

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://hdl.handle.net/10251/47025

Springer Verlag (Germany)

Torres Bosch, MV.; Giner Blasco, P.; Pelechano Ferragud, V. (2012). Developing BP-
driven web application through the use of MDE techniques. Software and Systems
Modeling. 11(4):609-631. doi:10.1007/s10270-010-0177-5.

Developing BP-driven Web Applications through

the Use of MDE Techniques

VICTORIA TORRES, PAU GINER, VICENTE PELECHANO

Centro de Investigación en Métodos de Producción de Software

Abstract. Model Driven Engineering (MDE) is a suitable approach for performing the construction of

software systems (in particular in the web application domain). There are different types of web

applications depending on their purpose (i.e., document-centric, interactive, transactional,

workflow/business process-based, collaborative, etc). This work focuses on business process-based web

applications in order to be able to understand business processes in a broad sense, from the lightweight

business processes already addressed by existing proposals to long-running asynchronous processes. This

work presents a MDE method for the construction of systems of this type. The method has been designed

in two steps following the MDE principles. In the first step, the system is represented by means of models

in a technology-independent manner. These models capture the different aspects of web-based systems

(these aspects refer to behaviour, structure, navigation, and presentation issues). In the second step, the

model transformations (both model-to-model and model-to-text) are applied in order to obtain the final

system in terms of a specific technology. In addition, a set of Eclipse-based tools has been developed to

provide automation in the application of the proposed method in order to validate the proposal.

1. Introduction

Nowadays, most of our daily activities (communication by text or voice, listening to

music, watching TV programs, etc.) can be performed on the web. The web provides

applications that are almost always available and are easy to access (even resource-

constrained devices provide a web browser and connectivity). The web development

industry has grown very rapidly since its beginning in the mid-1990s. Multiple

technologies have emerged to deal with both client (JavaScript, Flash or Microsoft

Silverlight) and server (ASP, CGI, PHP, Python, etc.) side coding. In addition to these

technologies, the availability of web application frameworks (i.e. Django1, Ruby on

Rails2, Tapestry3, etc.) and Web Engineering (WE) methods (OOWS [13], UWAT+ [9],

WebML [7], OOHDM [29], UWE [21], OOH [17]) alleviate the common problems

1 http://www.djangoproject.com/
2 http://rubyonrails.org/
3 http://tapestry.apache.org/

found when building applications of this type. Web application frameworks provide

solutions to common activities such as database access or session management

performed in web development. WE methods provide techniques and notations at a high

level of abstraction to represent the knowledge required for the development of these

systems. In addition to the infrastructure provided by web frameworks and WE

methods, a significant improvement in the development of web applications is provided

by the application of Model Driven Engineering (MDE) techniques [31]. These

techniques propose the use of models and model transformations as the principal

artefacts during application development. Models are used to specify web applications

in a technology-independent fashion. Model transformations are defined to move

technology-independent web specifications into a specific technology (i.e., to a

particular web framework).

In the WE field, many of the existing proposals have been extended and adapted since

their conception to satisfy the needs of new emerging types of web applications (i.e.,

semantic web applications [3] or RIA [11] among others). However, we have found

some limitations and drawbacks in some of these extensions, particularly in those

related to the integration of business processes (BPs) with navigational issues. In an

attempt to solve these limitations, in this work, we present a WE method for the

construction of BP-driven web applications. This method takes into account BP aspects

that were not considered by the existing proposals. The main aspects considered in our

approach are the support for: (1) multiple mechanisms for collaborative work within an

organization; and (2) the ability to seamlessly handle processes that involve a different

number of participants (from lightweight step-by-step wizard-like processes to a long

asynchronous process that involves many partners). Thanks to these considerations and

through the application of MDE techniques, our method generates web applications that

support the execution of the BPs defined during modelling time. In addition, we have

developed a set of tools based on the Eclipse platform (the Bizzy tool) to validate the

proposal. This tool covers the proposal from the modelling to the generation phase and

includes a set of modelling editors and model transformations that allow the specified

web application to evolve into a specific technology.

The remainder of the paper is structured as follows. Section 2 presents the type of web

applications that we deal with. Then, based on the observable characteristics of

applications of this type, section 3 enunciates the set of requirements that WE methods

should satisfy in order to properly build systems of this type. Section 4 presents the state

of the art of the WE field and also in the Human-Computer Interaction (HCI) and BP

fields regarding the issues considered in this work. Section 5 provides an overview of

the entire MDE proposal developed in this work. Section 6 presents the new language

primitives that have been defined in this work to properly specify BP-driven web

applications at the modelling level. Based on the requirements identified in section 3

and the two case studies presented in section 2, section 7 explains the details of the

proposal focusing only on the aspects related to BP specification. Section 8 provides

some details of the Eclipse-based tools that we have developed to support the proposal.

Section 9 provides the results obtained from the evaluation of our proposal. Finally,

section 10 presents conclusions and further work.

2. What do we mean by BP-driven web applications?

BP-driven web applications are defined as applications that are accessed via a web

browser over a network (i.e., the Internet or an intranet). These applications allow users

to accomplish a set of key tasks or workflows. Therefore, applications of this type are

considered to be task-based application and correspond to one of the web application

categories identified by Kappel et al. in [20]. The aspects that characterize BP-driven

web application are the following:

- Well-defined process. When users access BP-driven web application they have

restricted freedom. They navigate in a controlled manner through the application

only having access to the content and functionality that is required according to

the business process definition.

- Humans-system cooperation. BPs tend to cross organization boundaries and

integrate different computing resources and services [8]. In addition, a complete

automation of a process is not always possible or desirable [34]. Thus, human

participation cannot be overlooked and guidance must be provided to make

human participation as easy as possible.

In line with the BP categorization4 made by IBM, we have catalogued BPs into two

types, which we have termed short-running (microflows in IBM nomenclature) and

long-running BPs (the same in IBM nomenclature). Michael Havey also uses this

categorization in the Short and Long-Running Processes in SOA-part15 article. Even

though Havey extends this categorization with mid-running processes, these are not

considered in the article since these can be handled similarly to short-running processes.

Short-running and long-running processes are explained in detail and exemplified with a

case study in the following subsections. For the case study we use the Library4U web

application that offers its users the common services that are usually found in on-line

library systems. In this system, books and other materials can be borrowed and

purchased. Of the services offered by these systems, we present the checkout process

and the book purchase request process, which allow us to exemplify both short-running

and long-running BPs, respectively. The notation that has been used in this work to

specify BPs is the Business Process Modeling Notation [27] (BPMN), which is the

notation adopted by the OMG to represent processes for different types of users, from

business analysts to technical developers.

2.1. Short-running business processes

According to the IBM categorization, short-running BPs are defined as “a process that

is contained within a single transaction. This is ideal for situations where the user is

expecting an immediate response“. Good examples of processes of this type are the

checkout process, which is usually found in on-line stores, or the booking service,

usually found in on-line travel agencies.

4

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wbit.help.bpel.ui.

doc/concepts/clngmcro.html
5 http://www.packtpub.com/article/short-and-long-running-processes-soa-1

L
ib

ra
ry

4
U

S
y
s
te

m

«
en

ti
ty
»

M
e

m
b

e
r

«
ro
le
-o
n
e»

P
a

y
m

e
n

t

S
e

rv
ic

e

«user»
Shipping

«user»
Payment

valid? Yes
«user»

Gift wrapping

«system»
Place order

No

Figure 1 Example of a short-running process: the checkout process

Figure 1 shows the checkout process. This process involves the coordination of two

systems that are represented in the diagram by the library4U and the payment service

pools. The library4U pool represents the system being developed locally, while the

payment service pool refers to an external partner from which the library4U uses some

services. In addition, the tasks assigned to the library4U partner are distributed between

two roles, a human being (lane labelled as member) and an automated system (lane

labelled as system). The process defined in the diagram details the steps that are

required to accomplish a virtual purchase. In this BP, it is the human participant

(member role) who starts the checkout process. During the first stage of this process the

user is asked to input some information about the shipping details such as address, city,

country, shipping mode, etc. In the second stage, the user is asked to provide data about

the payment (i.e., credit card number and expiration date). Once the required

information is introduced, the process starts a payment validation step. If the validation

step is completed successfully, the user is asked about wrapping options. Otherwise, the

user is redirected again to the payment step to introduce the payment data. Finally, if

the validation step succeeds the process terminates by creating and placing the order

into the system. Unlike the previous tasks, this task is performed by the system (system

role) automatically without any interaction with the user.

After analyzing several examples of short-running BPs, we have generalized the

following features for them:

Feature 1 (Participants) They involve just one human participant who interacts with

the system/process and one or more automated participants.

Feature 2 (Duration) They are completed in a very short period of time (intervals can

range from seconds to a few hours). This is due to the fact that there is only one human

user required by the process.

Feature 3 (Complexity) They are usually simple (in terms of control flow) and are not

very large. Processes of this type normally take the form of a wizard, which is a

sequential on-screen dialog that assists the user to achieve a specific goal.

Feature 4 (Initiator) They are always started by the user (human participant).

Processes of this type usually correspond to services offered by the system to its users,

who take the initiative to use them when necessary.

Feature 5 (Process instances) Since there is no need for coordination with other human

participants, users normally complete the process step-by-step without parallel instances

being started. As a result, the user only participates in one instance of the process at the

same time.

Existing web frameworks such as Spring6 or Seam7 provide solutions (WebFlow8 and

Pageflow9, respectively) for coping with these processes. Despite the fact that these

solutions can be considered valid at the implementation level, they fail in using a

standardized language to define BPs and in using techniques to accelerate and facilitate

the construction of the Graphical User Interface (GUI) associated to the process. In our

approach for dealing with these issues we make use of both a standardized BP language

(the BPMN notation), which is specifically designed to define BPs and MDE techniques

(model transformations) to produce the necessary GUI to execute the BP. This enables

the use of existing standard-compliant technologies and reduces the need for manually

creating and updating GUIs.

6 http://www.springsource.com/
7 http://www.seamframework.org/
8 http://www.springsource.org/Webflow
9 http://docs.jboss.com/seam/latest/reference/en-US/html/tutorial.html#numberguess

2.2. Long-running business processes

The second type of BP that we have categorized is represented by long-running BPs,

which usually define the protocols that have to be followed within an organization to

achieve a specific goal. Based on the IBM BP categorization, a long-running BP

“executes over an extended period of time, and is much more flexible and resilient than

a microflow. Interruptible business processes and asynchronous business processes are

examples of long running processes”. Examples of this sort of BPs are the book loan

and return service offered by libraries.

L
ib

ra
ry

4
U

S
y
s
te

m

«
en

ti
ty
»

L
ib

ra
ri
a

n

«
ro
le
-a
n
y»

S
e

c
re

ta
ry

«
ro
le
-a
n
y»

M
e

m
b

e
r

«
ro
le
-o
n
e»

C
e

n
tr

a
l
L

ib
ra

ry

«user»
Request for a

book

purchase

«user»
Validate the

Request

Appro

ve?
Yes

«send»
Send request

«system»
Load book

details

No

«system»
Notify

rejection

«receive»
Receive

purchase

notification

«manual»
Pick up books

«system»
Notify book

purchase

«user»
Loan book

Figure 2 Example of a long-running process: the book purchase request process

In general, these processes involve not only the coordination of different systems but

also the coordination of different people behaving with different roles (such as the

librarian, secretary, or member roles represented by lanes in Figure 2). To exemplify

these processes we are going to make use of the book purchase request process which is

depicted in Figure 2. As this diagram shows, there exists coordination between two

partners that refer to the local library (represented by the library4U pool) and the library

warehouse (represented by the central Llibrary pool). This BP is started by a library

user who wants to borrow a book that it is not available in the library. This user is

represented by the member lane within the library4U pool. Therefore, to perform the

loan, the user has to first provide the information of the book (i.e., book title or ISBN).

Then, the book request has to be evaluated by any user belonging to the secretarial staff

(represented in the diagram by the secretary lane) who decides to approve or reject the

request based on certain criteria. If the request is rejected, the system notifies the

member (usually by sending an e-mail). On the contrary, if the purchase request is

approved, this request is redirected to the central library, which is responsible for the

purchase of the requested books (among other services). At this point, the process has to

wait for the purchase notification response sent back by the central library. When this

notification arrives, the library4U system must load the book details into the system

and, in parallel, any user belonging to the secretary group has to pick up (manual

operation) the book from the central library. When these two tasks are completed, the

system notifies the member about the acquisition of the requested book and, finally, one

of the users belonging to the librarian user type finalizes the process by making the

book loan to the solicitor member.

Again, after analyzing several examples of long-running BPs, we have generalized the

following features for them:

Feature 1 (Participants) They usually involve more than one human participant and

one or more automated systems. Collaboration among different roles and organizations

is required to fulfil a business goal.

Feature 2 (Duration) They usually take a long time to be completed (intervals can

range from days to years). This is due to the fact that there may be several human

participants, which implies that processes have to wait for information from all of them.

Feature 3 (Complexity) They usually represent organizational protocols or procedures

that have to be followed in order to accomplish a specific goal. In these processes, tasks

are usually distributed not only among different roles within the organization but also

among external partners. In addition, procedures can be very complex since they should

consider all the possible ways to achieve a specific goal (taking into account the

differences among partners in terms of internal policies, data formats, and possible

exceptions). Therefore, all these factors contribute to not only having long process

models but also having complex ones as well.

Feature 4 (Initiator) They can be started by any participant involved in the process. It

can be started by either an automated task or by a human participant.

Feature 5 (Process instances) Due to the delay introduced by the participation of

different human roles in long-running BPs, it makes sense to focus on specific tasks

from the process instead of following a step-by-step approach. For example, in the book

purchase request process, it is more practical for secretary members to validate all the

pending requests before picking up the books. This proceeding allows several requests

to be solved without having to performing multiple cycles of book validate-wait and

reception-pick up.

The lack of specific primitives provided by web frameworks to support BPs forces

developers to implement ad-hoc solutions. In fact, these frameworks follow a

synchronous request-response pattern that, for instance, does not allow maintaining the

state of the process. Therefore, these solutions are not originally prepared to support

BPs of this type. The most suitable solution for supporting them is given by Business

Process Management solutions. These solutions provide support to the entire life cycle

of BPs, including the design and execution phases we are focused on. However, the

design of the GUI required to support the specified BPs is carried out separately from

the BP specification. This implies that changes in the definition of BPs have to be

manually propagated to the associated GUI. Again, in our proposal, the application of

MDE techniques allows us to keep both, the BP definitions and the GUI that supports

them synchronized.

3. Requirements for dealing with BP-driven web applications

Based on the characteristics that are observable in the two types of BPs identified in

section 2, we present the requirements that are particularly important for WE methods

targeting the specification and construction of BP-driven web applications. These

requirements concern not only the method and the development process but also the

characteristics of the generated web applications.

Requirement 1 (BP data and functionality)

Description This requirement refers to the availability of mechanisms to specify which

data and functionality from the system has to be associated with a specific task.

Specifically, system functionality should only be associated with tasks that require some

system support (this does not happen with manual tasks that do not change the state of

the system).

Rationale Performing this association is necessary in the context of a MDE method.

This association allows us to achieve a level of automation during the system

development process that could not be achieved in other situations. By explicitly

identifying the data and functionality that is required to complete a specific task in the

models, we can generate the code that will allow users to retrieve this data and

executing this functionality.

Requirement 2 (BP definition)

Description This requirement refers to the availability of mechanisms to build BP

diagrams that define the tasks, the roles responsible for these tasks, and the connections

that define the different paths that can be executed to complete the BP.

Rationale In BP-driven web applications, BPs constitute a major artefact in the

development process. Therefore, it is necessary to provide mechanisms (in terms of a

language or notation) that allow their definition.

Requirement 3 (Work distribution)

Description This requirement refers to the mechanisms that allow BPs to be defined in a

distributed context where some process tasks are delegated to external partners.

Rationale Real scenarios involve the cooperation of different systems to achieve a

specific goal. This cooperation comes from the need for some external services that are

provided by specific organizations or the need for internal services that are simply

distributed among different systems.

Requirement 4 (Human participation)

Description This requirement refers to the available mechanisms that allow different

types of human participation within a BP definition to be specified.

Rationale There are different ways in which human beings can participate in a specific

process. Sometimes this participation requires some software assistance, but in other

situations, humans complete their tasks without any software support. In addition, BP

tasks can either be assigned to just one human participant or they can be assigned to a

group of users. In order to properly handle the interaction in each case, it is important to

clearly specify the type of behaviour/participation that is expected from the user in the

corresponding model.

Requirement 5 (Separation of concerns)

Description During the system definition phase, this requirement refers to the

mechanisms that are available to clearly differentiate between the navigation that occurs

during BP execution from the navigation that occurs from traditional navigation

(navigation driven by the user and aimed at content discovery or execution of atomic

functionality). This differentiation will impact the generation of the corresponding web

application, both enabling and disabling the links that should and should not be

followed by the user.

Rationale The web application navigation required to execute a specified BP is related

to the flow connections defined in the corresponding BP diagram. In this case, the

navigation is clearly defined and the user does not really have the chance to decide the

next link to follow.

Requirement 6 (Differentiating navigation types)

Description This requirement refers to the GUI mechanisms provided to the end user

(the one executing the BP) to distinguish between a short-running and a long-running

BP.

Rationale Differentiating these two types of BPs at the application level allows the end

user to better understand the process and the tasks that she/he is involved in. As we have

illustrated in section 2, users complete tasks in a different way depending on the nature

of the process (short-running or long-running). For short-running processes where tasks

are performed step-by-step, navigation must guide the user through all the steps of the

process, providing mechanisms to cancel or to go back/forward (e.g., following the

wizard pattern). Conversely, for long-running processes, mechanisms are required to

access the different instances of the process and to complete several pending instances

of a specific task. Task-based UIs [18] that are based on the to-do list metaphor for

users to represent multiple instances of pending can be applied for the design of the UI

in this case.

Requirement 7 (BP instance state)

Description This requirement refers to maintaining the state process instances in order

to correctly take them up again after their suspension.

Rationale Users may need to suspend a process for a while for different reasons.

Therefore, it is necessary to provide mechanisms that allow the process to be taken up

again at the same point where it was suspended.

Some of these requirements (specifically requirements 1, 2, 3 and 7) have already been

stated by Damiano et al. in [10]. However, we found that it was also important to make

the difference between the two types of BPs identified in section 2, but only from the

point of view of the web application. In fact, handling these two types similarly from

the modelling point of view allows developers to focus on just the problem domain and

not on the solutions that must be implemented to successfully support the BP. In this

work, we have designed a MDE approach taking into account these requirements.

During the system specification phase, the analyst/developer is provided with modelling

mechanisms that specify the particularities that BPs introduce (req. 1 to req. 4). All

these primitives are provided in different models according to the type of element being

modelled. In addition to these mechanisms, the method has been designed taking into

account the separation of concerns regarding navigational issues (req. 5), since

navigation has a very important role in web applications. Other requirements such as

generating a specific GUI according to the type of BP being considered (req. 6) are also

taken into account during the system generation process. This is achieved by the

application of the corresponding model transformations. Finally, to properly handle the

state of the BP instances, an extension over the traditional three-tier architecture has

been designed (req. 7). The details about how all these requirements are captured in the

MDE approach are explained in section 6.

4. Related work

Based on the requirements that we have identified in section 3, in this section we

present an overview of the existing literature dealing with the construction of BP-driven

web applications. Most of this literature has been developed in the context of the WE

field. However, there are also some works developed in the HCI and BP fields that deal

with the alignment of GUI and BPs which address how human participation should be

addressed in process modelling. Thus, this section has been organized in two parts. The

first part briefly describes the most well-known WE methods that provide support for

dealing with the construction of BP-driven web applications. The second part includes

related works that have been developed in the HCI and BP fields.

It was in 2003, during the third International Workshop on Web-Oriented Software

Technologies (IWWOST)10, when the WE community started to consider how WE

methods should deal with the construction of BP-driven web applications. As a result of

this workshop, the OOHDM [30], UWE [22], OO-H [22] and WSDM [36] proposals

presented a solution to deal with these applications. After this event, other proposals

such as UWAT+ [10], WebML [4], HERA [2] or MIDAS [26] have also provided a

solution for dealing with them. The most evolved one corresponds to WebML which

places emphasis on the following: (1) improving the usability of the generated UIs [5]

(by means of the RUX approach [24] to generate RIAs); and (2) developing WebRatio

[6], a commercial tool that puts into practice the approach. However, these WebML

advances, and others proposals fail in a solution that considers the particularities of the

two types of BPs that we have identified in this work (short-running and long-running

BPs). This drawback refers mainly to requirement 6 (Differentiating navigation types).

The OOHDM, UWE, OO-H, WSDM and MIDAS methods only consider dealing with

short-running BPs. This does not involve many changes to their current proposals since

the interaction of several human beings or the existence of multiple process instances

(not satisfying requirement 7 (BP instance state)) are not involved. In fact, the proposed

solutions simply introduce modelling mechanisms to specify BPs (such as BPMN,

UML Activity Diagrams or Concur Task Tree), which are finally mapped to

navigational structures to allow users to execute the tasks involved in the BP (these

modelling mechanisms refer to requirement 2 (BP definition)). In addition to these

mechanisms, the OOHDM proposal also defines special navigational links that

differentiate between navigation during BP execution and traditional navigation.

UWAT+, WebML and HERA focus on providing support for long-running BPs.

Dealing with these BPs involves taking into account that some processes are completed

by several human beings and, therefore, the navigation defined to achieve a specific

goal involves the coordination of different users. Also users may be involved in several

10 http://users.dsic.upv.es/~west/iwwost03/articles.htm

instances of the same process, which can also be in different stages. In this case, it is

necessary to maintain the state of each process instance in order to allow users to

complete their pending tasks whenever they are required to do so, thereby satisfying

requirement 7 (BP instance state)).

From the modelling point of view, and taking into account that most of the WE methods

rely on MDE, all the revised proposals mix the navigation that occurs during BP

execution and the navigation that occurs during traditional navigation at the modelling

level. This mix hinders model legibility and understandability (note that BP navigation

requires control mechanisms to redirect navigation to one path or another, which makes

model legibility and understandability of the model even more difficult. Taking into

account the important role played by models in a MDE approach, it is necessary to

ensure the quality of the models in order to complete software developments

successfully.

This consideration refers to requirement 5 (separation of concerns). Taking into account

that BP models already define flows that connect BP tasks (these flows represent the

navigational links between the elements that form the navigational structure), WE

methods should consider keeping these connections in the BP model only, and not

bringing them to the navigational model.

WE methods define a set of models to specify different aspects of web applications. For

instance, the system data and functionality is usually specified by means of UML class

diagrams, entity-relationship models, UML use cases or the like. By associating these

models with the model that captures the navigational structure of the system, these

proposals specify which data and functionality is going to be provided to the user in

each different interaction unit (these units will render to web pages). This association

refers to requirement 1 (BP data and functionality), which allows users to complete BP

tasks by accessing the proper data and executing the proper system functionality.

Related to requirement 3 (Work distribution), only the HERA, MIDAS and WebML

methods consider the collaboration with external parties in order to support some of the

activities included in the BPs. In contrast, OOHDM, OO-H, UWE, WSDM and

UWAT+ conceive web applications as isolated systems where all the activities of the

BPs are supported by the web application itself.

Finally, users can participate in different ways in a specific BP. For instance, in some

cases, the user is the only one responsible for specific tasks. However, there may be

situations in which the responsibility of completing a specific task can be shared by a

set of users. This refers to requirement 4 (Human participation) and from the revised

proposals, none of which provide mechanisms to specify the different behaviour in

which a user can participate in a BP.

Table 1 summarizes the support provided by each of the previously analyzed proposals

to deal with the integration of BPs in web applications.

 U
W

A
T

+

 W
eb

M
L

 O
O

H
D

M

 U
W

E

 O
O

-H

 W
S

D
M

 H
E

R
A

 M
ID

A
S

BP data and functionality + + + + + + + +

BP definition + + + + + + + +

Work distribution - + - - - - + +

Human participation - - - - - - - -

Separation of concerns - - - - - - - -

Differentiating navigation types - - - - - - - -

BP instance state + + - - - - + -

Table 1 WE methods summary (+ fully supported, - not supported)

Besides the works developed in the WE field, there are some works ([19], [25] or [28])

that focus on how human participation should be addressed in process modelling. The

goal of these works is not to develop web applications supporting BPs, but they relate to

our work since they take into account the user interaction required to support BP tasks.

All these works make use of MDE techniques to produce BP executable definitions in

terms of BPEL4People11 and WS-HumanTask12 standards from models or views that

represent human participation. MDE techniques allow them to automatically derive BP

11 http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/BPEL4People_v1.pdf

12 http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf

definitions in terms of a specific language. Part of our approach is similar to these since

we also make use of MDE techniques to derive the executable BP definition from a set

of models (BP, structural, services, navigational and presentation model). However, in

our case, we make use of the WS-BPEL [1] standard. To cope with human participation,

we have developed the Task Manager Service which is presented in section 7.8.

In the HCI field, we can also find some works aimed at aligning BP definitions with

User Interfaces (UI). In this field, there are works such as the one conducted by Sousa et

al. in [32] or Sukaviriya et al. in [33]. In both works, the main purpose is to achieve

traceability between BP and UI. However, these differ from the perspective that they

take. In [32], traceability is focused on the end-user perspective. BPs are connected with

GUIs in order to easily identify the effect of changes in both BP and GUIs. In this case,

BP models are linked to UI through the mapping between the elements from the Task

model and the User Interface model (both models are based on UsiXML [23]).

However, in [31], traceability is focused on the business requirements in order to help

UI designers to react to business changes appropriately. Both approaches propose the

use of MDE techniques to achieve the alignment between BPs and GUIs. However,

neither of them applies these techniques to the development of the system, and they are

simply used to speed up the construction of the UI associated to BP tasks.

5. Proposal overview

The Business Process Management (BPM) initiative13 promotes the use of models to

describe business processes from a high abstraction level (e.g., using BPMN). Then,

these models can be translated into executable representations of the process (e.g., using

WS-BPEL . In line with this intensive use of models, we find MDE. Putting MDE into

practice involves three steps. First of all, it is necessary to define a language

(metamodel) that allows specific kinds of systems to be expressed. Then, in a second

step, this language can be used to create models that represent different system

instances. Finally, in order to execute these models, it is necessary to transform them

into an executable representation. This last step is achieved by means of model

transformations that allow the system represented in the models to evolve into a specific

implementation technology. Metamodels, models, and model transformations constitute

13 http://www.bpmi.org/

the building blocks that make the application of MDE approaches possible. However, to

make a proper use of an approach like this, the steps that define the development

process as well as the artefacts resulting from each step must be defined.

Independently of the software development model used in the definition of a software

development process (waterfall or iterative), a complete process involves several steps

from requirements gathering to software maintenance. Nevertheless, in this work, the

development process is focused on just two of these steps which relate to the design and

implementation of the web system.

The first step of our proposal is the design of the web system. The system is represented

in terms of the models defined by the method (see section 5.2). Then, the second step is

to transform all of these models into a specific implementation technology, which

allows the execution of the modelled system (see section 5.3). During this second step,

the implementation of the web system is performed by the application of model

transformations, this allows moving from the problem space (real world concepts) to the

solution space (system implementation).

5.1. The big picture

Figure 3 shows the development process defined to build BP-based web applications

(note that all the models referenced in this figure are briefly introduced in subsection

5.2). The process involves the participation of three different roles, two of which relate

to human-beings (the analyst and the developer) and one to a system (the Bizzy tool).

This differentiation is denoted graphically by the corresponding stereotypes. In addition,

we have divided the tasks into two steps according the type of work performed: the

modelling step and the code generation step.

The process is started by the analyst who defines the set of processes that should be

supported by the system using BPMN. This model does not include any details about

the real work that is going to be performed during the process tasks. Therefore, we have

termed the generated model as an incomplete14 BP model (Figure 3 shows the artefact

obtained in the business process analysis task). The main reasons for using BPMN in

14 in terms of system executability

our work to specify BPs are that: (1) it constitutes the standard for BP modelling; (2)

there is an open source editor for creating BPMN models that is extensible and based on

the Eclipse platform; and (3) there is some support for transforming BPMN models into

executable WS-BPEL processes.

Code Generation Step

Modeling Step

Development Process

Analyst

«human-being»

Developer

«human-being»

Business Process

Analysis

+

System

Specification

+

Web

Specification

Business Process

Design

Bizzy Tool

«system»

«model»

Business

Process

Model

[incomplete] «model»

Structural Model

«model»

Business Processes

[complete]

«model»

Navigation&Presentation

[basic]

«code»

WS-BPEL

document

Web Application

Generation

This sub-process

involves

model2model

transformations

Enrich?

+

Enrich Web

Specification

Yes

No

+

+

Executable

Business Process

«code»

Tapestry

files

«model»

Navigation&Presentation

[enriched]

This sub-process

involves

model2text

transformations

«model»

Services Model

This task

includes

model2text

transformations

«model»

User

Figure 3 Development process for the construction of BP-driven web applications

Then, the developer starts the development process. Based on the previously generated

incomplete BPs, the developer complements these BPs with new models (Figure 3

shows the system specification sub-process task), these are used to specify: (1) the

structure of the system in terms of classes, attributes, and operations; and, (2) the

external functionality that is going to be consumed by the system. As a result we obtain

the structural model and the services model, respectively, which gather all this

information (a brief description of these models is provided in section 5.2). These

models allow the structure and functionality of the application to be handled

independently of the technology employed to implement them.

Although the development process proposes performing first the business process

analysis and then the system specification, these tasks can be performed the other way

round. The order in which these tasks are going to be performed is determined by the

way in which the system requirements are discovered. In some cases, requirements are

provided in terms of a well-known process. In this case, it is more appropriate to start

with the business process analysis task. However, when requirements are provided in

terms of domain concepts and uni-granular functionalities, it is more appropriate to start

with the construction of the structural and services models.

Structural Model

Information

Structure

Specification

External

Services

Specification

WSDL Services Model

Figure 4 Expanded sub-process system specification

The following step in the process is still performed by the developer. At this point, the

developer completes the BPs that were defined by the analyst in order to generate an

equivalent representation, in a later step; however, it will be generated in terms of the

WS-BPEL executable language. This is achieved by associating the operations defined

either in the structural model or in the services model with the tasks included in the

BPs. In some cases, the developer has to refine tasks (i.e., by splitting them into several

connected tasks) in order to fit their granularity to the operations defined in the

structural and services models.

Once the system has been shaped in the above-mentioned models we can bring them

into the Bizzy tool and use them for the generation of new artefacts (new models and

executable code). This tool automates the model transformations that generate: (1) the

navigational and presentation models (web specification task in Figure 5) that represent

the interaction between users and the system; (2) the executable BPs in terms of WS-

BPEL; and (3) the Java code that implements the systems in terms of the Tapestry web

framework.

Presentation

Specification

Navigation

Specification

PresentatioN Model

User

Identification

User Model

BP Model Navigational Model

Figure 5 Expanded sub-process web specification

The following subsections provide some details about the artefacts that are obtained in

the tasks that make up both the modelling and the code generation steps of the process.

5.2. The modelling step

Following the separation of concerns promoted by MDE, this step gathers all the

process tasks that relate to system specification (independent of any technological

details) and that generate the models that capture the different aspects of the system.

These models are:

 The structural model: This model defines the system structure by means of a

UML class diagram. In this diagram, classes, attributes, operations, and

relationships between classes are defined. In this model, we are going to define

all the data and functionality developed and maintained in our local system.

 The services model: This model defines the external functionality (functionality

that is provided by external systems) that is going to be consumed by the

system. The objective of this model is to bring up external services (services

offered as web services) to the modelling level in order to manage them more

easily.

 The business process model: This model is used to specify the set of BPs that

have to be supported by the system. Its specification is performed by means of

the BPMN notation, which has been extended in this work (see section 6.1) in

order to derive not only WS-BPEL code but also the corresponding web

application.

 The user model: This model defines the kind of users that are going to interact

with the web application. In this model, we can also define hierarchical

relationships between different types of users, thus allowing them to share their

navigational privileges.

 The navigational model: This model captures the navigational structure of web

applications. This structure is defined as a view over the system, that is, over the

structural and services models. The navigational model includes a view for each

type of user identified in the user model.

 The presentation model: This model defines the presentation properties of the

web application content (data and functionality). These properties are related to

information paging, layout, and ordering criteria and are applied to the views

defined in the navigational model.

5.3. The code generation step

In the second step in the development process, the domain specified in the set of models

presented above is transformed into code artefacts that can be executed. This phase of

the process has two tasks: one dedicated to the code generation of service orchestration

and another dedicated to the generation of the interface that will allow users to interact

with the BPs supported in the web application.

5.3.1. WS-BPEL code generation step

To obtain an executable version of the BPs specified at the modelling level, we have

defined the process depicted in Figure 6. In this process, we make use of the BABEL

Java tool (Babel2WS-BPEL task) to translate the BPMN diagrams into WS-BPEL code.

However, before performing this activity, the BP models must be prepared according to

the format accepted by the BABEL tool. This is performed in the BPMN2BP-Babel task

by means of a model-to-model transformation that we have implemented for this

purpose.

WS-BPEL

Completion

Babel2WS-BPEL

WS-BPEL

Document

[incomplete]

WS-BPEL WSDL

BPMN2BP-Babel

BP Model

[babel format]

Model2Model

transformation
Model2Model

transformation

Model2Model

transformation

WS-BPEL

WSDL + XSD

Ê Ñ

WS-BPEL XSD

WS-BPEL

Document

[complete]

Model2Text

transformationBP Model

Figure 6 Expanded Sub-process WS-BPEL generation

In spite of the fact that the BABEL tool generates a WS-BPEL document from a BPMN

model, the generated WS-BPEL document is not complete since this tool does not

consider the extension performed in our proposal to BPMN (see section 6.1). Therefore,

to obtain a complete and ready-to-run WS-BPEL code we have implemented two new

transformations that can be performed in parallel. The WS-BPEL completion task

completes the WS-BPEL definition including the Partner Link, Variables, and

Correlation Sets sections of the document. Since WS-BPEL processes are considered

web services, it is necessary to generate their interfaces to define their operations and

data types. This is performed in the WS-BPEL WSDL + XSD task.

5.3.2. User interface code generation step

The generation process to obtain the modelled system into a web framework is

performed in just one step (see Figure 7). In this step (web application generation task

in Figure 3), a set of model-to-text transformations is executed to obtain the modelled

system in terms of the Tapestry web framework. The main reasons for adopting this

framework were the component-based model and the MVC architecture in which the

framework is based on. This allows a clear separation of different technologies used to

be distinguished during the development of the web application.

«code»

Java files

«code»

.page

files

«code»

HTML

templates

Web framework

Files generation

Navigational&Presentation

models

Structural, Services & BP

models

Model2Text transformation

Figure 7 Expanded sub-process tapestry web framework generation

As Figure 7 shows, the web framework files generation task requires the complete

specification of the system to produce a web application that is organized in three types

of code files:

 Java files, which define the Java classes that implement the logic of the

application. It corresponds to the Controller aspect from the MVC architecture

on which the framework relies.

 HTML files, which define the templates that correspond to the View aspect from

the MVC architecture.

 Page files, which are XML documents that include the declaration of the

Tapestry components used in the HTML files. Although page files are optional,

they help to obtain a more readable code by allowing the application of the

dependency injection pattern [14].

6. Language extensions to support BP requirements

In order to satisfy the requirements identified in section 3, we have extended the

languages/notations used in the current proposal. These extensions refer to the BPMN

notation and to the navigational model of the OOWS web modelling language [12].

6.1 BPMN extension

According to the type of information that is gathered in the BPM, the BPMN notation

provides graphical elements to specify: (1) the systems (external and internal) that are

involved in the BP; (2) the activities that conform the internal (private BP) system; (3)

the participants (within the private BP) that are responsible for performing these

activities; (4) the conditions that control the BP flow; and (5) the interaction that occurs

between the private BP and the external partner(s). Within the set of graphical objects

defined by the BPMN notation, we have found almost all of the elements necessary for

defining the kinds of processes that we are interested in. Nevertheless, we have found

some limitations in the notation. In accordance with the requirements identified in

section 3, we have extended the BPMN metamodel. The limitations and their extensions

are the following:

 Differentiating the scenarios where human participants behave as individuals or

as members of a particular group. In order to differentiate the behaviour of a

process role, we have extended the BPMN lane element with a new attribute, the

type attribute. The values accepted by this new attribute are role-one and role-

any. The role-one value is used when the user behaves as an individual.

Therefore, the human being performing the first task of the lane has to be the

same for the rest of tasks defined within the same lane. The role-any value is

used when the user behaves as a member of a group. In this case, any human

being belonging to the group specified in the lane can perform any of the tasks

included in it.

 Specifying the functionality that is going to support each task/activity included

in the BP definition. A necessary step for obtaining an executable definition of

the process is to specify the functionality that is going to be performed in each

task. For this purpose, we have extended the BPMN task element with a new

attribute, the operation attribute, which allows us to link tasks with functionality

that has been defined either in the structural or in the services model. This

extension only applies to tasks defined as service, receive, send, and user in the

BPMN notation (these are some of the types in which a task process can be

defined). Process tasks defined as script or manual are not susceptible to this

extension.

Specifically, the proposed extensions have been defined over the BPMN Metamodel

included in the BPMN modeller15 from the STP (SOA Tools Platform) project. The

main goal of this modeller is to provide a graphical notation that allows BPs to be

defined according to the BPMN specification. This tool has been developed based on

15 http://www.eclipse.org/stp/bpmn/

GMF (Graphical Modeling Framework) and reuses and extends the GEF (Graphical

Editing Framework) and the EMF (Eclipse Modeling Framework) projects.

6.2 Navigational extension

The interaction that takes place between the user and the system during the execution of

a BP is different from the one occurring during traditional navigation. An important

difference is that, during the execution of a BP, users are guided through a set of steps

to accomplish a specific objective. This controlled navigation does not occur during

traditional navigation where it is the user who decides the links to follow. Therefore, in

order to specify this controlled navigation, in this section, we present the extensions

designed over the OOWS navigational model to clearly capture the particularities of BP

navigation. These are the limitations found in the original notation and the extensions

defined to cope with them:

 Specify the distributed data and functionality that is necessary to complete a

specific task. The original notation (the OOWS approach) provides us with

primitives (such as the class-view primitive) to build views over data and

functionality defined in the structural model, that is, from the local system.

However, since we are interested in defining BPs whose data and functionality

can also be provided by external systems, we have defined two new primitives

(service-data-view and service-functional-view primitives) that allow us to

define (data and functional) views over the services defined in the services

model and that are required to perform a specific BP activity.

 Specify access points to reach BPs. To allow users to reach the BPs supported

by the web application, we have included two new primitives, the process-

context and the process-link primitives. Similarly to traditional navigation, BPs

can be accessed directly from every part of the web application (what is known

in the OOWS proposal as exploration context), or they can be accessed only

from restricted web locations (what is known in the OOWS proposal as

sequence context). Therefore, the process-context primitive is introduced to

represent the navigation required by a BP. In turn, a process-context can be

defined as exploration or sequence depending on the access type required. If the

process-context has been defined as sequence, it is necessary to associate a

process-link to the process-context in order to restrict the parts from which users

can reach the corresponding BP.

 Specify complementary information to help users during the execution of a

specific BP task. During the execution of some BP tasks, users need to check the

data that has some relationship with the current task. To do this, we have

introduced the complementary-AIU primitive, which complements the GUI that

is provided to the user to complete a specific BP task with some extra data. By

providing users with information related to the BP activities we: (1) help them

complete the activity; and (2) prevent them from switching from BP execution

to traditional navigation to reach that information.

 Showing different GUI according to the type of activity being executed.

According to the different types of activities that can be defined in a BP we need

to make this differentiation explicit at the navigational level. This differentiation

allows us to generate a more appropriate GUI according to the type of activity

being performed. To do this, we have introduced the main-AIU and human-AIU

primitives. The main-AIU primitive refers to activities whose execution modifies

the state of the underlying information system. The human-AIU primitive refers

to activities that are not automated in the system and that are fully performed

without the assistance of any system.

7. Dealing with BP requirements through case studies

In this section we explain which extensions have been applied to the requirements that

were identified in section 3 and the strategy followed to satisfy these requirements.

7.1 BP data and functionality

During the BP definition, we have to specify the system data and functionality that

supports each task. This information is specified in the BP and in the navigational

models. An extension to the notation used to build the BP model has been defined. This

extension specifies which operation (from those defined either in the structural or

services models) is going to be executed to support each task. For instance, as Figure 8

indicates, in the book request purchase BP case study, the two first tasks labelled as

request for a book purchase and validate the request are associated with the

createRequest() and validateRequest() operations defined in the structural model.

«user»

Request for a

Book Purchase

«user»

Validate the

request
Approve?

C
E

N
T

R
A

L

L
IB

R
A

R
Y

«service»

Notify

Request

Rejection

Request

[pending]

S
E

C
R

E
T

A
R

Y

«
ro

le
-a

n
y
»

S
Y

S
T

E
M

«
e

n
ti
ty

»

No

«manual»

Pick Up

Books

«service»

Load Book

Details
+

«service»

Notify Book

Purchase

«user»

Loan Book

Yes

Request

[validated]

«send»

Send

 Request

«receive»

Recv. Purch.

Notification

L
ib

ra
ry

4
U

M
E

M
B

E
R

«
ro

le
-o

n
e
»

L
IB

R
A

R
IA

N

«
ro

le
-a

n
y
»

+addToShoppingCart()

-title

-authors

-editors

-publisher

-isbn

-editorial

-numEdition

-publishDate

-asin

-price

-stock

Book

+loan_copy()

-internal_id

-purchaseDate

-state : copyState

Copy

1 1..*

+createRequest()

+validateRequest()

-authors

-units

-state : requestState

RequestBook

+liberateSanction()

+sanctionMember()

-dni

-name

-surname

-email

-isSanctioned

-login

-password

Member

1

1

-loanDate

-returnDate

Loan

0..*

0..*
1..*

-id

-name

-description

Subject

1..* 1..*

+Pending

+Approved

+Denied

«enumeración»

requestState

+Available

+Reserved

+Borrowed

+Lost

«enumeración»

copyState

Figure 8 Association between operations defined in the structural model (left) and tasks defined in the BP

model (right)

To allow users to complete a specific task, the GUI has to provide them with some data

and functionality. This data and functionality is going to be shown to the user as views

over the structural and the services model, with these views being defined in the

navigational model. Therefore, the following primitives have been defined in the

navigational model:

 Class-view: This primitive is used to define views over the classes defined in

the structural model. These views filter the set attributes and operations of the

class making visible only those required to complete a specific task.

 Service-data-view: This primitive is used to define data views over the services

provided by external partners. It specifies the data types (from those returned by

the service) that are required by the associated task.

 Service-functional-view: This primitive is used to define functional views over

the services provided by external partners. It specifies the operation that is

necessary to support the associated task (from the set provided by the service).

In addition to these views, users can be provided with some extra data that can help

them complete a specific task. To differentiate the mandatory from the optional

elements, we have defined the following primitives:

 Main-AIU (Abstract Interaction Unit): This primitive gathers both data and

functionality that mandatorily has to be provided to the user to complete a

specific task.

 Complementary-AIU (Abstract Interaction Unit): This primitive gathers data

that is optionally provided to users to help them complete a specific task.

These two new primitives behave as mere containers of elements (data and

functionality) but allow the navigational content to be better organized, thereby

improving its legibility and maintainability.

7.2. BP definition

To support this requirement, we rely on the BPMN notation used to build the BPM.

This notation provides modeling mechanisms (such as lanes) that allow BP tasks to be

assigned to different roles according to role responsibilities. In addition, these roles are

used to identify the different types of users of the web applications (types that are

gathered in the user model). Note, however, that during BP definition, no relationship

between different roles is specified. Therefore, we have to manually define (if

necessary) the inheritance relationships between these types of users in the user model.

The BP flow is defined during the BP specification, that is, during the construction of

the BP model. The expressivity provided by the BPMN notation (i.e., fork and merge

gateways or loop activities) allows us to represent the potential paths that can be taken

during BP execution. In this work, the flow need only be specified in the BP model, and

not bringing in the navigational model as other proposals require (current proposals

from the WE field use navigational links to represent the flow that was already defined

in the BP diagram). This is possible since we make use of a process engine (see section

7.8) that determines the set of activities that are ready to be executed in a specific

process instance.

7.3. Work distribution

Some BPs make use of services/functionality that are provided by different distributed

systems. To deal with this distribution, we make use of the BPMN mechanism provided

for it, specifically the Pool and the Message Flow elements. These mechanisms allow us

to specify: (1) different organizations (systems) involved in the same BP; and (2) the

way they cooperate to accomplish the BP goal (through the interchange of messages).

7.4. Human participation

Manual tasks represent activities that are completely performed by human beings

without any support regarding the web application (i.e., a task whose work implies

organizing a meeting). To specify this fact, the human-AIU primitive has been defined

in the navigational model. Similarly to the main-AIU and complementary-AIU

primitives, this primitive behaves as a container of elements. However, in this case,

these elements are limited just to data. This is because no system functionality is

required to support the current task. Figure 9 shows the web page corresponding to the

PickUpBook human-AIU container, which provides the user with the necessary data

from the system to complete this task (In this case, the data provided is the book title,

book isbn and number of units of the book to pick up).

L
ib

ra
ry

4
U

S
y
s
te

m

«
en

ti
ty
»

L
ib

ra
ri
a

n

«
ro
le
-a
n
y»

S
e

c
re

ta
ry

«
ro
le
-a
n
y»

M
e

m
b

e
r

«
ro
le
-o
n
e»

C
e

n
tr

a
l
L

ib
ra

ry

«user»
Request for a

book

purchase

«user»
Validate the

Request

Appro

ve?
Yes

«send»
Send request

«system»
Load book

details

No

«system»
Notify

rejection

«receive»
Receive

purchase

notification

«manual»
Pick up books

«system»
Notify book

purchase

«user»
Loan book

«process context»

BookPurchaseRequest

«activity container» ValidateRequest

«Complementary-AIU»

LastPurchases

«class-view»

Copy

-title

«class-view»

Book

«Complementary-AIU»

SanctionedMembers

-name

-surname

«class-view»

Member

«Main-AIU»

ValidateRequest

-name

-surname

-login

«class-view»

Member

+validateRequest()

-title

-authors

-editorial

-numEdition

-publishDate

-units

«class-view»

RequestBook

E

state == pending or denied

isSanctioned == true

PurchaseDate>=Today(-1m)

INDEX IDX_byTitle

ATTRIBUTES RequestBook.{title,units}, Member.login

LINK ATTRIBUTE title

«activity container» PickUpBooks

«Human-AIU»

PickUpBooks

-title

-isbn

-units

«class-view»

RequestBook

state == approved

«Complementary-AIU»

LibraryDetails

+getOrganizationDetails()

-location

-telephone

«service-data-view»

CentralLibraryWS

Business Process Model Excerpt

Navigational Model Excerpt

Mechanism used to notify the process

that the task has been completed
Human-AIU

Figure 9 Web page implementing the pick up books human-AIU

7.5. Separation of concerns

The separation of concerns principle promoted by the MDE approach allows a specific

domain to be efficiently represented. In this case, the concern involved refers to

navigation, where traditional navigation should be specified separately from the

navigation that occurs during BP execution. To do this, we have included the following

primitives in the navigational model:

 Process-context: This primitive has been introduced into the navigational model

to distinguish traditional navigation from the navigation that occurs during BP

execution. We can also specify the way users can access these contexts. If these

contexts are going to be accessible from any part of the web application, then

these are defined as exploration (as depicted in Figure 10). On the contrary, if

these are going to be accessed through a predefined path (as depicted in Figure

10), then these are defined as sequence.

E

«context»

ShoppingCart is-a

Anonymous.ShoppingCart

«process-context»

CheckOut

S

Process Context

Access Type

(Sequence)

User type with

accesibility over the

CheckOut Process

Member



Anonymous

User Model

excerpt
Process Context

Access Type

(Exploration)

Figure 10 Navigational map for the member user type (Authoring-in-the-large)

Figure 10 corresponds to the navigational map for the member user type where no

details about its content are provided (what is called the Authoring-in-the-large view).

The details of these contexts are provided in the Authoring-in-the small view of the

context as Figure 11 shows for the book purchase request BP. Figure 11 also includes

most of the primitives defined in the proposal (process-context, activity container,

main-AIU, complementary-AIU, human-AIU, class-view, service-data-view, etc.), which

are explained throughout this section.

«process context»

BookPurchaseRequest

«activity container» ValidateRequest

«Complementary-AIU»

LastPurchases

«class-view»

Copy

-title

«class-view»

Book

«Complementary-AIU»

SanctionedMembers

-name

-surname

«class-view»

Member

«Main-AIU»

ValidateRequest

-name

-surname

-login

«class-view»

Member

+validateRequest()

-title

-authors

-editorial

-numEdition

-publishDate

-units

«class-view»

RequestBook

E

state == pending or denied

isSanctioned == true

PurchaseDate>=Today(-1m)

INDEX IDX_byTitle

ATTRIBUTES RequestBook.{title,units}, Member.login

LINK ATTRIBUTE title

«activity container» PickUpBooks

«Human-AIU»

PickUpBooks

Main-AIU

-title

-isbn

-units

«class-view»

RequestBook

state == approved

Complementary-AIU

Activity

Containers

Human-AIU

Index

«Complementary-AIU»

LibraryDetails

+getOrganizationDetails()

-location

-telephone

«service-data-view»

CentralLibraryWS

Service-data-view

Class-views

Exploration

Access Mode

«process-context»

BookPurchaseRequest is-a

Member.BookPurchaseRequest

E
Secretary



Figure 11 Book purchase request process-context (Authoring-in-the-small)

 Activity-container: Similarly to the process-context primitive, this primitive

has been defined to behave as a container; however, in this case, its granularity

is reduced to a business process task. It gathers all the data and functionality that

is going to be provided to the user to complete a specific task.

 Process-link: This primitive is used to specify the anchor that allows users to

start BPs when the associated process-context has been defined as sequence (see

Figure 12). The access to the process-contexts defined as exploration is provided

to users in the processes menu item (see Figure 12). In this section, the user is

provided with: (1) a link to all BPs where the user starts the process; and (2) a

to-do list with where the user can find easily the pending tasks.

«context»

ShoppingCart

E

«AIU»

ShoppingCart

-total

«class-view»

ShoppingCart
-units

-price

«class-view»

ItemProduct
title

[Books] -title

«class-view»

Book

«Process-link»

CheckOut.Shipping

Process Link to Start the

“Check Out” BP

E

«context»

ShoppingCart is-a

Anonymous.ShoppingCart

«process-context»

CheckOut

S

Member



Process Link to Start the

“Check Out” BP

Figure 12 Web page corresponding to the shopping cart navigational context

7.6 Differentiating navigation types

Web applications should provide users with a navigational structure that assists them

throughout the entire process, bringing them to the next step. However, the navigational

structure of the application depends on the type of BP being executed. When the BP

corresponds to a short-running process, a navigational structure that follows the wizard

pattern16 should be provided. Figure 13 shows the web page that implements how a

short-running BP is presented to the user and how it is specified in the BP and

navigational models.

16 http://ui-patterns.com/pattern/Wizard

L

ib
ra

ry
4
U

S
y
s
te

m

«
en

ti
ty
»

M
e

m
b

e
r

«
ro
le
-o
n
e»

P
a

y
m

e
n

t

S
e

rv
ic

e

«user»
Shipping

«user»
Payment

valid? Yes
«user»

Gift wrapping

«system»
Place order

No

Wizard pattern indicating

the steps of the process

Detail of the active task

(“Gift wrap” task)

Active task

«process context»

CheckOut

S

«activity container» Shipping

«Main-AIU»

Shipping

+createShipping()

«class-view»

Shipping

«activity container» Payment

«Main-AIU»

Payment

+doDirectPayment()

«service-functional-view»

onLinePaymentWS

«activity container» GiftWrap

«Main-AIU»

GiftWrap

+setWrapOptions()

«class-view»

GiftWrap

Business Process Model Excerpt

Navigational Model Excerpt

Figure 13 Web page implementing the wizard pattern to navigate through the checkout process

Figure 13 shows the implementation of the wizard pattern, which shows the steps that

have to be followed by the user and the current that is being performed step (indicated

as active task). In this case, these three steps correspond to the three tasks assigned to

the member user type (see business process model from Figure 13).

In contrast, Figure 14 shows the web page that implements how a long-running BP is

presented to the user. When executing long-running process, a navigational structure

with a to-do list should be provided (similarly to the way Business Process Management

Systems do). To do this, different transformation rules have been defined to be executed

during the generation step.

L
ib

ra
ry

4
U

S
y
s
te

m

«
en

ti
ty
»

L
ib

ra
ri
a

n

«
ro
le
-a
n
y»

S
e

c
re

ta
ry

«
ro
le
-a
n
y»

M
e

m
b

e
r

«
ro
le
-o
n
e»

C
e

n
tr

a
l
L

ib
ra

ry

«user»
Request for a

book

purchase

«user»
Validate the

Request

Appro

ve?
Yes

«send»
Send request

«system»
Load book

details

No

«system»
Notify

rejection

«receive»
Receive

purchase

notification

«manual»
Pick up books

«system»
Notify book

purchase

«user»
Loan book

TODO list providing access

to the user pending tasks

Detail of the active task

(“Request Validation” task)

Active task

«process context»

BookPurchaseRequest

«activity container» ValidateRequest

«Complementary-AIU»

LastPurchases

«class-view»

Copy

-title

«class-view»

Book

«Complementary-AIU»

SanctionedMembers

-name

-surname

«class-view»

Member

«Main-AIU»

ValidateRequest

-name

-surname

-login

«class-view»

Member

+validateRequest()

-title

-authors

-editorial

-numEdition

-publishDate

-units

«class-view»

RequestBook

E

state == pending or denied

isSanctioned == true

PurchaseDate>=Today(-1m)

INDEX IDX_byTitle

ATTRIBUTES RequestBook.{title,units}, Member.login

LINK ATTRIBUTE title

«activity container» PickUpBooks

«Human-AIU»

PickUpBooks

-title

-isbn

-units

«class-view»

RequestBook

state == approved

«Complementary-AIU»

LibraryDetails

+getOrganizationDetails()

-location

-telephone

«service-data-view»

CentralLibraryWS

Business Process Model Excerpt

Navigational Model Excerpt

Figure 14 Web page corresponding to the processes section

Similarly to the short-running process, we generate the navigational model that is

necessary to support BP tasks. Then, we generate the web page that implements this

part of the navigational model.

7.8. BP instance state

Similar to the introduction of database management systems into the architecture of

software systems, dealing with systems that support the execution of BPs requires the

introduction of solutions that allow BPs to be properly managed.

PRESENTATION

Dynamic Web pages

(asp, jsp, perl, php, etc.)
SOAP Web Services

BUSINESS

.NET, C#, java, python, etc.
Process

Engine

PERSISTENCE

RDBM, XML, etc.

Task

Manager

Web service

Web

Service 1

Web

Service 2

Web

Service n

...

Figure 15 Three-layer architecture for BP-driven web applications

Based on the decision of adopting WS-BPEL as the executable language of processes,

we have introduced a process engine that implements this specification into the

architecture of the generated web applications. Specifically, we have made use of the

ActiveBPEL17 process engine. However, since WS-BPEL is based on web services,

when we want to model workflows (processes that include human participants), we

have to make use of some mechanisms on top of the original specification to allow us to

handle the asynchrony introduced by process participants of this kind.

As Figure 15 shows, the proposed architecture follows the classical three-layer

architecture. From these three layers, we are going to focus on the business layer, which

is the layer where the extension has been introduced. This extension includes two new

elements, the process engine and the task manager web service. The function of the

process engine is to create and run new process instances from input WS-BPEL

processes when an incoming message triggers the start process activity. Moreover, since

WS-BPEL is based on web services, and these can be hosted on different servers, the

business layer can be distributed with their components being linked by the process

engine.

17 http://www.active-endpoints.com/active-bpel-engine-overview.htm

Task Manager Service

addTask
getTasks

getAllHeaders

getHeaders
BPEL

Process
Web

Application

getTask

doTask

Figure 16 Task manager service interface

The task manager web service (Figure 16) is the element that comes into play when

activities related to humans are invoked. This service takes responsibility for handling

activities of this type and communicates with the process engine and the application

logic. As Figure 16 shows, the task manager service has six operations to interact with

both the WS-BPEL process and the web application.

8. Tool support

The generation of BP-driven web applications is performed by using different model

editors and model transformations throughout the different steps defined in the

development process. According to the development process presented in section 4, this

process is divided into two main steps that relate to system specification and system

generation. The coordinated use of these model editors and model transformations

allows us to generate the web application according to the models specified at the

problem space. Figure 17 shows the tool support provided for each of the steps defined

in the process. In this figure, when a model transformation is performed, this has been

indicated by means of a gear image, which also includes the type of transformation

performed (model-to-model, model-to-text or both).

Modeling step

Generation step

Development Process

Analyst

«human-being»

Developer

«human-being»

Business Process

Analysis

+

System

Specification

+

Web

Specification

Business Process

Design

Bizzy Tool

«system»

«model»

BP

Model

[incomplete]

«model»

Structural Model

«model»

BP

Model

[complete]

«model»

Navigation&Presentation

models

[basic]

«code»

WS-BPEL

document

Web Application

Generation

Enrich?

+

Enrich Web

Specification

YesNo

+

+

Executable

Business Process

«code»

Tapestry

files

«model»

Navigation&Presentation

Models

[enriched]

This sub-process

involves

model2text

transformations

«model»

Services Model

This task

includes

model2text

transformations

Structural Model

Services Model

BPMN Extension Navigational &

Presentation Models

BP Model

M2M

Transf.

BPMN2BPEL Babel Tool

M2M and M2T Transf.

M2T Transf.

Navigational &

Presentation Models
«model»

User

Figure 17 Tool support for the BP-driven web application development process

The model editors and transformations used throughout the development process have

been built from a set of tools included in the Eclipse project, specifically from the

Eclipse Modeling Framework18 (EMF). EMF includes tools for the generation, edition,

and serialization of models conforming to Ecore metamodels (an implementation of the

OMG’s Essential MOF to represent metamodels). In the Bizzy tool, all the metamodels

18 http://www.eclipse.org/modeling/emf/

used (structural, navigational, presentation, BPMN extended and WS-BPEL) are

represented as Ecore metamodels. In some cases, the Ecore metamodels were built from

the corresponding XML Schemas (EMF permits the generation of Ecore metamodels

from XML Schemas). In other cases, a new Ecore metamodel had to be built.

Most of the model editors included in the Bizzy tool are provided as a tree-based EMF

editor. The only graphical editor included in the tool is the BPMN Modeller19, which

was developed in the SOA Tools Platform (STP).

Two different languages have been used for model transformations. The Atlas

Transformation Language20 (ATL) was used to deal with model-to-model

transformations. Specifically, the transformations that have been implemented in this

language allow transforming: (1) the BP model into the corresponding navigational

model and (2) the BP model into the BP format accepted by the BPMN2BPEL BABEL

tool. The MOFScript language was used to deal with model-to-text transformations.

Specifically, the transformations that have been implemented in this language allow

generating: (1) the interface (WSDL file) and the data types (XSD file) used by the web

service represented by the WS-BPEL BP; and (2) the web applications in terms of the

Tapestry web framework.

In addition to these Eclipse-based model editors and transformations, a Java tool has

been used to perform the step that partially builds the executable WS-BPEL document.

This tool is the BABEL BPMN2BPEL21 tool. Its role is to perform the transformation

between BPMN diagrams into WS-BPEL definitions.

9. Validation of the proposal

Since its conception, the methodology proposed in this work is being validated in

different settings. Initially, we made some internal developments at the Department of

Computer Science at the Technical University of Valencia. Then, when the

methodology and the tool supporting it proved to be adequate for the development of

BP-driven web applications we initiated collaboration with the Valencian Regional

19 http://www.eclipse.org/stp/bpmn/
20 http://www.eclipse.org/m2m/atl/
21 http://www.bpm.fit.qut.edu.au/projects/babel/tools/

Ministry of Infrastructure and Transport and also with the Technical University of

Valencia for different purposes. The details of these settings are the following:

1. Department of Computer Science at the Technical University of Valencia22. In

this case, we developed several case studies whose main goal was the

management of daily activities of the department. Examples of the developed

studies are the checkout process and the book purchase request process

presented in section 2. The people involved in the development of these case

studies were people with an academic profile (teachers, researchers and

university students) with some background in WE and specifically in the

OOWS approach. After the success obtained in these developments we began a

project within the university to carry out the development of the web

applications of all the departments of the university. At this moment we are still

working on the specification of the system. However, we have already

perceived a greater acceptance by all the stakeholders involved in the project.

2. Valencian Regional Ministry of Infrastructure and Transport23. In this context,

the ideas of the developed methodology were applied to put into practice some

parts of gvMétrica, an adaptation of METRICA III to satisfy the needs of the

regional ministry. Some of the results of this work can be found in [34]. The

working team involved in this project was made up by business analysts

(personnel from the Organization Department) and computer science engineers

(personnel from the IT Department). Currently, some of the extensions defined

in our methodology are already implemented in the Modelling Software Kit

(MOSKitt) tool, which is an open source CASE tool built on the Eclipse [4]

platform to give support to the gvMétrica methodology.

Besides these settings, the methodology has been taken as basis for the development of

applications for the Internet of Things [15]. In this case, the methodology was extended

to deal with the particularities introduced by physical mobile workflows [16]. These

particularities mainly refer to the integration of real-world objects in business processes,

which involves handling the broad heterogeneity of technologies to bridge physical and

digital worlds.

22 http://www.dsic.upv.es
23 http://www.moskitt.org

On the basis of these settings, the main conclusion must be that the presented

methodology, with all its contributions, appears to have a positive effect not only during

the development process but also with the generated applications. For instance, in the

context of the regional ministry where several human participants are involved in the

processes, the implementation given for long-running processes allows the participants

to handle multiple instances of the same task at the same time (by means of the to-do

metaphor). On the contrary, in the context of mobile workflows, human participants are

involved in more occasional and dynamic processes where a step-by-step strategy is

better suited. In addition, the development of the Bizzy tool proved the importance of

having a tool to support most of the methodology. In fact, some of the aspects that were

out of the scope of the tool such as the automatic development of adaptors for services

had a bad influence on the application of the methodology.

10. Conclusions and further work

In this work, we have presented a complete approach to carry out the development of

BP-driven web applications. This approach extends from the modelling phase (the

phase where the system is represented in terms of a set of models) through the

generation phase (the phase that applies a set of transformation rules to obtain the

executable artefacts). At the modelling level, we have defined a set of abstractions that

represent navigational properties found during the business process (BP) execution. We

have also modified the architecture of the generated web applications in order to

properly handle BPs. As a result, we have introduced a process engine into the

architecture of these systems. This process engine allows the construction of more

lightweight navigational models, where the process flow is maintained inside the

process definition. Based on the MDE, we have defined a set of model transformations

to obtain: (1) executable process definitions expressed in the WS-BPEL language; and

(2) the set of files (.java, .html and .page) necessary to deploy an application in terms of

a Web framework, specifically the Tapestry web framework.

Finally, we have developed a tool (the Bizzy tool) that implements the ideas presented

in this work. The tool has been developed applying the latest trends in the MDE field. It

has been built using tools that are included in the Eclipse development environment (the

Eclipse Modelling project and the SOA Tool Platform project) and the BPMN2BPEL

Java tool. Tools such as ATL and MOFScript have also been used to implement the

transformations defined in the proposal, and EMF has been used to manipulate the

models defined in the method. Finally, the BPMN editor from the STP Project has been

used to model the BPs defined in the BP model that included in the proposal.

We have applied our proposal to several case studies which require the support of

business processes in the context of the management of the following: a university

library, a department incident and even to pervasive environments. These case studies

have allowed us to validate the viability of our proposal.

As further work, we are interested in considering how to deal with the variability that is

observable in BPs. BPs primarily define the set of tasks that have to be completed in

order to achieve a specific goal. However, the way in which tasks are performed

depends on the context in which they are executed. In some cases, the number of

alternatives can get so high that BP specifications become illegible and difficult to

maintain. For this reason, we want to explore mechanisms to properly handle BP

variability at both the modelling level and the execution level.

References

1. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D., Smith, D.,

Thatte, S., Trickovic, I., Weerawarana, S.: Business process execution language for web services version

1.1 (May 2003)

2. Barna, P., Frasincar, F., Houben, G.J.: A workow-driven design of web information systems. In Wolber, D.,

Calder, N., Brooks, C., Ginige, A., eds.: ICWE, ACM (2006) 321-328

3. Bakshi, K., Karger, D.R.: Semantic web applications. Proceedings of the ISWC 2005 Workshop on End

User Semantic Web Interaction (November 2005)

4. Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process modeling in web applications. ACM Trans.

Softw. Eng. Methodol. 15(4) (2006) 360-409

5. Brambilla, M., Preciado, J.C., Trigueros, M.L., Sánchez-Figueroa, F.: Business process-based conceptual

design of rich internet applications. In: ICWE. (2008) 155-161

6. Brambilla, M., Butti, S., Fraternali, P.: Webratio bpm: A tool for designing and deploying business

processes on the web. In: ICWE. (2010) 415-429

7. Ceri, S., Fraternali, P., Bongio, A.: Web modeling language (webml): a modeling language for designing

web sites. In: Proceedings of the 9th international World Wide Web conference on Computer networks :

the international journal of computer and telecommunications networking, Amsterdam, The Netherlands,

The Netherlands, North-Holland Publishing Co. (2000) 137-157

8. Davis, J.: Open Source SOA. Manning Publications Co. (2009)

9. Distante, D.: Reengineering legacy applications and web transactions: an extended version of the UWA

transaction design model. PhD thesis, University of Lecce, Italy (2004)

10. Distante, D., Rossi, G., Canfora, G., Tilley, S.R.: A comprehensive design model for integrating business

processes in web applications. Int. J. Web Eng. Technol. 3(1) (2007) 43-72

11. Duhl, J.: Rich internet applications. Technical report, Technical report, IDC (November 2003)

12. Fons, J.: OOWS: A Model Driven Method for the Development of Web Applications. PhD thesis,

Universidad Politécnica de Valencia(2008)

13. Fons, J., Pelechano, V., Pastor, O., Valderas, P., Torres, V.: Applying the OOWS Model-Driven Approach

for Developing Web Applications. The Internet Movie Database Case Study. Human-Computer Interaction

Series. In: Web Engineering: Modelling and Implementing Web Applications. Springer London (2008) 65-

108

14. Fowler, M.: Inversion of control containers and the dependency injection pattern. http://martinfowler.com/

articles/injection.html (January 2004)

15. Gershenfeld, N., Krikorian, R., Cohen, D.: The Internet of Things. Scientific American 291(4) (October

2004) 76-81

16. Giner, P., Cetina, C., Fons, J., Pelechano, V.: Developing mobile business processes for the internet of

things. IEEE Pervasive Computing 9 (2010) 18-26

17. Gómez, J., Cachero, C., Pastor, O.: Extending a conceptual modelling approach to web application design.

In Wangler, B., Bergman, L., eds.: CAiSE. Volume 1789 of Lecture Notes in Computer Science., Springer

(2000) 79-93

18. Goth, G.: The task-based interface: Not your father's desktop. IEEE Software 26(6) (2009) 88-91

19. Holmes, T., Tran, H., Zdun, U., Dustdar, S.: Modeling human aspects of business processes - a view-based,

model-driven approach. In: ECMDA-FA. (2008) 246-261

20. Kappel, G., Pröll, B., Reich, S., Retschitzegger, W., eds.: Web Engineering – The Discipline of Systematic

Development of Web Applications. John Wiley & Sons Ltd., England (2006)

21. Koch, N.: Software Engineering for Adaptive Hypermedia Systems: Reference Model, Modeling

Techniques and Development Process. PhD thesis, Ludwig-Maximilians-University Munich, Germany

(2001)

22. Koch, N., Kraus, A., Cachero, C., Meliá, S.: Integration of business processes in web application models. J.

Web Eng. 3(1) (2004) 22-49

23. Limbourg, Q., Vanderdonckt, J.: Usixml: A user interface description language supporting multiple levels

of independence. In: ICWE Workshops. (2004) 325-338

24. Linaje, M., Preciado, J.C., Sánchez-Figueroa, F.: Engineering rich internet application user interfaces over

legacy web models. IEEE Internet Computing 11(6) (2007) 53-59

25. Link, S., Hoyer, P., Schuster, T., Abeck, S.: Model-driven development of human tasks for workflows. In:

ICSEA '08: Proceedings of the 2008 Third International Conference on Software Engineering Advances,

Washington, DC, USA, IEEE Computer Society (2008) 329-335

26. Marcos, E., Cáceres, P., Castro, V. D.: An approach for navigation model construction from the use cases

model. CAiSE Forum. Held in conjunction with the 16th Conference On Advanced Information Systems

Engineering (June 2004)

27. Business process modeling notation (BPMN). OMG final adopted specification. dtc/06-02-01 (February

2006)

28. Pietschmann, S., Voigt, M., Meissner, K.: Adaptive rich user interfaces for human interaction in business

processes. In: Proceedings of the 10th International Conference on Web Information Systems Engineering

(WISE 2009), WISE, Springer LNCS (October 2009) 351-364

29. Schwabe, D., Rossi, G.: An object oriented approach to web-based applications design. Theor. Pract. Object

Syst. 4(4) (October 1998) 207-225

30. Schmid, H.A., Rossi, G.: Modeling and designing processes in e-commerce applications. IEEE Internet

Computing 8(1) (2004) 19-27

31. Schwinger, W., Retschitzegger, W., Schauerhuber, A., Kappel, G., Wimmer, M., Pröll, B., Cachero, C.,

Casteleyn, S., Troyer, O.D., Fraternali, P., Garrig_os, I., Garzotto, F., Ginige, A., Houben, G.J., Koch, N.,

Moreno, N., Pastor, O., Paolini, P., Pelechano, V., Rossi, G., Schwabe, D., Tisi, M., Vallecillo, A., van der

Sluijs, K., Zhang, G.: A survey on web modeling approaches for ubiquitous web applications. IJWIS 4(3)

(2008) 234-305

32. Sousa, K.S., Mendona, H., Vanderdonckt, J.: A model-driven approach to align business processes with

user interfaces. J. UCS 14(19) (2008) 3236-3249

33. Sukaviriya, N., Sinha, V., Ramachandra, T., Mani, S.: Model-driven approach for managing human

interface design life cycle. In: MoDELS. (2007) 226-240

34. Tedre, M.: What should be automated? Interactions 15(5) (2008) 47-49

35. Torres, V., Giner, P., Bonet, B., Pelechano, V.: Adapting BPMN to Public Administration. To appear in:

Proceedings BPMN 2010 Springer's Lecture Notes in Business Information Processing (LNBIP). Postdam,

Germany.

36. Troyer, O.D., Casteleyn, S.: Modeling complex processes for web applications using wsdm. In:

Proceedings of the Third International Workshop on Web-Oriented Software Technologies (held in

conjunction with ICWE2003), IWWOST2003. (2003)

