
Softw Syst Model
DOI 10.1007/s10270-012-0283-7

THEME SECTION PAPER

Composing domain-specific physical models with general-purpose
software modules in embedded control software

Arjan de Roo · Hasan Sözer · Mehmet Akşit

Received: 1 December 2010 / Revised: 26 April 2012 / Accepted: 20 August 2012
© Springer-Verlag 2012

Abstract A considerable portion of software systems
today are adopted in the embedded control domain. Embed-
ded control software deals with controlling a physical sys-
tem, and as such models of physical characteristics become
part of the embedded control software. In current practices,
usually general-purpose languages (GPL), such as C/C++
are used for embedded systems development. Although a
GPL is suitable for expressing general-purpose computa-
tion, it falls short in expressing the models of physical
characteristics as desired. This reduces not only the read-
ability of the code but also hampers reuse due to the lack
of dedicated abstractions and composition operators. More-
over, domain-specific static and dynamic checks may not
be applied effectively. There exist domain-specific modeling
languages (DSML) and tools to specify models of physical
characteristics. Although they are commonly used for simu-
lation and documentation of physical systems, they are often
not used to implement embedded control software. This is
due to the fact that these DSMLs are not suitable to express
the general-purpose computation and they cannot be easily
composed with other software modules that are implemented
in GPL. This paper presents a novel approach to combine a
DSML to model physical characteristics and a GPL to imple-
ment general-purpose computation. The composition filters
model is used to compose models specified in the DSML

Communicated by Dr. Jeff Gray, Juha-Pekka Tolvanen,
and Matti Rossi.

A. de Roo (B) · M. Akşit
Software Engineering group, CS Department,
University of Twente, Enschede, The Netherlands
e-mail: roo@ewi.utwente.nl

H. Sözer
Computer Science Department,
Özyeğin University, İstanbul, Turkey

with modules specified in the GPL at the abstraction level of
both languages. As such, this approach combines the bene-
fits of using a DSML to model physical characteristics with
the freedom of a GPL to implement general-purpose compu-
tation. The approach is illustrated using two industrial case
studies from the printing systems domain.

Keywords Domain specific languages · Embedded
systems · Software composition · Composition filters ·
Aspect-oriented programming

1 Introduction

A considerable portion of software systems today are adopted
in the embedded domain (e.g., medical equipment, mili-
tary applications, traffic control systems, consumer elec-
tronics) [54]. A major portion of embedded systems aim at
controlling physical systems in some way and as such, the
characteristics of the physical systems must be represented in
Software accordingly. For example, in state-of-the-art print-
ing systems, the speed of the machine is adapted according
to the available power, temperature measurements obtained
from several components and the heat capacity. The embed-
ded software has to consider such physical characteristics to
apply a particular control strategy.

In embedded systems development, the current practice is
to use general-purpose programming languages (GPLs) such
as C and C++. Usually, both the control logic (i.e., computa-
tion of the controlling behavior) and the models of physical
characteristics are implemented together in a GPL. The con-
trol logic and the physical characteristics are two different
concerns and the lack of separation of these concerns leads
to implicit and complex dependencies in the code due to
tangling and scattering [11]. This results in decreased soft-
ware readability and maintainability. Changes in hardware

123



A. de Roo et al.

are common for continuously evolving embedded systems.
These changes may cause ripple effects within the implemen-
tation of modules, if the separation of physical concerns and
controlling concerns are not realized properly. This is also
confirmed by several publications in modeling [6,26,32],
where it seems natural to separate the code that is respon-
sible for interactions, from the code that implements the core
behavior of modules. In embedded software, implemented
models of physical characteristics are responsible for addi-
tional interaction among the GPL modules that implement
control logic.

One can utilize object-oriented (OO) design patterns
[27] and/or aspect-oriented software development (AOSD)
approaches [24] to modularize the code better, and as such
facilitate the separation of concerns. However, even if modu-
larized, the models of physical characteristics would still be
implemented in a GPL. GPLs have insufficient expression
power to define physical characteristics. Moreover, implicit
implementation and the lack of domain-specific abstractions
hinders the possibility for effective static/dynamic domain-
specific analysis that can be applied to ensure their reliability.

Instead of implementing embedded control software in
a GPL, one might suggest to use a domain-specific mod-
eling language (DSML), such as Matlab Simulink [13] or
20-Sim [1,16]. These languages are very suitable to express
models of physical characteristics and continuous control
logic. However, control software for embedded systems usu-
ally also implements other application logic, such as logic to
schedule (discrete) tasks, to recover from errors, and to mon-
itor the available resources (e.g., the amount of toner, number
of sheets of paper in the paper tray). DSMLs to model phys-
ical characteristics are not particularly suitable to express
these types of functionality. Therefore, this functionality is
usually, and more effectively, implemented in a GPL.

DSMLs, such as Matlab Simulink and 20-Sim, offer to
possibility to generate GPL code modules from DSML mod-
els. However, these generated code modules often have lim-
ited interfaces; other software modules have to be fitted
around them, leading to tightly coupled software modules.
Furthermore, the generated code is not intended to be human
readable and as such becomes a black box in software. There-
fore, often it is decided to implement models of physical
characteristics and continuous control logic in a GPL instead
of using a DSML combined with code generation.

Hence, we need to be able to develop artifacts in both GPL
and DSML separately, and we need to be able to combine
these artifacts. In this paper, we propose a method to compose
physical models specified in a DSML with software modules
specified in a GPL at the abstraction level of both languages.
We adopt the domain-specific modeling language (DSML)
SIDOPS+ of the 20-Sim toolset [1] to express the logic that
deals with physical characteristics of the system. To compose
physical models specified in SIDOPS+ with other software

modules specified in a GPL, we apply the existing Compo-
sition Filters model, which is implemented in the Compose*
language and toolset [48]. The Composition Filters modelen-
ables loose coupling between software modules and physical
models. Furthermore, we extended the Composition Filters
modelto enable interaction using messages and events for
GPL modules and DSML models, respectively. To facilitate
this, we defined an event model on the execution semantics
of DSML models. As such, our approach combines the bene-
fits (e.g., ease of realization, maintainability, reusability) of a
DSML to implement models of physical characteristics, with
the freedom of a GPL to implement other application logic.

Figure 1 shows how the different concepts in our approach
are related to each other. There are three types of development
artifacts: application logic implemented in GPL modules,
physical models specified in a DSML and composition filters
specified in the Compose* language. The interaction between
software modules and physical models is represented by mes-
sages and events. This interaction is enabled by a number of
composition filters; these composition filters specify which
events in the execution of the physical model are interest-
ing (e.g., the change of the value of a physical variable) and
they specify how these interesting events are processed (for
example, the event is dispatched to a certain software module
or the event is logged). We have defined an event model for
physical models. This event model specifies which events in
the execution of a physical model can be selected/quantified
and what properties these events have. The composition fil-
ters can use these properties to select events of interest. The
GPL modules are executed by a GPL runtime environment.
An interpreter has been implemented to execute the physical
models and the composition filter specifications.

KEY:

Domain ModelDomain Model

«DSML»
Physical
ModelDomain ModelDomain Model

«GPL»
Software
Module

E
xecutes

GPL Runtime
Composition
Filter
Interpreter

E
xecutes

E
xecute s

Interaction

ActionTool

SW artifact

Existing tool

DSML
Interpreter

C
om

po
si

tio
n

F
ilt

er
s

M
e ssag es E

ve
nt

s

Fig. 1 Overview of our approach

123



Composing domain-specific physical models

Specification of physical characteristics with a DSML
enables static analysis for detecting faults at design time.
However, it is not possible to test embedded software in all
possible physical conditions and detect all potential faults.
Therefore, we complement static analysis with dynamic
analysis. Runtime monitors are automatically generated for
runtime verification of the specified physical characteristics.

The remainder of this paper is organized as follows. In the
next section, we introduce two industrial case studies, taken
from the domain of digital document printing systems, to
illustrate the problem and our approach. In Sect. 3, we pro-
vide the problem statement. An overview of our approach
is presented in Sect. 4. Sections 5 and 6 describe, respec-
tively, how physical models are executed and how they are
composed with GPL modules. Section 7 gives an overview
on domain-specific analysis techniques and explains how the
consistency of the physical models can be verified at runtime.
In Sect. 8 we apply our approach to the two case studies and
evaluate the benefits using evolution scenarios. Section 9 dis-
cusses some additional aspects of our approach. Related work
is provided in Sect. 10. Finally, in Sect. 11 we discuss future
work and provide the conclusions.

2 Industrial cases: digital document printing systems

In this section, we introduce two industrial case studies, taken
from the digital document printing systems domain. These
case studies have been developed and evaluated within the
context of the Octopus project [42], where Océ-Technologies
B.V. (one of the world’s leading manufacturers of printer and
copier systems) is the carrying industrial partner. Although
the case studies are simplified for presentational purposes,
they are still relevant for illustrating the problem and solu-
tion approach discussed in this paper. Each case describes
(1) an overview of the controlled hardware, (2) the related
control components and physical characteristics that have to
be implemented, and (3) the way that the physical character-
istics are currently implemented in control components.

2.1 Case I: warm process

The first case that we are going to introduce is called the
warm process, which is responsible for transferring a toner
image to paper.

2.1.1 Hardware

Figure 2 gives a schematic view of the components in the
printing system responsible for the warm process behavior.
The warm process has two main parts; a paper path for trans-
porting a sheet of paper and a toner belt for transporting a
toner image. For correct printing, both the sheets of paper
as well as the toner belt should have a certain temperature

Toner
Belt

Paper Path

Paper Heater

Radiator

Contact
Point

Belt
Temperature

Sensor

Pph
Tph

Prad

Tbelt

Tcontact

v

Fig. 2 Schematic view of the warm process

Paper Heater
Controller

Radiator
Controller

Physical System I/O

Pph PradTph Tbelt

Software
Module:

Software
Interface

Tph

v

Tph

SP

Fig. 3 Schematic overview of the software structure

at the contact point. Therefore, the warm process contains
two heating systems; a paper heater to heat the paper and a
radiator to heat the toner belt.

2.1.2 Control software

Software has been implemented to control the heaters in
order to maintain required temperatures for correct printing.
Figure 3 shows the related GPL modules.

The Physical System I/O module provides an interface
to the sensors and actuators of the system. The sensors and
actuators are:

• Sensors:

– Tph The temperature of the paper heater.
– Tbelt The temperature at the sensor location on the

toner belt.
– v: The printing speed.

• Actuators:

– Pph The amount of power supplied to the paper heater.
– Prad The amount of power supplied to the radiator.

There are two modules implementing control logic in the
system. The Paper Heater Controller adjusts the

123



A. de Roo et al.

paper heater temperature (Tph) to a certain setpoint (T SP
ph ), by

regulating the power to the paper heater (Pph). The setpoint
value is configured by other modules, not shown here.

TheRadiator Controller adjusts the contact point
temperature of the toner belt (Tcontact) to a certain setpoint
value (T SP

contact), by regulating the power to the radiator (Prad).
The setpoint value is determined from the paper heater tem-
perature and the speed, using the following physical relation-
ship, which ensures correct print quality:

T SP
contact = c1 · v − c2 · Tph + c3 (1)

In which c1, c2 and c3 are constants.
Due to physical limitations, there is no sensor to measure

Tcontact, and as such the Radiator Controller also
implements the following physical relationship that derives
this temperature from Tbelt, v and Prad:

Tcontact = c4
Prad√

v
+ Tbelt (2)

Typically, such physical relationships are implemented in
the code of the Radiator Controllermodule as illus-
trated in the following listing.

The listing shows that the physical characteristics (lines 6
and 7) are tangled with the control logic (line 8). This reduces
maintainability and reusability.

2.2 Case II: drum shuttling

The second industrial case is the Drum Shuttling subsystem
of a printing system. The drum is a rotating cylindrical com-
ponent in the printer system, on which the toner image is
created. To reduce deterioration, the drum has to shuttle (i.e.,
move backward and forward) along its axis.

2.2.1 Hardware

Figure 4 schematically shows the drum and additional com-
ponents needed to rotate and shuttle the drum.

There is a motor and gears for the rotational movement of
the drum. We call this rotation x-movement, and the corre-

M

Stepper
Motor

(z-movement)
Cam

x-movement

z-movement

M

Motor
(x-movement)

Gears
Drum

Home Sensor

pulseCount

doStep,
direction

homePosition

Fig. 4 Schematic view of the Drum

sponding distance traveled by the surface of the cylinder the
x-position.

The linear shuttling movement of the drum is provided
by a stepper motor (i.e., a motor that rotates in fixed sized
steps) and a cam, which is a component that can translate
rotational movement into linear movement. We call this linear
movement z-movement, and the corresponding position of the
drum relative to the home position the z-position.

The physical system provides the following sensors and
actuators:

• pulseCount Sensor that counts and provides the number
of hall pulses of the motor for x-movement. On each rev-
olution, the motor gives a fixed number of hall pulses, so
pulseCount is proportional to the number of revolutions
made by the motor.

• homePosition Sensor that gives a signal when the drum
is at the home position.

• direction Actuator to set the direction in which the step-
per motor should step.

• doStep Actuator that executes one step of the stepper
motor when a signal is provided.

2.2.2 Control software

A controller component decides what the z-position should
be based on the x-position.

For economical reasons there is no sensor to directly mea-
sure the x-position. Instead, the pulses that the drum motor
gives at a fixed rate per revolution are counted. Then the
x-position (x Pos) is calculated using the following equa-
tion:

x Pos = pulseCount

C pulses Per Rev
· Cgear Ratio · CdrumCircum f erence

(3)

In this equation, pulseCount is the sensor reading. There
are three constants:

• C pulses Per Rev represents the amount of hallpulses the
motor gives per revolution.

• Cgear Ratio this is the relative relationship between the
number of teeth on the gears and as such represents the

123



Composing domain-specific physical models

Shuttling
Controller

Stepper
Controller

Physical System I/O

pulseCount

doStep, direction

currentStepPos

Software
Module:

Software
Interface

requestStepPosition

Fig. 5 Schematic overview of the software structure

number of revolutions the drum makes when the motor
makes one revolution.

• CdrumCircum f erence the circumference of the drum.

The z-position (z Pos) of the drum can only be con-
trolled by actuating the stepper motor to a given step-position
(stepPos). The step-position is derived from the z-position
using the following equation:

stepPos = z Pos

Cdegrees Per Step · CzMovement Per Degree
(4)

This equation has the following two constants:

• Cdegrees Per Step represents the number of degrees the
stepper motor turns with each step, and thus the num-
ber of degrees the cam turns with each step.

• CzMovement Per Degree this is the amount of zMovement of
the drum for each degree the cam turns. The used cam
provides z-movement linear in the rotation.

Figure 5 shows schematically the related modules of the
control software. The module Shuttling Controller
controls the shuttling behavior. Listing 2 gives a code frag-
ment of this module, showing the implementation of Eqs. 3
and 4 on lines 6 and 8, respectively. The module Stepper
Controller controls the stepper motor to a certain given
step-position, using the current step-position as input from a
sensor and some actuators to make steps.

Similar to the first case, the equations that represent the
physical characteristics are tangled with the control logic
(line 7), reducing maintainability and reusability. The next
section explores these problems in depth.

3 Problem statement

The case studies introduced in the previous section show that
models of physical characteristics (physical models) are part
of the control logic implemented in embedded control soft-
ware. Especially when systems are designed to be adaptive,
more physical models are implemented in embedded control
software. However, such implemented physical models intro-
duce additional complexity in software. If this complexity is
not managed properly, it will reduce software quality. This
section analyzes the issues related to physical models that are
implemented in embedded control software. First, the section
briefly explains the current state-of-the-practice approaches.
Then, it compares applying a general-purpose programming
language (GPL) versus applying a domain-specific model-
ing language (DSML) to implement physical models. Bene-
fits and drawbacks of both approaches are analyzed. Finally,
this section summarizes characteristics of an approach that
addresses the observed issues.

3.1 Current state-of-the-practice

3.1.1 Continuous evolution

During the cooperation with our industrial partner, we have
identified that the design of an embedded system evolves
continuously due to changing customer needs, technological
advances and cost reductions. Examples of evolution scenar-
ios, in the context of the industrial case studies introduced in
Sect. 2, are replacing the heaters with different types (having
other properties) or changing the gears between the motor
and the drum. These changes to the design of the embedded
system affect the physical characteristics of the system. When
such changes have to be realized, software engineers have to
locate the corresponding pieces of code that are affected by
these changes and modify them according to the new design.

3.1.2 Design process

In current practice, two main steps are commonly adopted in
the development of embedded systems. First, physical behav-
ior is modeled and simulated using tools like 20-Sim [1,16]
and Matlab Simulink [13]. The purpose of this step is to ana-
lyze the behavior of the embedded control system through
simulations. Second, an implementation of the embedded
control software is realized based on the analysis results.
For this realization, two techniques are used: Traditional
programming techniques using GPLs like C and C++, and

123



A. de Roo et al.

model-driven engineering techniques based on DSMLs for
physical models and code generation from DSML models
to implementations in a GPL. In the following subsections,
we discuss issues and limitations regarding these alternatives
and the combination of the two.

3.2 Development with GPLs

General-purpose programming languages lack abstractions
specific for physical models (i.e., domain-specific abstrac-
tions). Therefore, when physical models are implemented in
embedded control software, their domain-specific abstrac-
tions are translated to general-purpose abstractions in the
GPL. The loss of domain-specific abstractions makes it
harder to recognize physical models in embedded control
software as such. We call this implicit implementation of
the physical characteristics. During the cooperation with our
industrial partner, we have indeed identified that this leads to
the following issues.

3.2.1 Physical characteristics harder to locate

Implicit implementation makes it hard to locate the imple-
mentation of a physical characteristics in case a change is
necessary due to evolution. This in turn, increases mainte-
nance costs and might reduce reliability (when not all rele-
vant code is updated consistently).

3.2.2 Tangling and scattering of physical models

Because of implicit implementation, there are no clear
boundaries between physical models and other application
logic. This may lead to tangling and scattering of physical
models in embedded control software. Listings 1 and 2 of the
industrial case studies show tangling of physical models with
control logic in GPL module code. As frequently claimed in
the aspect-oriented programming literature [24], tangling and
scattering of concerns can lead to higher maintenance costs
through reduced comprehensibility and evolvability of the
tangled concerns.

3.2.3 Introduction of accidental complexity

Translation of domain-specific abstractions to implementa-
tion abstractions might introduce accidental complexity [17].
Accidental complexity reduces comprehensibility and main-
tainability of software systems.

3.2.4 Reduced domain-specific analysis

Implicit implementation hinders domain-specific analysis of
the implemented physical characteristics for detection of
faults, as domain-specific abstractions are lost. This makes it

harder to ensure the reliability of the control software. Incor-
rect or inaccurate implementation of physical characteristics
and the lack of domain-specific analysis pose a threat to reli-
ability. The implementation of physical characteristics may
not always be accurate or correct due to several reasons, e.g.:

1. The engineer implementing a physical characteristic may
introduce a fault;

2. Physical characteristics may change because of evolu-
tion (e.g., a change in hardware). Implicit and tangled
implementation of characteristics increases the probabil-
ity that engineers loose track of them in the code; when
the physical system is changed, there is a higher probabil-
ity that the corresponding physical characteristics in the
software are not updated, introducing faults in the con-
trol software. Moreover, while locating and correcting the
affected tangled modules, new faults can be introduced;

3. The underlying assumptions on which the physical char-
acteristics are based may not be accurate enough. For
example, the physical characteristics may not accurately
describe the physical reality.

The resulting errors may remain undetected due to com-
plex mathematical dependencies and lack of domain-specific
analysis.

3.3 Development based on DSMLs

Domain-specific modeling languages reduce or eliminate
accidental complexity that is introduced by translating
domain-specific abstractions to abstractions in the imple-
mentation language. This improves the maintainability of
software, as has been proven in several publications such as
[20,34]. For instance, Matlab Simulink [13] and 20-Sim [1]
provide DSMLs that are suitable to model physical character-
istics, as well as continuous control logic. The accompanying
tooling offers the possibility to compile models into exe-
cutable software [1,13]. The tooling can also apply domain-
specific analysis to detect faults prior to code generation.

However, control software for embedded systems usually
contains other application-specific functionality that does
not fall in the categories of physical models and continuous
control logic. Examples of such functionality are managing
system states (e.g., idle, start-up, available), scheduling of
(discrete) tasks, recovering from errors, monitoring the avail-
able resources (e.g., the amount of toner, number of sheets
of paper in the paper tray), processing of user input, security,
communication, maintenance tasks, interaction with third-
party libraries, etc. It is impractical to design or adopt a
DSML to express these types of functionality, which are com-
monly expressed in a GPL. Therefore, DSML models should
interact with GPL modules.

123



Composing domain-specific physical models

Models that are expressed in DSMLs can be compiled into
GPL modules and their interaction/composition with other
GPL modules are usually realized in terms of pre-designed
function calls. For example, through S-functions Simulink
models can call GPL code [13]. These constructs put specific
constraints on the interaction; S-functions assume a partic-
ular structure of the GPL function; generated GPL modules
are translations of the models and provide a specific inter-
face. These constraints create tight dependencies between
the GPL modules and DSML models involved in the inter-
action. As a result, GPL software modules generated from
domain-specific models become black boxes within the soft-
ware architecture. Software engineers cannot easily under-
stand and maintain them. Moreover, the software architecture
gets constrained by the generated code: the other GPL
modules have to be fitted around the generated modules,
work-arounds need to be implemented if not all required
interactions with the physical model are possible with the
generated code, etc. Because of these limitations, in current
practice the physical models are usually implemented and
maintained in the GPL. DSML models are usually created
by domain engineers for documentation and simulation pur-
poses only.

To prevent the aforementioned problems and to be able to
exploit the created domain models in software, the composi-
tion of DSML models with GPL modules on the abstraction
level of both languages should be facilitated.

3.4 Composing DSML and GPL artifacts

Based on the observations noted in the previous section, it
can be concluded that DSMLs are the preferred method to
specify physical models. However, DSMLs are not used to
implement physical models in embedded control software
because of the limited ability to compose physical models
specified in a DSML with other software modules specified
in a GPL and the strict and tightly coupled interfaces resulting
from existing code generation techniques.

An improvement of the current situation would be possible
with an approach that offers flexible composition between
physical models specified in a DSML and software mod-
ules written in a GPL, on the abstraction level of both the
DSML and the GPL. Such a method combines the benefits
of a DSML to implement physical models with the freedom
of a GPL to implement other application logic. Furthermore,
using a DSML provides separation of physical models from
other application logic. Together with flexible composition
operators, this separation prevents tangling and scattering of
physical models with/through other application logic. Com-
position at the abstraction level of both languages eliminates
the need to first translate DSML models to GPL modules
(i.e., code generation), before the physical models can be

composed with other software modules. This prevents tight
integration caused by the limitations of generated interfaces.

3.5 Ensuring the reliability at runtime

In the embedded software domain it is not possible to test
the software in all possible physical conditions. Even if static
analysis are applied, some faults may remain undetected due
to several reasons, e.g.,

1. The system might be used in different operational con-
ditions than considered during design. For example, a
printer system can be applied in different environmental
conditions than expected, paper from a different manu-
facturer (having slightly different physical characteris-
tics) can be used, etc.;

2. Physical characteristics may change over time, because
of, for instance, wear and tear of physical components in
the system.

As such, it is also necessary to verify the implementation
of physical characteristics at runtime. Common runtime ver-
ification techniques [19] are insufficient to do this kind of
verification, as their data/event models only include the soft-
ware state/actions; the state of the physical system is implicit
in the software.

Explicit specification of physical characteristics in DSMLs
can be utilized for generating monitoring code that checks
their consistency at runtime. However, the models and their
interaction become obscure/implicit in the generated and
composed software. Hence, runtime analysis and interpre-
tation of these models are limited. The applied analysis can
only be based on the instrumentation of the code, which is
constrained by the application-specific composition.

4 Approach overview

Figure 6 schematically shows our approach to deal with the
issues introduced in the previous section.

The figure shows three different types of artifacts: soft-
ware modules written in a GPL, physical models specified in
a DSML and composition filters.

The GPL software modules are written by software engi-
neers. They are executed in a runtime environment for the
GPL. In the following, we call a specification written in a
general-purpose programming language a (GPL) module or
base program.

Physical models are specified in a DSML by software
engineers and/or domain experts. We adopt the DSML
SIDOPS+ from the 20-Sim toolset to define physical mod-
els. 20-Sim is a widely applied toolset with an extensive set
of functions suitable for modeling and simulating physical
systems [1,16]. In the following we call a SIDOPS+ specifi-

123



A. de Roo et al.

GPL Runtime
DSML
Interpreter

Actor Action SW artifactKEY: Tool

Domain ModelDomain Model

«DSML»
Physical
ModelDomain ModelDomain Model

«GPL»
Software
Module

3:E
xecutes

Software
Engineer

1:W
rites

Domain
Expert

3:E
xecutes

3:V
eri fi es

3 : E
xecut es

1:W
ri tes

1: Defines

1: Writes

Static
Analysis

2: Verifies

2:V
erifies

Existing tool

C
om

po
si

tio
n

F
ilt

er
s

M
essage s

Interaction

Composition
Filter
Interpreter

Runtime
Verification

E
ve

nt
s

Fig. 6 Detailed overview of our approach

cation a physical model, or just model. We defined execution
semantics for physical models in embedded control software1

and implemented an interpreter to execute the physical mod-
els. Section 5 explains in detail how physical models are
specified and executed.

To compose physical models with software modules, we
apply the Composition Filters model. To facilitate the appli-
cation of the Composition Filters model, an event model has
been defined on top of the execution semantics of physi-
cal models. This event model defines several types of events
that occur during the execution of a physical model, and it
defines the properties of these events. Specified composi-
tion filters filter events and execute certain behavior when
an event matches. This behavior is for example the dispatch
of a certain message to a GPL software module or logging
the occurrence of certain events. The dispatch functionality
of the Composition Filters modelprovides a transformation
mechanism between events and messages.

Applying a DSML to specify physical models provides
the possibility to do domain-specific analysis, which obvi-
ously is not provided in mainstream languages like C or
Java. Section 7.1 summarizes a number of existing domain-
specific static analysis techniques. Certain issues cannot be

1 There are some small differences with the execution semantics of
physical models in the 20-Sim simulation tooling. These differences
are discussed in Sect. 9.5.

detected statically; Sect. 7.2 explains how runtime verifica-
tion of physical models can be performed. This verification
is facilitated by the DSML interpreter and the Composition
Filters model.

5 Specifying and executing models of physical
characteristics

This section explains how physical models are represented
in embedded control software using the SIDOPS+ language
from the 20-Sim toolset and how physical models are exe-
cuted in embedded control software.

5.1 Introduction to 20-Sim/SIDOPS+

The 20-Sim toolset is used to model and simulate physical
systems. Part of the 20-Sim toolset is the language SIDOPS+.
With this language it is possible to mathematically define
physical models. The SIDOPS+ language also offers a com-
position mechanism to compose smaller physical models into
larger physical models. Besides the SIDOPS+ language, the
20-Sim toolset provides a modeling environment to model
physical systems with iconic diagrams and bond graphs. For
brevity these features are not discussed in this paper, as they
result in equivalent representations [37].

Listing 3 shows an example specification in the SIDOPS+
language. This specification contains three types of defini-
tion blocks: constants, variables and equations.
SIDOPS+ provides more language constructs to model phys-
ical processes, but because they are not used in this paper,
they are not explained here.

Constants are defined in the constants definition
block. The example shows the definition of the constant
pulsesPerRev of type real. SIDOPS+ supports a
number of different types, such as integer, real and
boolean. Constant definitions always have a value assign-
ment. In the example, the value 24.0 is given to pulses
PerRev.

The variables block defines the physical variables.
The example shows the definition of two physical variables:
pulseCount and motorRotation. Variables have a
type. They can also have the modifier global, which indi-

123



Composing domain-specific physical models

cates that the same variable can also be used in other mod-
els. In a 20-Sim simulation, this means that if this variable is
defined in multiple submodels, composed into a larger model,
they all represent the same variable.

The example shows that a variable may have an initial
value assigned. This assignment is optional. Furthermore, it is
also possible to attach the name and unit of the corresponding
physical quantity to the variable, as the example shows for the
variablemotorRotation: within curly braces the quantity
name Rotation and unit rev are given. The definition of
the quantity name and unit is optional, but can be used to
check whether defined equations are consistent. The quantity
name and unit can be attached to constant definitions in the
same way.

Equations are defined in the equations block. Equa-
tions specify mathematical relationships between variables.
An equation is composed of two expressions, separated
by an equality (=) sign. An expression can contain vari-
ables, constants, operators and predefined functions. The
example shows how the variables motorRotation and
pulseCount relate to each other.

For further detail about the SIDOPS+ language, we refer
to the 20-Sim documentation in [37].

5.2 Composing physical models

Multiple models, resulting from different SIDOPS+ speci-
fications, can be composed into larger models, expressing
more complex physical systems. Composition is basically
performed by including multiple SIDOPS+ specifications
in a physical model. The physical variables with modifier
global provide the interaction points between the submod-
els in the composition. This means that if multiple submodels
in the model define a variable with the same typing and the
same name and they have the modifier global, then this repre-
sents a single variable in the composed model. If a submodel
defines a variable without the modifier global, then in the
composed model this variable is different from any vari-
able defined with the same name and typing in another sub-
model. The next example illustrates composition of physical
models.

5.2.1 Example: composition of physical models

Listings 4, 5 and 6 show three SIDOPS+ specifications for,
respectively, the physical components motor, gears and drum
from the Drum Shuttling case study. These SIDOPS+ speci-
fications will be composed into a physical model of the inter-
action between the motor, gears and drum.

The listings show that the variable motor Rotation pro-
vides the interaction point between the submodels motor
andgears. Variable gear Rotation provides the interaction
point between the submodels gears and drum. Figure 7
shows these interaction points schematically, using graphs
to represent the dependencies between the variables and the
equations.

5.3 Instantiation of physical models

A physical model defined in SIDOPS+ describes mathemat-
ical relationships between physical variables. But, a physical
model does not represent the values of the physical variables
at a certain moment in time. We call the valuation of the
physical variables in a physical model at a certain moment
in time a physical state. A physical model then defines a set
of possible physical states, i.e., all physical states in which
the relationships in the model are valid.

123



A. de Roo et al.

gear
Rot

eq3

drum
xPos

eq4qq

drum
Circumf

drum
Rot

EquationKEY: Variable Relationship

eq2qq

motor
Rot

gear
Transm

gear

gear
RRRooottt

eq1

pulse
Count

pulses
PerRev

moto

motor
RRRooottt

Fig. 7 Interaction points between models

To use physical models in embedded control software,
the physical state should be represented in software. Further-
more, the consistency of the physical state with the corre-
sponding physical model should be maintained. This means
that the mathematical relationships in the physical model
are valid for the given values of the physical variables in the
physical state. To represent the physical state and maintain its
consistency with the physical model, we introduce the con-
cept of a physical model instance. A physical model instance
maintains a physical state for a given physical model. The
physical state maintained by a physical model instance can
be manipulated. The runtime ensures consistency of the phys-
ical state with the physical model Figure 8 shows schemat-
ically the relationship between the physical model and the
physical model instance.

Depending on the context in which physical model
instances are used, they model different states of the system,
for example:

• Current system state The most straightforward applica-
tion of physical model instances is to model the current
system state. Sensor readings are used to update the state
in the physical model instance and to maintain its con-
sistency with the real physical machine. For example,
in the Drum Shuttling case studythis can be applied to
determine the current x Posi tion of the drum.

• Desired system state A second application of physical
model instances is to model a desired system state. For
example, this physical model instance can be used by
higher-level controllers to communicate a desired value
of a certain physical variable. Using the mathematical
relations in the physical model, the desired value of this
physical variable is translated into desired values of other
physical variables, which might act as setpoints for lower
level controllers.
For example, in the Drum Shuttling case study, this can
be applied to determine the desired stepPosi tion of the
stepper motor, based on the desired z Posi tion of the
drum.

• A state representing control constraints This application
of physical model instances is a combination of the other
two example applications. The physical state is a mixture
of the current system state and desired system state, to
determine setpoints for certain controllers. This can be
used to enforce constraints on the state of the physical
system. These constraints are basically physical models
that determine desired values for certain physical vari-
ables based on the current values of other physical vari-
ables. For example, suppose a physical model contains
the relationship a = 2 ∗ b. Suppose that the value of b in
the physical model instance is the current value in the sys-
tem and is updated using a sensor. Suppose that the value
of a in the physical model instance (which is obtained
using the equation) is the setpoint for a controller that
controls a. Then, the equation is a constraint on the sys-
tem that ensures, using the sensor and the controller for
a, that a equals 2 ∗ b.
Such an application of physical model instances can be
used in the Warm Process case study, to determine the
required value Tcontact (i.e., T sp

contact), based on the current
values of Tph and v (Eq. 1).

5.4 Executing physical models

At runtime, the values in the physical state of a physical
model instance can be changed, for example based on sensor
readings (Sect. 6 describes the interface to the physical model
instance, which enables software modules to change values
of physical variables). When the values of certain variables
in the physical state change, the physical model instance
ensures that the physical state remains consistent with the
corresponding physical model. This means that the physical
model instance executes the physical model to determine a
new value of each physical variable, using the equations in
the physical model and the values of the physical variables
that have been changed. To perform this operation, the phys-

123



Composing domain-specific physical models

V1

V2

V3

V4

V5

V6

V7

Instance Of

Set of relationships 
between physical variables

Maintains state (i.e., values 
of physical variables)
State is consistent with the 
physical model

V1

V2

V3

V4

V5

V6

V7

3.87

78.6

45.01
0.45

8069.35

26.98

.

.

.

Fig. 8 Instantiation of a physical model

ical model instance uses solving algorithms similar to the
algorithms implemented in 20-Sim and Matlab Simulink. For
details about these algorithms, we refer the reader to [47]. In
this paper, we will suffice with a discussion of the differences
between the solving algorithm used by the physical model
instance and the solving algorithms implemented in 20-Sim
and Matlab Simulink. This discussion is given in Sect. 9.5.

6 Composition using the Composition Filters model

In the previous section, we explained how physical mod-
els are represented in software. In this section, we describe
how physical models interface with other software modules
using the Composition Filters model. The Composition Fil-
ters model is implemented in the language Compose*. A short
introduction in the Composition Filters model and Com-
pose* is given in Appendix A. For further information on
the Composition Filters model and Compose*, we refer to
[40,48,52,53].

6.1 Composition overview

In general, artifacts on which the Composition Filters model
is applied consist of two elements:2

• An implementation object, which contains the internal
semantics of the artifact (e.g., the instance variables and

2 See also Appendix A for more information about the Composition
Filters model.

implementation of methods when the artifact is an object
in an object-oriented language).

• An interface, which represents the interaction semantics
of the artifact, i.e., the way in which the artifact can inter-
act with other artifacts (e.g., the public interface of objects
in an object-oriented language).

In the Composition Filters Model, composition filters can
be attached to the interface of the artifacts. These compo-
sition filters provide selection, filtering and transformation
operations on interactions (e.g., messages or events) with the
interface. Attaching composition filters to an artifact is called
superimposition.3 The artifact consisting of the implementa-
tion object and the interface, together with the attached com-
position filters is called a concern instance. Figure 9 applies
these concepts on physical model instances.

6.1.1 Implementation object of physical model instances

The implementation object of physical model instances con-
tains the physical relationships defined in the physical model
and the physical state that is part of the physical model
instance.

6.1.2 Interface of physical model instances

To compose physical model instances with software mod-
ules, physical model instances provide an interface that is
divided into two parts:

• A base interface to request and update values of variables
in the state of the physical model instance. The base inter-
face is accessible from software modules by sending mes-
sages to the physical model instance. The Composition
Filters modeldirectly applies to the base interface; filter
modules containing input filters can be superimposed on
a physical model instance to filter messages that are send
to the physical model instance, as shown in the top part
of Fig. 9. Section 6.2 describes the base interface in more
detail.

• An event model that defines events that can occur during
the execution of a physical model instance. We gener-
alized the Composition Filters modelin such a way that
not only messages can be filtered and matched, but also
events conforming to a certain event model. We defined
such an event model for the execution of physical model
instances. Examples of events that can occur in the execu-
tion of physical model instances are a request of the value
of a physical variable, the update of the value of a physical

3 See also Appendix A.

123



A. de Roo et al.

V1

V2

V3

V4

V5

V6

V7

3.87

78.6

45.01
0.45

8069.35

26.98

Interface Part:
Base Interface

Implementation:
Physical Model + State

l

GPL

{Composition
Filters

(Input filters)

Events
(Returned values)

l

GPL
Module{Composition

Filters
(Output filters)

M
essages

get
set

Incons.
request

update

Interface Part:
Event Model

M
essages

M
es sag es

Concern
Instance

Module

Fig. 9 Composition filters applied to a physical model instance

variable and the detection of an inconsistency in the phys-
ical model. Composition filters can be superimposed on
physical model instances to filter and match events occur-
ring during the execution of the physical model instance.
These composition filters can specify behavior to exe-
cute when an event is matched. This behavior can for
example be to dispatch a message to a software module
to execute certain computational logic. The bottom part
of Fig. 9 shows the event model interface part and the
application of composition filters. Section 6.3 describes
the base interface in more detail.

6.2 Base interface

The physical model instance is in an object-oriented lan-
guage accessible as an object. This object has an interface to
obtain values from the physical model instance and to change
values in the physical model instance. Furthermore, the inter-
face contains a method to start the evaluation of the physical
model instance. This enables the designer to control when a
physical model instance is evaluated (e.g., as part of a control
loop). Figure 10 shows the base interface of physical model
instances.

+getValue(variableName : string) : double
+updateValue(varName : string, value : double, id : string) : void
+evaluate()

PhysicalModelInstance

Fig. 10 Base interface of physical model instances

6.3 The event model

The event model defines the types of events that can happen
within the execution of a physical model instance and that can
be matched within a composition filter. It is a generic defini-
tion for physical model instances, not specific for a particular
physical model instance. Events have certain properties.

Table 1 shows the properties of events defined by the event
model. Matching within a composition filter is performed
using these properties. Each property is described next.

6.3.1 Property: eventType

The eventType property conveys the type of the event.
The possible types are:

123



Composing domain-specific physical models

Table 1 Event properties

Event properties

eventT ype
variableName
value
returnV alue
returnI denti f ier
values
margin
en f orceReturn

⎫
⎬

⎭
Only defined if eventT ype = ‘I nconsistency’

• Request The value of a variable is requested using the
base interface of the physical model instance.

• U pdate The value of a variable is updated using the base
interface of the physical model instance.

• CheckU pdate At the start of evaluation of a physical
model instance, for each variable it is checked whether
the value has been updated. This eventType indicates this
check and provides the possibility to define behavior that
updates the value.

• Change The value of a variable has changed during the
evaluation of the physical model instance. This type of
event occurs after the evaluation algorithm, when the cur-
rent state is changed to reflect the new state.

• I nconsistency An inconsistency has been detected
during the evaluation of the physical model instance.
Inconsistencies occur when there are multiple ways to
determine the value of a physical variable. If the multiple
outcomes are not equal, this leads to an I nconsistency
event.

6.3.2 Property: variableName

This property contains the name of the variable that is the
subject of the event.

6.3.3 Property: value

This property contains a value, which differs based on the
type of the event:

• Request and CheckU pdate The current value of the
variable in the physical model instance.

• U pdate The updated value of the variable, as provided
using the call to the base interface.

• Change The new value of the variable. Actually, this is
the current value of the variable in the physical model
instance; the current value changed during the evaluation
of the physical model instance.

• I nconsistency One of the multiple (inconsistent) val-
ues for the variable, which are determined by the evalua-

tion algorithm. The single value is non-deterministically
selected.

6.3.4 Property: returnValue

Can be used by filter actions to return a value. The semantics
of this returned value differs based on the type of the event:

• Request A getValue call has been made to the
base interface of the physical model instance, trigger-
ing this type of event. Normally, the returned value of a
getValue call is the current value of the variable. But
using the returnValue property, a composition filter
can change the returned value. The current value of the
variable in the physical state is not affected.

• CheckU pdate The property can be used to return an
updated value of the corresponding physical variable.
This updated value will be used by the evaluation algo-
rithm to update the physical state.

• U pdate The property can be used to change the updated
value provided by the update-call to the base interface
that initiated the event.

• Change The property is not used.
• I nconsistency The property contains the value that

should be used in the physical state (to resolve the incon-
sistency).

6.3.5 Property: returnIdentifier

This property is only defined for events with type Check
U pdate. It can be used to provide an identifier for the update.

6.3.6 Property: values

In case the event type is I nconsistency, this property con-
tains all values for the corresponding variable that are derived
by the evaluation algorithm. The property provides a map-
ping from a String identifier to the corresponding value.
The identifier indicates the source of the value.

6.3.7 Property: margin

In case the event type is I nconsistency, this property con-
tains the largest difference between the values in the property
values. Themargin property can be used, for example, to
filter I nconsistency events for which the difference between
the values is larger than a certain threshold value.

6.3.8 Property: enforceReturn

In case the event type is I nconsistency, this property con-
tains a Boolean value indicating whether the value in the
property returnValue should be enforced upon the state

123



A. de Roo et al.

or not. Enforcing a value means that the values of other vari-
ables are made consistent, according to the physical model,
with the provided value in the returnValue property.

6.4 Example: defining composition filters

Listing 7 shows an example composition filters specification.
This specification is applied to the physical model instance of
the Drum Shuttling case studythat contains the drum rotation
model specified in Sect. 5.2.1.

In this case, the pulseCount is retrieved using a sen-
sor. If the xPosition is changed, the new value is given
to the Shuttling Controller module, which imple-
ments the control logic to translate the x Posi tion of the
drum to the desired z Posi tion of the drum.

Lines 1 to 10 show the definition of the filter mod-
ule RotationIO. This filter module consists of two ref-
erences to external objects; pcSensor is the external
Sensor object to provide pulseCount. shControl is
the external ShuttlingController object to which a
new xPosition can be given.

The filter module also defines two composition filters. On
Lines 6 and 7 the pcFilter has been defined. The type
of this filter is Dispatch, which indicates that when the
filter matches, a message is dispatched to a GPL module.
The matching part of the filter shows that the filter matches
for CheckU pdate events concerning variable pulseCount .
After the matching part, this filter has an assignment part
(shown on Line 7). In this assignment part, the target and

selector of the to be dispatched message are provided. The
target is the pcSensor external object; the selector is the
method getValue. If the filter matches, a dispatch will be
done to this method, and the resulting value will automati-
cally be stored in the resultValue property. This value is
used by the evaluation algorithm to update the physical state.

Lines 6 and 7 show the definition of the second composi-
tion filter, which matches on Change events of x Posi tion
and dispatches to the method setXPos in the shControl
external object.

Lines 12 until 17 show a superimposition definition. In
this superimposition definition, the defined filter module
RotationIO is placed on the physical model instance of
the physical model that contains one or more of the SIDOPS+
specifications motor, gears and drum.

6.5 Default composition behavior

When an event occurs in the execution of the physical model
instance, the value of the physical variable that is the subject
of the event may be influenced. For example, if the event type
is U pdate, the update value provided to the base interface
with the updateValue call can be changed by a compo-
sition filter. If the event type is I nconsistency, the proper
value should be selected. Using the returnValue prop-
erty, a composition filter can give a new value for the physi-
cal variable. But if no composition filter has been defined to
provide a return value, there is a default behavior that is per-
formed. The default behavior is to return the current value in
the physical state as the new value (event.returnValue
= event.value).

7 Analysis and verification

In this section, we will describe domain-specific static analy-
sis and runtime verification that is possible with our approach.

7.1 Domain-specific analysis

Combining a DSML with a GPL provides the possibility
to apply the domain-specific analysis techniques that come
with the DSML. Examples of analysis that can be performed
on SIDOPS+ specifications are checking of unit consistency
of physical relationships (if units are defined for physical
variables) and detection of algebraic loops.

7.2 Runtime verification of physical models

The physical models that are combined with GPL modules
might not correspond with physical reality, for reasons that
include:

123



Composing domain-specific physical models

• The underlying assumptions about physical reality on
which the physical models are based might not be accu-
rate enough.

• The system might be used in different operational condi-
tions than considered during design.

• Physical characteristics might change over time, because
of, for instance, wear and tear of physical components in
the system.

• Physical characteristics might change because of evolu-
tion of the physical system.

• The engineer implementing a physical model might intro-
duce a fault.

As inconsistencies between the physical model and phys-
ical reality can lead to failures in the behavior of the system,
such inconsistencies need to be detected. Because the sys-
tem cannot be tested in all possible circumstances, runtime
verification of the physical models is necessary.

7.2.1 Detecting inconsistencies at runtime

In [50], we described a technique to perform runtime ver-
ification of physical models. This technique makes use of
redundancy in the physical model (i.e., physical variables that
have multiple sources for their values, such as multiple sen-
sors and relationships). Inconsistencies in the different val-
ues for these physical variables can indicate that the physical
model does not correspond to physical reality. Composition
filters can be implemented to monitor for inconsistencies in
the physical variables that have a redundant value source.
The aspect-oriented features of composition filters make it
possible to define a single filter that monitors and handles all
inconsistencies. Listing 8 shows an example of such a com-
position filter specification. Line 3 shows the definition of a
Logging filter that matches all inconsistency events
that have a significant margin. Lines 6 to 11 show that the fil-
ter module is superimposed on all physical model instances
in the system.

7.2.2 Monitor wear and tear

One advantage of the runtime verification approach is that it
becomes possible to monitor wear and tear in the system. We
will now show an example of this.

Over time, the radiator in the Warm Process case study-
may get polluted and therefore less efficient. If not detected
early enough, this can cause damage to the system. Using
runtime verification of physical models, early detection has
been implemented. Listing 9 shows (partial) SIDOPS+ spec-
ification for the warm process case, described in Sect. 2.1.
We added a second equation, to relate Tcontact back to Tbelt.
In this way, Tbelt has two sources of values: the sensor and
the newly added relationship.

In a new system, the two sources provide the same values.
But when the radiator gets polluted, the two values begin to
differ. This can be detected by the composition filter specifi-
cation shown in Listing 10. Line 3 shows a ServiceCall
filter, that performs a service call when it accepts (in this case
when the margin becomes larger than 0.2).

7.2.3 Monitor acceptable ranges

Listing 11 shows an example that does not check for inconsis-
tencies, but monitors whether a certain physical variable stays
within an acceptable range. The specific physical variable in
this example is Tph. The eventtype is Change, reflecting the
fact that checking is done when the value of the variable has
changed. The acceptable range for the physical variable is
between 60 and 100. If the value is outside this range, the
composition filter matches and the event is logged.

123



A. de Roo et al.

7.3 Composition analysis

If a physical model is composed with GPL modules, there
should be enough input/output interaction between the model
and the modules, so that the model can correctly compute
the desired output. For example, if the model from Fig. 7 is
composed with GPL modules to supply the x Pos, but there
is no interaction between the model and a module that can
provide pulseCount (e.g., through a sensor), then x Pos can
never be correctly computed.

We can detect this problem in the following way. First,
the composition between the model and the GPL modules
is checked to detect for which variables input is provided to
the model, and which variables are requested as output from
the model. Then, we can check whether each variable that is
requested as output is solvable (meaning that there is a way to
compute its value). The algorithm to perform this operation
is explained in detail in [47].

8 Evaluation of the approach

Our approach enables the composition of physical models
specified in a DSML with other software modules imple-
mented in a GPL. This provides the benefits of using a DSML
to specify physical models with the freedom of a GPL to
implement other functionality. In this section, we illustrate
with a number of evolution scenarios the benefits of our
approach concerning the maintainability and evolvability of
the physical models implemented in embedded control soft-
ware.

8.1 Evolution scenarios

Using relevant evolution scenarios, we explain how our
approach reduces programming effort. Several evolution sce-
narios have an impact on the implemented physical relation-
ships. But there are also evolution scenarios that have an
impact on the GPL modules. The impact of evolution sce-
narios on the physical relationships can be categorized as
follows:

1. Introduction A new physical relationship is added.
2. Elimination A physical relationship is removed.

3. Change An existing physical relationship is changed.
There are several possibilities:

(a) Constant value The value of a constant in the rela-
tionship is changed.4

(b) Structural A change to the structure of the relation-
ship.

• Refinement A constant in the relationship is
replaced by a subformula introducing new vari-
ables in the relationship.

• De-refinement Replacing a subformula by a con-
stant.

• Splitting A relationship is broken into smaller
parts. i.e., subformulas are extracted to make
the (implicit) variable value that they specify
explicit. In the original relationship, this sub-
formula is replaced by the variable name that
it expresses.

• Merging The reverse process of splitting.

8.1.1 Scenario A: addition/removal of a component to/from
the physical system

Description The system consists of multiple components.
It is likely that during the lifecycle of a product type a
specific component is added or removed from the design,
for example to extend its functionality or to lower costs.
Example The removal of the paper heater in the warm
process case study. Heating will then be entirely done by
the radiator.
Impact Components in the system often have a direct
correspondence with modules that implement control
logic. For example, the paper heater has correspond-
ing control logic, which is implement in the Paper
Heater Controller module. So, adding or remov-
ing a component from the system can lead to the addi-
tion or removal of a module. Besides that, it can also
lead to introduction/elimination of a physical relation-
ship, because a value of a variable, necessary to con-
trol the component, should be derived. Or it can lead to
refinement/derefinement of relationships because a vari-
able that was constant now becomes variable due to the
addition of a component.
In the traditional approach, because the affected relation-
ships are spread through the code of different GPL mod-
ules, it might be hard to locate them, giving higher risk
of introducing errors.
With our approach, the relationships are made explicit
and are separated from the GPL modules. Therefore,
affected relationships are now easier to find and updates

4 The word ‘constant’ refers in this case to a fixed value in the physical
relationship for one specific design. Therefore, if the design changes,
the value of constants can also change.

123



Composing domain-specific physical models

are localized to the SIDOPS+ specification. This reduces
programming effort.

8.1.2 Scenario B: change of the physical structure of the
system

Description With physical structure is meant the location
and arrangement of the different components of the sys-
tem. This is subject to change during the lifecycle of the
product type.
Example The position of the paper heater in the paper
path.
Impact The implemented physical relationships are based
on the existing physical structure of the system. There-
fore, a change of this structure has an impact on the imple-
mented relationships, especially on the constants within
these relationships. For example, the change of position
of the paper heater has an impact on the paper tempera-
ture drop between the paper heater and the contact point.
This affects Eq. 1.
In the traditional approach, this relationship is
implemented in a different module (the Radiator
Controller module), not directly related to the
changed item in the system. This makes it harder to locate
the affected code, giving a higher risk of introducing
errors.
In our approach, the scenario has a direct impact on the
explicitly defined relationship in the SIDOPS+ speci-
fication. Because the relationship is explicitly defined,
it is easier to locate, thus reducing programming
effort.

8.1.3 Scenario C: change in operating conditions of the
system

Description During the design of the system, certain
operating conditions, like temperature of the environ-
ment, are assumed to be (approximately) fixed at a certain
level. However, during the lifecycle, the assumed oper-
ating conditions might change.
Example The printing system is first targeted at a market
in a moderate climate. Later on, the product becomes
targeted at markets in a hot climate, which means a higher
environmental temperature.
Impact The fixed conditions are abstracted away in the
constants of certain relationships. A higher environmen-
tal temperature has an influence on the temperature loss
of the paper, affecting constant c1 in Eq. 1. It also has an
impact on the pinch temperature, affecting constant c1 in
Eq. 2.
From this example it is clear that the change of operating
conditions can have varying impact on different physical

relationships, which are in the traditional approach spread
over the control software. Localizing the affected parts
is therefore harder, which can lead to the introduction of
errors.
In our approach, the impact is limited to the SIDOPS+
specifications instead of affecting GPL modules. Pro-
gramming effort is reduced.

8.1.4 Scenario D: more variety in operating conditions

Description Certain operating conditions could change
from being fixed to being variable.
Example An example of this can be the introduction of
different paper weights. At first, the system was designed
to handle only one paper weight. But later on, to target
new customers, the system is adjusted to handle different
paper weights.
Impact The impact of this change is that the variable
mpaper is now going to vary, so becomes important in
Eq. 1. This means that this variable, which was first
abstracted away in constant c2, is introduced into the
equation. The new equation will be something like:

T SP
contact = c1 · v − c2′ · Tph√

mpaper
+ c3

In general, the connection between the varying condi-
tions and the affected relationships might not be appar-
ent, and the relationships might be scattered through the
GPL modules. This makes it harder to locate these rela-
tionships, increasing the potential for errors.
Now that the relationships are explicitly defined with the
SIDOPS+ approach, this impacted relationship is easier
to find and the change does not affect the GPL modules
that implement control logic anymore. Thus, program-
ming effort is reduced.

8.1.5 Scenario E: the increase or decrease of available
information

Description The available information to the control soft-
ware might increase or decrease, because sensors are
being added to or removed from the system, or new vari-
ables and their relationships with other variables become
known.
Example A sensor that measures temperature of the envi-
ronment is added. This variable influences Eq. 1, but has
been neglected before as stochastic variation.
Impact Now that we have the information available, it
can be used in Eq. 1. This means the introduction of a
new variable in this relationship. Equation 1 changes in
the following way:

123



A. de Roo et al.

T SP
contact = c1 · v − c2 · Tph + c3 + c5 · Tenvironment

Impacted relationships might be scattered through the
GPL modules.
As in the previous scenario, with the SIDOPS+ approach
this relationship is easier to locate and changes do not
impact the GPL modules anymore.

8.1.6 Scenario F: changing a control component

Description The control behavior of a control component
might be changed.
Example In the drum-shuttling case the control behavior
of the ShuttlingController changes.
Impact The ShuttlingController logic is not tan-
gled with physical relationships anymore. Therefore,
changing it is easier. Furthermore, the component can
more easily be reused in other printing systems, as it is
not tightly coupled with the stepper motor and the drum
motor anymore, but has a clear interface to x-position
and z-position. Higher cohesion of the module and more
potential for reuse have a positive impact on program-
ming effort.

8.1.7 Scenario G: dynamically adapting a physical
relationship

Description A physical relationship might change during
runtime, due to adaptive behavior of the system.
Example Equation 1 is different if the printing system is
starting up or is idle.
Impact Although not investigated in this paper, now that
the physical relationships are made explicit, it becomes
easier to build in language mechanisms to change them
at runtime. If the relationships are implemented in the
GPL, GPL constructs, such as if-else statements, are
necessary to provide this adaptive behavior.

From the analysis of these relevant evolution scenarios
we conclude that changes in the physical system can have
an impact on physical relationships, which are often spread
through the software implementation. Because of the implicit
implementation, the developer might not even be aware of the
relationships and of the changes that should be made to them.
This can be a source of errors. Also locating the physical
relationships and changing them can be costly.

Using our approach to specify physical models in the
SIDOPS+ language and compose them with GPL modules,
the physical relationships are explicitly specified. This makes
it easier to locate and modify them, reducing programming
effort.

9 Discussion

In this section, we discuss some additional aspects of our
approach.

9.1 Applicability on real-time systems

An important aspect in the design of embedded software
is dealing with real-time functionality [38]. Therefore, pro-
gramming languages and tools aiming at embedded soft-
ware should support the creation of software that is able to
meet timing constraints under all circumstances. This sup-
port includes efficient software execution, software execu-
tion that is deterministic in time and memory and the ability
to precisely analyze the software with respect to its timing
behavior.

The implementation of our approach contains a runtime
infrastructure with an interpreter to execute the SIDOPS+
models and the composition filters. Such an interpreter-based
approach raises the question whether the resulting execution
of the embedded software is efficient and deterministic in
time, i.e., whether the embedded software is able to meet its
timing constraints under all circumstances. In this paper, we
did not address this concern. We mainly focused on combin-
ing a DSML for physical modeling with a GPL, to improve
the quality characteristics Maintainability and Reliability.
With respect to these quality characteristics, an interpreter-
based execution environment is sufficient to demonstrate our
approach.

To enable industrial application of our approach, effi-
ciency and deterministic operation are definitely concerns
that should be addressed. Efficient compilation instead of
applying an interpreter is part of our future work. Efficient
compilation algorithms for aspect-oriented languages, such
as the Composition Filters model, are known in literature,
e.g., in [14,46,48]. The 20-Sim tooling contains code gen-
erators to compile 20-Sim/SIDOPS+ models to efficient and
deterministic C code [1]. Future work involves how these dif-
ferent compilation approaches can be combined, to be able
to efficiently compile the composition (using the Composi-
tion Filters model) of the SIDOPS+ models with the GPL
modules.

9.2 Separating design rationale from control logic

The design of a controller depends heavily on the physical
characteristics of the system being controlled. Control engi-
neers study these physical characteristics and decide on the
type of controller to use and the parameters for this con-
troller, to obtain certain desired characteristics, such as sta-
bility, small error margins, reaction time, etc. As such, these

123



Composing domain-specific physical models

physical characteristics are part of the design rationale of the
control logic.

A variety of work has been performed on specifying con-
trol logic on a higher abstraction level, independent of spe-
cific physical characteristics of the system. The actual control
logic is then generated from the higher-level specification and
a model of the physical characteristics. In this way, the spec-
ification of the control logic is less vulnerable for changes in
the physical system. An example of such work is the work
on supervisory control synthesis by Rooda et al. [41,51].

The described method in this paper does not aim at spec-
ifying and separating this design rationale from the control
logic. Also, this paper did not introduce new types of control
logic. This paper presented techniques to modularize and
compose models of physical characteristics that are being
applied in the control logic, as computational functionality,
not as design rationale of the control logic. Control engineers
still decide on which models of physical characteristics are
part of the computational logic and in what ways these mod-
els interact with other control modules. The models of phys-
ical characteristics are for example used to model the actual
system state, to model a desired system state or to model
constraints on the state of the system.

9.3 Control logic in a DSML

In this paper, we made a distinction between physical charac-
teristics and control logic. Physical characteristics describe
aspects of the physical system that are valid independent of
the control software, such as a natural relationship between
certain physical variables (e.g., the relationship between
Tph, Tcontact and v that defines acceptable print quality). Con-
trol logic are those computations designed to actively influ-
ence the state of the system, such as a feedback controller
that calculates a certain output signal based on some input
signals and the controllers state.

Besides being applied to model physical systems, toolsets
such as 20-Sim and Matlab Simulink can also be applied to
model continuous control logic. The computational model
for continuous control logic is similar to the computa-
tional model for physical characteristics. For example, in the
SIDOPS+ language, continuous control logic can be spec-
ified using equations. Therefore, our approach can also be
applied to SIDOPS+ models containing continuous control
logic. This provides the additional benefits of the Compo-
sition Filters model, such as the possibility to implement
aspect-oriented functionality on continuous control logic.

In this paper, we did not investigate and utilize the capa-
bility of the 20-Sim toolset to model the control logic. We
only used the 20-Sim toolset for the domain-specific model-
ing of the physical characteristics being applied in the con-
trol software. This was done to illustrate the possibility to

model certain concerns of the control software with a DSML
and to illustrate that the models specified in a DSML can be
composed with modules specified in a GPL that implements
other aspects of the system. If we also applied the DSML
to model the control logic, the amount of GPL code in the
example cases would be limited. However, this is not the case
in general; the limited amount of GPL code is caused by the
fact that the example cases are limited, and only contain a
subset of the concerns of realistic control software. Exam-
ples of concerns that are part of realistic control software
are management of system states (e.g., idle, start-up, avail-
able), scheduling of (discrete) tasks, recovering from errors,
monitoring the available resources (e.g., the amount of toner,
number of sheets of paper in the paper tray), processing of
user input, security, communication, maintenance tasks, etc.
These concerns were left out of the example case studies, as
they would require and extensive introduction of the example
case studies and of the domain knowledge needed to under-
stand them. Toolsets such as 20-Sim and Matlab Simulink
are not designed to handle these concerns. Therefore, still a
substantial amount of GPL code is needed.

9.4 Risks of physical model decomposition

In this paper, we presented techniques to modularize physical
models used in control software and to compose the physical
models with other software modules. The techniques ensure
that a given modularization and composition is correct from a
language perspective (i.e., it results in executable software).
However, this paper did not attempt to provide techniques that
ensure the correctness of the modularization and composition
of physical models from the perspective of the application. It
is up to the engineers of the system to ensure the correctness
of the modularization and composition from the application
perspective.

If the modularization and composition of physical mod-
els in software is not performed with care, undesirable side
effects can occur in the behavior of the control software and
as such in the behavior of the physical machine. Examples of
undesirable side effects are unforeseen interactions between
physical models or between a physical model and a GPL
module and deviation from desirable behavior. These prob-
lems are related to modularization, as the internal working of
a module can be hidden for the developer of another module.
If the interfaces of the modules are not properly specified,
unforeseen interactions can occur. Note, however, that these
issues concerning modularization are general and not spe-
cific for the modularization of physical models in control
software.

This paper discussed a number of verification techniques
that can be used to detect problems in control behavior
(e.g., the value of a certain physical variable goes outside its

123



A. de Roo et al.

limits). The cause of such a problem may be diagnosed as a
modularization issue.

9.5 Difference between 20-Sim simulation and physical
model execution

The equation solving algorithm used by physical model
instances is largely the same as the procedure used in
20-Sim. However, there are some differences. These differ-
ences are caused by the fact that the execution of physical
models in software relies on externally provided updates of
physical variables. We introduced the possibility to have mul-
tiple ways to determine a value, possibly leading to inconsis-
tencies in the physical model. We added a mechanism to solve
inconsistencies. However, the possibility of having multiple
ways to determine a value leads to differences in which alge-
braic loops are solved and to differences in the execution
order of equations.

9.5.1 Algebraic loops

Because there are multiple ways to determine a value, the
handling of algebraic loops is different:

• If the value of one of the variables (referred to as variable
a) in the loop is also provided from another source (e.g.,
a sensor or a different physical relationship not part of the
algebraic loop), then the loop is solved using this value.
This leads to multiple values for the variable a, because of
the loop. This way of solving can be emulated in 20-Sim
in the following way:

– Replace the physical variable that can have multiple
values with multiple physical variables, one for each
way to determine the value (thus breaking the loop).

– Add logic to compare the values of the multiple phys-
ical variables derived from the original physical vari-
able.

• Otherwise, the loop is solved using methods also applied
by 20-Sim (not implemented in our current tooling).

9.5.2 Evaluation order

Because there can be multiple sources for values, the evalua-
tion order of equations can be ambiguous. To aid the designer,
we implemented a specific evaluation order, giving prefer-
ence to forward solving of equations before backward solv-
ing.

Replacing a physical variable that can have multiple values
with multiple physical variables eliminates this ambiguity. In
this way, the 20-Sim execution method can be used.

9.6 Dynamic adaptation of physical models

A physical model instance is created from one or more phys-
ical models. In case multiple physical models are used, each
model forms a submodel of the implicitly composed phys-
ical model that expresses the physical relationships of the
instance.

The application of physical model instances can be made
more flexible, if the physical model it refers to is flexible. If
it is for example possible to add, remove, replace submodels
from the physical model, the behavior of the physical model
instance can vary at runtime, to reflect for example discrete
changes in the physics of the system or changing constraints.
An example of changing constraints is the constraint between
Tcontact and Tph in the warm process case. The constraint
presented by Eq. 1 is only required in the running state of the
printing machine. If the printing machine is for example in
the idle or startup state, the constraint is different. By making
it possible to manipulate the physical model at runtime, such
examples of adaptive behavior can be easily implemented.

9.7 Recovery actions after runtime verification

If a failure has been detected using runtime verification
(meaning that the different redundant values of a certain
physical variable are not consistent), a recovery action needs
to be taken. Depending on how the engineer perceives the
severity of the inconsistency, there are several options, which
include:

• Stop the operation of the system.
• Use the value with the highest confidence level. For

example, a voting scheme can be used if there are more
than two ways to determine the value of the parameter.

• Log the inconsistency and chose one of the values, either
randomly or by some preference.

10 Related work

10.1 Domain-specific models in embedded control software

Domain-specific models are commonly used in the devel-
opment of embedded software. For example, the Giotto
approach [31] is a domain-specific language that aims to
separate timing from functionality in embedded control soft-
ware. A timing specification, called Giotto timing program,
can be generated from a simulink control model. The tim-
ing program supervises the functionality programs, which
implement the control functionality. The timing program is
independent of a given implementation platform, supporting
portability between different platforms. The Giotto approach

123



Composing domain-specific physical models

provides tooling to verify whether a given implementation
platform can handle the timing constraints given in the Giotto
timing program. The Giotto approach is comparable to our
approach as it also applies a DSML to implement part of the
computational logic for embedded control software. Inter-
esting in the Giotto approach is that the DSML used is a
DSML to model physical characteristics and continuous con-
trol logic, i.e., a DSML similar to the SIDOPS+ language.
In this way, the Giotto approach can be an addition to our
approach.

There are approaches that apply aspect-oriented tech-
niques to domain-specific modeling approaches. An example
of this is the C-SAW approach [29]. C-SAW provides a tech-
nique and tooling to add aspects to software models, which
are higher abstraction levels of the software implementation.
This differs from our approach in two ways. The first differ-
ence is that the models referred to in our approach are not
software models, but models of physical characteristics (in
general, models of domain concepts). These models of phys-
ical characteristics are applied in control software to provide
part of the computational logic, which is realized by adding
execution semantics to the modeling language. The second
difference is that our approach does not aim to express aspects
in the domain-specific models themselves, but uses aspect-
oriented composition technology to compose the models in
the DSML with the modules in the GPL at the abstraction
level of both languages.

10.2 Interaction-based approaches

One usage of physical models in embedded control soft-
ware is to implement the interaction between different con-
trol modules. In this section, we compare our approach to
existing interaction and coordination approaches.

Contracts [30,32] were introduced to explicitly model
interactions among a group of objects. These constructs cap-
ture behavioral dependencies specified with a set of pre-
conditions and invariants [30]. The contract principle was
also applied to component-based systems, to extend com-
ponent interfaces with behavioral constraints [10]. Hereby,
contracts are used to check the compliance of components.
Similarly, contracts that provide formal semantics regarding
object interactions enable conformance checking at compile-
time [30]. As such, these approaches support maintenance
and reuse of software systems. In our work, we use the for-
mal specification not only for domain-specific analysis and
checking for compliance but we also compose the specified
models with other software modules and execute them. So,
the specification becomes a part of the implementation.

Meta-object protocols (MOP) [33] have been introduced
as supplemental constructs to programming languages by
means of which the language’s behavior can be modified.
As such, semantics of a program becomes open and exten-

sible. MOPs, as well as reflection [39] mechanisms, could
be used to explicitly model the interaction between mod-
ules that is caused by the physical characteristics. In our
work, we have proposed a domain-specific solution to spec-
ify these physical characteristics in a declarative way and
to support domain-specific analysis. Furthermore, we apply
the aspect-oriented Composition Filters modelto compose
DSML models with software modules. Such aspect-oriented
techniques can be supported using reflection and meta-object
protocols [15].

There have been efforts to abstract away and encapsu-
late the coordination among a number of computational
entities (e.g., objects, components, etc.). These efforts led
to coordinated behavior abstractions [6], and later on to
coordination models and languages [43]. These approaches
improve reusability by enabling explicit modeling of inter-
action, enforcement of invariant behavior, and separation of
interaction details from the computational concerns. Model-
ing coordination is not the aim of this work and as such we
have not proposed an alternative model or language for this.
Instead, we have introduced a modular extension to state-
of-the-practice languages for explicitly modeling interaction
caused by physical characteristics. The models that deal with
the specified interaction are composed with the existing GPL
modules using the Composition Filters model.

Service orchestration is used to compose multiple (web-)
services in a meaningful way to create a larger application.
The orchestration language deals with issues as sequencing
of the services to call, parallel calls to different services,
branching in the services to call, etc. Examples of languages
to perform service orchestration are BPEL [2] and Orc [35].
Service orchestration is specifically aimed at coordination
among services. Our approach can capture interaction caused
by physical characteristics, using domain-specific abstrac-
tions.

10.3 Connection with system modeling approaches

System architects use tools to model different aspects of
the physical system, such as the physical structure, physical
behavior and interaction between components in the system,
state of the system etc. There are several approaches to inte-
grate such models and describe the system from different per-
spectives so that consistency can be maintained and changes
in one model can be automatically reflected in other mod-
els. Example of such approaches are the Knowledge Inten-
sive Engineering Framework (KIEF) [56] and the Speeds
approach [44]. Such efforts can be extended to include soft-
ware specifications, because software functionality is heavily
based on aspects of the physical system, such as the structure
and the physical interaction between components. Further-
more, such an integration can provide traceability between
the physical relationships and the corresponding structures in

123



A. de Roo et al.

the system models. This can be helpful in case of evolution,
as the impact of changes in the system to the physical rela-
tionships can be automatically traced within the embedded
control software.

10.3.1 KIEF

Forbus describes in [25] the concept of qualitative process
theory. This is the analysis and specification of the qualita-
tive relationships between different physical variables in a
physical system. Such a specification can be used to predict
behavior in the system. This theory has been incorporated in
KIEF in the form of parameter networks. Parameter networks
are graph structures that describe the qualitative relationships
between physical variables [56]. They can be derived from
other system models, like structural models.

Although the parameter networks do not describe quan-
titative relationships, they can be used as a starting point
to derive the quantitative relationships needed to create the
physical models. First, the parameter network can be used
to check whether certain variables are solvable. Secondly, if
the quantitative mapping is possible, the part of the parameter
network that reflects this mapping should then be quantified
to create the physical model.

10.3.2 Speeds

The Speeds approach [44] is an embedded system design
methodology that supports the composition of heterogeneous
subsystems using semantic-based modeling methods. To
compose different models of the system, the approach defines
the concept of heterogeneous rich-component model that
can represent different functional and architectural abstrac-
tions in embedded system models, such as timing and safety
properties. Although the Speeds approach offers composi-
tion of different models, the Speeds approach differs from our
approach as it provides an integrated approach for embedded
system modeling instead of an approach to apply such het-
erogeneous (domain-specific) models in embedded control
software and to compose these models with GPL software
modules.

The integration of the Speeds approach with our approach
is interesting future work; this integration can provide com-
position between heterogeneous domain-specific models in
embedded control software, in addition to the composition
of DSML models with GPL modules.

10.4 Heterogeneous composition of computational models

The Ptolemy approach [22] provides a way to model embed-
ded computational systems (not necessarily limited to soft-

ware) that consist of heterogeneous types of components (i.e.,
types of components that differ in how they communicate and
interact). Arbitrarily composing heterogeneous components
can lead to ambiguities in the interaction between the com-
ponents (due to the differences in the way these components
communicate and interact), resulting in unexpected emerging
behavior. To prevent such problems, the Ptolemy approach
uses hierarchical nesting of different types of components,
resulting in a homogeneous composition at each hierarchical
level.

The basic building block in the Ptolemy approach is called
an actor. Actors can communicate with each other through
ports. A system of multiple communicating actors can be
encapsulated into a higher-level actor. In this way, hierarchi-
cal structures can be created. The way data flow and con-
trol flow between actors is performed at a certain hierarchi-
cal level is not defined by the actors themselves, but by a
separate model of computation (MoC). Different composite
actors can have different MoCs. Some MoC implementations
(also called domains) that have been realised are: Communi-
cation Sequential Processes (CSP), Continuous Time (CT),
Discrete Event (DE), Process Network (PN) and Synchro-
nous Dataflow (SDF).

Our approach of combining the semantics of the DSML
for physical models with the semantics of the GPL is similar
to the Ptolemy approach. The semantics of physical models is
encapsulated in the physical model instance. This semantics
is well-defined and there is no interference with the seman-
tics of the GPL. The modules in the GPL are oblivious to this
internal semantics of the physical model instance. The inter-
action between the physical model instance and the modules
specified in the GPL is performed using the base interface
and the Composition Filters model, which is natural from the
perspective of the GPL. This mechanism can be seen as two
layers of hierarchical heterogeneous composition from the
Ptolemy approach (the physical model semantics is encap-
sulated into physical model instance actors, which can be
composed with other GPL modules/actors). This prevents
ambiguity in the control flow and data flow, thus preventing
unexpected emerging behavior.

10.5 Runtime verification

Literature shows, e.g., in the taxonomy of Delgado et al. [19]
and in the work of Barringer et al. [9], that the common
approach to runtime verification is to create a data and/or
event model in which the software can be described and to
verify certain properties on this model, specified in a cer-
tain logic, such as temporal logic or regular expressions.
Examples of such runtime verification approaches are the
MOP framework [18] and the tracematches extension to
AspectJ [7]. Such approaches could not be applied in our

123



Composing domain-specific physical models

case, as we needed to take the impact of the software behav-
ior on the physical behavior of the system (i.e., the operat-
ing environment of the software) into account; failures only
become apparent in the physical behavior. Therefore, we
needed a new approach in which we use redundant mod-
els of physical relationships to verify the conformance with
physical reality.

van Gemund et al. [57] have worked on fault diagnosis in
embedded systems. Fault diagnosis aims at determining the
health state of the system or components in the system, by
analyzing the output of the system given a certain input. There
are two approaches to diagnose the location of faults in com-
ponents; model-based diagnosis, as introduced by Reiter [45]
and de Kleer [36], uses a model of the system to diagnose the
failing component based on the system’s input and output.
Spectrum-based fault localization is a statistical approach
that diagnoses failing components by correlating failures in
the output with execution traces [57]. van Gemund et al.
[3,23] combined both approaches to be applied on the combi-
nation of embedded system and the corresponding embedded
software.

The work of Bapty et al. [8] facilitates dynamic reconfig-
uration of systems for error recovery. Hereby, all the devel-
opment activities are performed at the modeling level, with
various models focusing on different aspects of the system.
This is achieved by adopting the so-called model-integrated
computing (MIC) approach [8], which requires creating a
development environment that is customized for a specific
application domain.

11 Conclusion and future work

This paper presented, as a structuring and implementa-
tion method in embedded software design, an approach to
compose models of physical characteristics specified in a
domain-specific modeling language (DSML) with software
modules specified in a general-purpose programming lan-
guage (GPL) at the abstraction level of both languages. As
such, this approach combines the benefits (e.g., ease of real-
ization, maintainability, reusability) of a DSML to model
physical characteristics with the freedom of a GPL to imple-
ment the application-specific functionality of the control soft-
ware. The SIDOPS+ language from the 20-Sim toolset is used
as the DSML to model physical characteristics. The compo-
sition filters approach is applied to compose DSML models
with GPL modules. The presented approach is implemented
using an interpreter-based style and by making a connection
with the Compose* toolset.

Using a DSML to model physical characteristics in
embedded control software provides the additional bene-
fits of domain-specific analysis techniques, to detect errors

and defects that otherwise would have remained unnoticed.
A number of domain-specific errors and defects can be
statically detected at the DSML level. In cases where static
analysis is not possible due to runtime behavior, we offer
complementary domain-specific runtime verification tech-
niques. These techniques can detect errors that arise over
time, e.g., due to wear and tear of the physical system.

We illustrated the applicability of our approach using
two industrial case studies taken from the printing system
domain. Using a number of evolution scenarios, we showed
the benefits of our approach concerning maintainability.

Based on these observations we conclude that components
that deal with the physical characteristics in an embedded
control system can be effectively modularized using DSMLs
like SIDOPS+. Also, the composition operators provided by
the Composition Filters modeloffer a flexible way to inte-
grate DSML models and GPL modules. DSML models can be
effectively verified using domain-specific static and dynamic
analysis techniques. Our approach offers increased reuse and
flexibility, and enhanced readability and reliability in the
design of embedded systems.

We would like to extend our work in the following way.
We have previously introduced an architectural style [49]
for embedded control systems. This style conforms to the
component-and-connector view, where some of the compo-
nents provide the essential control variables through a set
of interfaces. However, physical relationships among these
variables are currently implicit. We would like to extend this
style by explicit modeling of physical relationships at the
architecture design level, using our approach presented in
this paper.

We would like to perform controlled experiments with our
industrial partner, to measure the actual effort reduction and
fault prevention that can be achieved with our approach. Fur-
thermore, additional research will be performed on efficient
compilation techniques for the approach presented in this
paper. Also, the combination with other DSMLs, such as the
Giotto approach [31], will be investigated.

Acknowledgments This work has been carried out as part of the
OCTOPUS project under the responsibility of the Embedded Systems
Institute. This project is partially supported by the Netherlands Ministry
of Economic Affairs under the Embedded Systems Institute program.
We thank Jacques Verriet from ESI for reviewing this paper and pro-
viding useful feedback.

Appendix A: Background: the composition filters model

In this appendix we give a short introduction in the Com-
position Filters modeland the Compose* language that
implements the Composition Filters model. For further infor-
mation on the Composition Filters modeland the Compose*
language, we refer to [40,48,52,53].

123



A. de Roo et al.

Fig. 11 Overview of the Composition Filters model

A.1 Introduction into the composition filters model

A key design goal of the Composition Filters model is to
improve the composability of programs written in object-
based programming languages. The Composition Filters
modelhas evolved from the first (published) version of the
Sina language in the late 1980s [4,5], to a version that sup-
ports language independent composition of crosscutting con-
cerns [12,53].

The Composition Filters modelcan be applied to object-
based systems. In such a system, objects can send messages
between each other, e.g., in the form of method calls or events.
In the Composition Filters model, these messages can be
filtered using a set of filters, as shown in Fig. 11.

Each filter has a filter type, which defines the behavior
that should be executed if the filter accepts the message and
the behavior that should be executed if the filter rejects the
message. The matching behavior of a filter is specified by
filter expressions, which offer a simple declarative language
for state and message matching. Filters defining related func-
tionality are grouped in so-called filter modules. Such filter
modules can also encapsulate some internal state or share
state with other objects.

To indicate which filter modules should be applied (super-
imposed) to which objects, we use superimposition selec-
tors. A superimposition selector selects a set of classes using
a Prolog-based selector language. A specified filter module
is applied to this selected set of classes. The result is that
all messages sent to and received by all instances of those
selected classes, have to pass through the filters within the
filter module.

The Composition Filters modelcan be applied to many dif-
ferent languages, and we have done so e.g., to SmallTalk [21],
Java [55] and C++ [28]. The most recent implementation of
the Composition Filters modelis the Compose* language and

+scoringEnabled() : boolean

Settings

+gameStart()
+nextLevel()

Game

+eatFood()
+eatVitamin()
+eatGhost()

Level
+initScore()
+scoreLevelComplete()
+scoreFood()
+scoreVitamin()
+scoreGhost()

Score

1

*

Fig. 12 Some classes in a Pacman game

toolset, which not only supports .NET, but also Java and C.
The next subsection introduces the Compose* language.

A.2 The compose* language

This section introduces the Compose* language using an
example in which the Composition Filters modelis applied
to implement scoring functionality in a Pacman game.

Figure 12 shows the class diagram of part of a Pacman
implementation. The diagram contains the classes Game and
Level, which manage respectively the game and the levels
in the game.Game contains methodgameStart, which ini-
tializes a new game, and methodnextLevel, which initial-
izes a new level after a previous level has been completed. The
class Level contains methods eatFood, eatVitamin
and eatGhost, which manage, respectively, Pacman eat-
ing a piece of food, Pacman eating a vitamin and Pacman
eating a ghost.

The game includes an option to maintain a score. The class
Settings contains a flag that indicates whether a score
should be maintained. Scores are given for various actions
of Pacman: eating a piece of food, eating a vitamin, eating a
ghost and finishing a level. Furthermore, scoring should be
initialized/reset at the start of a new game. The class Score
contains a method to initialize scoring (initScore())
and methods to add a score when a certain action has
happened (scoreLevelComplete(), scoreFood(),
scoreVitamin() andscoreGhost()). Because of the
crosscutting nature of scoring functionality with the classes
Game and Level, composition filters are used to compose
Score with these classes.

Listing 12 shows the composition filters specification
that composes the scoring functionality with the Pacman
game. The listing shows the definition of the concern
ScoringConcern. This concern consists of one filter
module definition and one superimposition definition.

123



Composing domain-specific physical models

Filter Module Definition Lines 2 to 19 show the definition
of the filtermodule scoring. Two external objects, score
and settings, are referenced in the definition of the exter-
nals on Lines 3 to 5. Line 7 defines a condition, which is used
in the filter specification. The filter module defines one filter,
on Lines 9 to 18. The filter consists of several different parts,
as indicated below:

identi f ier
︷ ︸︸ ︷
scoreF :

f ilter type
︷ ︸︸ ︷
A f ter =

matching part
︷ ︸︸ ︷
(enabled & selector == “gameStart”)

substi tution part
︷ ︸︸ ︷
{target = score; selector = “ini t Score”}

cor

f ilter element
︷ ︸︸ ︷
(. . .) {. . .}

. . .

The identifier is the name of the filter in the filter module.
The filter type specifies the type of the filter. In this example,
the type is After, which means that an additional message
is sent after the original message has been further processed.
In this way behavior can be added after the original behavior.
In the example, this behavior is to perform scoring. Examples
of other filter types are Dispatch, which performs a dis-
patch of the message to a given target instead of the original
target, and Logging, which performs logging of the given
message.

Filters contain one or more filter elements. The filter
scoreF contains five filter elements. Filter elements define
message matching and substitution. The five filter elements
in the example are composed with a conditional-or (cor)
operator, meaning that if a filter element accepts, the filter
accepts without evaluating the next filter elements. If a filter
element rejects, the next filter element is processed.

A filter elements consists of a matching part and a sub-
stition part. The matching part defines a matching condition
on the messages. Only if the matching condition is satis-
fied, the filter element accepts and the substitution part is
executed. The substitution part changes certain properties
of the message. When a filter element accepts a message,
the filter of which the filter element is part accepts the mes-
sage, and the behavior corresponding to the filter type is exe-
cuted.

The example filter on Lines 9 to 18 of Listing 12 show five
filter elements. Each of these filter elements only match when
the conditionenabled istrue. Furthermore, each of these
filter elements match a different selector (i.e., method call)
and specifies a different selector in score to which a mes-
sage is sent after the execution of the original message. For
example, when a message with selector “eatVitamin” is
processed, first Level.eatVitamin executes, followed
by a call to the method scoreVitamin in Score (as
shown on Lines 13 and 14), to apply the scoring that cor-
responds to eating a vitamin.

Superimposition Definition Lines 21 to 26 show the super-
imposition definition. A superimposition definition specifies
which filter modules are placed (i.e., superimposed) on which
artifacts (e.g., classes). The given superimposition defini-
tion places the filter module scoring on classes Game and
Level.

References

1. The 20-sim tooling. http://www.20sim.com. Accessed April 2012
2. Web services business process execution language version 2.0.

OASIS Standard (2007)
3. Abreu, R., Zoeteweij, P., van Gemund, A.: Spectrum-based multi-

ple fault localization. In: 24th IEEE/ACM International Conference

123

http://www.20sim.com


A. de Roo et al.

on Automated Software Engineering, 2009. ASE ’09, pp. 88–99.
(2009). doi:10.1109/ASE.2009.25

4. Akşit, M., Bergmans, L., Vural, S.: An object-oriented language-
database integration model: the composition-filters approach. In:
Madsen, O.L. (ed.) Proceedings of the 7th European Conference on
Object-Oriented Programming, pp. 372–395 (1992). http://trese.cs.
utwente.nl/publications/paperinfo/LanguageDbase.pi.top.htm

5. Akşit, M., Tripathi, A.: Data abstraction mechanisms in sina/st.
In: Proceedings of the Conference on Object-Oriented Systems,
Languages and Applications. ACM Sigplan Notices, vol. 23,
pp. 267–275 (1988)

6. Aksit, M., Wakita, K., Bosch, J., Bergmans, L., Yonezawa, A.:
Abstracting object interactions using composition filters. In: Pro-
ceedings of the Workshop on Object-Based Distributed Program-
ming. pp. 152–184. Springer, London (1994)

7. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L.,
Kuzins, S., Lhoták, O., de Moor, O., Sereni, D., Sittampalam, G.,
Tibble, J.: Adding trace matching with free variables to aspectj.
In: OOPSLA ’05: Proceedings of the 20th Annual ACM SIG-
PLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications. pp. 345–364. ACM, New York, NY,
USA (2005). doi:10.1145/1094811.1094839

8. Bapty, T., Neema, S., Scott, J., Sztipanovits, J., Asaad, S.: Model-
integrated tools for the design of dynamically reconfigurable sys-
tems. Tech. Rep. ISIS-99-01, Institute for Software Integrated
Systems, Vanderbilt University (1999)

9. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based run-
time verification. In: Steffen, B., Levi, G. (eds.) VMCAI. Lecture
Notes in Computer Science, pp. 44–57. Springer, Berlin (2004)

10. Berbers, Y., Rigole, P., Vandewoude, Y., Baelen, S.V.: CoConES:
CoConES: an approach for components and contracts in embedded
systems. Lecture Notes in Computer Science, vol. 3778, pp. 209–
231 (2005)

11. van den Berg, K., Conejero, J.: A conceptual formalization of cross-
cutting in aosd. In: Proceedings of the Desarrollo de Software Ori-
entado a Aspectos (DSOA2005). Granada, Spain (2005)

12. Bergmans, L., Akşit, M.: Principles and design rationale of com-
position filters. In: Aspect-Oriented Software Development, pp.
63–95. Addison-Wesley, Boston (2005)

13. Bishop, R.H.: Modern Control Systems Analysis and Design Using
MATLAB and SIMULINK. Addison Wesley, Boston (1996)

14. Bockisch, C.M.: An efficient and flexible implementation of aspect-
oriented languages. Ph.D. thesis, Technische Universität Darm-
stadt, Germany (2008)

15. Bouraqadi, N., Ledoux, T.: Supporting AOP using reflection. In:
Aspect-Oriented Software Development, pp. 261–282. Addison-
Wesley, Boston (2005)

16. Broenink, J.: Modelling, simulation and analysis with 20-sim. Jour-
nal A 38(3), 22–25 (1997)

17. Brooks, F.: No silver bullet essence and accidents of software engi-
neering. Computer 20(4), 10–19 (1987). doi:10.1109/MC.1987.
1663532

18. Chen, F., Roşu, G.: Mop: an efficient and generic runtime veri-
fication framework. In: OOPSLA ’07: Proceedings of the 22nd
Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems and Applications. pp. 569–588. ACM, New York,
NY, USA (2007). doi:10.1145/1297027.1297069

19. Delgado, N., Gates, A., Roach, S.: A taxonomy and catalog of
runtime software-fault monitoring tools. IEEE Trans. Softw. Eng.
30(12), 859–872 (2004). doi:10.1109/TSE.2004.91

20. van Deursen, A., Klint, P.: Little languages: little maintenance. J.
Softw. Maint. 10, 75–92 (1998)

21. van Dijk, W., Mordhorst, J.: CFIST. Composition Filters in
Smalltalk. Graduation Report, HIO Enschede, The Netherlands
(1995)

22. Eker, J., Janneck, J., Lee, E., Liu, J., Liu, X., Ludvig, J., Neuendorf-
fer, S., Sachs, S., Xiong, Y.: Taming heterogeneity—the ptolemy
approach. Proc. IEEE 91(1), 127–144 (2003). doi:10.1109/JPROC.
2002.805829

23. Feldman, A., Provan, G., van Gemund, A.: The Lydia approach
to combinational model-based diagnosis. In: Proceedings of the
Twentieth International Workshop on Principles of Diagnosis
(DX’09), Stockholm Sweden. pp. 403–408. Erik Frisk and Mat-
tias Nyberg and Mattias Krysander and Jan slund (2009)

24. Filman, R.E., Elrad, T., Clarke, S., Akşit, M. (eds.): Aspect-
Oriented Software Development. Addison-Wesley, Boston (2005)

25. Forbus, K.D.: Qualitative process theory. Artif. Intell. 24(1–3), 85–
168 (1984). doi:10.1016/0004-3702(84)90038-9

26. Francez, N., Hailpern, B., Taubenfeld, G.: Script: a communication
abstraction mechanism and its verification. Sci. Comput. Program.
6, 35–88 (1986)

27. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley,
Boston (1995)

28. Glandrup, M.: Extending C++ using the concepts of composition
filters. Master’s thesis, University of Twente (1995). http://trese.
cs.utwente.nl/publications/paperinfo/glandrup.thesis.pi.top.htm

29. Gray, J., Bapty, T., Neema, S., Schmidt, D.C., Gokhale, A., Natara-
jan, B.: An approach for supporting aspect-oriented domain mod-
eling. In: Proceedings of the 2nd international Conference on
Generative Programming and Component Engineering, GPCE ’03,
pp. 151–168. Springer, New York (2003)

30. Helm, R., Holland, I.M., Gangopadhyay, D.: Contracts: specifying
behavioral compositions in object-oriented systems. ACM SIG-
PLAN Notices 25(10), 169–180 (1990)

31. Henzinger, T., Kirsch, C., Sanvido, M., Pree, W.: From control mod-
els to real-time code using giotto. Control Systems, IEEE 23(1),
50–64 (2003). doi:10.1109/MCS.2003.1172829

32. Holland, I.M.: Specifying reusable components using contracts.
In: Proceedings of the European Conference on Object-Oriented
Programming. pp. 287–308. Springer-Verlag, London, UK (1992)

33. Kiczales, G., Rivieres, J.D.: The Art of the Metaobject Protocol.
MIT Press, Cambridge (1991)

34. Kieburtz, R.B., McKinney, L., Bell, J.M., Hook, J., Kotov, A.,
Lewis, J., Oliva, D.P., Sheard, T., Smith, I., Walton, L.: A software
engineering experiment in software component generation. In:
Proceedings of the 18th International Conference on Software
Engineering, ICSE ’96, pp. 542–552. IEEE Computer Society,
Washington, DC, USA (1996)

35. Kitchin, D., Quark, A., Cook, W.R., Misra, J.: The Orc program-
ming language. In: Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.)
Proceedings of FMOODS/FORTE 2009. Lecture Notes in Com-
puter Science, vol. 5522, pp. 1–25. Springer, Berlin (2009). doi:10.
1007/978-3-642-02138-1-1

36. de Kleer, J., Williams, B.C.: Diagnosing multiple faults. Artif.
Intell. 32(1), 97–130 (1987).doi:10.1016/0004-3702(87)90063-4

37. Kleijn, C.: 20-sim 4.1 Reference Manual (2009)
38. Koopman, P.: Embedded system design issues (the rest of the story).

In: Proceedings of the 1996 IEEE International Conference on
Computer Design: VLSI in Computers and Processors, 1996. ICCD
’96, pp. 310–317 (1996). doi:10.1109/ICCD.1996.563572

39. Maes, P.: Concepts and experiments in computational reflection.
ACM SIGPLAN Notices 22(12), 147–155 (1987)

40. Malakuti Khah Olun Abadi, S., Bockisch, C.M., Akşit, M.:
Applying the composition filter model for runtime verification
of multiple-language software. In: The 20th annual International
Symposium on Software Reliability Engineering, ISSRE 2009,
Mysore, India, pp. 31–40. IEEE Computer Society Press (2009)

41. Markovski, J., van Beek, D., Theunissen, R., Jacobs, K., Rooda, J.:
A state-based framework for supervisory control synthesis and veri-

123

http://dx.doi.org/10.1109/ASE.2009.25
http://trese.cs.utwente.nl/publications/paperinfo/LanguageDbase.pi.top.htm
http://trese.cs.utwente.nl/publications/paperinfo/LanguageDbase.pi.top.htm
http://dx.doi.org/10.1145/1094811.1094839
http://dx.doi.org/10.1109/MC.1987.1663532
http://dx.doi.org/10.1109/MC.1987.1663532
http://dx.doi.org/10.1145/1297027.1297069
http://dx.doi.org/10.1109/TSE.2004.91
http://dx.doi.org/10.1109/JPROC.2002.805829
http://dx.doi.org/10.1109/JPROC.2002.805829
http://dx.doi.org/10.1016/0004-3702(84)90038-9
http://trese.cs.utwente.nl/publications/paperinfo/glandrup.thesis.pi.top.htm
http://trese.cs.utwente.nl/publications/paperinfo/glandrup.thesis.pi.top.htm
http://dx.doi.org/10.1109/MCS.2003.1172829
http://dx.doi.org/10.1007/978-3-642-02138-1-1
http://dx.doi.org/10.1007/978-3-642-02138-1-1
http://dx.doi.org/10.1016/0004-3702(87)90063-4
http://dx.doi.org/10.1109/ICCD.1996.563572


Composing domain-specific physical models

fication. In: 49th IEEE Conference on Decision and Control (CDC),
2010. pp. 3481–3486 (2010). doi:10.1109/CDC.2010.5717095

42. Octopus project, ESI (2010). http://www.esi.nl/projects/octopus
43. Papadopoulos, G.A., Arbab, F.: Coordination models and lan-

guages. In: Advances in Computers. pp. 329–400. Academic Press,
London (1998).

44. Passerone, R., Damm, W., Ben Hafaiedh, I., Graf, S., Ferrari, A.,
Mangeruca, L., Benveniste, A., Josko, B., Peikenkamp, T., Cancila,
D., Cuccuru, A., Gerard, S., Terrier, F., Sangiovanni-Vincentelli,
A.: Metamodels in Europe: languages, tools, and applications.
IEEE Des. Test Comput. 26(3), 38–53 (2009)

45. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell.
32(1), 57–95 (1987). doi:10.1016/0004-3702(87)90062-2

46. de Roo, A.: Towards more robust advice: Message flow analysis
for composition filters and its application. Master’s thesis (2007).
http://doc.utwente.nl/67050/

47. de Roo, A.: Managing software complexity of adaptive systems.
Ph.D. thesis, Enschede (2012). http://doc.utwente.nl/79570/

48. de Roo, A., Hendriks, M., Havinga, W., Durr, P., Bergmans, L.:
Compose*: a language- and platform-independent aspect com-
piler for composition filters. In: First International Workshop on
Advanced Software Development Tools and Techniques, WAS-
DeTT 2008, Paphos, Cyprus (2008)

49. de Roo, A., Sözer, H., Akşit, M.: An architectural style for optimiz-
ing system qualities in adaptive embedded systems using multi-
objective optimization. In: Joint Working IEEE/IFIP Conference
on Software Architecture, 2009 and European Conference on Soft-
ware Architecture, WICSA/ECSA 2009, pp. 349–352. Cambridge,
UK (2009)

50. de Roo, A., Sözer, H., Akşit, M.: Runtime verification of domain-
specific models of physical characteristics in control software. In:
Proceedings of the 5th IEEE International Conference on Secure
Software Integration and Reliability Improvement, Korea (2011)

51. Theunissen, R., Schiffelers, R., van Beek, D., Rooda, J.: Supervi-
sory control synthesis for a patient support system. In: Proceedings
of the European Control Conference (2009)

52. University of Twente: Compose* Annotated Reference Manual.
http://composestar.sourceforge.net/content/annotated-reference-
manual (2012)

53. University of Twente: Compose*. http://composestar.sourceforge.
net. Accessed April 2012

54. VDC Research: The embedded software and tools market intelli-
gence service (2010)

55. Wichman, J.C.: The development of a preprocessor to facilitate
composition filters in the Java language. Master’s thesis, Uni-
versity of Twente (1999). http://trese.cs.utwente.nl/publications/
paperinfo/wichman.thesis.pi.top.htm

56. Yoshioka, M., Umeda, Y., Takeda, H., Shimomura, Y., Nomaguchi,
Y., Tomiyama, T.: Physical concept ontology for the knowledge
intensive engineering framework. Advanced Engineering Infor-
matics 18(2), 95–113 (2004). doi:10.1016/j.aei.2004.09.004

57. Zoeteweij, P., Pietersma, J., Abreu, R., Feldman, A., van Gemund,
A.: Automated fault diagnosis in embedded systems. In: Second
International Conference on Secure System Integration and Relia-
bility Improvement, 2008. SSIRI ’08, pp. 103–110 (2008). doi:10.
1109/SSIRI.2008.48

Author Biographies

Arjan de Roo received his M.Sc.
degree in computer science from
the University of Twente in the
Netherlands in 2007. He received
his Ph.D. degree in 2012 from the
same University. Currently, he is
an independent entrepreneur.

Hasan Sözer received his B.Sc.
and M.Sc. degrees in computer
engineering from Bilkent Uni-
versity, Turkey, in 2002 and
2004, respectively. He received
his Ph.D. degree in 2009 from
the University of Twente, The
Netherlands. From 2002 until
2005, he worked as a soft-
ware engineer at Aselsan Inc.
in Turkey. From 2009 until
2011, he worked as a post-
doctoral researcher at the Univer-
sity of Twente. He is currently
an assistant professor at Özyeğin
University.

Mehmet Akşit holds an M.Sc.
degree from the Eindhoven Uni-
versity of Technology and a
Ph.D. degree from the Univer-
sity of Twente. Currently, he is
working as a full professor at
the Department of Computer Sci-
ence, University of Twente and
affiliated with the institute Cen-
ter for Telematics and Informa-
tion Technology.

123

http://dx.doi.org/10.1109/CDC.2010.5717095
http://www.esi.nl/projects/octopus
http://dx.doi.org/10.1016/0004-3702(87)90062-2
http://doc.utwente.nl/67050/
http://doc.utwente.nl/79570/
http://composestar.sourceforge.net/content/annotated-reference-manual
http://composestar.sourceforge.net/content/annotated-reference-manual
http://composestar.sourceforge.net
http://composestar.sourceforge.net
http://trese.cs.utwente.nl/publications/paperinfo/wichman.thesis.pi.top.htm
http://trese.cs.utwente.nl/publications/paperinfo/wichman.thesis.pi.top.htm
http://dx.doi.org/10.1016/j.aei.2004.09.004
http://dx.doi.org/10.1109/SSIRI.2008.48
http://dx.doi.org/10.1109/SSIRI.2008.48

	Composing domain-specific physical models with general-purpose software modules in embedded control software
	Abstract 
	1 Introduction
	2 Industrial cases: digital document printing systems
	2.1 Case I: warm process
	2.1.1 Hardware
	2.1.2 Control software

	2.2 Case II: drum shuttling
	2.2.1 Hardware
	2.2.2 Control software


	3 Problem statement
	3.1 Current state-of-the-practice
	3.1.1 Continuous evolution
	3.1.2 Design process

	3.2 Development with GPLs
	3.2.1 Physical characteristics harder to locate
	3.2.2 Tangling and scattering of physical models
	3.2.3 Introduction of accidental complexity
	3.2.4 Reduced domain-specific analysis

	3.3 Development based on DSMLs
	3.4 Composing DSML and GPL artifacts
	3.5 Ensuring the reliability at runtime

	4 Approach overview
	5 Specifying and executing models of physical characteristics
	5.1 Introduction to 20-Sim/SIDOPS+
	5.2 Composing physical models
	5.2.1 Example: composition of physical models

	5.3 Instantiation of physical models
	5.4 Executing physical models

	6 Composition using the Composition Filters model
	6.1 Composition overview
	6.1.1 Implementation object of physical model instances
	6.1.2 Interface of physical model instances

	6.2 Base interface
	6.3 The event model
	6.3.1 Property: eventType
	6.3.2 Property: variableName
	6.3.3 Property: value
	6.3.4 Property: returnValue
	6.3.5 Property: returnIdentifier
	6.3.6 Property: values
	6.3.7 Property: margin
	6.3.8 Property: enforceReturn

	6.4 Example: defining composition filters
	6.5 Default composition behavior

	7 Analysis and verification
	7.1 Domain-specific analysis
	7.2 Runtime verification of physical models
	7.2.1 Detecting inconsistencies at runtime
	7.2.2 Monitor wear and tear
	7.2.3 Monitor acceptable ranges

	7.3 Composition analysis

	8 Evaluation of the approach
	8.1 Evolution scenarios
	8.1.1 Scenario A: addition/removal of a component to/from the physical system
	8.1.2 Scenario B: change of the physical structure of the system
	8.1.3 Scenario C: change in operating conditions of the system
	8.1.4 Scenario D: more variety in operating conditions
	8.1.5 Scenario E: the increase or decrease of available information
	8.1.6 Scenario F: changing a control component
	8.1.7 Scenario G: dynamically adapting a physical relationship


	9 Discussion
	9.1 Applicability on real-time systems
	9.2 Separating design rationale from control logic
	9.3 Control logic in a DSML
	9.4 Risks of physical model decomposition
	9.5 Difference between 20-Sim simulation and physical model execution
	9.5.1 Algebraic loops
	9.5.2 Evaluation order

	9.6 Dynamic adaptation of physical models
	9.7 Recovery actions after runtime verification

	10 Related work
	10.1 Domain-specific models in embedded control software
	10.2 Interaction-based approaches
	10.3 Connection with system modeling approaches
	10.3.1 KIEF
	10.3.2 Speeds

	10.4 Heterogeneous composition of computational models
	10.5 Runtime verification

	11 Conclusion and future work
	Acknowledgments
	Appendix A: Background: the composition filters model
	A.1 Introduction into the composition filters model
	A.2 The compose* language

	References


