generation by model transforma-
tion. This section explains code generation by term rewriting
and compares it with code generation using template engines
as used in other MDE approaches.

4.1 Representing models and code with terms

String template engines such as Velocity [56], StringTem-
plate [48], and xPand [64] use templates to generate frag-
ments of plain text, which cannot be checked statically for
syntactic correctness. Only after a complete output file has
been generated for a particular input is it possible to deter-
mine if the generated code is syntactically correct.

Stratego rewrite rules operate on a structured represen-
tation, using first-order terms to represent models as a tree

structure. Any patterns and fragments using this representa-
tion can be statically checked for syntactic correctness. For
example, consider the following WebDSL entity declaration
and its term representation:

This term corresponds to a tree structure, with as root
an Entity node, with as children the term representations
of the name and properties of the entity declaration. Using
the WebDSL meta-model, the structure of this tree can be
statically checked for well-formedness. Similarly, Java code
can be represented using a term representation. For example,
consider the following (tiny) Java class and its term repre-
sentation:

The essence of code generation by model transformation
is to represent both the input model and the generated code
as structured terms. This requires meta-models for the source
language (WebDSL) as well as for the target languages (Java
and XML). Using structured representations for input and
output makes it possible to divide a large transformation into
several, smaller transformation steps. We elaborate on this
technique in Sect. 5.

4.2 Rewrite rules

The elementary operations of a transformation are rewrite
rules of the form L : p1 -> p2 where s. The name
L of a rule can be used to invoke it in a strategy. When applied,
the left-hand side pattern p1 is matched against the subject
term, binding any variables in the pattern to corresponding
sub-terms of the subject term. When the match of p1 and
the condition s succeed, the subject term is replaced with
the instantiation of the right-hand side pattern p2. Rewrite
rules are used for code generation by translating a fragment
of the source language on the left-hand side (represented as
a term pattern) to a fragment of the target language on the
right-hand side (represented as a term pattern). For example,
the entity-to-class rewrite rule in Fig. 7, rewrites a
WebDSL entity declaration to a Java class, using terms to
specify both the left-hand side and the right-hand side of the
rule. The rewrite rule rewrites the input entity to a class where

123

Code generation by model transformation 381

entity-to-class :
Entity(x , prop*) ->
ClassDec(

ClassDecHead(
[MarkerAnno(TypeName(Id("Entity"))), Public()], Id(x), None(), None(), None()),

ClassBody(
[ConstrDec(ConstrDecHead([Public()],None(),Id(x),[],None()),ConstrBody(None(),[]))]))

Fig. 7 Rewrite rule generating Java code with abstract syntax

the name x of the entity is used as the name of the class and
its constructor. For brevity, this rule does not consider the
inclusion of generated properties.

4.3 Concrete object syntax

While we will argue that it is useful to have a structured
representation of generated code, the right-hand side pattern
of the rule in Fig. 7 is not very easy to produce or under-
stand, due to the complexity of the abstract syntax of Java.
A language’s concrete syntax is usually more concise and
more familiar than its abstract syntax. Therefore, Stratego
supports concrete object syntax patterns [59] in the defini-
tion of transformation rules. That is, textual patterns in the
syntax of the language concerned that are compiled to the cor-
responding structured representation pattern. This provides
the same level of readability as template engines, while guar-
anteeing syntactic correctness of code patterns. For example,
using concrete object syntax, the entity-to-class rule
in Fig. 7 can be written as follows:

entity-to-class :
|[entity x { prop* }]| ->
|[@Entity public class x {public x() { } }]|

Note that x and prop* are recognized as meta-variables
for identifiers and lists of properties, respectively. In this
paper, we will indicate meta-variables using italics, to dis-
tinghuish them from identifiers in the subject language. The
implementation details are explained elsewhere [59] and are
not in the scope of this paper.

A more realistic translation of entity declarations is defined
in Fig. 8. Rule entity-to-class generates a Java class
for an entity declaration. The rule uses the auxiliary rule
property-to-java to generate the class body declara-
tions (cbds2*) defining the field and accessors for a property
of an entity. Only the case of properties with value type is
shown here.

4.4 Rewriting versus template engines

The table in Fig. 9 summarizes the differences between the
use of rewriting with concrete syntax and template engines

such as Velocity [56] and xPand [64] for code generation.
The approaches have in common that the concrete syntax of
the target language is used to define (parameterized) code
fragments, which makes it easier to define such fragments
than with the use of abstract syntax. The approaches use
different methods to instantiate the holes in a code fragment.
Rewriting uses pattern matching and meta-variables, whereas
template engines typically use object accessors inside anti-
quotations. This is mainly a difference in programming style,
which is not easy to compare. In order to parse code patterns
in concrete object syntax, a grammar of the target language
is necessary. Since template engines just produce text, they
can be applied flexibly for different languages. On the other
hand, the lack of a grammar entails no syntactic checks of
the code patterns. Finally, the rewriting approach produces
a structured representation, while template engines produce
flat text. A structured representation means that the target
code can be pretty-printed automatically. However, pretty-
printers are available for mainstream languages, so this is
not necessarily a concern for the use of template engines.
The main difference that we are interested in for the purpose
of this paper is the fact that the rewriting approach produces
a structured representation of the target code, which entails
that further transformations can be applied, as we will see in
the following sections.

4.5 Composing generation rules

In Stratego, rewrite rules can be composed using program-
mable strategies that control the application of individual
rules [10,63]. Stratego provides a few basic combinators
for composing transformations from rules. For example, the
combinator s1 ; s2 produces the sequential composition
of the transformation strategies s1 and s2, and the combina-
tor s1 <+ s2 produces the deterministic choice of s1 and
s2. More complex strategies can be constructed from these
basic combinators. For example, the strategy definitions

try(s) = s <+ id
repeat(s) = try(s; repeat(s))

are part of the Stratego Standard Library. The strategy
try(s), tries to apply transformation s, but succeeds by
producing the original term when s fails. The strategy

123

382 Z. Hemel et al.

Fig. 8 Rewrite rules for
generating Java entity class from
WebDSL entity declaration

entity-to-class :
|[entity x_ent { prop* }]| ->
|[@Entity class x_ent {

public x_ent () { }
cbds*
...

}]|
where cbds* := <map(property-to-java)> prop*

...
property-to-java :
|[x :: srt]| ->
|[private t x_field = e ;

public t x_get () { return x_field ; }
public void x_set (t value) { x_field = value; }

]|
where t := <java-type> srt

; e := <initialization-expression> srt
; x_field := <concat-strings> ["_", x]
; X := <capitalize> x
; x_get := <concat-strings> ["get", X]
; x_set := <concat-strings> ["set", X]

Fig. 9 Comparison of rewriting
with concrete syntax and textual
template engines

Rewriting

+ use syntax of target language
+ pattern matching
- requires grammar

+ static syntactic checks
+ structured representation
+ automatic pretty-printing
+ transformation after generation

Template Engine

+ use syntax of target language
+ object accessors
+ flexible: no grammar needed
- no static syntactic checks
- generation of text

+/- use existing pretty-printers
- no transformation after generation

repeat(s), repeatedly applies a transformation s until it
fails. Traversal strategies are defined using generic traversal
operators, and can specify a visit sequence that works on any
tree rather than for a particular tree grammar. For example,

topdown(s) = s; all(topdown(s))

defines a strategy that applies a transformation s to all nodes
in a tree during a top-down traversal. An application-specific
library can collect custom strategy definitions.

Figure 10 shows a basic definition of the webdsl-to-
seam transformation strategy that transforms a WebDSL
application consisting of a list of WebDSL entity and page
definitions to Java classes and JSF code. The strategy is
a pipeline of transformations that are applied in sequen-
tial order to the input model. The typecheck transforma-
tion checks the consistency of declarations and their uses
and annotates identifiers with (a reference to) their decla-
ration or type. The generate-code transformation uses
GenerateCode to map individual WebDSL definitions to
XML- or Java class models. The GenerateCode strategy
is defined using multiple definitions, which is a convenient
way to define an extensible composition of alternatives. Thus,
the definition of GenerateCode in Fig. 10 is equivalent to

GenerateCode = entity-to-class + page-to-class

that is, the non-deterministic composition of the bodies of the
definitions. The non-deterministic compositions1 + s2 of
two strategies entails that either the composition s1 <+ s2
or the composition s2 <+ s1 is used. In other words, the
order in which the alternaves are tried is undefined.

Finally, the write-to-file strategy pretty-prints the
Java class and XML models, and writes them to a file.

5 Transforming generated code

Most programming languages are not designed as targets for
code generation, which is manifest especially in the lack of
composition operators for program fragments of all kinds.
For example, identifiers are typically just strings of alphanu-
meric characters without operators for composing identifiers
from smaller strings. Similarly, classes and methods (in Java
at least) cannot be assembled from smaller class and method
fragments. This lack of compositionality in target languages
is reflected in a corresponding lack of compositionality in
code generation rules, as is illustrated by the rules in Fig. 8;
a rule generating a Java class must produce all ingredients
of that class. Since rewrite rules produce a structured repre-
sentation of the target program, it is possible to apply further

123

Code generation by model transformation 383

Fig. 10 A basic code
generation pipeline

strategies
webdsl-to-seam = typecheck; generate-code; write-to-file
generate-code = map(GenerateCode)
GenerateCode = entity-to-class
GenerateCode = page-to-class

transformations to generated code. In this section, we show
three example extensions of the target language Java with
composition operators that enable better modularization of
code generation rules.

5.1 Identifier composition

Code generation often requires the creation of many new
identifiers based on identifiers in the source model. Since
identifiers in Java (and most programming languages) are
simple alphanumeric strings, creation of identifiers requires
string manipulation and concatenation. For example, the
generation of a field, and a setter and getter method in the
property-to-java rule in Fig. 8 requires three string
concatenations and one string manipulation. Even while this
is straightforward code, it takes up quite a bit of real estate
in the generation rules, and it is repetitive boilerplate code.
To avoid this problem we extended the Java language with
the # operator, which composes its two operand identifi-
ers into a single identifier following Java’s naming conven-
tions. Thus, get#name becomes getName and _#name
becomes _name. The new version of the property-to-
java rule from Fig. 8 using this feature is presented in
Fig. 11. The # operator is implemented by a transformation
that replaces composite identifiers by regular Java identifiers.
The Java extension and the transformation can be reused in
all code generators that produce Java code.

5.2 Partial classes and methods

Since its conception, the WebDSL generator has grown con-
siderably. Initially, the generator was constructed in a cen-
tralized fashion, with a single “God rule” associated with
each generated artifact. Much like a “God class”, an anti-
pattern in object-oriented programming, such a God rule dis-
patches a large number of smaller transformation rules to
generate a monolithic target artifact (e.g., a Java class). The
entity-to-class rule in Fig. 8 is a typical starting point
for growing such a God rule. As new language extensions are
added, these rules grow to a size that no longer fits on a sin-
gle screen. Thus, this pattern is a code smell that hinders the
extensibility and maintainability of the generator.

The employment of God rules is the result of the structure
of the target meta-model: Java does not support composition

of classes. Other platforms, such as C#, provide partial clas-
ses (but not partial methods), which allow subdividing classes
into smaller units. The lack of such a construct makes it dif-
ficult to decompose rewrite rules that generate large classes.
This platform limitation can be resolved by extension of the
target language with partial classes and methods. Our exten-
sion uses Java’s annotation syntax to identify partial classes
and methods with the annotation @Partial. For example,
Fig. 12 shows a refactoring of the generation rules of Fig. 8, in
which the entity-to-java and property-to-java
rules independently generate partial classes. Methods can be
declared as partial using the same annotation:

@Partial void initialize() { stm* }

Since code patterns are no longer assembled by a God rule,
partial code fragments are emitted to a code repository using
rules such as emit-java-class. The code fragments
are collected and assembled by the merge-partial-
classes strategy. Partial classes with the same name
(within the same Java package) are merged into a single Java
class. Similarly, the bodies of partial methods with the same
name (in the same class) are merged into a single method
definition. The ordering of statements originating from dif-
ferent partial methods is non-deterministic. Hence, the gener-
ator should make no assumptions on such an ordering. How-
ever, there is a simple technique to enforce some order. If
there are several classes of statements such that all state-
ments in one class should be executed before all statements
in another class, the partial method can be refactored into a
regular method that calls for each stage a partial method to
which the statements of the various classes can be added.

5.3 Interface extraction

Seam and EJB require that each session bean implement an
interface containing all public methods of that bean. Gen-
erating code for these types of interfaces is tedious, since
it requires generation rules that shadow the generation rules
for the regular class. Therefore, we extended Java to gener-
ate these interfaces automatically. The @RequiresInter
face annotation for a class indicates that a separate inter-
face should be derived from the class including signatures of
all its public methods. Again, the extension is implemented

123

384 Z. Hemel et al.

Fig. 11 Code generation rule
using identifier composition
operator #

property-to-java :
|[x :: srt]| ->
|[private t _#x = e ;

public t get#x () { return _#x ; }
public void set#x (t value) { _#x = value; }

]|
where t := <java-type> srt

; e := <initialization-expression> srt

Fig. 12 Generation rules
emitting partial classes and
methods

entity-to-java :
|[entity x_ent { prop* }]| ->
<emit-java-class> |[
@Entity @Partial class x_ent {
public x_ent () { }

}]|
property-to-java :
|[x :: srt]| ->
<emit-java-class> |[
@Partial class x_ent {

private t _#x = e ;
public t get#x () { return _#x ; }
public void set#x (t value) { _#x = value; }

}]|
where x_ent := <entity>

; t := <java-type> srt
; e := <initialization-expression> srt

by means of a (library) transformation that carries out the
derivation of the interface. Thus, for a page bean generated
with the rule in Fig. 13, a corresponding interface x#Page
BeanInterface is generated as well.

5.4 A revised pipeline

Figure 14 shows a revision of the generator pipeline pre-
sented in Fig. 10, incorporating the new code generation
technique. Since the GenerateCode rules apply not only
to top-level definitions, the map strategy is no longer suffi-
cient. The new generate-code strategy uses the generic
topdown strategy to traverse the WebDSL model, applying
the GenerateCode rules to each node of the input model.
The succesful applications of GenerateCode contribute
to a repository of code fragments, which are assembled by
merge-partial-classes.

6 Model-to-model transformations

The WebDSL language as described in the preceding sec-
tions provides basic abstractions for web applications. As
the language evolved, we have added new features to achieve
higher levels of abstractions, providing better support for par-
ticular kinds of web applications and application domains.

For some of these abstractions, special support from the
platform is needed. However, many can be implemented by
incremental model transformation steps, transforming rich
WebDSL models to more primitive WebDSL models that
only support the feature set of the WebDSL core language as
described in Sect. 2. The advantage of transforming higher
level abstractions to low level core models rather than gen-
erating implementation code from them directly is that the
domain-specific core language that has to be mapped to
implementation target code remains small, increasing por-
tability of the generator. The development of the Servlet and
Python back-ends for WebDSL took little time because the
WebDSL core language is relatively small.

This section discusses several examples of abstractions we
have added to WebDSL and implemented by means of model-
to-model transformations. In the next sections we discuss
the issues that arise in the implementation of such transfor-
mations and the techniques developed to address them. The
rationale for the introduction of a core language for WebDSL
is discussed more extensively by Visser [62].

6.1 Modules

In the WebDSL core language all definitions of an application
have to be defined in a single file. This is not desirable,

123

Code generation by model transformation 385

Fig. 13 Annotating a generated
class for interface extraction

page-to-java-bean :
|[define page x (param*) {elem* }]| ->
<emit-java-class> |[

@RequiresInterface @Partial @Stateful
class x#PageBean {
@In EntityManager em;
...

}
]|

Fig. 14 Code generation
pipeline with partial class
generation and assembly

strategies
webdsl-to-seam =

typecheck; generate-code; merge-partial-classes; write-to-file
generate-code = topdown(try(GenerateCode))
GenerateCode = entity-to-java
GenerateCode = property-to-java
GenerateCode = page-to-java
GenerateCode = parameter-to-java

as it impairs maintainability and reusability of applications.
A simple module system defined as an extension of the core
language addresses this problem. A module is a collection of
definitions and may import other modules. WebDSL mod-
ules are implemented by means of a model-to-model trans-
formation that replaces module imports by the content
of the imported module. This mechanism is similar to the
#includepragma of the C language. The crucial difference
with the C mechanism is that a WebDSL module is parsed
before its abstract syntax tree is included in the abstract syn-
tax tree of the importing module. Thus, it is not possible to
rely on textual composition to compose WebDSL definitions,
e.g. using an import in the middle of a definition.

6.2 Modular data models

To support separation of concerns it can be beneficial to
spread entity declarations over different modules that deal
with various aspects of an application. For example, for our
blogging application we might want to reuse a separate,
generic user management module with a standard User
data model. For the purpose of the blogging application the
User entity needs to have a set of blog entries. Rather than
directly implementing this aspect in theusermanagement
module, we define it in a separate module, using the extend
entity construct to extend the existing User entity. The
transformation merges the entity definition and its extensions,
mapping it to a regular entity declaration in the core WebDSL
language, as illustrated in Fig. 15.

6.3 Template definitions

User-defined templates allow the developer to define reusable
chunks of user interface model. For example, the main()
template in Fig. 16 defines a general set-up for pages (with
menubar and page body) that is shared among many pages
of the application. Pages can call the main() template and
locally override parts of it. For instance, the blog page
overrides the defaultbody template. Templates can be imple-
mented by recursively inlining the contents of their defini-
tions into the page they are called from. Thus, in the blog
page, the main template call is replaced by a top and body
template call, which are subsequently replaced by a menubar
and a section.

6.4 Deriving user interface elements from types

The user interface elements to be used for input and output
of entity properties depend on their type. For example,
input of a String requires a simple text input field, input
of a WikiText requires a larger text area, while input of a
Date requires a date picker. Thus, the core WebDSL
language provides different input elements for different
types. For example, for input of the properties of a BlogEn-
try e, we would use inputString(e.title),
inputDate(e.created), and inputWikiText
(e.content). Since the input element to be used depends
on the type of the property, we can simplify the specification
of inputs to just input(e), and derive the particular kind

123

386 Z. Hemel et al.

Fig. 15 Joining modular data
model definitions

module usermanagement
entity User {

username :: String
password :: Secret

}
module blogentries
imports usermanagement
extend entity User {

entries -> Set<BlogEntry>
}

⇒

entity User {
username :: String
password :: Secret
entries -> Set<BlogEntry>

}

Fig. 16 Inlining template calls define main() {
top()
body()

}
define top() {
menubar { ... }

}
define page blog(b : Blog){
main()
define body() {

section{
header{output(b.name)}
... } }

}

⇒

define page blog(b : Blog){
menubar { ... }
section{

header{output(b.name)}
...

}
}

from the type of the expression using a model-to-model
transformation. Thus, input(e.title) is transformed
to inputString(e.title), input(e.created)
to inputDate(e.created), etc.

A recurring pattern in user interfaces are tabular forms
for input of the properties of an entity. Such forms can be
derived from an entity declaration by considering its proper-
ties. WebDSL provides a collection of derive statements
for deriving different page configurations from data model
declarations. For example, the derive editPage state-
ment produces a complete edit page for a particular entity, as
illustrated in Fig. 17.

6.5 Access control

Most web applications need to adhere to a certain access con-
trol policy that defines the permissions of the various users.
Such a policy can be encoded in the application using con-
ditional checks defined in the protected resource, such as a
page. If access is not permitted the user is notified by a redi-
rect to an error page. This solution requires that access control
checks are entangled with template definitions, which makes
the policy encoded in the application hard to verify or modify.
The WebDSL access control sublanguage [25] supports defi-
nition of access control policies as a separate concern. Access
control rules are defined in a separate section (or module) in
the application, and are woven into the corresponding Web-
DSL definitions during compilation.

The example in Fig. 18 illustrates the weaving of access
control rules. The page editBlogEntry is protected by a
rule that matches the signature of the page (i.e. the name and
type of arguments) and specifies the condition for allowing
access. The condition verifies that the currently logged in
user, the ‘principal’, is the author of the blog entry. The
condition is woven into the page definition by a transforma-
tion, creating an init action which performs the check and
redirects if necessary. Such an action is executed before each
request to the page it is defined in.

6.6 Workflow

Another recurring aspect of web applications is workflow.
Workflow is concerned with the coordination of activities
performed by participants involving artifacts. Workflows can
be encoded using low-level constructs in WebDSL applica-
tions, however these encodings give little insight into the
structure of such workflows. Therefore, we have developed
WebWorkFlow [27], an extension of WebDSL supporting the
definition of tasks on entities and the order in which these
have to be performed using process expressions. Although
the specifics of this extension are beyond the scope of this
paper, it has also been implemented as a model-to-model
transformation. Workflow process descriptions are translated
to procedures, which are then translated to a combination of
entity extensions, access control rules, actions, and page and
template definitions [27].

123

Code generation by model transformation 387

Fig. 17 Derivation of edit page
based on data model

define page editBlogEntry(e : BlogEntry) { derive editPage from e }

⇓
define page editBlogEntry(e : BlogEntry) {

section {
header{"Edit " output(e.title)}
form {
table {
row { "Title:" input(e.title) }
row { "Created:" input(e.created) }
row { "Content:" input(e.content) } }

action("Save", save())
action save() {
e.save();
return blogEntry(e); } } } }

Fig. 18 Access control rule
transformation

define page editBlogEntry(e : BlogEntry) { section { ... } }

rule page editBlogEntry(be : BlogEntry) { principal == be.author }

⇓
define page editBlogEntry(e : BlogEntry) {
init{ if(!(principal == e.author)) { redirect accessDenied(); } }
section { ... }

}

7 Implementing model-to-model transformations

In the previous section, we have illustrated how high-level
abstractions can be implemented by means of model-
to-model transformations to the core language. These
transformations can be implemented by means of the same
techniques we employed for code generation in Sect. 3, i.e.
rewrite rules with concrete syntax and transformation of gen-
erated ‘code’. Using concrete syntax, it is feasible to handle
large code templates, while its underlying structured repre-
sentation enables cascading transformations after generation.
Thus, Stratego unifies model-to-code and model-to-model
transformation, avoiding the need for different languages for
different types of transformations.

Van Wijngaarden and Visser [66] give a classification of
mechanisms for program transformation, distinguishing the
scope of a transformation (which part of a program it affects
or is affected by), its direction (whether it is triggered by the
source or the target), and the number of stages it requires. In
the WebDSL generator three classes of transformations are
used that differ in scope.

• local-to-local transformations, which locally transform
one term to another

• global-to-local transformations, which retrieve informa-
tion from the surrounding (global) context to perform a
local transformation

• local-to-global transformations, which retrieve informa-
tion from a local term for use in the surrounding context

In this section, we discuss the definition of transformations
in these classes. In the next section, we consider the compo-
sition of such transformations.

7.1 Local-to-local

Syntactic abstractions, also known as syntactic sugar, provide
new language constructs that support expression of function-
ality that is already provided by the base language in a more
compact manner. The implementation of such abstractions
can often be realized by means of simple local-to-local trans-
formations.

A local-to-local rewrite replaces a model fragment with
another fragment without using or producing other parts of
the model, as illustrated by the examples in Fig. 19. The
normalize-text rule normalizes applications of the
text construct with multiple arguments to a list of
applications of textwith a single argument. More precisely,
it splits off the first argument of a multi-argument application.
Repeated application of the rule ensures that only singleton
applications remain. For example, text(blog.title,
“: ”, blog.author) is reduced to text(blog.
title) text(“: ”) text(blog.author). Simi-
larly, the normalize-for rule rewrites an occurrence of

123

388 Z. Hemel et al.

Fig. 19 Local-to-local
syntactic normalization rules

normalize-text :
|[text(e1 ,e2 ,e*)]| -> |[text(e1) text(e2 ,e*)]|

normalize-for :
|[for(x : srt in e1 order by e2) {elem* }]| ->
|[for(x : srt in e1 where true order by e2) { elem* }]|

the for statement without a where clause to one with the
universally valid where true clause. These normaliza-
tions ensure that later stages of the code generator only need
to deal with one syntactic variant, i.e., singleton applications
of text and for statements with a where clause.

7.2 Global-to-local

In a global-to-local transformation, model elements are
locally transformed using (global) context information. For
example, a transformation may depend on the types of iden-
tifiers declared elsewhere in the model. Similarly, template
calls can be implemented by inlining a template definition
defined in the global context.

As an example of a global-to-local transformation con-
sider the derivation of edit pages and input elements in
Sect. 6.4, which is implemented by the rewrite rules in Fig. 20.
The derive-edit-page rule transforms a derive
editPage from e element to a complete edit page, as
illustrated in Fig. 17. The transformation is driven by the
type of the expression e. The type-of strategy computes
the type of an expression based on declarations of types
and identifiers. Given a type expression, the entity-
properties strategy retrieves the list of properties of an
entity type. For each property a row is generated by the
derive-edit-row rule. The return address of the
save() action is the view page declared for the entity type,
which is obtained with the view-page strategy.

The edit rows generated by this rule make use of a generic
input element, which is specialized with regard to its type
by an appropriate derive-input rule. For example, an
input for type String, is specialized to an input
String template, and an input for a defined entity type
is specialized to a drop-down menu (select) that allows
selecting an object of that type.

7.3 Local-to-global

A local-to-global transformation can locally rewrite an ele-
ment of the model, while producing elements or informa-
tion for use elsewhere in the global context. This pattern
can be used to implement the extend entity construct
of Fig. 15, or similar aspect-oriented programming (AOP)
constructs.

Normal rewrite rules in Stratego are context-free, that is, a
rule locally transforms a term to another term without access
to the context in which the term occurs. To express context-
sensitive transformations, Stratego provides dynamic rewrite
rules [11]. Dynamic rules are defined at run-time, and inherit
information in the context of their definition. The global-
to-local strategy derive-entity makes use of strategies
type-of and entity-properties, which are imple-
mented using dynamic rules to propagate context information
from declarations to uses, as we will see in Sect. 9.3.

Dynamic rules can also be used to implement local-
to-global transformations, as illustrated in Fig. 21, which
defines a rewrite rule to implement the extend entity
construct. The extend-entity rule is an example of a
non-preserving local-to-global transformation. That is, the
term is rewritten to a placeholder term RemoveMe(), which
is removed from the model in a later transformation step.
In addition, the rule defines a dynamic rule DynamicEx-
tendEntity, which rewrites the base entity definition to
include the additional properties provided by the extend
entity definition (as illustrated in Sect. 6.2). The context-
sensitivity of the dynamic rule stems from the fact that it
inherits the bindings to identifiers from its context. In this
case, the identifiers x and prop1* are bound by the left-hand
side match of extend-entity. Thus, the uses of x and
prop1* in the definition of DynamicExtendEntity refer
to these terms. That is, the properties prop1* are propagated
from the extend entity declaration to the entity declaration
for x. The :+ in the definition of the dynamic rule indicates
that there may be multiple dynamic rule definitions with the
same left-hand side, for the same entity in this case. This
allows the rule to support multiple extensions of the same
entity declaration.

8 Transformation modularity and extensibility

Separation of concerns is a key strategy in model-driven
software development. High-level, declarative models sup-
port separation of essential application properties from the
code patterns used to implement them, such that the effort
of development and maintenance of applications is drasti-
cally reduced. Separation of concerns is also important for
the maintainability and extensibility of the implementation
of domain-specific languages. Rapid extension and adapta-

123

Code generation by model transformation 389

Fig. 20 Rewrite rules to derive
edit page elements

derive-edit-page :
|[derive editPage from e]| ->
|[section{

header{"Edit " srt " " text(e.name)}
form {

table { row* }
action("Save", save()) }

action save() { x.save(); return x_view (x); } }
]|
where prop* := <type-of; entity-properties> e

; row* := <map(derive-edit-row(|x))> prop*
; x_view := <type-of; view-page> e

derive-edit-row(|x) :
|[y relation srt]| -> |[row{x_text ": " input(x.y)}]|

derive-input :
|[input(e)]| -> |[inputString(e)]|
where SimpleSort("String") := <type-of> e

derive-input :
|[input(e)]| -> |[select(s : t , e)]|
where t := <type-of> e ; <defined-entity> t

Fig. 21 Merging extended
entities using a local-to-global
transformation

extend-entity :
|[extend entity x { prop1* }]| -> RemoveMe()
where rules(

DynamicExtendEntity :+
|[entity x {prop2* }]| -> |[entity x {prop2* prop1* }]|

)

tion of a DSL is important to keep up with evolving insights
and requirements.

The use of model-to-model desugaring transformations
separates the implementation of high-level abstractions from
the implementation of lower-level constructs. Rather than
directly bridging the semantic gap between the model and
its implementation in one transformation step, the model is
gradually transformed. This approach is called compilation
by normalization [33]. The code generator does not have to
be aware of the presence of high-level constructs. The front-
end can use the base language, instead of target language
implementation patterns, to implement high-level constructs.
Thus, this vertical separation of concerns realizes informa-
tion hiding between compiler stages, and reduces the impact
of extending the language.

Horizontal separation of concerns is information hiding
within a compiler stage, designed to reduce the dependencies
between transformations for different constructs. Again, it
should be easy to add transformations for new abstractions
without disrupting or otherwise affecting existing rules. For
code generation, horizontal separation of concerns is

achieved by the generation of partial artifacts, factoring out
the assembly of these artifacts into a separate transformation.
The GenerateCode rules can be extended without affect-
ing existing rules. It is not necessary to locate an existing
‘God rule’ and plug into its assembly of a Java class.

In this section, we consider two architectures for the appli-
cation of normalization rules from the perspective of exten-
sibility. In the staged approach rules are divided in clusters,
which are applied sequentially. In the normalization approach
all rules are applied simultaneously.

8.1 Staged normalization

A natural approach to organize a DSL front-end is as a
pipeline of transformation stages that are associated with
language extensions, as illustrated in Fig. 22. The web-
dsl-to-seam compiler is divided into two parts. The front-
end, webdsl-to-core, transforms applications in the
extended WebDSL language to WebDSL core. The back-end,
webdsl-core-to-seam, uses the partial class genera-
tion approach of Sect. 5. This pipeline model of the

123

390 Z. Hemel et al.

webdsl-to-seam =
webdsl-to-core
; webdsl-core-to-seam

webdsl-to-core =
import-modules
; typecheck
; translate-workflow
; weave-access-control
; extend-entities
; derive-pages
; typecheck
; inline-templates
; derive-elements
; normalize-syntax

webdsl-core-to-seam =
generate-code
; merge-partial-classes
; write-to-file

Fig. 22 Pipeline of analysis and transformation stages

transformation is similar to workflow descriptions in other
model transformation solutions, such as openArchitecture-
Ware [20].

The staging approach achieves a form of separation of
concerns by combining transformations associated with a
language extension in a single transformation. However, the
information hiding between stages is limited. Each stage
should eliminate the constructs of the language extension
that it is associated with. After a stage for a particular exten-
sion has been applied, the constructs from that extension can
no longer be used. Thus, the position in the pipeline deter-
mines which language constructs can be used in the gener-
ation templates of that stage. Designing the transformations
for a new language extension requires an analysis of the order
of the stages to determine which language constructs can be
used. Furthermore, adding an extension requires modifica-
tion of the central pipeline, hampering independent extensi-
bility of the language by third party developers. For WebDSL,
which composes multiple sublanguages that focus on differ-
ent aspects of web applications, this phase ordering problem
formed a continuous, although slight nuisance for the authors
of the various language extensions.

In addition to the presence of certain language constructs,
transformation stages may also depend on the results of anal-
ysis stages. For example, the application of the derive-
input rules requires type analysis to be applied to the
argument expressions of input elements. If such input
elements are generated by another stage, it may be necessary
to perform an additionaltypecheck stage. We consider the
problem of the combination of analysis and transformation

in the next section. In this section we ignore the issue and
focus on an extensible architecture for normalization rules.

8.2 Innermost normalization

Desugaring rules translate high-level constructs into a com-
bination of other constructs. If the result of a desugaring rule
would always be a term in the core language, there would
be no phase ordering problem. However, desugaring rules
for high-level abstractions often rely on transformations for
lower-level abstractions that are not core language constructs.
For example, WebWorkFlow definitions are translated to
a combination of entity extensions, page definitions, and
access control rules, which need further desugaring before
the back-end can translate them. Thus, we need to reduce the
model to normal form with respect to the set of desugaring
rules.

In the staging approach we try to find an ordering of
desugaring rules that ensures that we reach this normal form.
However, this requires a dependency analysis on the rules,
which is not guaranteed to produce a linear ordering, as illus-
trated by need to reapply type analysis. The phase ordering
problem can be avoided by applying all desugaring rules
exhaustively using a fixpoint rewriting strategy. That is, any
term that is produced as result of a transformation rule, is
inspected to see if other transformation rules can be applied
to it. (In Sect. 8.3 we discuss termination of this process for
non-confluent rules.)

Figure 23 shows a reimplementation of the webdsl-
to-core strategy. Instead of a sequential composition of
desugaring stages, theinnermost strategy is used to simul-
taneously normalize a model with respect to a set of desug-
aring rules. The innermost strategy takes as argument a
transformation, typically a list of rules composed with deter-
ministic choice (<+), which it exhaustively applies to the
subject term starting with innermost nodes. That is, a term
is only considered for transformation, after all its subterms
have been normalized. When a rule is applied to a term, the
strategy subsequently normalizes the newly produced term.
Thus, right-hand sides of rules do not have to be restricted
to terms in normal form. As a result it is not necessary to
consider the order in which rules are applied.

To extend the new implementation of webdsl-to-
core with desugaring rules, is simply a matter of adding
rules to the argument of innermost. However, this still
requires changing the definition of the pipeline. Extensibil-
ity is further simplified by Stratego’s rule extension facil-
ity. Instead of directly passing a composition of rules to
innermost, the strategy desugar is passed, which is
defined by an extensible set of clauses, in the same manner as
the extension of the GenerateCode strategy in Sect. 4.5.
Defining rules in this fashion allows different desugaring

123

Code generation by model transformation 391

webdsl-to-core =
import-modules
; typecheck
; desugar-top

desugar-top =
innermost(

normalize-text
<+ normalize-for
<+ derive-edit-page
<+ derive-input
<+ extend-entity
<+ ...

)

Fig. 23 Pipeline with innermost normalization

desugar-top =
innermost(desugar)

desugar = normalize-text
desugar = normalize-for

desugar = derive-edit-page
desugar = derive-input

desugar = extend-entity

Fig. 24 Extensible definition of desugar

steps to be defined across different modules, each extending
the desugar definition, as illustrated in Fig. 24. This means
that different desugaring rules can be modularly defined and
implicitly composed and evaluated, without the need for
explicit staging. This helps in separation of concerns, and
is essential for the scalability of a generator specification.

8.3 Normalization with local-to-global rules

Local-to-global transformations may define new dynamic
rules that need to be applied elsewhere in the tree. These
could be elements of the model that have already undergone
normalization. To ensure that these elements are again revis-
ited by the desugar-top traversal, we extend the evalua-
tion strategy with additional logic to ensure that all elements
of the tree are revisited. Figure 25 shows an extended version
of the desugar-top strategy that takes this into account.
Using an additional dynamic rule InnermostApplied, it
keeps track of whether there have been any rule applications
in the current traversal. Note that this rule does not have a
left-hand side, and is simply restricted to the values True()
and False(), similar to a (scopeable) global variable.
If InnermostApplied is True(), desugar-top

repeats the traversal after the current pass is completed. This
process repeats until no rules are applicable anymore, ensur-
ing exhaustive application of both static and dynamic rules.

A number of transformations in the WebDSL compiler
directly relied on the global staging approach used previously
in the generator [26]. These features depend on explicit order-
ing of rewrite rules to handle non-confluent rewrite rules, or
may be applied once or a limited number of times to ensure
termination. Most rewrite rules reduce the input term to a
form closer to a normal form (e.g., core WebDSL). One
such rule is the local-to-global transformation ruleextend-
entity in Fig. 21. It rewrites a construct to a term that is
removed in a different rule, thus ensuring termination of the
transformation. However, it also defines a new dynamic rule
DynamicExtendEntity, which is a preserving global-
to-local transformation. Application of that rule results in a
term that it can be applied to again, resulting in an infinite
sequence of applications.

In general, non-reducing rules can be controlled by
explicitly specifying termination criteria. For instance, an
additional dynamic rule could be used to indicate that a
particular transformation has successfully completed for a
particular element. For dynamically defined global-to-local
transformations, however, Stratego offers a convenient
feature to avoid this. For each dynamic rule, an additional
strategy is derived that applies the rule and then removes
its definition. We can invoke this strategy using the prefix
‘once-’, and integrate it into the system as follows:

desugar = once-DynamicExtendEntity

For non-confluent rewrite rules, the order of their application
affects their result. Similar to non-reducing rules, dynamic
rules can be used to register which rules may be applied at
what time. Using a dynamic rule to explicitly set and check
a rule that maintains a stage number, a given set of rewrite
rules can be explicitly and internally staged without requiring
a global staging mechanism.

9 Combining type analysis and transformation

While the innermost strategy solves the extensibility
problem of the staging approach, it does not solve the interac-
tion between type analysis and desugaring transformations.
In this section, we analyze the interaction problem and pres-
ent a solution for the fine grained combination of analysis
and transformation.

To understand the interaction between type analysis and
transformation consider the transformation of derive ed-
itPage in Sect. 7.2. For example, given the entity definition

entity NewsItem { name :: String text :: Text }

123

392 Z. Hemel et al.

Fig. 25 Fixpoint iteration of
innermost

desugar-top =
do-while(
rules(InnermostApplied := False())
; innermost(desugar; rules(InnermostApplied := True()))
, InnermostApplied => True()

)

type analysis annotates the identifier i in the page definition

define page editNewsItem(i : NewsItem) {
derive editPage from i {NewsItem}

}

with its type NewsItem (indicated in italics). Given this
type, the derive-edit-page rule transforms the page
definition to a page definition with a table and rows (slightly
simplified):

define page editNewsItem(i : NewsItem) {

table(){ row{ "Name:" input(i.name) }

row{ "Text:" input(i.text) } } }

After application of the derive-edit-page rule, the
types of the expression generated as arguments of the input
statements are unknown. Another round of type analysis is
needed to determine the types of the expressions:

define page editNewsItem(i : NewsItem) {

table(){ row{ "Name:" input(i.name {String}) }

row{ "Text:" input(i.text {Text}) } } }

Given these types, the derive-input rules can nor-
malize the input statements:

define page editNewsItem(i : NewsItem) {

table(){ row{ "Name:" inputString(i.name {String}) }

row{ "Text:" inputText(i.text {Text}) } } }

Thus, after application of the derive-edit-page
transformation, type analysis is needed before the derive-
input rules can be applied.

9.1 Integrating type analysis and transformation

In the staged approach of Fig. 22, desugaring transforma-
tions are interleaved with invocations of typecheck in
order to add type information to newly generated terms.
While the staging approach solves the problem of the inter-
action between analysis and transformation, it does so at
a cost to the extensibility of the compiler. Since perform-
ing type analysis to the entire model after the application
of each rewrite rule does not scale, the transformations are
divided into coarse grained stages. The transformation stages
have to be carefully composed such that type analysis is
applied after the application of transformations introducing
new, untyped expressions. Fitting in new transformations
requires a careful analysis of all existing transformations.

If staging is not the answer to the interaction problem,
maybe maintaining a fully typed representation is a solution.
That is, require all transformation rules to produce a rep-
resentation that includes all type and other analysis infor-
mation that is needed to perform further transformations.
For example, the derive-edit-row rule that is respon-
sible for the generation of the input statements above, can
be rewritten to ensure it includes a type annotation in its
result:

derive-edit-row(|x) :

|[y relation srt]| -> |[row{x_text ‘‘:’’ input(e)}]|

where e-untyped := |[x.y]|

; e := <add-type-information(|srt)> e-untyped

With this modification, the rewrite rule now explicitly adds
a type annotation to the generated expression e. While this
approach is effective, it requires additional effort in the devel-
opment of desugaring rules, and leads to rules that are harder
to read and maintain. Furthermore, this violates the principle
of separation of concerns by introducing logic related to type
analysis in transformation rules. For more complex rewrite
rules, the amount of code for type analysis can be signifi-
cantly larger in size, and may require passing around type
information of the surrounding context.

We considered two solutions to the combination of analy-
sis and transformation. Staging analysis and transformation
is not extensible. Integrating analysis in transformation rules
breaks separation of concerns. Is there a solution that main-
tains separation of concerns, yet is extensible?

The typecheck strategy employed in Fig. 22 is a mono-
lithic traversal that combines three functions, as illustrated
by the rules in Fig. 26: name resolution, identifying the dec-
laration to which an identifier is associated; type analysis,
assigning types to identifiers and expressions; and, error
checking, checking type correctness of expressions and other
constructs and generating error messages in case of viola-
tions. Factoring these three operations into separate, inde-
pendently applicable sets of rules, is the key to fine grained
combination of type analysis and transformation. Figure 27
shows the composition of typecheck as a name reso-
lution phase (rename-top) and an error checking phase
(check-constraints). Type analysis is applied during
error checking, but can now also be applied on demand during
desugaring. We discuss these components and their applica-
tion during normalization in the rest of this section.

123

Code generation by model transformation 393

Fig. 26 Rules of monolithic
typechecker

typecheck-variable :
Var(x) -> Var(x){Type(t)}
where if not(t := <TypeOf> x) then

typecheck-error(|["Undeclared variable ",x ," referenced"])
end

declare-page-argument :
|[x : srt]| -> |[x : srt]|
where if not(<TypeExists> srt) then

typecheck-error(|["Illegal type ",srt ," for parameter ",x])
else

rules(TypeOf : x -> srt)
end

typecheck =
rename-top
; check-constraints

Fig. 27 Typechecker composed from name resolution and constraint
checks

9.2 Name resolution

In name resolution, renaming rules annotate identifiers with
unique keys. These are associated with the types of the refer-
enced declaration, using a dynamic rule TypeOf that
rewrites the annotated expression to its declared type. The
annotations added are shared for identical identifiers, taking
scoping rules into account to ensure that identifiers with the
same name in different scopes get different keys.

Figure 29 shows two renaming rules, assigning unique
keys to identifier declarations37 and arguments of page defi-
nitions38. Each declared identifier is annotated with a unique
name by the add-naming-key rule41. A dynamic rule
Rename42 is then generated, which annotates all uses of the
declared identifier with the new key. To ensure that the rule
is only applied in the lexical scope of its declaration, the
dynamic rule is scoped40. The TypeOf rule, on the other
hand, is not scoped. It binds the globally unique key to its
associated type, for use in the phases that follow after this
analysis. The rename rule for page definitions39 renames
all formal arguments farg1* in a similar fashion as is done
for identifier declarations; it declares them as local identifiers
in the page’s scope.

The naming rules are applied in a top-down fashion by
the rename-top strategy, which is defined to apply all-
td(rename). The alltd strategy traverses the tree top-
down and attempts to apply its strategy argument to each
node it traverses, when the application succeeds the traversal
is stopped.

The example in Fig. 28 illustrates the application of renam-
ing rules. The partial page definition on the left is being
renamed, the traversal just passed the last line shown. For
the renamed identifiers, annotations are displayed in super-

script. On the right the active dynamic rewrite rules at this
point in the traversal are listed. The identifier declaration uu1

has shadowed the page argument uu0, thus there is only one
active Rename rule.

9.3 Type analysis

After name resolution, all identifiers in the model have a
unique key, and an associated TypeOf rule that can be used
to acquire its type, without the need for contextual (e.g., scop-
ing) information about the identifier.

Context-sensitive transformations, such as those required
for deriving page elements from entity types, make use of
the type information made available by the name resolution
phase. The type-of rules can be used to acquire the type of
complete expressions. Figure 30 shows the definition of sev-
eral of such rules. The first rule resolves the type of an iden-
tifier, which utilizes the TypeOf dynamic rule. The second
rule calculates the type of an object field access, for instance
user.name. It does so by first calculating the type of the
object expression (user) and then retrieving the type of the
property (name) of the object’s type. A third rule calculates
the type of the addition of two expressions, where it also
checks that they are type compatible.

9.4 Type constraints

One application of name resolution and type analysis is the
static checking of the type correctness of a model. Thetype-
check strategy checks the model for any violations of type
constraint rules. Type constraints can be simple checks for
types (e.g., conditions must be booleans), or more sophis-
ticated checks such as constraints on the nesting of user
interface elements (e.g., all input elements must be nested
within a form). As an example, consider the simple type
constraint in Fig. 31 stating that every identifier used needs
to be declared. Constraint rules typically specify a negative
condition in their where clause: this rule only produces an
error if the constraint is violated. If there are any constraint

123

394 Z. Hemel et al.

Fig. 28 Rename example
define page editing(uu0 : User) {
form {
input(uu0.name)
var uu1 : Blog
input(uu1.title) } }

TypeOf: uu0 -> SimpleSort("User")
TypeOf: uu1 -> SimpleSort("Blog")
Rename: u -> uu1

Fig. 29 Name resolution rules rename-top = alltd(rename)

rename :37

|[var x : srt]| -> |[var y : srt]|
where y := <add-naming-key(|srt)> x

rename-page-arg :38

|[x : srt]| -> |[y : srt]|
where y := <add-naming-key(|srt)> x

rename :39

|[define page x (farg1*) { elem1* }]| ->
|[define page x (farg2*) { elem2* }]|
where {| Rename40

; farg2* := <map(rename-page-arg)> farg1*
; elem2* := <rename-top> elem1*
|}

rename = Rename

add-naming-key(|srt) :41

x -> y
where y := x {<newname> x }

; rules (
Rename : Var(x) -> Var(y)42

TypeOf : y -> srt
)

Fig. 30 Type analysis rules type-of :
|[x]| -> srt
where srt := <TypeOf> x

type-of :
|[e.f]| -> srt2
where srt1 := <type-of> e

; srt2 := <type-of-property> (srt1 , f)

type-of :
|[e1 + e2]| -> srt1
where srt1 := <type-of> e1

; srt2 := <type-of> e2
; <type-compatible> (srt1 , srt2)

violations, the complete set of errors is reported to the user
and the compiler terminates, as shown in Fig. 31. This style
of constraint checking rules was inspired by oAW Check lan-
guage [22].

9.5 Type analysis during transformation

Since type analysis has been separated from error check-
ing and name resolution, it can be used on the fly during

123

Code generation by model transformation 395

Fig. 31 Constraint error rule
and check constraints strategy

constraint-error :
|[x]| -> ConstraintError(["Variable ", x, " not declared"])
where not(<type-of> |[x]|)

check-constraints = where(
collect-all(constraint-error)
; if not(?[]) then report-errors; <exit> 1 end

)

Fig. 32 Fixpoint iteration
desugaring with incremental
name resolution

desugar-top =
do-while(

rules(InnermostApplied := False())
; innermost(

desugar
; {| Rename: rename-top |};
; rules(InnermostApplied := True())

)
, InnermostApplied => True()
)

Fig. 33 Desugaring rule for
case statements

desugar :
|[case(e) { alt* }]| -> |[{ var x : srt := e ; stat }]|
where srt := <type-of> e

; x := <newname> "c"
; stat := <case-to-if(|x)> alt*

transformation. Thus transformation rules that depend on
type information, such as the derive rules in Fig. 20, can
use the type-of rules to compute the type of an expression
without the need for a re-application of type analysis to the
entire model.

Moreover, the specification of the transformation rules
need not be concerned with name resolution. Figure 32 shows
an extension of the desugar-top strategy. Each sucess-
ful application of desugar is followed by an application
of the rename-top rule, which adds unique keys to any
identifiers that have not yet been annotated. By adding a
scope for the Rename dynamic rule, the strategy ensures
that any dynamic renaming rules derived from local dec-
larations do not “leak” out of the context of the generated
code.

While the initial name resolution phase performs a global
analysis, applying rename-top during the transformation
phase is not a context-sensitive operation. It only adds anno-
tations to the generated fragment of code, with regard to
scopes defined in that fragment. For example, consider the
desugaring rule of Fig. 33. It introduces pattern matching by
means of a case statement into the language. To do so, among
other things, it defines a fresh variable x with a new name “c”.
Processed by the rename-top strategy, this name is given

a new, unique key associated with the local type srt. Any
non-local definitions, such as identifier uses in the expres-
sion e, are left alone by the transformation, as they must be
defined in the context of the generated fragment. However, as
they are defined by the context, and not local to this transfor-
mation, it is safe to assume that these identifiers are already
annotated with a unique key, copied from the left-hand side
of the transformation rule.

Likewise, for the derive-edit-row global-to-local
transformation of Sect. 7.2, the generated fragment is
already annotated and requires no additional effort from the
rename-top operation. As an optimization, rename-
top can be cached to avoid inspection of (sub)terms that
are already sufficiently annotated.

Figure 34 illustrates the case statement desugaring with
a concrete example. The show page definition takes two
arguments, a Blog b and a String s. The content of the
page depends on the type of view requested in s, realized
through a case statement. The case statement has been de-
sugared on the right and introduces a new identifier c0c00

which has been automatically renamed after the application
of the desugar rule which is called by desugar-top
(see Fig. 32). Through this mechanism analysis information
is kept intact during transformations.

123

396 Z. Hemel et al.

Fig. 34 Case statement
desugaring applied define page show(bb0:Blog,

ss0:String) {
case(ss0.toLowerCase()) {
"all"{ showAll(bb0) }
...

TypeOf:bb0->SimpleSort("Blog")
TypeOf:ss1->SimpleSort("String")

⇒

define page show(bb0:Blog,
ss0:String) {

{var c0c00 : String :=
ss0.toLowerCase();

if(c0c00=="all"){ showAll(bb0) }
...

TypeOf:bb0->SimpleSort("Blog")
TypeOf:ss1->SimpleSort("String")
TypeOf:c0c00->SimpleSort("String")

10 Discussion

In this section, we discuss related work, evaluate the code
generation by model transformation approach, and discuss
future work.

10.1 Compilation by normalization

Normalization of a rich language to a small core language is a
well-known design pattern in programming language design
and implementation, made popular in particular by the func-
tional programming language Haskell [49]. Haskell is a large
and complex language with many ‘syntactic abstractions’.
These abstractions are translated by the compiler front-end
to a core language, close to the lambda calculus. Furthermore,
the Glasgow Haskell Compiler (GHC) uses a transformation-
based approach in its optimizer that relies on the application
of cascading (small) transformation rules [50].

A difference with the approach in this paper is that the
core language in GHC is not a subset of the input language.
Using an Intermediate Representation (IR) that is a subset
of the source language is useful since it allows the result
of compilation to be fed into the front-end of the compiler.
This approach is for example taken by Kats et al. [33] in the
extension of Java with inline bytecode, which can be used
by code generators for DSLs to flexibly combine (pre-com-
piled) bytecode and source code. The core language design
pattern has also been used in the design of Stratego [10,11]
and SDF [58], the DSLs used for the transformation and syn-
tax definition of WebDSL.

An approach related to compilation by normalization is the
nanopass compiler infrastructure of Sarkar et al. [52], which
advocates the design of compilers as a long pipeline of very
small stages in order to enhance the understandability of the
compiler in an educational context. Each stage transforms the
program to an intermediate, more low-level form. In contrast,
our approach does not employ a strict separation between the
application of the different stages, as doing so hinders com-
positionality of language features. For normalization rules
that are non-reducing or non-confluent, individual rules may
specify dependencies or restrict their application (discussed

in Sect. 8.3), without introducing a form of globally staged
application.

10.2 Rewriting tools

The main ingredients for code generation by model trans-
formation are (1) generation rules that generate structured
representation instead of text, (2) concrete object syntax to
make generation rules readable and maintainable, (3) inte-
gration of model-to-code, code-to-code, and model-to-model
transformations, (4) incremental normalization of high-level
models to low-level ones, (5) extensible definition of trans-
formations, and optionally (6) integration of type analysis
and transformation. In the WebDSL implementation and this
paper we have used the rewriting-based Stratego/XT toolset
[10], which supports all of these ingredients.

Examples of other rewriting-based languages are ASF+
SDF [38] and TXL [15]. Both languages support the defi-
nition of transformations using concrete syntax and can be
used to realize transformations on models and code. How-
ever, these languages provide limited programmability for
strategies controlling the application of transformation rules.
In contrast, Tom [5] supports rewrite rules and strategies.
Tom is implemented as an extension of Java, using a prepro-
cessor approach to map the Tom language features to standard
Java. The language only supports the use of abstract syntax
to specify patterns. Visser’s survey of strategies in rule-based
transformation strategies gives an overview of approaches to
user defined strategies [61].

10.3 Model transformation

In this section, we reflect on the different aspects of typical
MDE systems, and discuss how these compare to the
approach presented in this paper. We first focus our discus-
sion on the transformation of models; in Sect. 10.9 we discuss
code generation techniques.

10.4 An overview of MDE toolkits

Since the advent of model-driven engineering, several mod-
eling methodologies and model transformation approaches

123

Code generation by model transformation 397

have been introduced. A classification of a number of such
systems is given by Czarnecki and Helsen in [17]. Various
MDE toolkits provide model transformation and code gen-
eration facilities, many of which are based on OMG’s MDA
(openArchitectureWare [20,21], AMMA [40], AndroMDA
[3]). Each approach is bound to a particular metamodeling
language. A number of them share a standardized founda-
tion, such as MOF [45], Ecore [12], or KM3 [30]). Other
MDE tools are based on proprietary formats (DSL Tools [14],
MetaEdit+ [35]).

The different MDE toolkits prescribe varying model trans-
formation languages, such as ATL [32], openArchitecture-
Ware’s xTend [20], and QVT [6]. The current crop of MDE
toolkits are characterized by using a separate language for
code generation, such as TCS [31], xPand [64], Velocity
[56]). In general, they also use a separate language to define
a sequence of transformations, or to combine model trans-
formations and code generation. Examples include openAr-
chitectureWare’s workflow language [20] and the Groovy
scripting language [3], employed by AndroMDA.

10.5 Representation of models

Using a common metamodeling language can improve inter-
operability between tools. A number of standardized meta-
metamodels have been developed, such as MOF, Ecore, and
KM3. In Stratego/XT, SDF grammars are used as a corre-
sponding notion. These are serialized using the ATerm for-
mat, and may be used to interoperate with other tools based
on the same technology, such as ASF+SDF [38].

Using a common metamodeling language should not be
considered a “silver bullet” for interoperability, however.
In practice, metamodels designed using different tools are
often incompatible. Similarly, metamodels designed using
the same tool, for the same concrete syntax representation of
a known language, may lack compatibility. Only when using
identical metamodels can models be exchanged across tools.
Alternatively, a well-defined (textual) concrete syntax repre-
sentation may be used to exchange models between tools.

Model management can be based on any algebraic data-
structure such as trees, graphs, hypergraphs, or categories [8].
Most current MDE toolkits are based on graphs, while Strat-
ego/XT uses a tree-based representation.

Trees are acyclic, directed graphs. This nature allows them
to be efficiently stored using maximal sharing, ensuring a
significant decrease in memory usage [9]. Based on maximal
sharing, all identical subtrees occupy the same space in mem-
ory, allowing constant-time equality tests between branches
using pointers. Moreover, terms that are copied can sim-
ply be copied as pointers, while modified terms can be effi-
ciently reconstructed (maintaining maximal sharing) rather
than destructively updated. In contrast, using destructive
updates parts of the tree that may be shared or used in dif-

ferent contexts will be modified in-line. Any local rewrite is
performed using a destructive update, as is typical in graph-
based rewriting.

Using a tree-based structure allows for simple, intuitive
specifications of traversals with clear termination criteria.
For this reason, many graph-based systems employ a span-
ning tree, imposing a tree structure on a graph. In contrast,
in Stratego the tree structure is the principal representation.
By use of dynamic rules, Stratego can conversely impose
graph structures on trees. This makes it possible to model
context-sensitive information that cannot easily be expressed
using mere trees. For example, a dynamic rule can be used
to resolve an identifier reference, essentially connecting the
identifier node to the declaration node. We described how
dynamic rules can provide context information for global-
to-local and local-to-global transformations in Sect. 7.

An alternative approach to using dynamic rules to repre-
sent graphs as trees is Balland and Brauner’s approach of
using de Bruijn indices in terms implemented in Tom [4]
In this approach term paths are used to point to terms. For
instance in the term f(s(a, 1.1)), the path 1.1 will
refer to a by first taking the first child of f and then the first
child of s. Relative paths can also be represented, such as
f(s(a, -1.1)) in which -1 indicates going one term
level up and navigating from there. Again, -1.1 refers to a.
This approach works well in simple cases where little trans-
formations are performed. In the case of a large number of
much more complex transformations, such as the transfor-
mations demonstrated in Sect. 6, it becomes tedious to keep
such paths up to date during transformations.

10.6 Transformation workflow

Stratego/XT does not employ a separate workflow language,
but allows the Stratego language itself to control the applica-
tion of transformations. In contrast, other approaches use a
separate language such as Groovy, or a dedicated workflow
language as is used in openArchitectureWare. For both exam-
ples, a lack of linguistic integration results in a lack of static
checking for the validity and definedness of transformations
that are specified.

10.7 Consistency management

Consistency management is an important issue in MDE [42].
In principle, models can be kept consistent as part of a
transformation. In practice however, doing so tends to make
transformations much more complex. In our approach we
chose to separate the concern of typechecking from the model
transformation at hand. The drawback of this approach is that
models need to be reanalyzed after applying transformations.
Incremental analysis and transformation techniques are an
important research topic.

123

398 Z. Hemel et al.

Fig. 35 The Stratego/XT
platform and the QVT RFP
requirements

Mandatory requirement Supported
1. Language for querying models +
2. Language for transforming models +
3. Meta-models for languages in MOF 2.0 -
4. Expressive transformations +
5. Creation of views of meta-models +
6. Declarative transformations enabling incremental changes +/-
7. Meta-models specified in MOF 2.0 -
Optional requirement Supported
1. Bidirectional transformations -
2. Transformation traceability +/-
3. Generic transformation definitions +
4. Transactional transformations +/-
5. Other sources of data +
6. Model updates +

By analyzing models before any transformations are per-
formed, we detect inconsistencies early and can report them
to the developer. However, problems that occur while the
system is running turn out to be difficult to trace back to
errors in the model. In the future, we intend to investigate the
feasibility of origin tracking [57] to achieve code-to-model
traceability.

Transformation languages such as ATL and xTend allow
transformations to be separated in modules, similar to Strat-
ego. However, extensibility of transformations is more diffi-
cult to realize, especially if transformation extensions have to
operate on the same modeling elements, which is forbidden
in ATL, for instance. In existing MDE toolkits, vertical mod-
ularity in transformations is often realized using a separate
workflow language, such as the oAW workflow language and
Groovy in AndroMDA. Stratego not only integrates model-
to-model and model-to-code transformations, but also the
overall generator workflow. Thus, a single transformation
composition language is used for micro and macro compo-
sitions.

10.8 QVT request for proposals

The Query/View/Transformation (QVT) request for propos-
als [44] of 2002 sparked much interest in the development
and comparison of different tools for model transformations.
Figure 35 summarizes the compliance of Stratego/XT as such
a tool according to the mandatory and optional requirements
as specified by the OMG.

Outlining the mandatory requirements of Fig. 35, Strat-
ego/XT provides excellent support for specifying querying
and transformations of models (1,2). In particular, it supports
querying using a combination of traversal and pattern match-
ing specifications, and provides the APath library [29] for
XPath-like queries. Stratego/XT does not define the abstract
syntax of the query, view, and transformation languages in

MOF 2.0 (3,7), but uses ATerms instead, where SDF gram-
mars define the meta-model. As Stratego is implemented in
itself, the abstract syntax of Stratego is itself also defined
in SDF. The present paper demonstrates how the Stratego
language is capable of expressing all information required
to generate a target model from a source model automati-
cally, as required by (4). Stratego can be used to implement
views through transformations (5). For example, a view of all
names of pages defined in a WebDSL model can be generated
through a transformation that collects all page names in the
model. As meta-models are defined in SDF, which can also
be transformed using Stratego, views can also be constructed
at the meta-model level. Technically, it is possible to incre-
mentally apply changes to source code model into changes
in a target model using Stratego (6). However, this incremen-
tality does not come for free, and requires additional work in
the implementation of the transformations.

Outlining the optional requirements of Fig. 35, transfor-
mations cannot be applied bi-directionally (1); reverse
transformations have to be specified separately. It does not
provide traceability by default (2). However, with additional
runtime or library support limited traceability capabilities can
be added [34]. Support for reusing and extending generic
transformations is where Stratego really shines (3). Using
strategies it is much easier to reuse transformations and tra-
versals than in approaches that do not have such a notion.
Although there is no notion of term inheritance; generic
transformations based on inheritance structures as suggested
in the request for proposals can be supported by emulating
inheritance using strategies that implement is-a behavior
and accessor strategies that set and get properties of terms
generically. Stratego uses copy-on-write semantics for trans-
formations, and allows rollback using the <+ operator (4).
However, applying the system in an asynchronous context is
considered future work. Access is provided to other sources
of data beyond the input model, such as file access and

123

Code generation by model transformation 399

execution of external programs (5). Stratego allows (non-
destructive) updates of models (6).

10.9 Code generation

Some other approaches have generated partial artifacts
through the use of partial classes, which are then combined
by the regular compiler for the target language. Warmer and
Kleppe [65] describe experiences with such an approach.
These approaches rely on the target language to support this
features. In our approach, code is treated as a model, while
most MDE approaches generate code through the use of tex-
tual template engines, which produce plain text, not ame-
nable to further transformation. By treating generated code
as a model, it is possible to extend the target language and
add convenient language features such as partial classes and
methods, and interface extraction.

Generation of partial artifacts has also been applied by
Huang and Smaragdakis [28] by use of Meta-AspectJ [68].
Rather than using a full-fledged AOP (meta-)programming
language, our approach makes use of the standard Java syn-
tax, with only a small semantic extension. By integration of
this functionality in the generator, our approach is indepen-
dent of the capabilities of the target platform.

There have been other approaches that aspect weaving at
the model level rather than using this feature in the gener-
ated code [39,55]. In contrast, in our approach we overlay
the feature of partial classes and methods directly on the
output language. This overlay definition can be used across
different applications, i.e. other code generators that produce
Java code. In contrast, using the more typical approach of
strictly separating model transformation and code genera-
tion (using templates), as applied in [39,55], a very low-level,
general-purpose model representation would have to be used
to achieve the same result.

10.10 Web application generators

Many (visual) languages for modeling web applications have
been developed, including WebML [41], MIDAS [46],
OOWS [43], Netsilon [51], and UWE [2]. UWE generates
JSP code via a model representation conforming to a JSP
metamodel. Netsilon uses an intermediate language for code
generation in order to increase retargetability of the genera-
tor. The other approaches use textual, usually template-based
code generation. WebML interprets its models rather than
generating code from them.

Most approaches apply model transformations with the
purpose of retargetability, or with the purpose of expressing
“as many artifacts as possible using models as this allows
for processing these artifacts using model transformations”
(Voelter et al. [64]). Only Netsilon actually models the target
source code (but then only XML).

10.11 Evaluation

Throughout this paper we have demonstrated how generator
concerns can be better separated. We showed how transfor-
mation rules can be made more concise and modularized by
extending the target language. We discussed several ways of
combining type analysis with rewriting and introduced the
approach of three-phased type analysis and transformation,
in which name resolution, constraint checking, and rewriting
can all be specified as strictly separate concerns.

When additional language abstractions are introduced,
they can take advantage of the open extension points pro-
vided by the generator. These extension points, as described
in Sect. 8 allow the extension to easily plug into the type anal-
ysis, model transformation and code generation subsystems.
We built a number of language extensions into the generator,
most notably the access control and workflow extensions,
which are entirely built by plugging into the extension points
mentioned.

10.12 Future work

A focal point of the present paper has been to provide an
extensible mechanism for language specifications, using the
Stratego language and specialized strategic programming
idioms and library support. In the future, we would like to
further investigate this area, in particular by providing spe-
cialized tool and language support for such specifications.
Stratego is, as a strategic programming and term rewrit-
ing language, a very flexible platform for these endeavors,
but specialized tooling could simplify the implementation of
these idioms and provide additional static checks.

A number of other tools use attribute grammar to spec-
ify analyses, which provide a high-level, declarative, and
effective way to specify analysis on trees [47]. Modern attri-
bute grammar systems such as Eli [24], JastAdd [23], and
Silver [67] offer many specialized features with respect to
the analysis of software languages. More recently, Aster [34]
used strategic programming to abstract over common pat-
terns in attribute equations. Specifications made with these
systems are highly modular and extensible. Unfortunately,
they are lacking in their support for transformations,
particularly for context-sensitive transformations that depend
directly on the type analysis, and vice versa. Ongoing work
focuses on integrating the two paradigms: using the
expressiveness of a strategic term rewriting system for trans-
formations and the high-level specification capabilities of
attribute grammar systems for analysis. Challenges in this
area include the integration of analysis and transformation: as
a tree changes through transformation, this should have a pro-
portionate effect on the attribute evaluation system. Normal
attribute equations are declarative definitions of immutable

123

400 Z. Hemel et al.

properties of nodes in the tree, and may be memoized and
computed on demand. In the context of a rewriting system,
where the tree is a mutable model that undergoes multiple
transformations, these computation principles must be recon-
sidered. This also raises the question of how control should
be determined in a system that combines attribute equations
and rewrite rules. Different designs of explicit control, eager
or on-demand evaluation, and other approaches can be taken,
and have a large impact on the effectiveness of such a system.

11 Conclusion

In this paper, we described several techniques to improve
separation of concerns in DSL generators. The core tech-
nique is code generation by model transformation. The key
idea behind code generation by model transformation is to
represent both the source model and target code as terms.
Current practice is often to directly generate plain text code,
using template engines. We demonstrated that generating
code by term rewriting has a number of advantages, for
instance the ability to ensure syntactical correctness of gen-
erated code and the ability to perform further transforma-
tions on generated code. This enables extension of the target
language with features such as partial classes and methods
which greatly improve the modularity and size of rewrite
rules.

We have shown how high level abstractions can be built
on top of a relatively small core DSL language. Abstractions
are gradually transformed to core DSL elements in a process
of compilation by normalization. We have argued that the
advantage of implementing such abstractions as model trans-
formations is that by keeping the core DSL small, the gen-
erator becomes more portable, making it feasible to develop
multiple generator back-ends.

Many transformations rely on the availability of contex-
tual information, such as type information. In previous work
we discussed the difficulty keeping type annotations up-to-
date as a model is transformed. In this paper, we introduced a
novel approach in which type analysis and rewriting are com-
bined while still keeping the analysis and rewriting generator
concerns separate. Repeatedly reanalyzing the entire model,
the approach we previously took, is therefore no longer nec-
essary.

Acknowledgments We would like to thank the anonymous review-
ers of ICMT 2008 and SOSYM for their comments on earlier ver-
sions of this paper. This research was supported by NWO/JACQUARD
project 638.001.610, MoDSE: Model-Driven Software Evolution, and
612.063.512, TFA: Transformations for Abstractions.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Google App Engine—Google Code.: http://code.google.com/
appengine/ (2008)

2. Kraus, A.K.A., Koch, N.: Model-driven generation of web appli-
cations in UWE. In: Model-Driven Web Engineering (MDWE’07),
Como, Italy, July (2007)

3. AndroMDA.org.: AndroMDA documentation. http://galaxy.
andromda.org (2007)

4. Balland, E., Brauner, P.: Term-graph rewriting in Tom using relative
positions. Electronic Notes in Theoretical Computer Science, vol.
203(1), pp. 3–17. Proceedings of the Fourth International Work-
shop on Computing with Terms and Graphs (TERMGRAPH 2007)
(2008)

5. Balland, E., Brauner, P., Kopetz, R., Moreau, P., Reilles, A.: Tom:
Piggybacking Rewriting on Java. Lecture Notes in Computer Sci-
ence 4533, 36–47 (2007)

6. Bast, W., Belaunde, M., Blanc, X., Duddy, K., Griffin, C., Helsen,
S., Lawley, M., Murphree, M., Reddy, S., Sendall, S., Steel, J.,
Tratt, L., Venkatesh, R., Vojtisek, D.: MOF QVT Final Adopted
Specification, Nov 2005. OMG document ptc/05-11-01

7. Bézivin, J.: On the unification power of models. Softw. Syst.
Model. 4(2), 171–188 (2005)

8. Bézivin, J.: Model driven engineering: an emerging technical
space. In: Lämmel, R., Saraiva, J., Visser, J. (eds) GTTSE, volume
4143 of Lecture Notes in Computer Science, pp. 36–64. Springer,
Heidelberg (2006)

9. van den Brand, M.G.J., de Jong, H., Klint, P., Olivier, P.: Efficient
annotated terms. Softw. Prac. Exp. 30(3), 259–291 (2000)

10. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Strat-
ego/XT 0.17. A language and toolset for program transforma-
tion. Sci. Comp. Programm. 72(1–2), 52–70 (2008)

11. Bravenboer, M., van Dam, A., Olmos, K., Visser, E.: Program trans-
formation with scoped dynamic rewrite rules. Fund. Inform. 69
(1–2), 123–178 (2006)

12. Budinsky, F., Steinberg, D., Merks, E., Ellersick R., Grose, T.J.:
Eclipse Modeling Framework (The Eclipse Series). Addison-
Wesley, Reading (2003)

13. Burns, E., Kitain, R. (eds).: JavaServer Faces Specification. Version
1.2. Sun Microsystems (2006)

14. Cook, S., Jones, G., Kent, S., Wills, A.C.: Domain-Specific Devel-
opment with Visual Studio DSL Tools. Addison-Wesley, Reading
(2007)

15. Cordy, J.: The TXL source transformation language. Sci. Comput.
Programm. 61(3), 190–210 (2006)

16. Coward, D., Yoshida, Y.: Java Servlet Specification. Version 2.4.
Sun Microsystems (2003)

17. Czarnecki, K., Helsen, S.: Feature-based survey of model transfor-
mation approaches. IBM Syst. J. 45(3), 621–645 (2006)

18. DeMichiel, L., Keith, M. (eds.).: JSR 220: Enterprise JavaBeans,
Version 3.0. EJB Core Contracts and Requirements. Sun Micro-
systems (2006)

19. DeMichiel, L., Keith, M. (eds.).: JSR 220: Enterprise JavaBeans,
Version 3.0. Java Persistence API. Sun Microsystems (2006)

20. Efftinge, S., Friese, P.: openArchitectureWare. http://www.eclipse.
org/gmt/oaw (2007)

21. Efftinge, S., Friese, P., Haase, A., Kadura, C., Kolb, B., Moroff, D.,
Thoms, K., Völter, M.: openArchitectureWare User Guide. Version
4.2. http://www.openarchitectureware.org (2007)

22. Efftinge, S., Völter M.: oAW xText—a framework for textual DSLs.
In: Modeling Symposium, Eclipse Summit (2006)

23. Ekman T., Hedin G.: Rewritable reference attributed grammars.
In: Odersky, M., editor, 18th European Conference Object-Ori-
ented Programming (ECOOP 2004), volume 3086 of Lecture Notes
in Computer Science, pp. 144–169, Oslo, Norway, July, Springer
(2004)

123

http://code.google.com/appengine/
http://code.google.com/appengine/
http://galaxy.andromda.org
http://galaxy.andromda.org
http://www.eclipse.org/gmt/oaw
http://www.eclipse.org/gmt/oaw
http://www.openarchitectureware.org

Code generation by model transformation 401

24. Gray, R.W., Levi, S.P., Heuring, V.P., Sloane, A.M., Waite,
W.M.: Eli: a complete, flexible compiler construction system. Com-
mun. ACM 35(2), 121–130 (1992)

25. Groenewegen, D.M., Visser, E.: Declarative access control for
WebDSL: Combining language integration and separation of con-
cerns. In: Schwabe, D., Curbera, F. (eds.) Eighth International Con-
ference on Web Engineering (ICWE 2008), pp. 175–188. IEEE CS
Press, New York (2008)

26. Hemel, Z., Kats, L.C.L., Visser, E.: Code generation by model
transformation. A case study in transformation modularity. In:
Gray, J., Pierantonio, A., Vallecillo, A. (eds.) Theory and Practice of
Model Transformations. First International Conference on Model
Transformation (ICMT 2008), volume 5063 of Lecture Notes in
Computer Science, pp. 183–198, Springer, Heidelberg (2008)

27. Hemel, Z., Verhaaf, R., Visser, E.: WebWorkFlow: an object-
oriented workflow modeling language for web applications. In:
Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) Pro-
ceedings of the 11th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2008), volume
5301 of Lecture Notes in Computer Science, pp. 113–127, Springer,
Heidelberg, 2008

28. Huang, S.S. Smaragdakis, Y.: Easy language extension with Meta-
AspectJ. In: ICSE ’06: Proceeding of the 28th International Con-
ference on Software Engineering, pp. 865–868. ACM, New York
(2006)

29. Janssenn, N.: Transformation tool composition. Master’s thesis,
Institute of Information and Computing Sciences Utrecht Univer-
sity, Utrecht, The Netherlands (2005)

30. Jouault F., Bézivin, J.: KM3: a DSL for metamodel specification.
In: Formal Methods for Open Object-Based Distributed Systems,
volume 4037 of LNCS, pp. 171–185, Bologna, Italy, Springer, Hei-
delberg (2006)

31. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification
of textual concrete syntaxes in model engineering. In: Generative
Programming and Component Engineering (GPCE’06), pp. 249–
254. ACM, New York (2006)

32. Jouault, F., Kurtev, I. Transforming models with ATL. In: Satellite
Events at the MoDELS 2005 Conference, volume 3844 of LNCS,
pp. 128–138. Springer, Heidelberg (2006)

33. Kats, L.C.L., Bravenboer, M., Visser, E.: Mixing source and byte-
code. A case for compilation by normalization. In: Kiczales, G.,
(ed.) Proceedings of the 23rd ACM SIGPLAN Conference on
Object-Oriented Programing, Systems, Languages, and Applica-
tions (OOPSLA 2008), pp. 91–108, October. ACM, New York
(2008)

34. Kats, L.C.L., Kalleberg, K.T., Visser, E.: Domain-specific lan-
guages for composable editor plugins. In: Ekman, T., Vinju, J.,
(eds.) Proceedings of the Ninth Workshop on Language Descrip-
tions, Tools, and Applications (LDTA 2009), Electronic Notes
in Theoretical Computer Science. Elsevier, Amsterdam, 2009 (to
appear)

35. Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+: a fully configura-
ble multi-user and multi-tool CASE and CAME environment. In:
CAiSE, pp. 1–21 (1996)

36. Kelly, S., Tolvanen, J.-P.: Domain-Specific Modeling. Enabling
Full Code Generation. Wiley, New York (2008)

37. Kittoli, S. (ed). Seam—Contextual Components. A Framework for
Enterprise Java. Red Hat Middleware, LLC (2008)

38. Klint, P.: A meta-environment for generating programming
environments. ACM Trans. Softw. Eng. Methodol. 2(2), 176–
201 (1993)

39. Kulkarni, V., Reddy, S.: An abstraction for reusable mdd compo-
nents: model-based generation of model-based code generators.
In: GPCE ’08: Proceedings of the 7th International Conference on
Generative Programming and Component Engineering, pp. 181–
184. ACM, New York (2008)

40. Kurtev, I., Bézivin, J., Jouault, F., Valduriez, P.: Model-based DSL
frameworks. In: Companion to OOPSLA’06, pp. 602–616. ACM,
New York (2006)

41. Brambilla, P.F.M., Comai, S., Matera, M.: Designing web appli-
cations with WebML and WebRatio. In: Rossi, G. et al. (eds.)
Web Engineering: Modelling and Implementing Web Applications,
Human–Computer Interaction Series. Springer, October (2007)

42. Mens, T., van Gorp, P.: A taxonomy of model transformation.
In: Graph and Model Transformation (GraMoT 2005), vol. 152,
pp. 125–142 (2006)

43. Pastor, V.P.O., Fons, J.: OOWS: a method to develop web appli-
cations from web-oriented conceptual models. In: Web Oriented
Software Technology (IWWOST’03), pp. 65–70 (2003)

44. Object Management Group (OMG).: OMG/RFP/QVT MOF 2.0
query/views/transformations RFP, (2003)

45. Object Management Group (OMG).: Meta object facility (MOF)
core specification. OMG available specification. Version 2.0. http://
www.omg.org (2006)

46. Cáceres, B.V.P., Marcos, E.: A MDA-based approach for web infor-
mation system development. In: Proceedings of Workshop in Soft-
ware Model Engineering (2003)

47. Paakki, J.: Attribute grammar paradigms—a high-level meth-
odology in language implementation. ACM Comput. Surv.
(CSUR) 27(2), 196–255 (1995)

48. Parr, T.J.: Enforcing strict model-view separation in template
engines. In: WWW ’04: Proceedings of the 13th International Con-
ference on World Wide Web, pp. 224–233, New York (2004)

49. Peyton Jones, S., (ed).: Haskell98 Language and Libraries. The
Revised Report. Cambridge University Press, Cambridge (2003)

50. Peyton Jones, S.L., Santos, A.L.M.: A transformation-based opti-
miser for Haskell. Sci. Comp. Programm. 32(1–3), 3–47 (1998)

51. Pierre-Alain Muller, F.F., Studer, P., Bézivin, J.: Platform inde-
pendent web application modeling and development with Netsi-
lon. Softw. Syst. Model. 4(4), 424–442 (2005)

52. Sarkar, D., Waddell, O., Dybvig, R.K.: A nanopass infrastructure
for compiler education. In: ICFP ’04: Proceedings of the Ninth
ACM SIGPLAN International Conference on Functional Program-
ming, pp. 201–212. ACM, New York (2004)

53. Schmidt, D.C.: Model-driven engineering. IEEE Comp. 39(2), 25–
31 (2006)

54. Stahl, T., Völter, M.: Model-Driven Software Development. Wiley,
New York (2005)

55. Suzuki, J., Yamamoto, Y.: Extending UML with aspects: aspect
support in the design phase. Lecture Notes in Computer Science,
pp. 299–299 (1999)

56. The Apache Foundation. Velocity User Guide. http://velocity.
apache.org/engine/devel/user-guide.html (2007)

57. Deursen, A.van , Klint, P., Tip, F.: Origin tracking. J. Symbol. Com-
put. 15(5/6), 523–545 (1993)

58. Visser, E.: Syntax Definition for Language Prototyping. Ph.D. The-
sis, University of Amsterdam (1997)

59. Visser, E.: Meta-programming with concrete object syntax. In:
Batory, D., Consel, C., Taha, W. (eds.) Generative Program-
ming and Component Engineering (GPCE 2002), volume 2487
of Lecture Notes in Computer Science, pp. 299–315, Pittsburgh.
Springer, Heidelberg (2002)

60. Visser, E.: Program transformation with Stratego/XT: Rules, strat-
egies, tools, and systems in StrategoXT-0.9. In: Lengauer, C., et al.
(eds.) Domain-Specific Program Generation, volume 3016 of Lec-
ture Notes in Computer Science, pp. 216–238. Spinger, Heidelberg
(2004)

61. Visser, E.: A survey of strategies in rule-based program transforma-
tion systems. J. Symbol. Comput. 40(1):831–873 (2005). Special
issue on Reduction Strategies in Rewriting and Programming

62. Visser, E.: WebDSL: A case study in domain-specific language
engineering. In: Lämmel, R., Visser, J., Saraiva, J. (eds.) Interna-

123

http://www.omg.org
http://www.omg.org
http://velocity.apache.org/engine/devel/user-guide.html
http://velocity.apache.org/engine/devel/user-guide.html

402 Z. Hemel et al.

tional Summer School on Generative and Transformational Tech-
niques in Software Engineering (GTTSE 2007), volume 5235
of Lecture Notes in Computer Science, pp. 291–373. Springer,
Heidelberg (2008)

63. Visser, E., Benaissa, Z.-E.-A., Tolmach, A.: Building program opti-
mizers with rewriting strategies. In: Proceedings of the Third ACM
SIGPLAN International Conference on Functional Programming
(ICFP 1998), pp. 13–26. ACM, New York (1998)

64. Voelter, M., Groher, I.: Handling Variability in Model Transforma-
tions and Generators. In: Domain-Specific Modeling (DSM’07)
(2007)

65. Warmer, J.B., Kleppe A.G.: Building a flexible software factory
using partial domain specific models. In: Domain-Specific Model-
ing (DSM’06), Portland, Oregon, USA, pp. 15–22 (2006)

66. van Wijngaarden, J., Visser, E.: Program Transformation Mechan-
ics. A Classification of Mechanisms for Program Transforma-
tion with a Survey of Existing Transformation Systems. Technical
Report UU-CS-2003-048, Institute of Information and Computing
Sciences, Utrecht University (2003)

67. Wyk, E. V., Krishnan, L., Bodin D., Schwerdfeger, A.: Attri-
bute Grammar-Based Language Extensions for Java. In: Ernst E.
(ed.) 21st European Conference on Object-Oriented Programming
(ECOOP 2007), volume 4609 of Lecture Notes in Computer Sci-
ence, pp. 575–599, Berlin, Springer, Germany (2007)

68. Zook, D., Huang, S.S., Smaragdakis, Y.: Generating AspectJ
Programs with Meta-AspectJ. In: Karsai, G. Visser, E. (eds.)
Generative Programming and Component Engineering: Third
International Conference, GPCE 2004, Vancouver, Canada, Octo-
ber 24-28, 2004. Proceedings, volume 3286 of Lecture Notes in
Computer Science, pp. 1–18. Springer, Heidelberg (2004)

Author Biographies

Zef Hemel is a Ph.D. stu-
dent at Delft University of
Technology focussing on the
design and implementation tech-
niques of domain-specific lan-
guages. He is one of the core
developers of WebDSL and in
particular worked on WebWork-
Flow, a WebDSL sub-language
to describe workflows declara-
tively. He also develops PIL, the
Platform Independent Language,
which simplified the implemen-
tation and maintenance of DSL
back-ends generating code for
multiple software platforms.

Lennart C. L. Kats is a
Ph.D. student at Delft Univer-
sity of Technology, where he
works on techniques and tool
support for developing domain-
specific languages. He is the
lead developer of the Spoofax/
IMP project, which aims to
provide state-of-the-art, Eclipse-
based IDE support for domain-
specific languages developed
with Stratego/XT. He also devel-
oped Aster, a new language
that combines Stratego’s strate-
gic programming with attribute

grammars, and the Dryad Compiler, an experimental open compiler
for Java.

Danny M. Groenewegen is a
Ph.D. student at Delft Univer-
sity of Technology, where he
works on abstractions for the
web domain and their implemen-
tation as domain-specific lan-
guages and code generator. He is
the main developer of the Java
back-end of WebDSL and he
designed and implemented the
access control and data valida-
tion sublanguages of WebDSL.

Eelco Visser is associate pro-
fessor at Delft University of
Technology where he conducts
research in the areas of model-
driven engineering, domain-
specific languages, program
transformation, and software
deployment. Together with his
students he has designed and
implemented domain-specific
languages for syntax definition
(SDF), program transformation

(Stratego), software deployment (Nix), and web application devel-
opment (WebDSL). In the research project ‘Model-Driven Software
Evolution’ he is investigating the introduction of domain-specific lan-
guages as a standard software development tool, including the effective
and efficient construction of DSLs, but also the maintenance of DSLs
and systems built with them.

123

	Code generation by model transformation: a case study in transformation modularity
	Abstract
	1 Introduction
	1.1 Outline

	2 WebDSL
	2.1 Data model
	2.2 User interface
	2.3 Data operations

	3 Implementing WebDSL by code generation
	4 Code generation by term rewriting
	4.1 Representing models and code with terms
	4.2 Rewrite rules
	4.3 Concrete object syntax
	4.4 Rewriting versus template engines
	4.5 Composing generation rules

	5 Transforming generated code
	5.1 Identifier composition
	5.2 Partial classes and methods
	5.3 Interface extraction
	5.4 A revised pipeline

	6 Model-to-model transformations
	6.1 Modules
	6.2 Modular data models
	6.3 Template definitions
	6.4 Deriving user interface elements from types
	6.5 Access control
	6.6 Workflow

	7 Implementing model-to-model transformations
	7.1 Local-to-local
	7.2 Global-to-local
	7.3 Local-to-global

	8 Transformation modularity and extensibility
	8.1 Staged normalization
	8.2 Innermost normalization
	8.3 Normalization with local-to-global rules

	9 Combining type analysis and transformation
	9.1 Integrating type analysis and transformation
	9.2 Name resolution
	9.3 Type analysis
	9.4 Type constraints
	9.5 Type analysis during transformation

	10 Discussion
	10.1 Compilation by normalization
	10.2 Rewriting tools
	10.3 Model transformation
	10.4 An overview of MDE toolkits
	10.5 Representation of models
	10.6 Transformation workflow
	10.7 Consistency management
	10.8 QVT request for proposals
	10.9 Code generation
	10.10 Web application generators
	10.11 Evaluation
	10.12 Future work

	11 Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

