

Edinburgh Research Explorer

Non-functional properties in the model-driven development of
service-oriented systems

Citation for published version:
Gilmore, S, Gönczy, L, Koch, N, Mayer, P, Tribastone, M & Varró, D 2011, 'Non-functional properties in the
model-driven development of service-oriented systems', Software and Systems Modeling, vol. 10, no. 3, pp.
287-311. https://doi.org/10.1007/s10270-010-0155-y

Digital Object Identifier (DOI):
10.1007/s10270-010-0155-y

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Software and Systems Modeling

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 01. May. 2024

https://doi.org/10.1007/s10270-010-0155-y
https://doi.org/10.1007/s10270-010-0155-y
https://www.research.ed.ac.uk/en/publications/bd354e4a-631a-4015-98b6-e23d214a0846

Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Non-Functional Properties in the Model-Driven

Development of Service-Oriented Systems

Stephen Gilmore1, László Gönczy2, Nora Koch3,4, Philip Mayer3, Mirco

Tribastone1, Dániel Varró2

1 University of Edinburgh, UK

2 Budapest University of Technology and Economics, Hungary

3 Ludwig-Maximilians-Universität München, Germany

4 Cirquent GmbH, Germany

Received: date / Revised version: date

Abstract Systems based on the Service-Oriented Architecture (SOA) principles

have become an important cornerstone of the development of enterprise-scale soft-

ware applications. They are characterized by separating functions into distinct

software units, called services, which can be published, requested and dynami-

cally combined in the production of business applications. Service-oriented sys-

tems (SOSs) promise high flexibility, improved maintainability, and simple re-use

of functionality.

Achieving these properties requires an understanding not only of the individual

artifacts of the system but also their integration. In this context, non-functional

aspects play an important role and should be analyzed and modeled as early as

2 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

possible in the development cycle. In this paper, we discuss modeling of non-

functional aspects of service-oriented systems, and the use of these models for

analysis and deployment.

Our contribution in this paper is threefold. First, we show how services

and service compositions may be modeled in UML by using a profile for SOA

(UML4SOA) and how non-functional properties of service-oriented systems can

be represented using the non-functional extension of UML4SOA (UML4SOA-

NFP) and the MARTE profiles. This enables modeling of performance, security

and reliable messaging. Second, we discuss formal analysis of models which re-

spect this design, in particular we consider performance estimates and reliability

analysis using the stochastically-timed process algebra PEPA as the underlying an-

alytical engine. Last but not least, our models are the source for the application of

deployment mechanisms which comprise model-to-model and model-to-text trans-

formations implemented in the framework VIATRA. All techniques presented in

this work are illustrated by a running example from an eUniversity case study.

Key words Non-functional Properties, Service-Oriented Software, SOA, Mod-

eling, Model-Driven Engineering

1 Introduction

Service-oriented computing (SOC) focuses on the development and integration

of distributed, interoperable systems based on a set of autonomous, platform-

independent units called services. Service-orientation aims at a loose coupling of

Non-Functional Properties in the Model-Driven Development of SOSs 3

these services by means of orchestration of services, i.e. combining and re-using

the services in the production of business applications. These characteristics have

now pushed service-oriented systems towards widespread success, demonstrated

by the fact that many large companies have invested a lot of effort and resources

in promoting service delivery on a variety of computing platforms, mostly in the

form of Web services. Very soon there will be a plethora of new services for e-

government, e-business, and e-science, and other areas within the rapidly evolving

Information Society, leading to a pressing demand for effective techniques and

automated methods for engineering service-oriented systems.

A range of domain-specific languages and standards are already available for

engineering service-oriented architectures (SOAs), such as WSDL, BPEL, WCDL,

WS-Policy, and WS-Security. These deal with the various artifacts of SOA sys-

tems, such as service descriptions, orchestrations, policies, and non-functional

properties at specification level. However, more systematic and model-based ap-

proaches for the development of service-oriented systems (SOSs) are still in their

infancy. Most of the proposed modeling languages focus on the structural as-

pects of services [26,24,19,6,32]. Some represent low-level service constructs,

e.g. BPEL [32] and only a few translate the models into platform-independent

models (PIMs) or platform-specific models (PSMs) (e.g. [6,32]).

Achieving the properties of service-oriented systems mentioned above requires

instead (1) an understanding of the individual artifacts of the system, their spec-

ification and their integration – in other words, a complete picture of the system

represented at a high level of abstraction, (2) techniques for the early estimation

4 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

and evaluation of quality of service, and (3) mechanisms for the automated gen-

eration of applications. Model-driven development (MDD) methods are the most

appropriate approaches to support both specification (i.e. 1) and generation (i.e. 3)

of SOA software, and to ease model-based quantitative and qualitative analysis.

In this paper, we present an MDD-based approach to modeling, analysis, and

deployment of service-oriented systems, and focus on how to deal with non-

functional properties such as performance, security and reliable messaging. This

MDD process consists of a chain of model transformations which start with the

models of the application and produce platform-independent models (so-called

PIMs in the MDA terminology) and generate platform-specific models (PSMs in

MDA) by PIM2PSM mappings. Some of the non-functional aspects can be directly

implemented by using WS-standards (e.g., reliable messaging, security, logging,

etc.) while others are effected by the underlying system architecture (e.g. perfor-

mance). Therefore we target the first group by automated deployment mechanisms

based on standards while the latter is the subject of quantitative analysis.

The approach is based on a profile for modeling services in UML, called

UML4SOA [34,33], which we extend to include very generic non-functional spec-

ifications which are bound "per contract" to the services in the structural model

(we call this extension UML4SOA-NFP). For modeling the quantitative behav-

ior of service-oriented systems, we opted for using the specifications offered by

the OMG MARTE (Modeling and Analysis of Real-time and Embedded systems)

profile [43]. A UML profile is a light-weight extension of the UML frequently

used to define a domain-specific modeling language, which is performed using

Non-Functional Properties in the Model-Driven Development of SOSs 5

the extension mechanisms the UML itself offers, i.e. stereotypes, tagged values

and constraints. MARTE deals with concerns of model-based analysis across the

spectrum from specification to detailed design of real-time and embedded systems.

MARTE facilitates the annotation of models with information required to perform

specific analysis. Specifically, MARTE focuses on performance and schedulability

analysis. The models built using the UML4SOA and MARTE profile are used on

the one hand as source for a set of model-to-model and model-to-code transforma-

tions ending up with the deployment of the service-oriented system. On the other

hand, they allow for software evaluation at design time providing e.g. a perfor-

mance analysis in an early phase of the software development. Our model-driven

approach and the analysis techniques are fully tool-supported.

The paper is structured as follows: In Section 2 we present the characteris-

tics of the development process of service-oriented software; we use a scenario of

a distributed eUniversity course management system to illustrate the challenges

in the development of this kind of software. This scenario is also used as the

running example in the remaining sections. Section 3 describes the UML4SOA

modeling approach focusing on the functional aspects. Section 4 presents the ex-

tension of UML4SOA for covering non-functional aspects of service-oriented sys-

tems (UML4SOA-NFP). The extension comprises model elements for specifying

non-functional properties in structural and behavioral UML diagrams. Section 5

shows how software analysis methods can evaluate the models built with the pro-

files presented in the previous sections to realize a performance analysis. Section

6 completes the development process presenting model-driven deployment mech-

6 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

UML models
core, structure

(SoaML)
Sec.3.1.

UML models
non-functional, structure

(UML4SOA-NF)
Sec.4.2.

UML models
core, behavior
(UML4SOA)

Sec.3.2.

UML models
non-functional, behavior
(UML4SOA-NF/MARTE)

Sec.4.3.

Evaluation of non-functional properties
Sec.5.

Automated service deployment by model transformations
Sec.6.

Service descriptor
(WSDL)

Client stubs
(NF extension)

Server-side config
(standard NF platforms)

Performance model (PEPA)
SLA analysis (throughput...),

sensitivity analysis

re-design

Fig. 1 Overview of the approach

anisms. We compare our approach to related work in Section 7. Some conclusions

and the next steps in our research on the model-driven development approach for

SOAs are presented in Section 8. Fig. 1 gives an overview of the main contribu-

tions of this paper for the model-driven development of service-oriented systems

and shows the role of the non-functional aspects in our approach.

2 Challenges in the Development of Service-Oriented Systems

A Service-Oriented Architecture separates functions into distinct software units

called services which users can combine and reuse in the production of business

Non-Functional Properties in the Model-Driven Development of SOSs 7

applications. Service descriptions are published by service providers and services

are invocable by a service requester according to a set of access policies. The

service interface describes the set of interactions supported by a service. Service-

orientation aims at a loose coupling of these services by means of the orchestration

of services, i.e. the description of an executable pattern of invocations that must

be followed in order to automatically coordinate, manage and arrange the set of

services. An orchestration is in our approach also defined as a service.

The advantages offered by service-oriented software once in production have

their costs in the development phase as complexity increases due to the additional

orchestration, compensation, publishing of services, and management of service-

level agreements which need to be addressed. There are primarily two important

software engineering mechanisms which address the problem of increasing com-

plexity and offer mechanisms to ease development. On the one hand, domain-

specific languages, in particular domain-specific modeling languages (DSML), fo-

cus on the concepts used in a domain, which are of greatest significance for the

work in a specific area. Very often a concept is a pattern-like feature which allows

the users of the languages to reduce the complexity of code or models. On the other

hand, automatic code generation based on models – i.e. model-driven development

– eases the production and maintenance of software. Of course, appropriate tool

support is required for modeling, transforming the models, and generating code.

Model-driven development makes models predominant artifacts of the devel-

opment and emphasizes the automation of the engineering process. Cornerstones

of the MDD approaches are modeling languages for the specification of the appli-

8 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

cations, and model transformation languages required for generating other models

or code. Service-oriented design is a new domain which currently lacks effec-

tive and comprehensive domain-specific modeling languages and code generation

tools.

In addition to the traditional class diagram model of the domain and the se-

quence and state diagrams modeling the behavior of objects and components, in

the case of service-oriented software we need also to model the orchestration of

services. Here we should consider such complications as compensation for actions

in case of any failure during the process. Non-functional properties such as secu-

rity, performance and reliable connection need to be modeled as well. They play a

more relevant role in service-oriented computing than in traditional software. This

is because services must respect service-level agreements which establish secu-

rity policies and acceptance levels of performance. It is intuitive then to model the

non-functional properties as contracts which are associated with the services, i.e.

to follow a contract-based modeling approach.

3 Modeling Service-Oriented Systems

The UML [38] is the most well-known and mature language for modeling soft-

ware systems. However, plain UML lacks native support for the specification of

structural and behavioral aspects of services. Service modeling introduces a new

set of key distinguishing concepts, for example partner services, message passing

among requester and provider of services, long-running transactions, compensa-

tion, and events. Without specific support for those concepts in the modeling lan-

Non-Functional Properties in the Model-Driven Development of SOSs 9

guage, diagrams quickly get overloaded with technical constructs, degrading their

readability.

Several attempts have been made to add service functionality to the UML.

Most notably, SoaML [40] is an upcoming standard UML profile of the OMG

for structural specification of service-oriented architectures. Our own contribu-

tion to the field of UML service modeling is UML4SOA [34], a profile for

specifying behavior of services, in particular service orchestrations, a feature

which distinguishes service-oriented software from traditional application soft-

ware. UML4SOA is based on the structural part of SoaML, adding the dynamic

parts.

In the following sections we present our running example and give an overview

of SoaML and UML4SOA concepts and discuss how to apply them to the case

study scenario. We describe the structure of the service-oriented system and, fi-

nally, the service orchestration behavior. In each of these sections, we introduce

the relevant SoaML and UML4SOA stereotypes used.

In later sections, the elements introduced here will be extended with a package

of stereotypes for dealing with non-functional properties (Section 4).

3.1 The eUniversity Case Study

As a running example throughout this paper, we will consider modeling and im-

plementing an all-electronic university (an eUniversity), in which all courses and

paperwork are handled online. We will focus on the processing of a student appli-

10 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

cation for a course of studies. This example has been taken from one of the case

studies of the Sensoria project [48,1].

In this scenario, the student uses a website to apply for a certain course of

studies. That is, the eUniversity website acts as a client to a service providing the

functionality for handling a student application. This functionality is provided by

an entity called the ApplicationCreator. Implementing this functionality requires

the combination (orchestration) of a set of different external services, e.g. student

office, a service for the upload of documents, and a service to check the application

(validation service). This validation service, implemented by an entity called the

ApplicationValidator, is itself also a composition of other services.

In the student application scenario of our eUniversity case study, the following

non-functional requirements are defined:

– The Client and the ApplicationCreator should communicate via a secure and

reliable connection.

– The document UploadService might be under heavy workload, therefore its

throughput should be at least 10 requests/second with a 4 second average re-

sponse time.

– All requests sent to the ApplicationValidator should be acknowledged.

– As the validation service handles confidential data, all requests should be en-

crypted in order to protect the privacy of the students.

– Messages sent by the ApplicationValidator must be clearly accountable, i.e.

non-repudiation of messages must be guaranteed.

Non-Functional Properties in the Model-Driven Development of SOSs 11

We will detail the model of the case study in the next two subsections and come

back to the above requirements in later sections.

3.2 Modeling Structural Aspects

For modeling the structural aspects of our case study, we employ the basic UML

mechanisms for modeling composite structures, enhanced with stereotypes from

the SoaML profile - «participant», «servicePoint», «requestPoint», «serviceInter-

face» and «messageType» (listed in Table 1). With regard to the structure of our

case study, we talk about services, service interfaces, and service participants. The

basic unit for implementing service functionality is a service participant, modeled

as a class with the stereotype «participant». A participant may provide or request

services through ports, which are stereotyped with «requestPoint» or «service-

Point», respectively. Each port has a type, which is a «serviceInterface» imple-

menting or using operations as defined in a standard UML interface definition.

The components of the eUniversity case study which are relevant for the stu-

dent application scenario are shown in Fig. 2. It represents the overall composition

of a SOA system modeled as a UML component diagram using SoaML model

elements. As can be seen, each of our two participants offers or requires multiple

services; for example, the ApplicationCreator is invoked by the client for the cre-

ation of a new application, but invokes several other services as well, such as the

validationService and the statusService.

The eUniversity case study scenario includes two services which are defined

as an orchestration of other services, the ApplicationCreator and the Application-

12 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

A
ca

de
m

ic
 U

se
 O

nl
y

+c
he

ck
Re

qu
ire

m
en

ts
(a

pp
 :

A
pp

lic
at

io
n,

 d
oc

um
en

ts
 :

Do
cu

m
en

ts
, a

dm
is

si
on

 :
A

dm
is

si
on

Da
ta

, s
tu

de
nt

Fo
rm

al
Da

ta
 :

Fo
rm

al
St

ud
en

tD
at

a
) :

 V
al

id
at

io
nR

es
ul

t
A
dm

is
si
on
De
ci
si
on
In
te
rf
ac
e

+r
eg

is
te

rS
tu

de
nt

(a
pp

 :
A

pp
lic

at
io

n
)

+d
er

eg
is

te
rS

tu
de

nt
(a

pp
 :

A
pp

lic
at

io
n

)
+g

et
Fo

rm
al

St
ud

en
tD

at
a(

 a
pp

 :
A

pp
lic

at
io

n
) :

 F
or

m
al

St
ud

en
tD

at
a

O
ff
ic
eI
nt
er
fa
ce

+i
ni

tia
liz

eA
pp

lic
at

io
nS

ta
tu

s(
 a

pp
 :

A
pp

lic
at

io
n

) :
 S

ta
tu

s
+a

pp
lic

at
io

nS
ta

tu
sI

nv
al

id
(s

t :
 S

ta
tu

s
)

+a
pp

lic
at

io
nS

ta
tu

sS
uc

ce
ss

(s
t :

 S
ta

tu
s

)
+a

pp
lic

at
io

nS
ta

tu
sC

an
ce

l()St
at
us
In
te
rf
ac
e

+i
ni

tia
liz

eU
pl

oa
di

ng
(a

pp
 :

A
pp

lic
at

io
n

)
+g

et
Up

lo
ad

ed
Do

cu
m

en
ts

(a
pp

 :
A

pp
lic

at
io

n
) :

 D
oc

um
en

ts

Up
lo
ad
In
te
rf
ac
e

+n
ew

A
pp

lic
at

io
n(

 a
pp

 :
A

pp
lic

at
io

n
) :

 S
ta

tu
s

+c
om

pl
et

eA
pp

lic
at

io
n(

) :
 S

ta
tu

s
+c

an
ce

lA
pp

lic
at

io
n(

) :
 S

ta
tu

s

C
lie
nt
In
te
rf
ac
e

+g
et

A
dm

is
si

on
In

fo
rm

at
io

n(
 a

pp
 :

A
pp

lic
at

io
n

) :
 A

dm
is

si
on

Da
ta

A
dm

is
si
on
In
te
rf
ac
e

+s
ta

rtV
al

id
at

io
n(

 a
pp

 :
A

pp
lic

at
io

n
)

+c
om

pl
et

eV
al

id
at

io
n(

 d
oc

s
: D

oc
um

en
ts

)
: V

al
id

at
io

nR
es

ul
t

+c
an

ce
lV

al
id

at
io

n(
)V
al
id
at
io
nI
nt
er
fa
ce

<<
Se

rv
ic

eI
nt

er
fa

ce
>>

A
dm

is
si
on
De
ci
ss
io
nR
eq
ue
st
In
te
rf
ac
e

<<
Se

rv
ic

eI
nt

er
fa

ce
>>

V
al
id
at
io
nR
eq
ue
st
Se
rv
ic
eI
nt
er
fa
ce

<<
Se

rv
ic

eI
nt

er
fa

ce
>>

C
lie
nt
Se
rv
ic
eI
nt
er
fa
ce

<<
Se

rv
ic

eI
nt

er
fa

ce
>>

O
ff
ic
eR
eq
ue
st
In
te
rf
ac
e

<<
Se

rv
ic

eI
nt

er
fa

ce
>>

A
dm

is
si
on
Re
qu
es
tIn
te
rf
ac
e

<<
Se

rv
ic

eI
nt

er
fa

ce
>>

St
at
us
Re
qu
es
tIn
te
rf
ac
e

<<
Se

rv
ic

eI
nt

er
fa

ce
>>

Up
lo
ad
Re
qu
es
tIn
te
rf
ac
e

<<
Pa

rti
ci

pa
nt

>>
A
pp
lic
at
io
nC
re
at
or

<<
Se

rv
ic

eP
oi

nt
>>

cr
ea

tio
nS

er
vi

ce

<<
Re

qu
es

tP
oi

nt
>>

st
at

us
Se

rv
ic

e

<<
Re

qu
es

tP
oi

nt
>>

up
lo

ad
Se

rv
ic

e

<<
Re

qu
es

tP
oi

nt
>>

of
fic

eS
er

vi
ce

<<
Re

qu
es

tP
oi

nt
>>

va
lid

at
io

nS
er

vi
ce

<<
Pa

rti
ci

pa
nt

>>
A
pp
lic
at
io
nV
al
id
at
or

<<
Se

rv
ic

eP
oi

nt
>>

va
lid

at
io

nS
er

vi
ce

<<
Re

qu
es

tP
oi

nt
>>

ad
m

is
si

on
Se

rv
ic

e
<<

Re
qu

es
tP

oi
nt

>>
de

ci
si

on
Se

rv
ic

e

<<
Re

qu
es

tP
oi

nt
>>

of
fic

eS
er

vi
ce

<<
ty

pe
>>

<<
ty

pe
>>

<<
ty

pe
>>

<<
ty

pe
>>

<<
ty

pe
>>

<<
ty

pe
>>

<<
ty

pe
>>

<<
ty

pe
>>

<<
ty

pe
>>

Fig. 2 The eUniversity Student Application Scenario

Non-Functional Properties in the Model-Driven Development of SOSs 13

UML4SOA
Metaclass

Stereotype UML Metaclass Description

Participant «participant» Class Represents some (possibly con-
crete) entity or component that
provides and/or consumes ser-
vices

ServicePoint «servicePoint» Port Is the offer of a service by one
participant to others using well
defined terms, conditions and in-
terfaces. It defines the connection
point through which a participant
provides a service to clients

RequestPoint «requestPoint» Port Models the use of a service by
a participant and defines the con-
nection point through which a
participant makes requests and
uses or consumes services

ServiceInterface «serviceInterface» Class Is the type of a «servicePoint»
or «requestPoint», specifying pro-
vided and required operations

MessageType «messageType» DataType, Class Is the specification of informa-
tion exchanged between service
requesters and providers

Table 1 SoaML Profile

Validator (see colored components in Fig. 2). The behavior of each of these is

modeled as an activity diagram which uses UML4SOA extensions. The objec-

tive of the ApplicationValidator is to verify whether the application follows the

policies of the university. The actual implementation of the two orchestrations fur-

ther refines the behavior of this scenario, and is detailed in Section 3.3. The other

services, including the client service, are atomic and implemented in a standard

programming language (for example, in Java).

Overall, the scenario works as follows: A student uses the website to apply

for a certain course of studies. The website (not shown) contacts the Application-

Creator through its creationService service port. The ApplicationCreator, in turn,

calls other entities through the uploadService, the officeService, and the statusSer-

vice ports. Last but not least, it also contacts the ApplicationValidator through the

14 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

validationService port for checking the student data and setting the status of the ap-

plication. Being implemented as an orchestration itself, ApplicationCreator works

with other entities itself – through the officeService (again), the admissionService,

and finally the decisionService ports to carry out the validation task. After a review

of the application by the various services, the student is notified whether he was

accepted at the university.

Summarizing, services are defined as ports. Depending on whether they are

provided or required, the stereotypes «servicePoint» or «requestPoint» are used.

Ports belong to «participant»s, which may require or provide multiple services.

3.3 Modeling Behavioral Aspects

More challenging than modelling the structural aspects of SOAs is the task of mod-

eling behaviour – in particular the orchestration of services. To enable developers

to model such behaviour in an easy fashion, we have introduced UML4SOA [34],

which is defined as a high-level domain-specific modeling language (DSML) for

modeling service orchestrations as extensions of UML activity diagrams.

An excerpt of the UML4SOA metamodel is shown in Fig. 3, which includes

the main concepts of our DSML and the relationships among these concepts. For

each non-abstract class of this metamodel, we have defined a stereotype with the

objective of producing semantically enriched but still readable models of service-

oriented systems. Tables 2 and 3 provide a summary of the elements of the meta-

model, the stereotypes that are defined for these metamodel elements (they com-

prise the profile UML4SOA), the UML metaclasses they extend, and a brief de-

Non-Functional Properties in the Model-Driven Development of SOSs 15

scription. For further details on UML4SOA, including the full metamodel, the

reader is referred to [34].

MagicDraw UML, 1-1 C:\code\sensoria\mdd4soa\ws\sosym09\model\UML4SOA_SoSYM_Frozen.mdzip ExcerptOfUML4SOAMetaModel Nov 26, 2009 1:49:0

Academic Use Only

ServiceElement

ServiceSend&ReceiveAction

Pin

CompensateAction

ActivityEdge Action

CompensateAllAction

ServiceActivityNode

ServiceInteractionAction

Element

ServiceReceiveAction

LinkPin

ServiceReplyAction

ServiceSendAction

EventEdge

CompensationEdge

OutputPin

ReceivePinSendPin

InputPin

eventBaseElement
1

eventHandler0..*

0..*

compensatedElement 1

compensationHandler
1

0..*

partner

1

0..*

compensationTarget
1

Fig. 3 Excerpt of the UML4SOA Metamodel (includes some colored UML metaclasses)

UML4SOA proposes the use of UML activity diagrams for modeling ser-

vice behavior, in particular for modeling orchestrations which coordinate other

services. We assume that business modelers are most familiar with this kind of

notation to show dynamic behavior of business workflows.

16 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

UML4SOA Meta-
class

Stereotype UML Metaclass Description

ServiceActivity
Node

«serviceActivity» Activity, Structured
ActivityNode

Represents a special activity for
service behavior or a grouping
element for service-related ac-
tions

ServiceSendAction «send» CallOperationAction Is an action that invokes an op-
eration of a target service asyn-
chronously, i.e. without waiting
for a reply. The argument val-
ues are data to be transmitted as
parameters of the operation call.
There is no return value

ServiceReceiveAction «receive» AcceptCallAction Is an action representing the re-
ceipt of an operation call from
an external partner. No answer
is given to the external partner

ServiceSend&Receive «send&receive» CallOperationAction Is a shorthand for a sequential
order of send and receive ac-
tions

ServiceReplyAction «reply» ReplyAction Is an action that accepts a return
value and a value containing re-
turn information produced by a
previous ServiceReceiveAction
action

Table 2 UML4SOA Profile (1)

The two processes ApplicationCreator and ApplicationValidator from Fig. 2

are modeled as UML4SOA orchestrations. The first one is shown in Fig. 4. It

illustrates how the creator interacts with its partner entities through ports. It starts

with a receipt («receive») of the call newApplication through the creationService

service port, receiving the application. After the receipt of this call, statusService

and uploadService are initialized (both times with synchronous calls, i.e. using

«send&receive»), and the inital call is returned with a «reply». Completing the

initalization phase, the startValidation call is sent (using an asynchronous «send»)

to the ApplicationValidator to request the start of the validation. After having done

so, the process waits for another call («receive») from the client. The student will

either press the button to complete the application, or another one to cancel it.

Non-Functional Properties in the Model-Driven Development of SOSs 17

Fig. 4 UML4SOA activity diagram showing the ApplicationCreator

18 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

UML4SOA Metaclass Stereotype UML
Metaclass

Description

CompensationEdge «compensation» ActivityEdge Is an edge which connects an or-
chestration element to be compen-
sated with the one specifying a
compensation. It is used to asso-
ciate compensation handlers to ac-
tivities and scopes

EventEdge «event» ActivityEdge Is an edge connecting event han-
dlers with an orchestration element
during which the event may occur.
An event handler must start with a
receive, and runs in parallel and in
the context of the attached scope

CompensateAction «compensate» Action Triggers the execution of the com-
pensation defined for a (defined)
scope or activity. Can only be used
in compensation or event handlers

CompensateAllAction «compensateAll» Action Triggers compensation of the
scope attached to the handler in
which the action is invoked, and
all subscopes in reverse order of
their completion. Can only be used
in compensation or event handlers

LinkPin «lnk» InputPin Holds a reference to the partner
service by indicating the corre-
sponding service point or request
point involved in the interaction

SendPin «snd» InputPin Is used in send actions to denote
the data to be sent to an external
service

ReceivePin «rcv» OutputPin Is used in receive actions to denote
the data to be received from an ex-
ternal service

Table 3 UML4SOA Profile (2)

If a cancelApplication call is received, the validation service is instructed to

cancel the validation («send&receive»), and the status service is notified that the

application has been canceled («send»). If, on the other hand, the student chose to

complete the application, the uploaded documents are retrieved from the upload-

Service with a synchronous «send&receive» and a final validation is requested

from the ApplicationValidator, using the completeValidation call (synchronous,

«send&receive»). If the result is okay, the student is registered at the studentOf-

Non-Functional Properties in the Model-Driven Development of SOSs 19

fice with registerStudent («send»). In any case, the initial call is replied to with a

«reply» action.

Besides the normal flow of the activity, the diagram also shows a second struc-

tured activity node – a compensation handler. The actions defined within Compen-

sationHandler are executed if the main activity has been completed successfully,

but needs to be undone. This functionality can be triggered externally after the or-

chestration has been completed. If the application has been completed successfully

before, the student is removed from the list of applicants by using a deregisterStu-

dent call on the officeService.

Note that the activity diagram in Fig. 4 makes use of two distinct sets of stereo-

types. The first set of stereotypes is part of the UML4SOA profile as defined above

– i.e., the «send», the «receive», the «send&receive» and the «reply» stereotypes.

The second set of stereotypes in Fig. 4 is part of the OMG MARTE profile, for

example the «PaStep» or the «GaWorkloadEvent» stereotypes. Those are used for

performance evaluation and will be discussed in the next section.

The second activity diagram, modeling the ApplicationValidator, is shown in

Fig. 5. This service acts as supplier to the creation service, starting with the receipt

of the startValidation call («receive») from the ApplicationCreator through the

validationService port. Afterwards, both the officeService and the admissionSer-

vice are contacted simultaneously and synchronously («send&receive») to check

admission of the student, and to check the student data.

Subsequently, the process waits (using «receive») for the completeValidation

call from ApplicationCreator. After it is received, all the information gathered so

20 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

far is checked with the help of the decisionService, and the result is returned via

«reply» to the ApplicationCreator.

Fig. 5 UML4SOA activity diagram showing the ApplicationValidator

Non-Functional Properties in the Model-Driven Development of SOSs 21

4 Enhanced Modeling with Non-functional Properties

The previous section has shown how the UML4SOA profile may be used to model

(functional) static and dynamic aspects of a service-oriented system. In this section

we extend the UML4SOA modeling approach for non-functional properties. We

call the extension UML4SOA-NFP. First, we discuss non-functional aspects and

standards of service-oriented systems, then we present the modeling elements for

the structural and behavioral aspects and the corresponding stereotypes. Finally,

non-functional properties of the case study introduced in Section 2 are modeled.

4.1 Non-Functional Aspects of Services

Performance characteristics describe the timely behavior of a service, such as

response time, throughput, etc. Typically average and maximum/minimum values

of these parameters are defined in service-level agreements (SLAs). In this paper,

we present an analysis method on service level performance, however, middleware

characteristics (e.g. maximum transmission time) can also be considered.

Dependability characteristics describe the behavior of the system in the presence

of faults. Availability refers to the readiness of the service to be used while reli-

ability of a service prescribes the capability of maintaining service quality (i.e.,

correct operation) [7].

Dependability can be defined at different levels in SOSs. Application level de-

pendability describes requirements on the component behavior while middleware

level dependability is related to the (Web) service layer and the message commu-

22 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

nication. The latter also hides the network level properties which can often change

and typically are out of a service engineer’s scope. UML4SOA-NFP can model

both levels, however, the analysis and deployment methods presented here target

the middleware level.

Reliable messaging in the field of traditional distributed systems is closely re-

lated to the guaranteed semantics of message delivery. Typical delivery modes are

the following:

– At least once delivery. In the case of normal operation, every message is trans-

ferred at least once, with the possibility of sending multiple instances of the

same message. This can only be allowed in systems where this does not have

an undesired side-effect.

– At most once delivery guarantees that no message will be sent multiple times

to the receiver, but their successful transmission is not ensured.

– Exactly once delivery is the strongest delivery semantics, guaranteeing both

the successful message delivery (usually acknowledgements are required for

each message) and the filtering of duplicate messages.

The following low-level attributes are required for the configuration of reliable

messaging (besides messagingSemantics, which selects the messaging mode as

described earlier):

– inactivityTimeout: (integer, seconds), after this period of time if no acknowl-

edgment message has arrived, the connection is closed;

– exponentialBackoff: (boolean), if it is set to true, time amounts between re-

transmissions follow an exponential distribution;

Non-Functional Properties in the Model-Driven Development of SOSs 23

– acknowledgementInterval: (integer, seconds), amount of time which should

elapse before sending an acknowledgement message;

– retransmissionInterval: (integer, seconds), after this time a request is resent

by the client if no acknowledgement has arrived.

Security The notion of security covers properties related to confidentiality (no

unauthorized subject can access the content of a message), integrity (the message

content cannot be altered), non-repudiation (which refers to the accountability of

the communicating parties) and privacy (the identity and personal data of a client is

not revealed to non-authorized bodies). Concepts such as authentication (checking

the identity of a client) and authorization (checking whether a client might invoke

a certain operation) are also of concern here.

In service-oriented systems, security should be guaranteed between service

endpoints, independently from network level properties. This can be achieved us-

ing secure web services middleware. Message security is based on digital signa-

tures and encryption of messages; here we distinguish the message header and

body, however, further (application-specific) separation of message parts is also

possible.

The following security parameters are used as a basis for configuration gener-

ation for secure communication middleware:

– encryptBody, encryptHeader, signBody, signHeader describe whether a se-

curity method is applied on (parts of) messages between client and service

respectively

– signAlgorithm and encryptionAlgorithm determine the security algorithms

24 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

– authTokenType determines the type of the security token (e.g. username or

binary)

– useTimestamp allows the user to specify timestamps for messages

Note that the executable set of security configurations is restricted in current

middleware to certain combinations of the above parameters, therefore we propose

default values in the profile which conform to the actual deployment possibilities.

4.2 Extending Structural Models with Non-functional Properties

This section describes the UML extension for modeling non-functional parameters

related to structural models of services. On the one hand, these models rely upon

the General Resource Model (which is part of the UML Profile for Schedulability

and Time [36]) and UML Profile for Modeling QoS and Fault Tolerance Charac-

teristics and Mechanisms [37]. However, the way UML4SOA-NFP handles these

parameters also conforms to the service management of typical business applica-

tions using Service Level Agreements (SLA).

A metamodel for non-functional properties. Fig. 6 shows the metamodel of non-

functional concepts and their relationships. For each additional concept we define

a UML stereotype.

Since in real service configurations, service properties can vary for differ-

ent classes of clients, we follow a contract-based approach, where non-functional

properties of services are defined between two «Participant» components, namely,

the service provider and the service requester. These contracts are modeled by

«NFContracts».

Non-Functional Properties in the Model-Driven Development of SOSs 25

Academic Use Only

NFContract

NFCharcteristic

Participant

NFDimension

ServiceInterface

RunTimeValue

Monitor

monitors

1..*

*

*
-requester
1

values
1..*

*
-provider
*

monitoredContract

* *

-agreed *

-dimensions
1..*

-guaranteedCharacteristiscs
1..*

Fig. 6 Metamodel of non-functional extension

Different non-functional aspects (performance, security, etc.) are modelled

in corresponding «NFCharacteristics» which group different properties (e.g., re-

sponse time) in «NFDimensions» (where a «RunTimeValue» is associated to each

dimension). The reason for creating separate classes for measureable values in-

stead of actually storing them in attributes is to correlate real SLAs where most

parameters are typically bound to a range of allowed values. Moreover, concepts

like average values, deviation, etc. need to be modeled in a uniform way.

During a negotiation process, participants create an agreed contract of their

provided and requested contract specifications.

Finally, properties of services need to be monitored at runtime (modeled as

«Monitor») either by the participating parties or by involving a separate entity.

Modeling non-functional properties in UML4SOA-NFP. On the UML class level,

each contract is modelled using a UML class with the stereotype «NFContract».

Each characteristic (tagged by «NFCharacteristic») is another UML class asso-

26 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

UML4SOA-
NFP Metaclass

Stereotype UML
Metaclass

Description

NFContract «NFContract» Class Represents a non-functional con-
tract between a service provider and
a service requester

NFCharacteristic «NFCharacteristic» Class Represents a non-functional aspect
such as performance, security, reli-
able messaging, etc.

NFDimension «NFDimension» Class Groups non-functional properties
within a non-functional aspect
(characteristics)

RunTimeValue «RunTimeValue» Attribute An actual non-functional property
Monitor «Monitor» Class A run-time service to monitor a

contract (not used in the paper)

Table 4 UML4SOA-NFP Profile

ciated to the respective contract. Each dimension is also defined by a UML class

stereotyped as «NFDimension». The actual runtime values of each dimension are

defined as UML properties. Stereotype usage is summarized in Table 4.

The actual non-functional parameters within a contract are set by using an

object diagram instantiating these classes (and attributes).

Modeling non-functional properties of the eUniversity. Figure 7 illustrates

how the non-functional requirements presented in Section 2 are captured in a

UML4SOA model by defining a non-functional contract between ApplicationCre-

ator and ApplicationValidator.

The requirements of Sec. 2 are mapped to three «NFCharacteristics», namely

Performance, Reliable Messaging and Security (as discussed in Sec. 4.1).

– Performance aspects include two «NFDimension» elements, namely response

time and throughput. Throughput definition consists of defining a guaranteed

throughput and a maximal throughput, while for response time, the contract

contains an average value and a maximum value.

Non-Functional Properties in the Model-Driven Development of SOSs 27

Academic Use Only

<<nfCharacteristics>>
ReliableMessagingCharacteristics

<<nfCharacteristics>>
PerformanceCharacteristics

<<nfCharacteristics>>
SecurityCharacteristics

<<nfContract>>
CreationValidationContract

+guaranteedThroughput : Integer
+maxThroughput : Integer

<<nfDimension>>
Throughput

+timeout : Integer
+retransmissionInterval : Integer

<<nfDimension>>
Timing

+needsAck : Boolean
+filterDuplicates : Boolean
+maxNumberofRetrans : Integer

<<nfDimension>>
MsgSemantics

+encryptAlgorithm : String
+encryptBody : Boolean
+encryptSignature : Boolean
+encryptHeader : Boolean

<<nfDimension>>
Encryption

+averageRespTime : Integer
+maxRespTime : Integer

<<nfDimension>>
ResponseTime

+useTimestamp : Boolean

<<nfDimension>>
Timestamp

+signBody : Boolean
+signHeader : Boolean
+signAlgorithm : String

<<nfDimension>>
DigitalSignature

+authToken : String

<<nfDimension>>
Authentication

Fig. 7 Elements of the contract between ApplicationCreation and ApplicationValidation
services

– Reliable messaging parameters first contain the required message semantics

by stating whether acknowledgement is required or duplicate messages are

allowed. Timing dimensions include the timeout for considering a message

lost and the retransmission interval.

– Security aspects are composed of dimensions encryption, digital signature,

timestamp and authentication. In our example, the latter is simplified to contain

only the authentication token type.

28 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

Academic Use Only

<<nfCharacteristics>>
performanceCharacteristicsInstance :

PerformanceCharacteristics

<<nfCharacteristics>>
reliableMessagingCharacterists :
ReliableMessagingCharacteristics

<<nfContract>>
creationValidationContractInstance2

: CreationValidationContract

<<serviceInterface>>
ApplicationValidatorServiceInstance

 : ApplicationValidationService

<<participant>>
ApplicationValidatorInstance

: ApplicationValidator

securityCharacteristicsInstance
 : SecurityCharacteristics

<<nfCharacteristics>>

<<participant>>
ApplicationCreatorInstance :

ApplicationCreator

retransmissionInterval = 10000
timeout = 60

<<nfDimension>>
timingInstance : Timing

averageRespTime = 4
maxRespTime = 8

<<nfDimension>>
responseTimeInstance :

ResponseTime

guaranteedThroughput = 10
maxThroughput = 20

<<nfDimension>>
ThroughputInstance :

Throughput

encryptAlgorithm = "default"
encryptBody = true
encryptHeader = false
encryptSignature = false

<<nfDimension>>
encryptionInstance :

Encryption

filterDuplicates = true
maxNumberofRetrans = 3
needsAck = true

<<nfDimension>>
msgSemanticsInstance :

MsgSemantics

authToken = "username"

<<nfDimension>>
authenticationInstance :

Authentication

signAlgorithm = "default"
signBody = true
signHeader = false

<<nfDimension>>
digitalSignatureInstance

 : DigitalSignature
useTimestamp = true

<<nfDimension>>
timestampInstance :

Timestamp

providerrequester

agreed

Fig. 8 Instance model with non-functional properties

A concrete non-functional service configuration (on the object level) is shown

in Fig. 8. This instantiates Fig. 7, and assigns concrete values to the run-time values

of non-functional parameters.

For instance, MsgSemanticsInstance prescribes that each message between the

two orchestrators needs an acknowledgement and the system can resend each mes-

sage at most three times. Moreover, duplicate messages also need to be filtered. On

the security level, timestamps are required to be used (TimestampInstance), while

Non-Functional Properties in the Model-Driven Development of SOSs 29

users are authenticated by their username (AuthenticationInstance). Later, these

reliable messaging and security specifications will be used by deployment trans-

formations of Sec. 6.

4.3 Extending Behavior Models with Non-functional Properties

We make use of the MARTE profile for to annotate UML models with non-

functional properties required for performance evaluation. In addition to being

useful for documentation purposes, these models will be subject to automatic ex-

traction of quantitative estimates.

Performance models offer insights into the dynamic understanding of complex

service-oriented systems which are complementary to those which can be obtained

through measurement and profiling. Measurement allows us to understand the sys-

tem as it is today: modeling allows us to understand how it could be tomorrow.

Predictive performance modeling considers alternative designs or improvements,

and evaluates these to identify the adaptation of the system which will give the

greatest improvement with respect to a given performance goal (such as reducing

response time). Measurement and modeling are intimately linked because accurate

measurement provides the parameter data which models need in order to make

valuable predictions.

In order to build a coherent performance model for performance analysis we

must describe the workload placed on the system and the cost of the individual

units of execution (activities) which make up the events of the model. Performance

evaluation may be carried out on activities stereotyped with «GaScenario». Its

30 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

cause property allows the extraction of workload specification, stereotyped with

«GaWorkloadEvent». Closed patterns are supported, which define the workload

as a population of users which interpose some thinking time between successive,

cyclic executions of the activity. Workloads (defined by «GaWorkloadEvent») in

the following form are accepted:

pattern = closed(population=M,extDelay=(exp(1/r),s))

which indicates a closed workload of M users which cyclically execute the activ-

ity. An exponentially distributed thinking time with mean duration 1/r seconds is

interposed between successive requests.

The atomic units of execution are stereotyped with «PaStep». To denote the

amount of time taken by a step we use its hostDemand attribute. Meaningful appli-

cations will typically have hostDemand = (exp(<time>), s) to indicate

an exponentially distributed delay with mean <time> seconds. The execution rate

of an action will be extracted from the «PaStep» application.

The use of these stereotypes can be observed in the activity diagrams of Ap-

plicationCreator (Fig. 4) and ApplicationValidator (Fig. 5).

5 Early Estimation and Evaluation of Non-Functional Properties

For the quantitative analysis of non-functional service attributes, the timed process

algebra PEPA can be employed as the intermediate formalism derived from UML

models of services annotated with UML4SOA and MARTE. The current section

provides a brief (and high-level) overview of how formal performance models are

derived from service models with a special focus on insights gained by analysis

Non-Functional Properties in the Model-Driven Development of SOSs 31

specific to our case study. For a detailed presentation of the transformation, the

reader is referred to [43].

5.1 Overview of PEPA

5.1.1 Language elements. PEPA is a formal language which allows the defini-

tion of models as a composition of interacting automata (sequential components).

Sequential components may carry out activities independently of the rest of the

system, or in cooperation (i.e., synchronization) with other automata. The opera-

tors supported by the language are informally introduced below. For a complete

formal definition the reader is referred to [25].

Prefix (↵, r).P denotes a process which performs an action of type ↵ and behaves

as P subsequently.

Choice P + Q specifies a component which behaves either as P or as Q . The ac-

tivities of both operands are enabled and the choice will (stochastically) behave

as the component which first completes.

Constant A

def= P is used for recursion. Cyclic definitions are central in the char-

acterisation of the underlying continuous-time Markov chain derived from a

PEPA model.

Cooperation P

⇤�
L

Q is the compositional operator of PEPA. Components P and

Q synchronize over the set of action types in set L; other actions are performed

independently. For example, (↵, r
1

).(�, s).P ⇤�
{↵}

(↵, r
2

).(�, t).Q is a compo-

sition of two processes which execute ↵ cooperatively. Then, they perform

action � and � independently and behave as P and Q , respectively.

32 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

The operator k is sometimes used as shorthand notation for a cooperation over

an empty set, i.e., ⇤�
;

. Independent copies of a component are indicated by

the notation P [N] ⌘ P k P k · · · k P| {z }
N

5.1.2 Rates of activities. An activity is associated with an exponential distribu-

tion with mean duration 1/r time units. Generally distributed activities can be

obtained by using suitable phase-type distributions, although these will not be dis-

cussed further in this paper. The symbol > specifies a passive rate which may be

used to model unbounded capacity. The duration of an activity involving passive

rates is determined by the active rate of the synchronizing components.

Cooperating components need not have a common view of the duration of

shared actions. The semantics of PEPA specifies that the rate of a shared ac-

tion is the slowest of the individual rates of the synchronizing components, e.g.,

min(r1, r2) in the example above.

In order to carry out a quantitative analysis, PEPA models are interpreted as

continuous-time Markov chains. In particular, in Sec. 5.5, we will give examples

of analysis of the long-run behaviour of a system (steady-state analysis).

5.2 From UML Activity Models to PEPA

5.2.1 Overview of System Equation and Workload The transformation from ser-

vice models captured using UML4SOA and MARTE profiles gives rise to a system

equation of the target PEPA model in the following form:

System

def= Workload

⇤�
{↵}

A[K]

Non-Functional Properties in the Model-Driven Development of SOSs 33

Here Workload represents the (abstract) behavior of M independent users of

an activity. An individual workload component is modeled as a two-state automa-

ton

Think

def= (think , r).Start

Start

def= (↵,>).Think

(1)

where the passive activity (↵,>) captures the fact that the action type ↵ represents

the first unit of computation performed by the system, and the rate is determined

by the other synchronizing components. Thus, the overall PEPA sub-system for an

array of M independent users is:

Workload

def= Think [M]. (2)

The notation A[K] represents an array of concurrent flows derived by a model

transformation from UML activity diagrams of service models, which is discussed

below.

5.2.2 Basic Transformation Blocks For space considerations, we only present a

high-level overview of the main blocks of the transformation (Fig. 9), and inter-

ested readers are referred to [43] for further details.

5.2.3 PEPA model of the running example. The translation algorithm can be ap-

plied to the activity diagrams in Figures 4 and 5. The corresponding sub-systems

of the performance model are shown in Figures 10 and 11, respectively.

The model of ApplicationCreator, denoted by ACS ::StartCreation , con-

sists of a single sequential component with two choices ACS ::Pick and

34 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

Fig. 9 Overview of UML-to-PEPA transformation

Non-Functional Properties in the Model-Driven Development of SOSs 35

Fig. 10 PEPA model of ApplicationCreator

ACS ::CheckResult , corresponding to the decision nodes pick and d1, respec-

tively. The model of ApplicationValidator, denoted by AVS ::StartVal , has two

concurrent flows of execution. The second flow performs the action checkData and

synchronize with the first flow at nodes parallelFlowStart and parallelFlowEnd.

Thus, the second flow is mapped onto the three-state sequential component evolv-

36 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

Fig. 11 PEPA model of ApplicationValidator

ing through local states AVS ::Fork

2

, AVS ::CheckData , and AVS ::Join
2

. Ad-

ditional (message buffer) components will be discussed in the sequel.

5.3 Handling Interaction between Orchestrators

Now we aim at capturing the interplay between the two orchestrations as speci-

fied by the stereotype applications of UML4SOA. For this purpose, we model the

transmission of a message between two orchestrators using message buffers. Co-

operation is modeled by exploiting the compositionality of the PEPA language as

the core building blocks (discussed in Sec. 5.2) are gradually extended by message

buffer components.

Non-Functional Properties in the Model-Driven Development of SOSs 37

In other words, our aim is to extract a PEPA model in the form:

System

def=Workload

⇤�
L

⇣
ACS [KACS] ⇤�

MB
B [SB] ⇤�

MC
C [SC] · · ·

⌘

⇤�
M

⇣
AVS [KAV S] ⇤�

MD
D [SD] ⇤�

ME
E [SE] · · ·

⌘

where L contains the initial action executed in the scenario and the cooperation

set M has the action types which correspond to the exchange of messages be-

tween the two orchestrators. The core building blocks of a component are extended

with components B ,C , . . . and D ,E , . . ., which model message buffers for asyn-

chronous communication between the two orchestrators ACS and AVS . The sizes

of the message buffers, i.e., SB , SC , SD, SE , . . . are extracted from MARTE an-

notations. The cooperation sets MB ,MC ,MD,ME , . . . contain the activities

which cause an asynchronous delay to be sent.

5.3.1 Extraction of Message Buffers The components for message buffers are

extracted from a Composite Structure diagram such as that in Fig. 2.

The transformation of an action node takes account of the input and output

pins as well as the UML4SOA stereotype application to the node itself: «send»,

«receive», «send&receive», or «reply».

If the «lnk» pin references an element which is not an orchestration, it is han-

dled as an action node. That is, although the UML4SOA profile indicates commu-

nication with other participants the exchange is abstracted away with an atomic

activity in the performance model, because the concrete behaviour of the link is

not available. Conversely, if «lnk» references an orchestrator Oi, then the message

38 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

exchange is modeled as a shared action between the two activities. The set of such

shared action types is called the interface of an activity, denoted by Ii. Interfaces

will be used during the generation of the overall system equation. In the following,

we only describe the treatment of a pair of «send» and «receive» action nodes in

detail.

«send» node Let O1 be the orchestrator which has a «send» node. The synchro-

nizing orchestrator, O2, can be retrieved by the reference node.lnk. According to

the semantics of UML4SOA introduced in Section 3.3, the matching node of O2

must be stereotyped with either «receive» or with «receive&send». The algorithm

also requires that the reference of «rcv» in the receiving node be equal to the refer-

ence of «snd» in the sending node. Thus a shared action type may be constructed

by inspecting node.lnk and node.snd. This shared action will be added to I1. The

rate extracted from the application of «PaStep» indicates the local rate of the shared

activity. Notice that the translation of the action node does not require the traversal

of the cooperating orchestrator’s activity. The pattern of transformation is shown

in Fig. 9.

The UML4SOA profiles states that «send» indicates asynchronous communi-

cation. In PEPA, this is captured by associating a message buffer of finite size with

each «send» node, and each place in the buffer is modeled as a two-state sequential

component. The first state (i.e., Bu↵

1

) of the component observes the execution

of the action that precedes the asynchronous send. Observation is modeled as a

passive cooperation between a sender’s flow and a buffer place. The second state

(i.e., Bu↵

2

) models the transmission to the remote orchestrator. The non-blocking

Non-Functional Properties in the Model-Driven Development of SOSs 39

behavior of the sender’s flow is expressed by the fact that the flow is not involved

in the transmission of the message—it behaves as the process which follows the

«send» node after the preceding activity is completed.

«receive» node A «receive» is blocking, hence the shared action denoting the

communication with the remote orchestrator is performed by the receiving flow.

(see bottom component of Fig. 9). In this case the shared action type is constructed

by traversing the pins stereotyped with «rcv» and «lnk».

5.3.2 Communication between Orchestrators The communication of Appli-

cationCreator (see bottom part of Fig. 10) with the orchestrator Ap-

plicationValidator (Fig. 11) is handled by three message buffers, i.e.,

ACS ::MBu↵er

1

,ACS ::MBu↵er

2

, and ACS ::MBu↵er

3

. The first state of the

buffer observes the execution of one action of the main flow, and the second state

performs the transmission of the message. The shared action types are named

by using the format lnk :: snd (similarly, lnk :: rcv is used for ac-

tion nodes stereotyped with «receive»). Components ACS ::CompValSnd and

ACS ::CompValRcv model the two-phase PEPA behavior of the node compVal,

stereotyped with «send&receive». Notice that cooperation occurs over distinct ac-

tion types AVS ::appDocs (send) and AVS ::results (receive). The matching un-

derlying sequential components of ApplicationValidator are AVS ::CompValRcv

and AVS ::CompValRep, between which the independent action checkReq is per-

formed.

40 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

The overall system equation is

System

def= Workload

⇤�
{rcvNewApp}

⇣
ACS

⇤�
M

AVS

⇤�
{compensate}

Compensator

⌘
(3)

where M = I(ACS) [I(AVS) [{compensate}, and

I(ACS) = I(AVS) =
�
AVS ::application,

AVS ::appDocs,AVS ::results,AVS ::cancel

.

5.4 Compensation and Exception Handling

Compensation and exception handling represent reactions to adverse situations

during the course of an orchestration. From a performance standpoint, these events

can be treated similarly—the current flow of control halts and passes on to some

handler which performs a series of activities to restore the system. The perfor-

mance model introduces failure in the orchestrations as activities competing with

the business logic activities. Failure activities are represented by a choice opera-

tor which is added to all the local states of the PEPA sub-systems underlying the

orchestrations.

When a failure occurs, the business logic flows of all the orchestrators are reset

to their initial conditions (by synchronization of the flows over the failure action

type) and the control is passed on to a sequential component which models the

handler, according to the behavior described in the handling scope. The failure

rate is attached as a MARTE annotation to the edge which triggers the handler.

Non-Functional Properties in the Model-Driven Development of SOSs 41

For our running example, the compensator sequential component (Fig. 12) is

triggered by the execution of the compensate action and is defined in Fig. 12.

Fig. 12 PEPA model of Compensator

5.5 Performance Evaluation of the Case Study

To gain insight into the behavior of a system a common practice is to carry out sen-

sitivity analysis, which studies the impact that certain parameters have on the over-

all performance. In this section, the performance metric of interest will be steady-

state throughput, which gives the frequency at which an activity is performed in

the system at equilibrium. As with most performance studies, throughput analysis

is a useful approach because it summarises effectively the dynamic behavior of

the system, accounting for delays due to fork/join synchronisation mechanisms,

message passing, and computation cost associated with each basic activity of the

system.

5.5.1 Sensitivity analysis: Fixed rates, Varying workload. An interesting sensi-

tivity analysis is concerned with establishing how varying workload intensities

affect system-level non-functional parameters. For instance, in our case study a

42 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

suitable index to be measured is the throughput of the action appSuccess in the

underlying PEPA model.

The set-up for workload analysis consists in the solution of the model for in-

creasing population levels of users, represented by the array Think [M]. The anal-

ysis is specified by using MARTE annotations in the UML model containing a root

activity stereotyped as «GaWorkloadEvent»:

pattern =

closed(population=in:M,extDelay=(exp(1/r),s))

where in:M indicates an input variable for the performance model, which is bound

to an integer before the model is analyzed. The performance metric is specified by

setting the following property in the «PaStep» application of node applicationSta-

tusSuccess:

throughput=out:appSuccessTh

Figure 13 shows a typical result for this form of analysis. Under low intensity,

the throughput of the system increases with the number of users. This is the be-

havior observed for our model for M < 93. However, the system’s concurrency

levels cannot meet higher demands as the population is increased further. This

degradation corresponds in the graph to a flat throughput for 93  M  100.

5.5.2 Sensitivity analysis: Fixed workload, Varying rates. An orthogonal analy-

sis approach may concern the sensitivity of the system performance to a specific

activity rate. Here all the other parameters of the system, including the workload

Non-Functional Properties in the Model-Driven Development of SOSs 43

0 20 40 60 80 100
0

5

10

15

20

25

30

35

Number of users

Th
ro

ug
hp

ut
 o

f a
pp

Su
cc

es
s

Fig. 13 Workload analysis studies how the user population affects performance of the sys-
tem. Here, the performance metric of interest is the steady-state throughput of processing
applications to e-University courses. Non-degrading performance is observed for popula-
tion sizes less than 93.

specification, are fixed. The activity under study is varied across a range of suit-

able rate values and the corresponding performance measures are calculated. In

our example, the activity node checkProgramRequirements in ApplicationValida-

tor may play a crucial role. This activity is interposed between two nodes which

represent communication with ApplicationCreator. Therefore ApplicationCreator

is blocked during the course of the activity. Intuitively, one may conclude that in-

creasing the activity rate corresponds to an increase in the system performance.

Although this holds true, the relationship is not linear thus it is interesting to de-

termine the range of values in which the relative gain is the highest.

Figure 14 shows the sensitivity analysis of r

checkReq

in the interval [10, 200]

with respect to the previously discussed system throughput. Indeed, the graph re-

veals that an optimal relative gain is obtained for values around 50 and further

increases—for instance, doubling the rate from 100 to 200—yield smaller and

44 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

0 50 100 150 200
75

80

85

90

95

100

105

rcheckReq

Th
ro

ug
hp

ut
 o

f a
pp

Su
cc

es
s

Fig. 14 Sensitivity analysis of r
checkReq

.

smaller improvement. Similarly to the previous case, sensitivity analysis may be

specified in the UML model by using the following property for the «PaStep»

application to node checkProgramRequirements:

hostDemand=(exp(1/in:r_checkReq),s)

6 Automating Service Deployment by Model Transformations

Due to the rapid increase in the number of available services, greater emphasis is

put on their non-functional aspects as described in Sec. 1. In order to meet such

non-functional requirements, a service needs to be designed for reliability by mak-

ing design decisions on an architectural level. However, this often conflicts with

the current tool support for service development which has a relatively low level of

functionality (merely creating appropriate XML descriptors, service configuration

files, etc.)

Non-Functional Properties in the Model-Driven Development of SOSs 45

Recently, the identification of non-functional parameters of services has been

addressed by various XML-based standards related to web services. As web ser-

vice communication assumes unreliable transfer by default, some standards (such

as WS-ReliableMessaging [4] and WS-Reliability [3]) aim at ensuring reliable

message communication. Security-specific configuration parameters are described

in the WS-Security standard [2]. A brief summary of the contents of these stan-

dards were provided in Sec. 4.1 and 4.2.

Unfortunately, the manual creation of such service configuration files is typi-

cally an error-prone task during the deployment of services as XML parsers do not

protect us against setting a syntactically correct but semantically incorrect value

within a configuration file. Moreover, web services standards capture different

subsets of non-functional parameters making even closely related standards in-

compatible with each other. Furthermore, unsurprisingly, each specific middleware

implements the standard slightly differently. In addition to that, non-functional

properties are captured at a low implementation-level by using dedicated XML

deployment descriptors. As a consequence, (i) service configurations cannot be

designed at a high architectural level, and (ii) the portability of service configura-

tions is problematic. As the support of non-functional aspects in service platforms

is changing rapidly, we propose an approach compliant with the Model-Driven

Architecture (MDA) principles for the deployment of service configurations [28].

46 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

6.1 Target Deployment Languages and Transformation Flow

For this purpose, we created PIM2PSM and model-to-code transformations to fa-

cilitate service development for reliable and secure middleware. These transfor-

mations currently handle reliable message communication and security in service-

oriented systems. Our transformation suite enables the automated generation of

structural service descriptors and deployable policy files which determine the run-

time behavior of services w.r.t. reliability and security requirements. Its modular

implementation allows for future extension in other non-functional domains (e.g.,

logging) and other service platforms (e.g., SCA) as well. Standards-compliant

non-functional service configurations make it necessary to synthesize one or more

XML configuration files as deployment descriptors.

The actual model transformations can be realized through several steps. Be-

low we exemplify one possible workflow for obtaining the models in the complex

chains of model transformations.

– PIM models: The input of the chain is a standard UML2 model developed

using EMF and serialized as XMI, which uses the UML4SOA(-NFP) Profile.

– PSM models: After the extraction of relevant model parts, internal service

models are generated within the model transformation tool (describing core

services «SOA model», reliable messaging setup «SOA RM model», security

«SOA security», etc.). These are then processed in order to create descriptor

models (e.g. «WSDLmodel», «RAMP model», «Sandesha model») which con-

form to industrial standards. These can be considered as PIM2PSM mappings

in the MDA terminology.

Non-Functional Properties in the Model-Driven Development of SOSs 47

– Target XML files: These descriptor models are the basis of XML file gener-

ation. These files are directly usable as configuration descriptors on standard

platforms. Besides the server-side configuration XMLs (namely one for reli-

able messaging and one for security aspects), WSDL files of the services are

also created. These are PSM2CODE transformations.

– Glue code for deployment: In case of the Apache Axis platform, deployable

server-side projects are also created by Java applications. These have to be

extended with the implementation (source files) of the services.

An overview of the core model transformation problem for deriving server-

side configuration files of the Apache platform is presented with a description

of transformation steps in Fig. 15. The trace model we use creates connections

between source and target elements (objects) in the form of typed relations to

ease transformation development. Moreover, such models also can be used to trace

requirements from the high-level models to the code.

This transformation scheme is uniformly applicable to different «NFChar-

acteristics» (with minor adjustments to handle names of elements in case of

«$name»). As a further technical detail, it is worth pointing out that certain de-

fault values can be set by the transformation itself (i.e. the source UML model

does not need to contain them as in case of «exponentialBackoff »). Finally, certain

configuration parameters in the model might not be required by the underlying

middleware.

48 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

Fig. 15 Overview of deployment transformations

6.2 Transformation Implementation in VIATRA2

Transformations were implemented in the VIATRA2 framework [45] which is a

modular, open source model transformation framework built on Eclipse, which

supports the efficient design and execution of model transformations. Transfor-

mations are defined by graph transformation rules (i.e., declarative description

of model patterns) and Abstract State Machines, which provide an intuitive yet

Non-Functional Properties in the Model-Driven Development of SOSs 49

precise way of capturing complex transformations. The choice of the VIATRA2

framework can also be explained by the support for generic transformations [46],

which significantly reduces the number of transformation rules.

The transformation implementation process for our deployment transforma-

tions consists of the following conceptual steps:

1. Create metamodels for source and target domain. An example is the domain of

UML as source domain and a simple representation of services, connections

and reliable messaging constraints as target.

2. Graph patterns describe fragments of directed, typed graphs which represent a

coherent unit of the model (e.g., a service with a specification). “Atomic units”

of transformations will be encoded in such patterns.

3. Graph transformation provides a high-level rule and pattern-based manipula-

tion language to implement basic mappings between graphs. See e.g. [18] for

a detailed definition of the semantics of graph transformations.

4. Complex transformations can be assembled using Abstract State Machine [12]

rules defined on graph patterns and transformation rules (e.g. “Create a port in

a WSDL document for all ports of a service”).

6.3 Derived Deployment Descriptor for the eUniversity Case Study

Fig. 16 shows an extract of the deployment descriptor («services.xml») file of the

ApplicationCreation service derived by our model transformation. This config-

uration file describes the security and reliable messaging characteristics of the

50 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

provided service. The generation of the actual XML document is based upon the

source model of Fig. 7 and the transformation rules of Fig. 15.

This configuration file is an extract of a WS-Policy-compliant descriptor which

can be parsed by any Web service stack implementation which adheres to WS-

Policy, WS-Security and WS-ReliableMessaging standards (although a reference

is included to Apache’s Sandesha reliable messaging platform, no semantic re-

strictions apply to the policy). Parameters in the configuration file are related to

one Web service port. Boolean attributes which are marked in the model as true

will be mapped to policy elements while concrete values (such as retransmission

interval) will be filled with the specified value, respectively. Some technical de-

tails have been suppressed (such as schema URI). (ExactlyOne here refers to the

policy semantics and not the messaging mode.) Note that this target language is

extensible (e.g. logging can added easily) due to the nature of WS-Policy.

Note that according to the implementation of WS-Security standard (Rampart

module), if a service is available via a secure connection, it cannot be accessed in

plain text mode, moreover, the security settings (e.g. authentication token) of a port

must be fixed. This implies that for clients with different security requirements,

the service should be available at different URIs. Currently, the transformation

creates a separate URI for every client-server (participant) pair with non-functional

specifications.

Non-Functional Properties in the Model-Driven Development of SOSs 51

<?xml version='1.0'?>
<service name="ApplicationValidationService">
 <operations>
 </operations>

<wsp:Policy wsu:Id="ApplicationValidationServiceSecurityPolicy"
xmlns:wsu="http://docs.oasis-open.org/wss/
 2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
xmlns:wsp="http://schemas.xmlsoap.org/ws/
 2004/09/policy">

 <wsp:ExactlyOne>
 <wsp:All>
 <sp:Authentication

xmlns:sp="http://schemas.xmlsoap.org/ws/
 2005/07/securitypolicy">

 <wsp:Policy>
 <wsp:authToken>
 <wsp:Policy>
 <sp:Username/>
 </wsp:Policy>
 </wsp:authToken>
 </wsp:Policy>
 </sp:Authentication>
 <sp:Encryption ...
 <wsp:Policy>
 <wsp:encryptBody/>
 <wsp:encryptAlgorithm>
 <wsp:Policy>
 <sp:Default/>
 </wsp:Policy>
 </wsp:encryptAlgorithm>
 </wsp:Policy>
 </sp:Encryption>
 <sp:DigitalSignature ...
 <wsp:Policy>
 <wsp:signBody/>
 <wsp:signAlgorithm>
 <wsp:Policy>
 <sp:Default/>
 </wsp:Policy>
 </wsp:signAlgorithm>
 </wsp:Policy>
 </sp:DigitalSignature>
 <sp:Timestamp ..
 <wsp:Policy>
 <wsp:useTimestamp/>
 </wsp:Policy>
 </sp:Timestamp>
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>
 <wsp:Policy wsu:Id="ApplicationValidationServiceRMPolicy"

xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401
-wss-wssecurity-utility-1.0.xsd"
xmlns:wsrm="http://ws.apache.org/sandesha2/policy">

 <wsp:ExactlyOne>
 <wsp:All>
 <wsrm:filterDuplicates>true</wsrm:filterDuplicates>
 <wsrm:needsAck>true</wsrm:needsAck>
 <wsrm:maxNumberOfRetrans>3</wsrm:maxNumberOfRetrans>
 <wsrm:retransInterval>10000</wsrm:retransInterval>
 <wsrm:timeout>60</wsrm:timeout>
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>
</service>

Fig. 16 Fragments of services.xml of ApplicationCreation service

52 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

7 Related Work

The development of service-oriented systems has recently gained a lot of attention,

and several approaches for modeling, generating and analyzing these software sys-

tems have been published or announced. However, most of these approaches focus

mainly on functional requirements of SOS while non-functional aspects are ne-

glected. We present the related work grouping them into the topics of modeling,

performance analysis and deployment techniques.

7.1 UML Modeling Approaches

Several other attempts exist to define UML extensions for service-oriented sys-

tems and some approaches also are used for the automated transformation from

UML to BPEL. Most of them, however, do not cover all three aspects types of

model elements for structural, behavioral and non-functional aspects of SOAs. For

example the UML 2.0 profile for software services [26] provides an extension for

the specification of services addressing only structural aspects. Similarly, the cur-

rent version of the UML profile and metamodel for services (soaML) [40] supports

the structural concepts of service components, service specifications, service inter-

faces and contracts for services. soaML is the result of the standardization efforts

started by the OMG in 2006. The UML extension for service-oriented architec-

tures described by Baresi et al. [10] focuses mainly on modeling SOAs by refining

business-oriented architectures. The refinement is based on conceptual models of

the platforms involved as architectural styles, formalized by formal graph trans-

Non-Functional Properties in the Model-Driven Development of SOSs 53

formation systems. The extension is also limited to stereotypes for the structural

specification of services.

Other modeling approaches require very detailed UML diagrams from design-

ers trying to force service-oriented languages (like BPEL) on top of UML in or-

der to facilitate automated transformation from UML to BPEL. For example, the

work of Skogan et al. [24] has a similar focus to our approach, i.e. a model-driven

approach for services based on UML models. However, the approach lacks an ap-

propriate UML profile preventing building models at a high level of abstraction;

thus producing overloaded diagrams. Another example is the very detailed UML

profile [6] that introduces stereotypes for almost all BPEL 1.0 activities - even

for those already supported in plain UML, which makes the diagrams drawn with

this profile hard to read. Some other extensions do not cover vital parts of service

orchestrations such as compensation handling, e.g. the UML profile described in

[32]. In a recently published article, Ermagan and Krüger [19] extend the UML2

with components for modeling services. Collaboration and interaction diagrams

are used for modeling the behavior of such components. Neither compensation

nor exception handling is explicitly treated in this approach.

Approaches addressing modeling of non-functional properties of services are

quite rare. Examples are the OMG MARTE profile [39], and the extension pro-

posed by Wada et al. [47], but conversely to the profile we presented in this

work, none of them provides a "per contract" approach. Conversely to these ap-

proaches, UML4SOA(-NFP) focuses on the improvement of the expressive power

of UML by defining a small set of stereotypes for structural and behavioral as-

54 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

pects of SOAs, focusing on service-oriented features as orchestrations and the

non-functional aspects of service-oriented systems as shown in this article. For

a more thorough discussion of UML4SOA, see [20].

7.2 Methods for Analyzing Non-Functional Properties

Performance evaluation of software models has gained increased attention over

the last decade (see [9] for a review of this field). Given the centrality of the UML,

many approaches have dealt with the extraction of performance models from ac-

tivity diagrams [31,14], sequence diagrams [11] and state machine diagrams [35].

The use of an intermediate meta-model to facilitate these translations has been

proposed in [49,41], in which concrete application to layered queueing networks

and stochastic Petri nets have been given. A work closely related to ours is [16], in

which the performance prediction of service compositions is carried out on BPEL

models. A BPEL workflow is expressed as a single annotated activity diagram,

which is translated into a layered queueing network for the analysis. The seman-

tics of the translation and the profiles used for the performance annotations are

very similar, however our work extends the scope of applicability of performance

prediction to a more general scenario in which interdependency between orches-

trations is taken into account.

Alternatively to formal analysis models, the dependability and robustness of

services can be also investigated by using fault injection techniques as discussed

in [30]. The authors of [29] use monitoring and testing techniques to evaluate the

dependability of web services by using statistical real-time data. [5] aims to de-

Non-Functional Properties in the Model-Driven Development of SOSs 55

velop a dependable web services framework, which relies on extended proxies.

However, this needs a modification at the client side in order to handle excep-

tions and find new service instances. Moreover, the reconfiguration of client side

proxies uses non-standard WSDL extensions while we concentrated on standards-

compliant solutions.

7.3 Deployment Mechanisms for Non-Functional Properties

A framework for automated WSDL generation from UML models is described in

[44], using the UML extensions of MIDAS [13]. In [23], web service descriptions

are mapped to UML models, and (after using visual modeling techniques) a com-

posite service can be created for which the descriptor is automatically generated.

However, none of these works considers non-functional properties of web services.

Non-functional aspects of e-business applications are discussed among oth-

ers in [8], having some description of deployment optimization for J2EE appli-

cations, but without discussing details of model-based deployment. Integration of

non-functional aspects in the development by model transformations is also inves-

tigated in [15,42] and [27], focusing on parts of the engineering process, although

using different underlying transformation techniques for model analysis and de-

ployment. An early version of the deployment transformation suite was presented

in [21].

56 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

8 Conclusions and Future Work

Despite the advantage of coherent, separable components with well-defined in-

terfaces, service-oriented systems can become as complex as any other. For this

reason, model-driven development is invaluable in the creation and maintenance

of service-oriented systems. High-level models allow us to retain intellectual con-

trol of complex systems which would otherwise defeat our attempts to understand

them in either static or dynamic terms. Making these models an integral part of

the development process means that they grow and change as the system grows

and changes and they are available to support the extension and adaptation of the

system in response to perceived need or demand.

While model-driven development has gained great acceptance in documenting

the static structure of systems in terms of components, packages, classes and inter-

faces, modeling of functional properties has received less attention and modeling

of non-functional properties has received much too little. Non-functional prop-

erties such as responsiveness, availability, scalability and security have a direct

impact on whether the system is accepted and valued by end users. In contrast,

the internal organization of the codebase into packages and classes is entirely in-

visible and irrelevant to end users. From this perspective the current emphasis on

modeling of static software structure seems misplaced, to say the least.

In this paper we have presented a model-driven approach for the develop-

ment of service-oriented systems with explicit support for the specification of non-

functional properties. Our main contributions are

Non-Functional Properties in the Model-Driven Development of SOSs 57

– the ability to specify non-functional properties right within the model of the

SOA system, enabling modeling of performance and security,

– model-based support for performance analysis, in particular performance esti-

mates and reliability analysis, based on the timed process algebra PEPA,

– and the introduction of deployment mechanisms that comprise model-to-model

and model-to-text transformations.

We also created a method for analyzing the performability-reliability vs. perfor-

mance of services with non-functional parameters as described in [22], but which

is not included in this work.

We plan to extend the current UML4SOA-NFP approach to cover system’s

reliability at architecture level. Future work will necessarily encompass further

validation of the approach presented against larger projects. We plan to apply it to

more complex case studies in collaboration with industry.

References

1. Software Engineering for Service-Oriented Overlay Computers. http://www.

sensoria-ist.eu.

2. Web Services Security: SOAP Message Security 1.1 (WS-Security 2004). http:

//docs.oasis-open.org/wss/v1.1/.

3. WS-Reliability 1.1 specification. http://docs.oasis-open.org/wsrm/

ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf.

4. WS-ReliableMessaging 1.1 specification. http://docs.oasis-open.org/

ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf.

58 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

5. E. Alwagait and S. Ghandeharizadeh. DeW: A Dependable Web Services Framework.

RIDE, 01:111–118, 2004.

6. J. Amsden, T. Gardner, C. Griffin, and S. Iyengar. Draft UML 1.4 Profile for Automated

Business Processes with a Mapping to BPEL 1.0. Specification, IBM, 2003. http:

//www.ibm.com/developerworks/rational/library/content/

04April/3103/3103_UMLProfileForBusinessProcesses1.1.pdf,

Last visited: 10.12.2008.

7. A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic Concepts and Taxon-

omy of Dependable and Secure Computing. IEEE Trans. on Dependable and Secure

Computing, 1(1):11–33, Jan. 2004.

8. A. Balogh, D. Varró, and A. Pataricza. Model-Based Optimization of Enterprise Ap-

plication and Service Deployment. In ISAS, pages 84–98, 2005.

9. S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni. Model-Based Performance

Prediction in Software Development: A Survey. IEEE Trans. Software Eng., 30(5):295–

310, 2004.

10. L. Baresi, R. Heckel, S. Thöne, and D. Varró. Style-Based Modeling and Refinement of

Service-Oriented Architectures. Journal of Software and Systems Modeling (SOSYM),

5(2):187–200, 2005.

11. S. Bernardi, S. Donatelli, and J. Merseguer. From UML Sequence Diagrams and State-

charts to analysable Petri Net models. In P. Inverardi, S. Balsamo, and B. Selic, editors,

Proceedings of the Third International Workshop on Software and Performance, pages

35–45, Rome, Italy, July 2002. ACM.

12. E. Börger and R. Stärk. Abstract State Machines. A method for High-Level System

Design and Analysis. Springer-Verlag, 2003.

13. P. Caceres, E. Marcos, and B. Vera. A MDA-Based Approach for Web Information Sys-

tem Development. In Workshop in Software Model Engineering (WiSME@UML2003),

Non-Functional Properties in the Model-Driven Development of SOSs 59

2003.

14. C. Canevet, S. Gilmore, J. Hillston, L. Kloul, and P. Stevens. Analysing UML 2.0

Activity Diagrams in the Software Performance Engineering Process. In Dujmovic

et al. [17], pages 74–78.

15. V. Cortellessa, A. D. Marco, and P. Inverardi. Software performance model-driven

architecture. In SAC ’06: Proceedings of the 2006 ACM symposium on Applied com-

puting, pages 1218–1223, New York, NY, USA, 2006. ACM Press.

16. A. D’Ambrogio and P. Bocciarelli. A model-driven approach to describe and predict the

performance of composite services. In V. Cortellessa, S. Uchitel, and D. Yankelevich,

editors, WOSP, pages 78–89. ACM, 2007.

17. J. J. Dujmovic, V. A. F. Almeida, and D. Lea, editors. Proceedings of the Fourth

International Workshop on Software and Performance, WOSP 2004, Redwood Shores,

California, USA, January 14-16, 2004. ACM, 2004.

18. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook on Graph

Grammars and Computing by Graph Transformation, volume 2: Applications, Lan-

guages and Tools. World Scientific, 1999.

19. V. Ermagan and I. Krüger. A UML2 Profile for Service Modeling. In International

Conference on Model Driven Engineering Languages and Systems, volume LNCS

4735 of IEEE, pages 360–374. Springer-Verlag, 2007.

20. H. Foster, L. Göczy, N. Koch, P. Mayer, C. Montangero, and D. Varró. D1.4b: UML

for Service-Oriented Systems. Specification, SENSORIA Project 016004, 2010.

21. L. Gönczy, J. Ávéd, and D. Varró. Model-based deployment of web services to

standards-compliant middleware. In P. Isaias, M. B. Nunes, and I. Martinez, editors,

Proc. of WWW/Internet 2006(ICWI2006). Iadis Press, 2006.

22. L. Gönczy, Z. Déri, and D. Varró. Model-Based Performability Analysis of Service

Configurations with Reliable Messaging. In N. Koch, A. Vallecillo, and G.-J. Houben,

60 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

editors, Proc. Model Driven Web Engineering (MDWE), CEUR Vol-389, 2008.

23. R. Gronmo, D. Skogan, I. Solheim, and J. Oldevik. Model-Driven Web Services De-

velopment. In Proc. of the IEEE Int. Conf. on e-Technology, e-Commerce and e-Servie

(EEE’04), pages 42–45, Los Alamitos, CA, USA, 2004. IEEE.

24. R. Gronmo, D. Skogan, I. Solheim, and J. Oldevik. Style-Based Modeling and Refine-

ment of Service-Oriented Architectures. In Eighth IEEE International Enterprise Dis-

tributed Object Computing Conference (EDOC’04), IEEE, pages 47–57. IEEE, 2004.

25. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge Univer-

sity Press, 1996.

26. S. Johnson. UML 2.0 Profile for Software Services. Specification, IBM,

2005. http://www.ibm.com/developerworks/rational/library/

05/419_soa, Last visited: 10.12.2008.

27. H. Jonkers, M.-E. Iacob, M. M. Lankhorst, and P. Strating. Integration and Analysis of

Functional and Non-Functional Aspects in Model-Driven E-Service Development. In

EDOC, pages 229–238, 2005.

28. S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling. Wiley-Interscience, IEEE

Computer Society, 2008.

29. P. Li, Y. Chen, and A. Romanovsky. Measuring the Dependability of Web Services

for Use in e-Science Experiments. In D. Penkler, M. Reitenspieß, and F. Tam, editors,

Service Availability, Third International Service Availability Symposium, ISAS 2006,

Helsinki, Finland, May 15-16, 2006, Revised Selected Papers, volume 4328 of Lecture

Notes in Computer Science, pages 193–205. Springer, 2006.

30. N. Looker and J. Xu. Dependability Assessment of Grid Middleware. In The 37th An-

nual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN

2007, 25-28 June 2007, Edinburgh, UK, Proceedings, pages 125–130. IEEE Computer

Society, 2007.

Non-Functional Properties in the Model-Driven Development of SOSs 61

31. J. P. López-Grao, J. Merseguer, and J. Campos. From UML Activity Diagrams to

Stochastic Petri Nets: Application to Software Performance Engineering. In Dujmovic

et al. [17], pages 25–36.

32. K. Mantell. From UML to BPEL. Specification, IBM, 2005. http://www.ibm.

com/developerworks/webservices/library/ws-uml2bpel/, Last vis-

ited: 10.12.2008.

33. P. Mayer, A. Schroeder, and N. Koch. A Model-Driven Approach to Service Orches-

tration. In SCC’08, IEEE, pages 1–6. IEEE, 2008.

34. P. Mayer, A. Schroeder, and N. Koch. MDD4SOA: Model-Driven Service Orchestra-

tion. In The 12th IEEE International EDOC Conference (EDOC 2008), pages 203–212,

Munich, Germany, 2008. IEEE Computer Society.

35. J. Merseguer, S. Bernardi, J. Campos, and S. Donatelli. A Compositional Semantics

for UML State Machines Aimed at Performance Evaluation. In M. Silva, A. Giua,

and J. Colom, editors, Proceedings of the 6th International Workshop on Discrete

Event Systems, pages 295–302, Zaragoza, Spain, October 2002. IEEE Computer So-

ciety Press.

36. Object Management Group. UML Profile for Schedulability, Performance and

Time Specification, 2005. http://www.omg.org/technology/documents/

formal/schedulability.htm.

37. Object Management Group. UML for Modeling Quality of Service and Fault Tol-

erance Characteristics and Mechanisms, v1.1 , 2008. http://www.omg.org/

spec/QFTP/1.1/.

38. Object Management Group (OMG). Unified Modeling Language: Superstructure, ver-

sion 2.1.2. Specification, OMG, 2007. http://www.omg.org/docs/formal/

07-11-02.pdf.

62 S.Gilmore, L.Gönczy, N.Koch, P.Mayer, M.Tribastone, D.Varró

39. Object Management Group (OMG). UML Profile for MARTE, Beta 2.

Specification, OMG, 2008. http://www.omgmarte.org/Documents/

Specifications/08-06-09.pdf.

40. Object Management Group (OMG). Service Oriented Architecture Modeling Lan-

guage (SoaML) - Specification for the UML Profile and Metamodel for Services

(UPMS), revised submission. Specification, OMG, 2009. http://www.omg.org/

cgi-bin/doc?ptc/09-04-01, Last visited: 30.08.2009.

41. D. Petriu and C. Woodside. An intermediate metamodel with scenarios and resources

for generating performance models from UML designs. Softw. Syst. Model., 6:163–

184, 2007.

42. S. Röttger and S. Zschaler. Model-Driven Development for Non-functional Properties:

Refinement through Model Transformation. In Proc. The Unified Modeling Language

(UML 2004), volume 3273 of LNCS, pages 275–289. Springer, 2004.

43. M. Tribastone and S. Gilmore. Automatic Extraction of PEPA Performance Models

from UML Activity Diagrams Annotated with the MARTE Profile. In Proceedings of

the Seventh International Workshop on Software and Performance (WOSP), Princeton,

New Jersey, USA, June 2008. ACM.

44. J. M. Vara, V. de Castro, and E. Marcos. WSDL Automatic Generation from UML

Models in a MDA Framework. In NWESP 2005, page 319. IEEE, 2005.

45. D. Varró and A. Balogh. The Model Transformation Language of the VIATRA2 Frame-

work. Science of Computer Programming, 68(3):214–234, October 2007.

46. D. Varró and A. Pataricza. Generic and Meta-Transformations for Model Transforma-

tion Engineering. In T. Baar, A. Strohmeier, A. Moreira, and S. Mellor, editors, Proc.

UML 2004: 7th International Conference on the Unified Modeling Language, volume

3273 of LNCS, pages 290–304, Lisbon, Portugal, October 10–15 2004. Springer.

Non-Functional Properties in the Model-Driven Development of SOSs 63

47. H. Wada, J. Suzuki, and K. Oba. Modeling Non-Functional Aspects in Service Oriented

Architecture. In IEEE International Conference on Service Computing, Chicago IL,

pages 222–229. IEEE, 2006.

48. M. Wirsing, M. Hölzl, L. Acciai, A. Clark, F. Banti, A. Fantechi, S. Gilmore, S. Gnesi,

L. Gönczy, N. Koch, A. Lapadula, P. Mayer, F. Mazzanti, R. Pugliese, A. Schroeder,

F. Tiezzi, M. Tribastone, and D. Varró. A Pattern-Based Approach to Augmenting

Service Engineering with Formal Analysis, Transformation and Dynamicity. In Proc.

of 3rd International Symposium on Leveraging Applications of Formal Methods, Ver-

ification and Validation (ISOLA 2008), Porto Sani, Greece, LNCS. Springer-Verlag,

2008.

49. C. M. Woodside, D. C. Petriu, D. B. Petriu, H. Shen, T. Israr, and J. Meseguer. Perfor-

mance by unified model analysis (PUMA). In WOSP, pages 1–12. ACM, 2005.

