
Software and Systems Modeling manuscript No.
(will be inserted by the editor)

A Generic Model Decomposition Technique and its Application to the

Eclipse Modeling Framework

Qin Ma12, Pierre Kelsen12, Christian Glodt1

1 FSTC, University of Luxembourg

2 SnT, University of Luxembourg

Received: date / Revised version: date

Abstract Model-driven software development aims at

easing the process of software development by using mod-

els as primary artifacts. Although less complex than

the real systems they are based on, models tend to be

complex nevertheless, thus making the task of handling

them non-trivial in many cases. In this paper we pro-

pose a generic model decomposition technique to facili-

tate model management by decomposing complex mod-

els into smaller sub-models that conform to the same

metamodel as the original model. The technique is based

upon a formal foundation that consists of a formal cap-

turing of the concepts of models, metamodels, and model

conformance; a formal constraint language based on Es-

sentialOCL; and a set of formally proved properties of

the technique. We organize the decomposed sub-models

in a mathematical structure as a lattice, and design a

linear-time algorithm for constructing this decomposi-

tion.

The generic model decomposition technique is ap-

plied to the Eclipse Modeling Framework (EMF) and the

result is used to build a solution to a specific model com-

prehension problem of Ecore models based upon model

pruning. We report two case studies of the model com-

prehension method: one in BPMN and the other in fUML.

Key words MDE, EMF, Model decomposition, Model

comprehension, Linear-time algorithm, Sub-model lat-

tice, OCL, EssentialOCL, BPMN, fUML.

1 Introduction

In model-driven software development models are the

primary artifacts. Typically several models are used to

describe the different concerns of a system. One of the

main motivations for using models is the problem of deal-

ing with the complexity of real systems: because models
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represent abstractions of a system, they are typically less

complex than the systems they represent.

Nevertheless models for real systems can be complex

themselves and thus may require aids for facilitating

human comprehension. The problem of understanding

complex models is at the heart of this paper. We pro-

pose to rely on a model decomposition technique that

subdivides models into smaller relevant sub-models to

aid in their comprehension.

An example of a concrete application scenario is the

following: when trying to understand a large model, one

starts with a subset of model elements that one is in-

terested in (such as the concept of Class in the UML

metamodel). Our method allows to construct a small

sub-model of the initial model that contains all entities

of interest and that conforms to the original metamodel

(in the case of UML the original metamodel would be

MOF). The latter condition ensures that the sub-model

can be viewed in the same way as the original model

and that it has a well-defined semantics. The smaller

size (compared to the original model) should facilitate

comprehension.

Instead of providing a particular solution to the spe-

cific comprehension problem, we first study a more gen-

eral model decomposition problem in an abstract setting.

More specifically, the decomposition problem deals with

the following: given a metamodel and a model conform-

ing to the metamodel, how does one derive all the confor-

mant sub-models and how are the sub-models related to

each other? Based upon a well established formal foun-

dation that consists of a formal capturing of the concepts

of models, metamodels, and model conformance, we pro-

pose a linear time algorithm to build the decomposition

hierarchy of a model from which all the conformant sub-

models can be constructed in a straightforward manner.

We prove formally the correctness of the algorithm, and

present the mathematical structure of these conformant

sub-models as a lattice. A lattice (drawn upon order the-

ory) is a partially ordered set in which any two elements

have a least upper bound and a greatest lower bound.

The original model is the greatest element in the lattice

at the top and the empty sub-model is the least element

in the lattice at the bottom.

The solution to the model decomposition problem is

generic in two ways: first, the technique can be employed

to decompose any model conforming to any metamodel;

second, it considers the collection of relevant sub-models

in its totality rather than a single sub-model.

The generic solution to the model decomposition prob-

lem is then customized to target a solution to the spe-

cific model comprehension problem we discussed earlier.

This is achieved in two steps. First, we instantiate the

decomposition solution to work within a concrete envi-

ronment: Eclipse Modeling Framework (EMF) and Es-

sentialOCL [27]. Second, the smallest sub-model in the

decomposition hierarchy that contains all the concepts

of interest is selected as an answer to the comprehension

problem.
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We implemented the model comprehension approach

in an Ecore model comprehension tool [1] and carried

out two case studies for validation. The first case study

takes place in the context of BPMN [26] (business pro-

cess model and notation), where we try to comprehend

the Gateway concept. The second case study is about un-

derstanding the Class concept and Namespace concept

in fUML [25] (describing a subset of executable UML

models). In the first case, the size of the model for com-

prehension decreases by 93% (in terms of the number of

model elements). In the second case, the size decreases

by 62% and 89% (respectively for Class and Namespace).

Roadmap Metamodels and models are specified in prac-

tice with concrete tools. An abstraction layer is derived

on top of all these concrete environments to retain only

concepts that are relevant for model decomposition. We

present the abstraction layer in Section 2 with formal

definitions of models, metamodels and model confor-

mance, and describe a technique for model decomposi-

tion in Section 3. We prove that the sub-models are con-

formant to the same metamodel as the original model

and can be organized in a mathematical structure called

the lattice of sub-models. Being an abstract metamodel-

ing and modeling environment, the model decomposition

technique defined at this level of abstraction is generally

usable in any concrete environment. In this paper, we

demonstrate its usage in the Eclipse Modeling Frame-

work (EMF): Section 4 lays the ground for the usage of

the model decomposition technique by providing a short

summary of EMF; Section 5 presents a concrete yet for-

mal constraint language, called CoreOCL (a core of Es-

sentialOCL), for the specification of invariants attached

to metamodels; and Section 6 discusses the actual steps

involved, namely first establishing an alignment between

EMF and the abstraction layer, then customizing the

general model decomposition algorithm for EMF model

decomposition, and finally discussing the soundness of

the customized algorithm. We report the application of

the model decomposition technique in a concrete sce-

nario for Ecore model comprehension in Section 7 and

present the results of two case studies. We evaluate our

approach in Section 8 and discuss related work in Sec-

tion 9. Finally, we present concluding remarks and point

out some interesting directions for future work in the

last section.

Extension statement We have presented a previous ver-

sion of the model decomposition technique in [22] at

the Fourteenth International Conference on Fundamen-

tal Approaches to Software Engineering (FASE 2011).

Thanks to the valuable comments and suggestions from

the anonymous referees of FASE 2011, we here are happy

to present an extended and improved version of the model

decomposition technique completed with all its formal

treatments. Notably, three new pieces of work have been

carried out in this extension, namely, a new formal con-

straint language called CoreOCL (reported in Section 5),
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the usage of the model decomposition technique in the

Eclipse Modeling Framework in general (reported in Sec-

tion 4 and 6), and in the Ecore model comprehension

example in particular (reported in Section 7.1).

2 Models and Metamodels

OMG puts forward MOF [24] as a platform indepen-

dent framework for defining, manipulating and integrat-

ing metamodels and models. The MOF standard has

been implemented in various concrete environments to

support (meta-)modeling in real life. Examples of such

concrete environments include EMF (the Eclipse Mod-

eling Framework) 1, Kermeta (Kernel Metamodeling) 2,

AMMS (ATLAS Model Management Architecture) 3,

and MOFLON 4. Inspired by MOF, we abstract from the

metamodeling and modeling concepts present in main-

stream concrete tools and formalize a set of definitions

of models, metamodels, and model conformance, where

only model decomposition relevant information is kept.

The following notational conventions will be used:

1. For any tuple p, we use fst(p) to denote its first ele-

ment, snd(p) to denote its second element, and trd(p)

to denote its third element.

2. For any set s, we use ]s to denote its cardinality.

1 http://www.eclipse.org/modeling/emf/
2 http://www.kermeta.org/
3 http://wiki.eclipse.org/AMMA
4 http://www.moflon.org/

2.1 Metamodels

A metamodel defines (the abstract syntax of) a language

for expressing models to be decomposed. A metamodel

consists of the following parts: a finite set of metaclasses;

a finite set of associations between metaclasses; and a fi-

nite inheritance relation between metaclasses. Moreover,

a set of invariants may be specified in the contexts of

metaclasses as additional well-formedness rules imposed

upon models.

Definition 1 (Metamodel) A metamodel is defined by

a tuple M = (N,A,H, Inv, s, t, µs, µt, ctx) where:

– N is the set of metaclasses, and n ∈ N ranges over

it.

– A is the set of (directed) associations between meta-

classes and a ∈ A ranges over it.

– H ⊆ N × N denotes the inheritance relation among

metaclasses. The transitive closure of H should be

irreflexive. Namely, a metaclass cannot inherit, di-

rectly or indirectly, from itself. The subtyping rela-

tion (4) between metaclasses is defined as the reflex-

ive and transitive closure of H.

– Inv is the set of invariants and inv ∈ Inv ranges over

it.

– s : A→ N and t : A→ N are two functions from asso-

ciations to metaclasses. They specify respectively the

types of the source and target ends of an association.

– µs : A→ � and µt : A→ � are two functions from as-

sociations to well-formed multiplicities. They specify
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respectively the multiplicities of the source and tar-

get ends of an association. � ⊆ Nat × {Int+ ∪ {∗}}

captures the set of multiplicities, where Nat is the set

of natural numbers (i.e. non-negative integers) and

Int+ is the set of positive integers. Multiplicities are

ranged over by σ ∈ �. We assume that all the multi-

plicities in � are well-formed, namely snd(σ) = ∗ or

fst(σ) ≤ snd(σ). A well-formed multiplicity defines

an inclusive interval from a lower bound to an upper

bound. An asterisk ∗ is used for denoting an unlim-

ited upper bound.

– ctx : Inv→ N is a function from invariants to meta-

classes. It specifies the context metaclass of an in-

variant.

In addition to the context, an invariant also comes

with a body which, in practice, is either documented in

natural language, or specified as expressions of a con-

straint language such as EssentialOCL [27], or imple-

mented in terms of code in a programing language such

as Java.

Note that we omit the following concepts in meta-

models on purpose:

– Attributes are treated as a special kind of associa-

tions, where one end of the connected metaclasses

is a data type. Consequently, data types (including

both primitive types e.g., integers and booleans and

enumeration types) are all metaclasses.

– Composition or containment relations are treated as

a special kind of associations with extra constraints:

1. the source multiplicity of a composition associa-

tion is (0..1);

2. a metaclass instance cannot be the target of more

than one composition link (i.e., instantiations of

composition associations);

3. and a metaclass instance cannot be connected to

itself via a sequence of composition links.

Moreover, we have also omitted the concept of opera-

tions in metaclasses because differently from associations

(or attributes or references), operations only exist at the

level of the metamodel. Side effect free helper operations

that are used for invariant specifications can be defined

directly with the corresponding invariants when needed.

2.2 Models

A model is built by instantiating the metaclasses and

associations of the metamodel.

Definition 2 (Model) A model is defined by a tuple

M = (M,N,A, τ, src, tgt) where:

– M is the metamodel in which the model is expressed.

– N is the set of metaclass instantiations, and n ∈

N ranges over it. They are often referred to as in-

stances.

– A is the set of association instantiations, and a ∈ A

ranges over it. They are often referred to as links.
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– τ : (N → N) ∪ (A → A) is the typing function.

It records the type information of the instances and

links in the model, i.e., from which metaclasses or as-

sociations of the metamodel M they are instantiated.

– src : A → N and tgt : A → N are two functions from

links to instances. They specify respectively the source

and target ends of a link.

2.3 Model Conformance

Not all models following the definition above are valid, or

“conform to” the metamodel. A valid model should sat-

isfy all the typing, multiplicity, and extra well-formedness

invariants captured in the metamodel.

Definition 3 (Model conformance) We say a model

M = (M,N,A, τ, src, tgt) conforms to its metamodel M or

is valid when the following conditions are met:

1. Typing condition: links only connect instances whose

types are compatible with (i.e., subtypes of) the meta-

classes specified for the corresponding association ends.

Namely, ∀a ∈ A, we have both τ(src(a)) 4 s(τ(a)) and

τ(tgt(a)) 4 t(τ(a)).

2. Multiplicity condition: the numbers of links must fall

in the ranges specified by the multiplicities of the cor-

responding associations. We shall consider both the

source and target multiplicities.

(a) ∀n ∈ N, a ∈ A, if τ(n) 4 t(a), then let k = ]{a ∈

A | τ(a) = a and tgt(a) = n} (i.e., the num-

ber of a-typed links ending at the instance n in

model M), we must have k ≥ fst(µs(a)) (i.e., the

lower bound of the source multiplicity of a) and

k ≤ snd(µs(a)) (i.e., the upper bound of the source

multiplicity of a) in case the latter is not ∗;

(b) ∀n ∈ N, a ∈ A, if τ(n) 4 s(a), then let k = ]{a ∈

A | τ(a) = a and src(a) = n} (i.e., the number of

a-typed links leaving the instance n in model M),

we must have k ≥ fst(µt(a)) (i.e., the lower bound

of the target multiplicity of a) and k ≤ snd(µt(a))

(i.e., the upper bound of the target multiplicity of

a) in case the latter is not ∗.

3. Invariant condition: all invariants should hold. ∀inv

∈ Inv, ∀n ∈ N where τ(n) 4 ctx(inv), (i.e., the type

of n is compatible with the context metaclass,) the in-

variant inv should evaluate to true in model M for the

contextual instance n. (Section 5 defines the evalua-

tion semantics of invariants written in CoreOCL.)

3 Model Decomposition

3.1 Criteria

Model decomposition starts from a model that conforms

to a metamodel, and decomposes it into smaller parts.

Our model decomposition technique is designed using

the following as main criterion: the derived parts should

be valid models conforming to the original metamodel.

Achieving this goal has two main advantages:

1. the derived parts, being themselves valid models, can

be comprehended on their own according to the fa-
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miliar abstract syntax and semantics (if defined) of

the modeling language;

2. the derived parts can be wrapped up into modules

and reused in the construction of other system mod-

els, following a modular model composition paradigm

such as [21].

In general, a decomposed smaller part of a model M

is a sub-model whose instance set is a subset of that

of M, and whose link set is a subset of the links of M

restricted to the instance subset. In our model decom-

position technique we consider a particular kind of sub-

models, called instance induced sub-models, as we view

models as essentially sets of instances, augmented with

links among these instances. As a consequence, induced

sub-models include all the links involving the instances

included in the sub-models. In graph-theoretic terms this

corresponds to induced subgraphs [12] (if we view mod-

els as graphs).

Definition 4 (Instance induced sub-model) We say

a model M′ = (M, N′, A′, τ ′, src′, tgt′) is an instance

induced sub-model of another model M = (M, N, A, τ ,

src, tgt) if and only if:

1. N′ ⊆ N;

2. A′ = {a | a ∈ A and src(a) ∈ N′ and tgt(a) ∈ N′};

3. τ ′ is the restriction of τ to N′ and src′ and tgt′ are

the restrictions of src and tgt to A′.

From now on, all sub-models we talk about are instance

induced unless mentioned otherwise explicitly. Namely,

when constructing a sub-model, we shall only discuss

the inclusion of instances and let the inclusion of links

be induced by the instances included in the sub-model.

In order to make the sub-model M′ also conform to

M, we will propose three conditions - one for the meta-

model (Condition 2 below, regarding the nature of the

invariants) and two conditions for the sub-model (Con-

ditions 1 and 3). Altogether these three conditions will

be sufficient to ensure conformance of the sub-model.

The starting point of our investigation is the defi-

nition of conformance (Definition 3). Three conditions

must be met in order for sub-model M′ to conform to

metamodel M.

We first tackle the most sophisticated one: the invari-

ant condition in the conformance definition. It requires

that all metamodel invariants are satisfied in sub-model

M′. These invariants are known to be satisfied in model

M because M conforms to the metamodel. Therefore, it

is sufficient to maintain the same evaluation of these in-

variants in M′.

In order to achieve this goal, let us first introduce

some knowledge about invariant evaluation in models.

Invariants are evaluated on so called well-formed evalu-

ation points defined as follows:

Definition 5 (Well-formed evaluation point) We

call a triplet of the following form (inv,M, n) an eval-

uation point of an invariant inv in a model M on an

instance n. An evaluation point is well-formed if inv is
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defined for the metamodel of M, n is an instance of M,

and the type of n is a subtype of the context metaclass of

inv.

The result of evaluating a well-formed evaluation point

is determined by its scope, defined below:

Definition 6 (Scope of invariant evaluation) The

scope of a well-formed evaluation point (inv,M, n) is a

sub-model of M induced by all the instances that are

referenced during the evaluation of the invariant inv in

model M on the contextual instance n.

For example, CoreOCL provides three ways to reference

instances in invariants:

1. referencing the contextual instance via keyword self;

2. following links to reference target instances;

3. using the AllInstances operation to reference all the

instances of a given metaclass.

Section 5 discusses how scopes are constructed along the

evaluation of invariants. Moreover, a formal proof is also

presented in Section 5 to demonstrate that letting a sub-

model contain the scopes of invariant evaluations suffices

to preserve the invariants holding in the original model

(see Theorem 5). More specifically, given an evaluation

point (inv,M, n) and a sub-model M′ of M, letting M′ in-

clude all the instances of the scope of (inv,M, n) suffices

to have the same result for evaluating both (inv,M, n)

and (inv,M′, n), i.e., the invariant inv has the same eval-

uation in both M and M′.

In theory, a metamodel can specify an invariant, where

an evaluation point of this invariant in a model on a

contextual instance has a scope that spans the whole in-

stance set of the model. Following the discussion above,

if the model decomposition technique is expected to al-

ways preserve the evaluation of such “global” invariants

in a sub-model that contains the contextual instance, the

sub-model should effectively include all the instances of

the original model (i.e., equivalent to the original model),

hence leaves no room for effective sub-modeling.

Fortunately, most of the scopes implied by invariants

in practice involves only a portion of the original model

that is reachable from the contextual instance. We refer

to such kind of invariants as forward invariants, precisely

defined below:

Definition 7 (Reachability) Given a model M, we say

an instance n′ ∈ N is reachable from an instance n ∈ N,

if and only if there exists a1, a2, . . . , ak in A such that

src(a1) = n, tgt(ai) = src(ai+1), for all i, 1 ≤ i ≤ k − 1,

and tgt(ak) = n′.

Definition 8 (Forward invariant) An invariant inv

is forward if for any well-formed evaluation point (inv,

M, n), all the instances in the corresponding scope NS

are reachable from n.

Following the discussion above, we impose a condi-

tion on the sub-model to include all the instances that

are reachable from an instance that is already included,

formally expressed below:
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Condition 1 ∀a ∈ A, src(a) ∈ N′ implies tgt(a) ∈ N′.

Meanwhile, we only allow forward invariants, as expressed

in the following condition over the metamodel:

Condition 2 All invariants of metamodel M are for-

ward invariants.

It is not difficult to see that Conditions 1 and 2 to-

gether guarantee that an invariant satisfied on contex-

tual instance n in M is also satisfied in the instance in-

duced sub-model M′ on the same contextual instance,

since the evaluations of the two points are indeed de-

termined by the same scope (and all sub-models are in-

stance induced). Consequently, the invariant condition

in the conformance definition is ensured.

The multiplicity condition for conformance concerns

the numbers of links in models. The number of links of a

given association may decrease from the original model

M to the sub-model M′ in cases where an instance con-

nected at an end of a link is not included in M′. We

need to examine both the number of links ending at the

instance in M′, which must agree with the source mul-

tiplicity of the corresponding association in the meta-

model, and the number of links leaving the instance in

M′, which must agree with the target multiplicity of the

corresponding association.

The multiplicity condition for links leaving an in-

stance of the sub-model M′ is ensured by Condition 1

and the fact that M′ is instance induced. The two to-

gether guarantee that the number of links leaving an

instance in M′ is exactly the same as the number in M,

hence remains within the range allowed by the target

multiplicity.

To ensure the multiplicity condition for links ending

at an instance of the sub-model, we will introduce the

notion of fragmentable links, whose type (i.e., the corre-

sponding association) has an unconstrained (i.e., being

0) lower bound for the source multiplicity.

Definition 9 (Fragmentable link) Given a model M =

(M,N,A, τ, src, tgt), a link a ∈ A is fragmentable if the

lower bound of the source multiplicity of the correspond-

ing association is 0, i.e., µs(τ(a)) = (0, ), where rep-

resents an arbitrary upper bound.

Fragmentable incoming links (together with the source

instances) of M to instances in M′ are safe to exclude

but this is not the case for non-fragmentable links, which

should all be included. We thus obtain the following con-

dition on sub-model M′:

Condition 3 ∀a ∈ A where a is non-fragmentable, tgt(a)

∈ N′ implies src(a) ∈ N′.

Finally, the typing condition for conformance follows

directly from the fact that M′ is an instance induced

sub-model of M and M conforms to M.

Summarizing the discussion above, we thus obtain

the following result:

Theorem 1 Given a metamodel M, a model M, and an

instance induced sub-model M′ of M, suppose that:

1. model M conforms to M;
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2. model M′ satisfies Conditions 1 and 3;

3. metamodel M satisfies Condition 2;

then model M′ also conforms to the metamodel M.

Proof The result follows from the discussion above. ut

3.2 Algorithm

From hereon we shall assume that the metamodel under

consideration satisfies Condition 2. In this subsection we

describe an algorithm that finds, for a given model M, a

partition of M such that any sub-model of M that sat-

isfies both Conditions 1 and 3 can be derived from the

partition by uniting some components of the partition.

We reach the goal in two steps: (1) ensure Condi-

tion 1 with respect to only non-fragmentable links and

Condition 3; (2) ensure Condition 1 with respect to frag-

mentable links. Details of each step are discussed below.

Treating instances as nodes and links as edges, mod-

els are just graphs. For illustration purpose, consider an

example model as presented in Figure 1 where all frag-

mentable links are indicated by two short parallel lines

crossing the links.

11

10

7
8

9

1 4

32

6 5

12

13

Fig. 1 An example model

Let G be the graph derived by removing the frag-

mentable links from M. Because all the links in G are

non-fragmentable, for a sub-graph of G to satisfy both

Conditions 1 and 3, an instance is included in the sub-

graph if and only if all its ancestor and descendant in-

stances are also included. An instance together with its

ancestors and descendants, from the point of view of

graph theory, constitute a weakly connected component

(wcc) of graph G (i.e., a connected component if we ig-

nore edge directions). The first step of the model decom-

position computes all such wcc’s of G, which disjointly

cover all the instances in model M, then puts back the

fragmentable links. We collapse all the instances that

belong to one wcc into one node, (referred to as a wcc-

node in contrast to the original nodes), and refer to the

result as graph W . After the first step, the corresponding

graph W of the example model contains six wcc-nodes

inter-connected by fragmentable links. We show W in

Figure 2, where the instances grouped in each wcc-node

remain visible (in dashed border style) for traceability

purpose.

wcc5

11

10

7
8

9

1 4

32

6 5

12

13

wcc1

wcc3

wcc2

wcc4

wcc6

Fig. 2 The corresponding W graph of the example model

after step 1
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A sub-model of M that is induced by the instances

grouped in one wcc-node in W satisfies Condition 1 and

Condition 3, but only with respect to non-fragmentable

links for Condition 1, because wcc’s are computed in

the context of G where fragmentable links are removed.

The second step of the model decomposition starts from

graph W and tries to satisfy Condition 1 with respect to

fragmentable links, i.e., following outgoing fragmentable

links. More specifically, we compute all the strongly con-

nected components (scc’s) in W (see [33] for a definition

of strongly connected components) and collapse all the

wcc-nodes that belong to one scc into one node, (referred

to as an scc-node), and refer to the result as graph D.

After the second step, the corresponding graph D of the

example model looks as depicted in Figure 3, where the

original model instances and previous wcc-nodes that are

grouped in each scc-node are also shown (in dashed bor-

der style) for traceability purpose. The three wcc-nodes

wcc5

11

10

7
8

9

1 4

32

6 5

12

13

wcc1

wcc3

wcc2

wcc4

wcc6

Fig. 3 The corresponding D graph of the example model

after step 2

wcc4, wcc5 and wcc6 of graph W are collapsed into one

scc-node scc4 because they lie on a (directed) cycle.

Note that we only collapse wcc-nodes of a strongly

connected component in the second step instead of any

reachable ones following outgoing fragmentable links in

W , because we do not want to lose any potential sub-

model of M satisfying both Conditions 1 and 3 on the

way. More precisely, a set of instances is grouped in an

scc-node only if for every instance induced sub-model

M′ of M satisfying both Conditions 1 and 3, it is either

completely contained in M′ or disjoint with M′, i.e., no

such M′ can tell the instances in the set apart.

The computational complexity of the above algorithm

is dominated by the complexity of computing weakly

and strongly connected components in the model graph.

Computing weakly connected components amounts to

computing connected components if we ignore the direc-

tion of the edges. We can compute connected compo-

nents and strongly connected components in linear time

using depth-first search [33]. Thus the overall complexity

is linear in the size of the model graph.

3.3 Correctness

Graph D obtained at the end of the algorithm is a DAG

(Directed Acyclic Graph) with all the edges being frag-

mentable links. Graph D represents a partition of the

original model M where all the instances that are grouped

in an scc-node in D constitute a component in the par-

tition. We call graph D the decomposition hierarchy of

model M.
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To relate the decomposition hierarchy to the sub-

models, we introduce the concept of an antichain-node.

An antichain-node is derived by collapsing a (possibly

empty) antichain of scc-nodes (i.e., a set of scc-nodes

that are neither descendants nor ancestors of one an-

other, the concept of antichain being borrowed from or-

der theory) plus their descendants (briefly an antichain

plus descendants) in the decomposition hierarchy. For

example, in the decomposition hierarchy of the example

model given in Figure 3, the two scc-nodes: scc2 and scc3

constitute an antichain, and collapsing them with their

descendant scc4, gives rise to an antichain-node, which

groups the nine instances that are previously grouped in

the collapsed scc-nodes. Sub-models are then induced by

the instances grouped in antichain-nodes.

To demonstrate the correctness of the algorithm, we

prove both the soundness, i.e., a sub-model induced by

the instances grouped in an antichain-node satisfies both

Conditions 1 and 3, and the completeness, i.e., any sub-

model satisfying both Conditions 1 and 3 can be induced

by the instances grouped in an antichain-node. We for-

mally capture the correctness by the following theorem:

Theorem 2 Given a model M = (M,N,A, τ, src, tgt) and

an instance induced sub-model M′ = (M, N′, A′, τ ′, src′,

tgt′) of M, M′ satisfies both Conditions 1 and 3 if and

only if there exists a corresponding antichain-node of the

decomposition hierarchy of M where M′ is induced by all

the instances grouped in this antichain-node.

Proof See Appendix A.1. ut

3.4 The lattice of sub-models

Recall that a lattice is a partially-ordered set in which

every pair of elements has a least upper bound and a

greatest lower bound. Thanks to Theorem 2, we can now

refer to an instance induced sub-model M′ of model M

that satisfies both Conditions 1 and 3 by the correspond-

ing antichain-node α of the decomposition hierarchy of

M. Given a model M, all the instance induced sub-models

that satisfy both Conditions 1 and 3 constitute a lattice

ordered by the relation “is a sub-model of”, referred to

as the sub-model lattice of M. Let α1 and α2 denote two

such sub-models. The least upper bound (α1 ∨ α2) and

the greatest lower bound (α1 ∧ α2) are computed in the

following way:

– α1 ∨α2 collapses all the scc-nodes that are collapsed

in either α1 or α2. If an scc-node is collapsed in ei-

ther α1 and α2, so are all its descendants because α1

and α2 are antichain-nodes. Therefore, α1 ∨ α2 is an

antichain-node, i.e., an instance induced sub-model

of M. Moreover, it is the least one of which both α1

and α2 are sub-models.

– α1 ∧α2 collapses all the scc-nodes that are both col-

lapsed in α1 and α2. If an scc-node is collapsed in

both α1 and α2, so are all its descendants because

α1 and α2 are antichain-nodes. Therefore, α1 ∧ α2

is an antichain-node, i.e., an instance induced sub-
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{scc1, scc2, scc3, scc4}

{scc2, scc3, scc4}

{scc2, scc4} {scc3, scc4}

{scc4}

{}
is a sub-model of

Fig. 4 The sub-model lattice of the example model in Fig-

ure 1 whose decomposition hierarchy is given in Figure 2

model of M. Moreover, it is the greatest one that is

a sub-model of both α1 and α2.

The top of the sub-model lattice is M itself (whose cor-

responding antichain-node collapses all the scc-nodes),

and the bottom is the empty sub-model (whose corre-

sponding antichain-node collapses none scc-node).

For the example model discussed in Section 3.2 whose

decomposition hierarchy is given in Figure 3, six possi-

ble antichain-nodes can be derived from the decompo-

sition hierarchy, denoted by the set of scc-nodes that

are collapsed. They are ordered in a lattice as shown in

Figure 4.

3.5 Implementation

We have implemented the model decomposition tech-

nique [1] based on linear graph algorithms to compute

connected components and strongly connected compo-

nents [33]. The implementation takes a model of any

metamodel that follows Definition 1 as input, and com-

putes the decomposition hierarchy of it from which the

sub-model lattice can be constructed by enumerating all

the antichain-nodes of the decomposition hierarchy. Note

that in the worst case where the decomposition hierar-

chy contains no edges, the size of the sub-model lattice

equals the size of the power-set of the decomposition

hierarchy, which is exponential. However, this does not

impact the complexity of the implementation, which is

linear in the size of the model graph, because we do not

require an explicit representation of the sub-model lat-

tice. Instead, the lattice and the sub-models in it are all

derived from the decomposition hierarchy.

4 EMF in A Nutshell

The definitions of Section 2 capture a minimal abstrac-

tion of the metamodeling and modeling concepts that

are relevant for model decomposition and common to

mainstream tools. As a consequence, the model decom-

position technique defined for this abstraction layer can

be used to decompose models conforming to metamod-

els defined in any of these concrete environments. We

demonstrate in this paper the usage of the model decom-

position technique in EMF (the Eclipse Modeling Frame-

work) — arguably the most popular modeling framework

used by the model-driven software development commu-

nity.

EMF [32] is a framework for metamodel specifica-

tion and provides a reflective editor for model creation. A
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Fig. 5 Class diagram of a core part of Ecore focusing on metamodel specification and oriented to model decomposition.

metamodel in EMF is instantiated from Ecore (Ecore.ecore)

— a meta metamodel aligned with the OMG EMOF [24]

standard, and is accompanied with a constraint model

that captures extra well-formedness invariants. This sec-

tion lays the ground for the usage of our model decompo-

sition technique in EMF by providing a short summary

of metamodels, models and conformance in EMF. It by

no means attempts to give a formal capture of EMF

neither of Ecore. Works on this topic deserve their own

contributions, such as [6] and [3].

The focus is put on the metamodeling capability of

EMF and the applicability of the model decomposition

technique in EMF. More specifically, the class diagram

presented in Figure 5 represents a core part of Ecore that

is oriented to this focus in the following sense:

1. Implementation relevant elements and generics are

omitted.

2. The notion of operations is left out of metamodels.

Side effect free helper operations that are used for

constraint specifications will be defined directly in

the accompanying constraint model when needed.

4.1 Metamodels in EMF

A metamodel EM in EMF (represented by a .ecore file) is

constructed by instantiating the class diagram given in

Figure 5. Briefly speaking, an EMF metamodel consists

of sets of elements instantiated from the non-abstract

classes (boxes with yellow background) in the diagram,

and these elements are connected by instantiating the

relations (lines) in the diagram, where all the conditions

posed upon the relations with adornments (such as a

black diamond) and multiplicities on the corresponding

line ends must be respected. We summarize the main

sets of elements of an EMF metamodel by a tuple EM
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= (C, DT, DV, Rf, At), and explain the sets and their

relations below.

1. A finite set of classes C ranged over by c ∈ C (in-

stances of EClass).

– A class c may be abstract, i.e., c.abstract=true.

– We can connect a class to another class within

the relation eSuperTypes to say that the former

inherits from the latter. The transitive closure of

eSuperTypes should be irreflexive. We define the

subtyping relation (4) between classes as the re-

flexive and transitive closure of eSuperTypes.

– We can associate an annotation (instance of EAn-

notation) to a class with a specific key equal to

‘‘constraints’’ so as to enumerate the names

of the invariants that are imposed on the class in

the value of the annotation. Enumerated invari-

ants are to be defined in the accompanying con-

straint model of the metamodel, with exactly the

same context classes and invariant names.

2. A finite set of data types DT ranged over by dt ∈

DT (instances of EDataType and EEnum) to capture

both primitive types, i.e., Integer, Boolean, String,

and Real, predefined for any metamodel, and enu-

meration types, specific to the metamodel.

– The subtyping relation (4) between primitive types

follows the conventional definition, i.e., Integer is

a subtype of Real. No subtyping relation holds

between enumeration types.

3. A finite set of data values DV ranged over by dv ∈

DV.

– Values of metamodel specific enumeration types

are explicitly specified by enumeration literals (in-

stances of EEnumLiteral) to extensionally define

the types.

– Values of predefined primitive types are implicitly

given following the conventional definitions.

– A typing function from data values to data types:

τd : DV→ DT tells the type of a data value. Note

that if the data value dv is an enumeration literal,

τd(dv) should coincide with dv.eEnum, i.e., dv is

connected to τd(dv) within the relation eEnum.

4. A finite set of references Rf ranged over by rf ∈ Rf

(instances of EReference). A reference rf has an own-

ing class (aka. the source of the reference), specified

by rf.eContainingClass.

5. A finite set of attributes At ranged over by at ∈ At

(instances of EAttribute). An attribute at has an own-

ing class (aka. the source of the attribute), specified

by at.eContainingClass.

References and attributes are both known as the struc-

tural features of a class. A structural feature, written sf,

has itself the following features.

– A type (aka. the target of the structural feature),

specified by sf.eType. Note that the type of a refer-

ence must be a class and the type of an attribute

must be a data type.
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– A multiplicity, specified by sf.lowerBound for its lower

bound, which is a natural number (i.e., zero or posi-

tive integer), and sf.upperBound for its upper bound,

which is either a positive integer or −1. Note that

EMF implements an unlimited upper bound, i.e., ∗,

by −1. In case the upper bound of the multiplicity is

not −1, it must be greater than or equal to the lower

bound.

– When sf.ordered = true, we call the structural feature

sf ordered.

– When sf.unique = true, we call the structural feature

unique.

In addition to the common features above, references

have the following extra features.

– A reference rf is a containment, when rf.containment =

true (depicted by a line with a filled diamond at the

source end in class diagrams).

– A reference rf can have an opposite reference, spec-

ified by rf.eOpposite, where the relation eOpposite

should be functional, symmetric, and irreflexive.

The accompanying constraint model of a metamodel

in EMF consists of a finite set of invariants EInv, ranged

over by einv, to provide specifications to the invariants

enumerated in the metamodel. The context of an invari-

ant einv is the same as the class to which the correspond-

ing annotation (i.e., the annotation in the value of which

the name of the invariant is enumerated) is associated.

The body of a invariant is given by an expression. We

keep the notion of expression abstract to accommodate

all potential languages for expression specification. In

Section 5, we define a formal constraint language called

CoreOCL for this purpose. In addition, a finite set of

helper operations can be defined in the constraint model.

4.2 Models in EMF

A model EM in EMF is constructed by instantiating the

classes of an EMF metamodel EM and assigning values

to attributes and references owned by the classes. We

summarize the components of a model in EMF by a tuple

EM = (EM, O, τo, RA, τra, rat, ras, AA, τaa, aas, aat) and

explain below.

1. A finite set of objects O ranged over by o.

2. An object typing function τo : O→ C from objects to

classes, to tell the type of an object, i.e., from which

class the object is instantiated.

3. A finite set of reference assignments RA ranged over

by ra.

4. Reference assignments involve three functions: τra :

RA→ Rf, ras : RA→ O, and rat : RA→ O that spec-

ify respectively the type, the source, and the target of

a reference assignment. The semantics of a reference

assignment is ras(ra).τra(ra) := rat(ra).

5. The set of reference assignments RA is partially or-

dered, where for each ordered reference rf of the

metamodel EM and an object o of the model EM,

{ra | ra ∈ RA and τra(ra) = rf and ras(ra) = o} con-



A Generic Model Decomposition Technique and its Application to the Eclipse Modeling Framework 17

stitutes a totally ordered subset of RA, (i.e., a chain

in the partial order on RA).

6. A finite set of attribute assignments AA ranged over

by aa.

7. Attribute assignments involve three functions: τaa :

AA → At, aas : AA → O, and aat : AA → DV that

specify respectively the type, the source, and the tar-

get of an attribute assignment. The semantics of an

attribute assignment is aas(aa).τaa(aa) := aat(aa).

8. The set of attribute assignments AA is partially or-

dered, where for each ordered attribute at of the

metamodel EM and an object o of the model EM,

{aa | aa ∈ AA and τaa(aa) = at and aas(aa) = o}

constitutes a totally ordered subset of AA, (i.e., a

chain in the partial order on AA).

4.3 Conformance in EMF

In EMF, the conformance of a model EM to a metamodel

EM requires the following conditions to hold:

1. Typing condition: all reference assignments are valid.

For a reference assignment ra to be valid,

(a) τo(ras(ra)) is a subtype of τra(ra).eContainingClass,

i.e., τra(ra) should be a reference defined for the

class of ras(ra);

(b) the class of rat(ra) is compatible with the type of

τra(ra), i.e., τo(rat(ra)) is a subtype of τra(ra).eType.

2. Attribute typing condition: all attribute assignments

are valid. For an attribute assignment aa to be valid,

(a) τo(aas(aa)) is a subtype of τaa(aa).eContainingClass,

i.e., τaa(aa) should be an attribute defined for the

class of aas(aa);

(b) the type of aat(aa) is compatible with the type of

τaa(aa), i.e., τd(aat(aa)) is a subtype of τaa(aa).eType.

3. Reference multiplicity condition: the total number of

assignments to a reference rf in an object should

fall in the range specified by the multiplicity of rf.

Namely, ∀o ∈ O, rf ∈ Rf, let k = ]{ra ∈ RA |

τra(ra) = rf and ras(ra) = o} (i.e., the number of

assignments to the reference rf in object o), we must

have k ≥ rf.lowerBound and k ≤ rf.upperBound in

case rf.upperBound 6= −1.

4. Attribute multiplicity condition: the total number of

assignments to an attribute at in an object should

fall in the range specified by the multiplicity of at.

Namely, ∀o ∈ O, at ∈ At, let k = ]{aa ∈ AA |

τaa(aa) = at and aas(aa) = o} (i.e., the number of

assignments to the attribute at in object o), we must

have k ≥ at.lowerBound and k ≤ at.upperBound in

case at.upperBound 6= −1.

5. Opposite reference condition: opposite references are

assigned in a pair-wise way. Namely, given two refer-

ences rf1 and rf2 where rf1.eOpposite = rf2, for any

reference assignment ra1 ∈ RA where τra(ra1) = rf1,

there exists a reference assignment ra2 ∈ RA such

that τra(ra2) = rf2, ras(ra1) = rat(ra2), and rat(ra1) =

ras(ra2).
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6. Containment condition: an object cannot be contained

in more than one object, neither can it be contained

in itself.

7. Abstract class condition: no objects can be instanti-

ated from an abstract class.

8. Uniqueness condition: if a reference (resp. an attribute)

is flagged as unique, the assigned values to the refer-

ence (resp. the attribute) in an object must be dis-

tinct from one to another.

9. Invariant condition: all the invariants should hold.

5 CoreOCL: A Formal Capture of Core

EssentialOCL

“EssentialOCL is the package exposing the minimal OCL

required to work with EMOF.” (OMG OCL specifica-

tion [27], p. 187). As a consequence, concepts such as

messages, association classes, and states are not part of

EssentialOCL.

In this section, we formalize a core of EssentialOCL,

called CoreOCL. CoreOCL provides a theoretical frame-

work for defining invariants and discussing their eval-

uation semantics. CoreOCL is the formal abstraction

and mathematical foundation of EssentialOCL. Core-

OCL consists of the core constructs of EssentialOCL and

exposes the same expressive power as the latter. The

relationship between EssentialOCL and CoreOCL can

be characterized by the following keywords: abstraction,

normalization, simplification, and formalization.

Abstraction Pre-defined operations in the OCL stan-

dard library that are relevant for EssentialOCL are ab-

stracted into kappa operations, i.e., we use κ to range

over their names in the syntax. Kappa operations in-

clude pre-defined operations for primitive types such as

arithmetic operations and logical operations; pre-defined

operations on collection types such as collection size and

collection union; and pre-defined operations for all values

such as equality-check operations and operations whose

names come with an ocl prefix (e.g., oclIsUndefined()).

Note that kappa operations take only values as param-

eters. In case a pre-defined operation in the OCL stan-

dard library takes also types as parameters, such as the

oclAsType and allInstances operations, they are captured

in CoreOCL explicitly.

Normalization A uniform prefix notation is used for all

kappa operation calls. For example, x∧y is expressed as

AND(x, y), x > y is expressed as > (x, y), and Set{} →

including(x) is expressed as including(Set{}, x), where AND,

>, and including are all instances of κ.

Moreover, for each language concept, CoreOCL sup-

ports only one canonical syntactic representation. Inessen-

tial “syntactic sugar”, i.e., syntax constructs that can be

removed without any effect on the expressive power, are

dismissed in CoreOCL. Applications of syntactic sugar

can be systematically replaced with equivalent constructs

from the core subset. Here are some examples of dis-



A Generic Model Decomposition Technique and its Application to the Eclipse Modeling Framework 19

missed syntactic sugar and the corresponding encoding

in CoreOCL:

– Tuple: the type information in a tuple is required in

legal CoreOCL syntax, and all tuples without types

specified for their parts, which is legal syntax in Es-

sentialOCL, should be augmented with the inferred

type information. For example, the following tuple:

Tuple(name=“Smith Johns”, age=30) will be expressed

as Tuple(name:String=“Smith Johns”, age: Integer=30).

– Collection iterator: only the iterate operation is le-

gal syntax in CoreOCL (see CoreOCL syntax below),

and all other collection iterators need to be described

in terms of iterate. For example, the following itera-

tor: forAll(x | > (x, 0)), checks if a set has only posi-

tive integers. This will be expressed as iterate(x; y =

true | if > (x, 1) then AND(y, true) else AND(y, false)).

– Non-empty collection literals: only empty collection

literals are legal syntax in CoreOCL (see CoreOCL

syntax below), and all non-empty collection literals

such as Set{1, 2} will be expressed as nested calls to

the pre-defined “including” operation on collections,

i.e., including(including(Set{}, 1), 2).

Simplification CoreOCL omits the following in the syn-

tax: OclAny, OclVoid, OclInvalid, null, and invalid, be-

cause they are not supposed to be used directly in ex-

pressions. The first three types are used in the type sys-

tem of CoreOCL, and the last two values are used in the

evaluation semantics of CoreOCL.

Formalization CoreOCL lays a formal foundation upon

which we can precisely define the evaluation semantics

of invariants written in CoreOCL and the correspond-

ing scope that has been introduced abstractly in Defi-

nition 6. Moreover, we are also able to demonstrate (in

Theorem 5) formally that letting a sub-model include all

the instances of the evaluation scope of an invariant as

they are in the original model suffices to maintain the

same evaluation, whereas in Section 3, this statement

can only be discussed informally given the abstract set-

ting. Finally, we explore a sufficient condition for iden-

tifying forward invariants as defined in Definition 8 in a

practical way, by proving that CoreOCL invariants that

do not call allInstances are all forward.

We present CoreOCL in the context of EMF. Namely,

the concrete syntax of CoreOCL adopts EMF notations

for the specification of invariants for EMF metamodels

and the semantics of CoreOCL is defined in terms of how

these invariants are evaluated on EMF models.
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5.1 CoreOCL expressions: syntax

The detailed definition of CoreOCL expressions is given

below in EBNF format.

t ::= Types

dt Data types

c Classes

Collection(t) Collection types

Bag(t) Bag types

Set(t) Set types

Seq(t) Sequence types

OSet(t) Ordered set types

Tuple(tn : t) Tuple types

e ::= Expressions

dv Data value

x | self Variable

e.sf Structural feature call

Tuple{tn : t = e} Tuple

e.tn Tuple part call

let x = e1 in e2 Let binding

def c :: op = λ(x : t).e1 in e2 Def expression

e.op(e) Object operation call

κ(e) Kappa operation call

if e1 then e2 else e3 Conditional expression

e asInstanceOf c Downcast

e isInstanceOf c Is Instance Of

e isOfKind c Is Kind Of

Bag{} | Set{} | Seq{} | OSet{} Empty collections

e1 → iterate(x; y = e2 | e3) Collection iteration

allInstances(c) All instances

The following notational convention is adopted for

sequences: we write X as the shorthand for a sequence

of the form X1, . . . , Xk, when the members of the se-

quence are not necessarily required to be accessible ex-

plicitly. We also abbreviate handling of paired sequences

in an obvious way. For example, we write (x : t) as the

shorthand for (x1 : t1, . . . , xk : tk), (tn : t = e) as the

shorthand for (tn1 : t1 = e1, . . . , tnk : tk = ek), and

(x := v) as the short hand for (x1 := v1, . . . , xk := vk).

The first is used in the syntax to specify the parameters

and their types of an object operation. The second is

used in the syntax to specify the parts of a tuple. And

the third is used in the semantic rule for evaluating ob-

ject operation calls to assign arguments to parameters

(See rule ObjectOperationCall in Figure 6).

In addition to data types and classes, OCL introduces

the notion of collections and tuples. Collections are used

to handle navigations of multi-valued structural features

(i.e., references, attributes, etc.). A structural feature is

single-valued when its upper bound is 1, otherwise multi-

valued. Five collection types are provided, where four of

them, i.e., the Bag, Set, Seq, and OSet types are concrete

and the fifth, i.e., Collection is the abstract supertype of

the other four. Moreover, both Set and Seq are subtypes

of Bag, and OSet is a subtype of both Set and Seq.

Tuple types (resp. values) provide a way to compose

several types (resp. values) together to form compound

types (resp. values). The parts of a tuple can be accessed

by their names (ranged over by tn) using the same dot

notation as is used for accessing structural features.
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Variables are ranged over by identifiers such as x, y,

etc. The keyword self is a reserved identifier that repre-

sents a special variable referring to the current contex-

tual object. We use sf to range over both attributes and

references, which are commonly referred to as structural

features in EMF (and properties in EMOF). We can call

a structural feature on an object to retrieve the assigned

value(s).

Let bindings and def expressions define variables and

object operations (ranged over by op) reusable in the

nested expressions. Note that according to [27], all the

object operations used in OCL are side effect free. The

parameters of an operation are treated as variables local

to the corresponding body expression of the operation.

We call an operation on an object by passing concrete

arguments to parameters.

Finally, iterator operations are a special type of op-

erations on collection types that enable one to iterate

over the elements in a collection. We only capture the

most fundamental and generic collection iterator called

iterate in CoreOCL to keep the language small, as all the

other collection iterators can be derived from it [34].

5.2 CoreOCL expressions: evaluation

5.2.1 Evaluation judgments

The evaluation of a CoreOCL expression e takes place

in a model EM and an evaluation environment Λ and

results in a pair (v,OS), where v is the value of the ex-

pression and OS consists of the objects of EM that are

referenced by e during the evaluation. The model EM is

exploited during the course of the evaluation for relevant

model information such as the types of instances and the

values assigned to attributes and references.

Thereafter, we make use of the following judgment

to denote the evaluation semantics of CoreOCL expres-

sions:

Λ
EM

� e ⇓ (v,OS)

which we read as: within the context Λ and the model

EM, the value of e is (v,OS).

5.2.2 Evaluation environments

An evaluation environment Λ is a function that relates

qualified object operation names (c :: op) to operation

definitions (λ(x).e) and variables to values. In CoreOCL,

we consider the following types of values:

v ::= Values

dv Data value

o Object value

Tuple{tn : t = v} Tuple value

null Unknown value

Bag{v} | Set{v} | Seq{v} | OSet{v} Collection value

Evaluation environments can be specified extensionally

by listing the pairs related in it. The overriding of an

evaluation environment Λ1 by another evaluation envi-

ronment Λ2 (also called overriding union) is an extension

of Λ2 denoted as Λ1⊕Λ2. The domain of Λ1⊕Λ2 is the

union of the domain of Λ1 and the domain of Λ2. In

Λ1 ⊕ Λ2, any element of the domain of Λ2 is related to
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its image under Λ2, and any other element exclusive to

the domain of Λ1 is related to its image under Λ1.

5.2.3 Expression evaluation rules

We say an evaluation judgment holds if a derivation

tree of the evaluation judgment can be constructed by

instantiating the evaluation rules presented in Figure 6.

Note that in the presentation of the rules, wherever the

model information is required for a computation, EM ap-

pears explicitly on top of the corresponding computation

sign. Given an evaluation environment Λ, an expression

e and a model EM, if no evaluation judgment holds for

them, we say e is invalid within context Λ and model

EM.

Some words about typing Without making the type sys-

tem explicit, the evaluation rules assign only semantics

to well-typed expressions. Notably, we draw the atten-

tion of the reader to the following points.

1. Due to subtype polymorphism, an expression of type

t has also all the super types of t.

2. Variables are first defined via let bindings then refer-

enced in nested variable expressions. Note that being

a pre-defined variable for the reference of the current

contextual object, no explicit let binding is needed

for self.

3. Operations defined via def expressions carry distinct

parameters.

4. Structural feature calls and object operation calls are

only addressed on objects and the callee (i.e., a ref-

erence or an attribute or an object operation) is ac-

tually defined for the type of the object.

Subsequently, calling structural features or object op-

erations on a collection of objects should be explicitly

implemented by using the iterate operation that it-

erates the structural feature or object operation call

on all the element objects of the collection.

5. Tuple part calls are only addressed on tuple values

and the callee (i.e., the called tuple part name tn) is

actually a defined part of the tuple.

Similarly, calling parts on a collection of tuples should

be explicitly implemented by using the iterate oper-

ation.

6. Given a tuple Tuple{tn : t = e}, the type of the

expression ei that is used to indicate the value of the

part tni in the tuple is compatible with the type that

is specified for the part in the tuple, i.e., ti.

7. Both object operations and kappa operations are called

with type and cardinality compatible arguments.

8. Given a conditional expression if e1 then e2 else e3,

e1 has type Boolean, and e2 and e3 have the same

type.

9. Downcast expressions (AsInstanceOf), type testing ex-

pressions (isInstanceOf), and subtype testing expres-

sions (isKindOf) are only applied to objects.

10. Finally, given a collection iteration expression e1 →

iterate(x; y = e2 | e3), e1 has a collection type. More-
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DataValue

Λ
EM

� dv ⇓ (dv, ∅)

Variable

Λ(x) = v OS(v) ⊆ O

Λ
EM

� x ⇓ (v,OS(v))

StructuralFeatureCall

Λ
EM

� e ⇓ (o,O1
S) o.sf

EM
= v

Λ
EM

� e.sf ⇓ (v,O1
S ∪ OS(v))

Tuple

Λ
EM

� e ⇓ (v,OS)

Λ
EM

� Tuple{tn : t = e} ⇓ (Tuple{tn : t = v},
⋃

OS)

TuplePartCall

Λ
EM

� e ⇓ (Tuple{tn : t = v},OS) tni = tn

Λ
EM

� e.tn ⇓ (vi,OS)

LetBinding

Λ
EM

� e1 ⇓ (v1,O
1
S) Λ⊕ {(x : v1)}

EM

� e2 ⇓ (v2,O
2
S)

Λ
EM

� let x = e1 in e2 ⇓ (v2,O
1
S ∪ O2

S)

DefExp

Λ⊕ {(op : λ(x).e1)}
EM

� e2 ⇓ (v,OS)

Λ
EM

� def c :: op = λ(x : t).e1 in e2 ⇓ (v,OS)

ObjectOperationCall

Λ
EM

� e ⇓ (o,Oo
S) Λ

EM

� e ⇓ (v,OS) Λ(op) = λ(x).eop Λ⊕ {(self : o)} ⊕ {(x : v)}
EM

� eop ⇓ (v,Oop

S )

Λ
EM

� e.op(x := e) ⇓ (v,Oo
S ∪ (

⋃
OS) ∪ Oop

S )

KappaCall

Λ
EM

� e ⇓ (v,OS) κ(v) = v

Λ
EM

� κ(e) ⇓ (v,
⋃

OS)

IfTrue

Λ
EM

� e1 ⇓ (true,O1
S) Λ

EM

� e2 ⇓ (v,O2
S)

Λ
EM

� if e1 then e2 else e3 ⇓ (v,O1
S ∪ O2

S)

IfFalse

Λ
EM

� e1 ⇓ (false,O1
S) Λ

EM

� e3 ⇓ (v,O2
S)

Λ
EM

� if e1 then e2 else e3 ⇓ (v,O1
S ∪ O2

S)

DowncastOK

Λ
EM

� e ⇓ (o,OS) τo(o) 4 c

Λ
EM

� e asInstanceOf c ⇓ (o,OS)

DowncastNotOK

Λ
EM

� e ⇓ (o,OS) τo(o) 64 c

Λ
EM

� e asInstanceOf c ⇓ (null,OS)

IsInstanceOfTrue

Λ
EM

� e ⇓ (o,OS) τo(o)
EM
= c

Λ
EM

� e isInstanceOf c ⇓ (true,OS)

IsInstanceOfFalse

Λ
EM

� e ⇓ (o,OS) τo(o)
EM

6= c

Λ
EM

� e isInstanceOf c ⇓ (false,OS)

IsKindOfTrue

Λ
EM

� e ⇓ (o,OS) τo(o)
EM
= c′ c′ 4 c

Λ
EM

� e isOfKind c ⇓ (true,OS)

IsKindOfFalse

Λ
EM

� e ⇓ (o,OS) τo(o)
EM
= c′ c′ 64 c

Λ
EM

� e isOfKind c ⇓ (false,OS)

EmptyBag

Λ
EM

� Bag{} ⇓ (Bag{}, ∅)

EmptySet

Λ
EM

� Set{} ⇓ (Set{}, ∅)

EmptySeq

Λ
EM

� Seq{} ⇓ (Seq{}, ∅)

EmptyOSet

Λ
EM

� OSet{} ⇓ (OSet{}, ∅)

CollectionIteration

Λ
EM

� e1 ⇓ (Collection{v′1, . . . , v′k},O0
S) Λ

EM

� e2 ⇓ (v1,O
1
S)

(Λ⊕ {(x : v′i)} ⊕ {(y : vi)}
EM

� e3 ⇓ (vi+1,O
i+1
S )) i=1,...,k

Λ
EM

� e1 → iterate(x; y = e2 | e3) ⇓ (vk+1,
⋃

0≤i≤k+1

Oi
S)

AllInstances

Λ
EM

� allInstances(c) ⇓ (Set{o | o ∈ O and τo(o)
EM
= c}, {o | o ∈ O and τo(o)

EM
= c})

Fig. 6 Evaluation rules for CoreOCL expressions
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over, the expression e2 that assigns initial value to

the accumulator y and the body expression e3 have

the same type, in order for the iteration to take place

properly.

Digesting the rules Rules StructuralFeatureCall and

Variable in Figure 6 both rely on an auxiliary definition

OS(v) that computes the set of objects directly refer-

enced by a value v. The computation is defined recur-

sively for different kinds of values as follows:

OS(dv) = ∅

OS(o) = {o}

OS(Tuple{tn : t = v}) =
⋃

vi∈v OS(vi)

OS(null) = ∅

OS(Bag{v}) =
⋃

vi∈v OS(vi)

OS(Set{v}) =
⋃

vi∈v OS(vi)

OS(Seq{v}) =
⋃

vi∈v OS(vi)

OS(OSet{v}) =
⋃

vi∈v OS(vi)

The second premise of rule Variable requires that

the value v associated to the variable x in the evaluation

environment should only reference objects of EM i.e., O,

in order for the value to be meaningful.

The computation of a structural feature on an ob-

ject in a model is present as the second premises of

rule StructuralFeatureCall. A structural feature is

either a reference or an attribute. We write n.sf
EM
= v to

denote the computation of a well-typed structural fea-

ture call in a model, whose result is either a collection,

a data value, an object, or null, depending on the target

multiplicity of the structural feature. More specifically,

if the structural feature is single-valued, i.e., its upper

bound is 1, the result is the data value assigned to the

attribute or the object assigned to the reference, or null if

no value is assigned to the structural feature at all. Oth-

erwise, the result is a collection of the values assigned to

the structural feature in the model. Then depending on

the two flags: ordered and unique, the collection is either

a set (not ordered but unique), a bag (not ordered and

not unique), a sequence (ordered but not unique), or a

ordered set (ordered and unique).

We summarize the computation of a structural fea-

ture call on an object in a model in Table 1, in which, we

use sfa to range over RA∪AA, i.e., assignments to struc-

tural features in a model EM, and use sfa.t to denote the

target of the assignment, i.e., if sfa is a reference assign-

ment then rat(sfa) and if sfa is an attribute assignment

then aat(sfa).

In rule ObjectOperationCall, calling an operation

op on an object o evaluates the body expression of the

operation eop with the parameters x replaced by proper

arguments.

The evaluation of κ(v) in rule KappaCall is defined

by the semantics of the pre-defined operation κ. For ex-

ample, we have isDefined(null) = false, +(1, 2) = 3, and

size(Set{}) = 0, etc.

Given a call to the iterate operation e1 → iterate(x; y =

e2 | e3), expression e1 should have a collection value of ei-

ther the four collection types: Bag, Set, Seq, and OSet. In

rule CollectionIteration, we write the abstract value
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o.sf EM
= ?

sf multi-valued sf single-valued

(i.e.,sf.upperBound > 1 or = −1) (i.e., sf.upperBound = 1)

∃ assignments

to sf for o in

EM

sf.ordered = true sf.ordered = false The value

assigned to sf

for o in EM

Let (sfa1, . . . , sfan) be the chain of

assignments to sf for o in EM (see

Section 4.2)

Let {sfa1, . . . , sfan} be the set of

assignments to sf for o in EM (see

Section 4.2)

sf.unique = true sf.unique = false sf.unique = true sf.unique = false

OSet{sfa1.t, . . .,

sfan.t}

Seq{sfa1.t, . . .,

sfan.t}

Set{sfa1.t, . . .,

sfan.t}

Bag{sfa1.t, . . .,

sfan.t}

otherwise OSet{} Seq{} Set{} Bag{} null

Table 1 Calling structural features (i.e., attributes or references) on an object in a model

Collection{v} to stand for any of the four kinds of col-

lection values. The result of calling the iterate operation

on Collection{v} is a value obtained by iterating over all

elements in the collection. The variable x is the iterator.

It goes through the elements in the source collection for

each round of the iteration. The variable y is the accu-

mulator. It gets an initial value given by expression e2

and is used to accumulate results during the iteration.

For each element in the source collection referenced by

the iterator x, the body expression e3 is calculated using

the current value of the accumulator y, and the result is

assigned back to the accumulator for the next iteration

until the last element of the collection. A simple exam-

ple of collection iteration is given below to calculate the

sum of the elements of a set of integers:

Set{1, 2, 3} → iterate(x; y = 0 |x+ y)

5.3 CoreOCL invariants

An invariant specified in CoreOCL, written einv = (c, e),

comprises a context class c and a boolean CoreOCL ex-

pression e being the body of the invariant.

To check if a model EM satisfies all the invariants

specified for its metamodel, we need to evaluate all the

well-formed evaluation points of the form (einv,EM, o)

(see Definition 5), where einv is an invariant defined for

the metamodel of EM, o is an object of EM, and the

type of o is a subtype of the context of einv. Evaluating

such a well-formed evaluation point amounts to evalu-

ating the boolean body expression of einv within the

model EM and an initial evaluation environment. The

domain of the initial evaluation environment consists of

the keyword self associated with the current contextual

object o. We write eval(einv,EM, o) to denote the result

of evaluating (einv,EM, o).



26 Qin Ma et al.

The first part of the result, which is a boolean value,

tells whether the invariant einv holds for the contextual

object o in model EM, and the second part of the result

is used for the construction of the scope of (einv,EM, o),

which is an object induced sub-model of EM following

the definition below.

Definition 10 (Object induced EMF sub-model)

We say an EMF model EM′ = (EM, O′, τo′, RA′, τra′,

rat
′, ras

′, AA′, τaa′, aas
′, aat

′) is an object induced sub-

model (shortly sub-model) of an EMF model EM = (EM,

O, τo, RA, τra, rat, ras, AA, τaa, aas, aat), if and only if:

1. O′ ⊆ O;

2. τo
′ is the restriction of τo to O′;

3. RA′ = {ra | ra ∈ RA, ras(ra) ∈ O′, rat(ra) ∈ O′};

4. τra
′, ras

′ and rat
′ are respectively the restriction of τra,

ras, and rat to RA′;

5. The partial order over RA in EM is restricted to RA′;

6. AA′ = {aa | aa ∈ AA, aas(aa) ∈ O′};

7. τaa
′, aas

′ and aat
′ are respectively the restriction of

τaa, aas, and aat to AA′;

8. The partial order over AA in EM is restricted to AA′.

5.4 Scopes determine invariant evaluations

We first prove in the following lemma that the evalua-

tion of a CoreOCL expression only involves the objects

of the context model in which the expression is being

evaluated.

Lemma 3 If an evaluation judgment Λ
EM

� e ⇓ (v,OS)

holds, then OS(v) ⊆ OS.

Proof Straightforward by induction on the structure of

expression e. ut

Lemma 4 Given a model EM, an evaluation environ-

ment Λ, and an expression of CoreOCL e, if Λ
EM

� e ⇓

(v,OS) holds, then for any object induced sub-model EM′

of EM where OS ⊆ O′, Λ
EM′

� e ⇓ (v,OS) also holds.

Proof See Appendix A.1. ut

Theorem 5 Given two well formed evaluation points:

(einv,EM, o) and (einv,EM′, o), where EM′ an object in-

duced sub-model of EM and EM′ includes all the ob-

jects of the scope of (einv,EM, o), eval(einv,EM, o) =

eval(einv,EM′, o).

Proof Follows as a corollary of Lemma 4. ut

5.5 CoreOCL invariants without allInstances are

forward

Theorem 6 Without calling allInstances, CoreOCL in-

variants are all forward following Definition 8.

Proof See Appendix A.1. ut

Lemma 7 Given a model EM, an object o in it, a Core-

OCL expression e with no calls to allInstances (i.e., e is

an expression written in the sub-language of CoreOCL

excluding allInstances), and an evaluation environment
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Λ in which values bound to variables only refer to ob-

jects reachable from o if any, i.e., ∀x in the domain of Λ,

∀o′ ∈ OS(Λ(x)), o′ is reachable from o (see Definition 7).

Suppose Λ
EM

� e ⇓ (v,OS). We have the following two

statements hold:

1. ∀o′ ∈ OS, o′ is reachable from o;

2. ∀o′ ∈ OS(v), o′ is reachable from o.

Proof See Appendix A.1. ut

6 Model Decomposition in EMF

6.1 Abstract EMF for Model Decomposition

In order to exploit the model decomposition technique

defined in Section 3 for EMF models, EMF metamodels

and EMF models are first abstracted into Definition 1

metamodels and Definition 2 models. Briefly speaking,

at the metamodeling level, both classes and data types

are mapped to metaclasses in the abstract setting; both

references and attributes are mapped to associations; op-

erations are not considered; and invariants are discarded,

because invariants are not used in the model decompo-

sition algorithm and hence do not need a counterpart

in the abstract setting following the mapping. After the

decomposition, we examine whether the invariants keep

holding in the sub-models on the EMF side (see Theo-

rem 10 below). At the modeling level, both objects and

data values are mapped to instances; and both reference

assignments and attribute assignments are mapped to

links.

EMF metamodel abstraction Given an EMF metamodel

EM = (C, DT, DV, Rf, At), mapping F = (FN,FA) ab-

stracts it into a metamodel, written as F(EM) = M = (N,

A, H, ∅, s, t, µs, µt, ∅), if the following properties hold.

1. C ∪ DT is bijectively mapped to N by FN.

2. Subtyping is preserved, i.e., given two classes c1 and

c2 in C, FN(c1) 4 FN(c2) if and only if c1 4 c2; given

two data types dt1 and dt2 in DT, FN(dt1) 4 FN(dt2)

if and only if dt1 4 dt2.

3. Rf ∪ At is bijectively mapped to A by FA.

4. Target types and source types are preserved.

Given a reference rf ∈ Rf,

(a) t(FA(rf)) = FN(rf.eType);

(b) s(FA(rf)) = FN(rf.eContainingClass).

Given an attribute at ∈ At,

(a) t(FA(at)) = FN(at.eType);

(b) s(FA(at)) = FN(at.eContainingClass).

5. Multiplicities are preserved.

Given a reference rf ∈ Rf,

(a) the target multiplicity of FA(rf) is the same as the

multiplicity of rf, i.e., µt(FA(rf)) = (rf.lowerBound,

rf.upperBound) in case where rf.upperBound 6=

−1, otherwise µt(FA(rf)) = (rf.lowerBound, ∗);

(b) the source multiplicity of FA(rf) (i.e. µs(FA(rf)))

is (0, 1) if rf is a containment, otherwise (0, ∗).

Given an attribute at ∈ At,

(a) the target multiplicity of FA(at) is the same as the

multiplicity of at, i.e., µt(FA(at)) = (at.lowerBound,
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at.upperBound) in case where at.upperBound 6=

−1, otherwise µt(FA(at)) = (at.lowerBound, ∗);

(b) the source multiplicity of FA(at) (i.e. µs(FA(at)))

is (0, ∗).

6. The set of invariants and consequently the invari-

ant context function are empty. Although invariants

play a role in determining model conformance (Sec-

tion 4.3), they are not referenced by the model de-

composition algorithm (Section 6.2) hence can be ab-

stracted away.

EMF models abstraction Given an EMF model EM =

(EM, O, τo, RA, τra, rat, ras, AA, τaa, aas, aat), map-

ping F = (FN,FA) abstracts it into a model, written as

F(EM) = M = (M, N, A, τ , src, tgt), if the following

properties hold.

1. M = F(EM) is the abstract counterpart of EM.

2. The union of O (from EM) and DV (from EM) is bi-

jectively mapped to N by FN.

3. RA ∪ AA is bijectively mapped to A by FA

4. Typing is preserved, i.e.,

(a) given an object o ∈ O, τ(FN(o)) = FN(τo(o));

(b) given a data value dv ∈ DV, τ(FN(dv)) = FN(τd(dv));

(c) given a reference assignment ra ∈ RA, τ(FA(ra)) =

FA(τra(ra));

(d) given an attribute assignment aa ∈ AA, τ(FA(aa)) =

FA(τaa(aa)).

5. Source ends and target ends are preserved.

Given a reference assignment ra ∈ RA,

(a) src(FA(ra)) = FN(ras(ra));

(b) tgt(FA(ra)) = FN(rat(ra)).

Given an attribute assignment aa ∈ AA,

(a) src(FA(aa)) = FN(aas(aa));

(b) tgt(FA(aa)) = FN(aat(aa)).

Note that in EMF, neither references nor attributes

come with a definition for their source multiplicities. The

way we give source multiplicities to their images in M fol-

lowing FA (i.e., (0, ∗) by default and (0, 1) in case of con-

tainment references) reflects the least constrained inter-

pretation of the containment relation following the MOF

specification [24] (p. 38). As a consequence, all refer-

ence assignments and all attribute assignments are frag-

mentable (in the sense of Definition 9) from the point of

view of the assigned values. This allows a fine-degree de-

composition wherever possible. However, if two objects

are connected by a pair of opposite links, they become

indecomposible (see Condition 4 below).

6.2 EMF model decomposition algorithm

Given an EMF model EM = (EM, O, τo, RA, τra, rat,

ras, AA, τaa, aas, aat), the following algorithm decom-

poses EM into (object induced) sub-models as defined in

Definition 10.

1. Let M = F(EM).

2. Apply the model decomposition algorithm as defined

in Section 3.2 to M and we get the decomposition

hierarchy of M.
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3. For any sub-model of M, written M′= (M, N′, A′, τ ′,

src′, tgt′), which is induced by the instances grouped

in an antichain-node of the decomposition hierarchy

of M, return the corresponding EM′, where EM′ is

a sub-model of EM induced by all the objects of EM

whose images following FN are included in M, namely

{o | o ∈ O,F(o) ∈ N′}.

6.3 Soundness of EMF model decomposition

Given a model EM conforming to a metamodel EM in

EMF, given a sub-model EM′ of EM derived by the EMF

model decomposition algorithm of Section 6.2, we demon-

strate the soundness of the EMF model decomposition

algorithm by proving the conformance of EM′ to the orig-

inal metamodel EM. More precisely, we will achieve the

goal in two steps: Firstly, similar to the sufficient condi-

tions elicited in the abstract setting, i.e., Conditions 1, 2,

and 3, we propose two conditions in the EMF setting,

i.e., Conditions 4 and 5, and prove that these two con-

ditions will be sufficient to ensure conformance of the

EMF sub-model EM′; Secondly, we prove that the sub-

model EM′ derived by the EMF model decomposition

algorithm satisfies Condition 4. As a consequence, if the

EMF metamodel EM satisfies Condition 5, the confor-

mance of EM′ to EM can be concluded. Note that we

do not need to add a condition corresponding to Condi-

tion 3 in the EMF setting because following the defini-

tion of EMF abstraction described above in Section 6.1

and the way source multiplicities are given, all links are

fragmentable.

The first sufficient condition (Condition 4 defined be-

low and corresponding to Condition 1) guarantees target

reachability in sub-models.

Condition 4 ∀ra ∈ RA, ras(ra) ∈ O′ implies rat(ra) ∈

O′.

The second sufficient condition (Condition 5 defined be-

low and corresponding to Condition 2) restricts the na-

ture of the invariants associated to a metamodel to all

be forward.

Condition 5 All invariants of metamodel EM are for-

ward invariants.

We prove in the following lemma that Conditions 5 and 4

together suffice to ensure the conformance of sub-models

in EMF.

Lemma 8 Given an EMF metamodel EM = (C, DT,

DV, Rf, At), an EMF model EM = (EM, O, τo, RA, τra,

rat, ras, AA, τaa, aas, aat), and an object induced sub-

model of EM, written EM′ = (EM, O′, τo′, RA′, τra′, rat
′,

ras
′, AA′, τaa′, aas

′, aat
′), suppose that:

1. EM conforms to EM;

2. EM’ satisfies Condition 4;

3. EM satisfies Condition 5;

then EM’ also conforms to EM.

Proof See Appendix A.1. ut
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Moreover, we prove in the following lemma that any sub-

model derived by the algorithm satisfies Condition 4.

Lemma 9 Given an EMF model EM = (EM, O, τo,

RA, τra, rat, ras, AA, τaa, aas, aat) conforming to an

EMF metamodel EM, and any object induced sub-model

of EM derived by the EMF model decomposition algo-

rithm, written EM′ = (EM, O′, τo′, RA′, τra′, rat
′, ras

′,

AA′, τaa′, aas
′, aat

′), EM′ satisfies Condition 4.

Proof See Appendix A.1. ut

Summarizing the discussion above, we thus reach the

following conclusion about the soundness of the EMF

model decomposition algorithm.

Theorem 10 Applying our model decomposition tech-

nique to a model EM conforming to a metamodel EM

in EMF following the algorithm of Section 6.2 produces

only conformant sub-models if all the invariants of the

metamodel are forward.

Proof Follows from Lemma 8 and Lemma 9. ut

7 Application Example: Pruning Based Ecore

Model Comprehension

In this section, we demonstrate the power of our generic

model decomposition technique by reporting one of its

applications in a pruning-based model comprehension

method. A typical comprehension question one would

like to have answered for a large model is:

“Given a set of instances of interest in the model,

how does one construct a substantially smaller

sub-model that is relevant for the comprehension

of these instances?”

Model readers, when confronted with such a problem,

would typically start from the interesting instances and

browse through the whole model attempting to manually

identify the relevant parts. Even with the best model

documentation and the support of model browsing tools,

such a task may still be too complicated to solve by hand,

especially when the complexity of the original model is

high. Moreover, guaranteeing by construction that the

identified parts (together with the interesting instances)

indeed constitute a valid model further complicates the

problem.

Our model decomposition technique can be exploited

to provide a linear time automated solution to the prob-

lem above. The general idea is to simply take the union

of all the scc-nodes, each of which contains at least one

interesting instance, and their descendant scc-nodes in

the decomposition hierarchy of the original model.

We have implemented the idea in an Ecore model

comprehension tool [1] based on the implementation of

the EMF model decomposition algorithm defined in Sec-

tion 6.2. In this context, models to be decomposed are

Ecore models (i.e. models conforming to Ecore.ecore).

Interestingly Ecore.ecore conforms to itself, in particu-

lar to the core part of Ecore as depicted in Figure 5,

hence is a metamodel in EMF as defined in Section 4.1.
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Listing 1 Constraint model of Ecore implemented in EssentialOCL (part 1).

import ’CoreEcore.ecore’

package ecore

context ENamedElement
/*
* The name can not be empty string

*/
inv WellFormedName:

self.name.size() > 0

context ETypedElement
/*
* The lower bound must be greater or equal to 0

*/
inv ValidLowerBound:

self.lowerBound >= 0
/*
* The upper bound must be greater than 0 or unlimited (i.e., -1)

*/
inv ValidUpperBound:

let ub = self.upperBound in
ub = -1 or ub > 0

/*
* The lower bound must be less than or equal to the upper bound, unless the upper bound is

-1
*/
inv ConsistentBounds:

let lb = self.lowerBound in
let ub = self.upperBound in

ub = -1 or lb <= ub
/*
* Only operations can be without a type to represent void.

*/
inv ValidType:

self.eType -> isEmpty() implies self.oclIsTypeOf(EOperation)

context EPackage
/*
* No two sub-packages can have the same name.

*/
inv UniqueSubpackageNames:

self.eSubpackages -> isUnique(name)
/*
* No two classifiers can have the same name.

*/
inv UniqueClassifierNames:

self.eClassifiers -> isUnique(name)

context EOperation
/*
* No two parameters can have the same name.

*/
inv UniqueParameterNames:

self.eParameters -> isUnique(name)
/*
* An operation without a type, which represents void, must have an upper bound of 1.

*/
inv NoRepeatingVoid:

self.eType -> isEmpty() implies self.upperBound = 1
/*
* The types of the exceptions raised by an operation are limited to be classes.

*/
inv ValidException:

self.eExceptions -> forAll(oclIsTypeOf(EClass))

context EClass
def: allFeatures() : Set(EStructuralFeature) =

self.eSuperTypes -> iterate(
s: EClass;
r: Set(EStructuralFeature) = self.eStructuralFeatures ->asSet() |
r -> union(s.allFeatures())

)
def: allOperations() : Set(EOperation) =

self.eSuperTypes -> iterate(
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Listing 2 Constraint model of Ecore implemented in EssentialOCL (part 2).

s: EClass;
r: Set(EOperation) = self.eOperations -> asSet() |
r -> union(s.allOperations())

)
def: allSuperTypes(dejaCalled: Set(EClass)) : Set(EClass) =

self.eSuperTypes -> iterate(
s: EClass;
r: Set(EClass) = self.eSuperTypes -> asSet() |
if dejaCalled->includes(s)
then r
else r->union(s.allSuperTypes(dejaCalled->including(s)
))
endif

)
/*
* No two features (attributes or references) can be the same name.

*/
inv UniqueFeatureNames:

self.allFeatures() -> isUnique(name)
/*
* No two operations can have the same signature, which is the name of the operation, the

number of parameters and their types.
*/
inv UniqueOperationSignatures:

self.allOperations() -> iterate(
op1: EOperation;
r1: Boolean = true |
r1 and (self.allOperations() -> iterate(

op2: EOperation;
r2: Boolean = true |
r2 and (op1 = op2

or op1.name <> op2.name
or let op1Parameters = op1.eParameters in

let op2Parameters = op2.eParameters in
op1Parameters -> size() <> op2Parameters ->

size()
or op1Parameters.eType <> op2Parameters.eType

)
))

)
/*
* A class can not be a super type of itself.

*/
inv NoCircularSuperTypes:

self.allSuperTypes(Set{self}) -> excludes(self)

context EEnum
/*
* No two literals can have the same name.

*/
inv UniqueEnumeratorNames:

self.eLiterals -> isUnique(name)

context EAttribute
/*
* The type of an attribute must be a data type

*/
inv ValidType:

self.eType.oclIsTypeOf(EDataType)

context EReference::container: EBoolean
derive: if eOpposite.oclIsUndefined()

then false
else eOpposite.containment
endif

context EReference
/*
* The type of a reference must be a class.

*/
inv ValidType:

self.eType.oclIsTypeOf(EClass)
/*
* If opposite exists,
*** it must be a feature of this references’s type,
*** it must have this reference as its opposite,
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Listing 3 Constraint model of Ecore implemented in EssentialOCL (part 3).

*** this reference and its opposite can not both be containments
*/
inv ConsistentOpposite:

(self.eOpposite -> isEmpty())
or (let oppoRef = self.eOpposite in

oppoRef.eContainingClass = self.eType
and oppoRef.eOpposite = self
and (self.containment implies not oppoRef.containment)

)
/*
* A container reference (i.e., whose opposite is containment) must have upperbound = 1

*/
inv SingleContainer:

self.eOpposite -> isEmpty()
or self.containment implies self.eOpposite.upperBound = 1

/*
* A reference that may have multiple values must be unique if it is containment or has

opposite
*/
inv ConsistentUnique:

((self.upperBound = -1 or (self.upperBound - self.lowerBound > 1))
and (self.containment or not self.eOpposite -> isEmpty()))
implies self.unique

/*
* If a container reference is required (i.e., lower bound >=1), the contained class can not

have other container references
*/
inv ConsistentContainer:

(self.container and self.lowerBound >=1) implies
self.eContainingClass.allFeatures() -> forAll (f |

f.oclIsTypeOf(EReference) implies not f.oclAsType(EReference).container
)

endpackage

Consequently, Ecore models are all EMF models in the

sense of Section 4.2. Briefly speaking, the tool takes as

input an Ecore model and a set of objects in the model

marked as interesting for a comprehension task. It runs

the EMF model decomposition algorithm, where in the

third step, the minimal sub-model in the sub-model lat-

tice which contains all the instances corresponding to a

marked object is selected, and returns the result.

7.1 Ecore invariants are all forward

Invariants pertinent to Ecore are identified in Ecore.ecore

as annotations nested in the context classes and directly

implemented in EcoreValidator.java. For example, the fol-

lowing snippet extracted from Ecore.ecore summarizes

the invariants of class ETypedElement, with the follow-

ing names: ValidLowerBound, ValidUpperBound, Consis-

tentBounds, and ValidType.

<eClassifiers xsi:type="ecore:EClass" name="
ETypedElement" abstract="true"
eSuperTypes="#//ENamedElement">
<eAnnotations source="http://www.eclipse.

org/emf/2002/Ecore">
<details key="constraints" value="

ValidLowerBound ValidUpperBound
ConsistentBounds ValidType"/>

</eAnnotations>
......

</eClassifiers>

We re-implemented the constraint model of Ecore in

EssentialOCL. Please refer to Listings 1, 2, and 3 for the

details of invariant specifications (started with keyword

inv) and helper operation specifications (started with

keyword def) in the constraint model, and to Section 5

for the formal counterpart of EssentialOCL. Thanks to
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Fig. 7 Pruned class diagram for understanding the Gateway concept in BPMN.

the formal treatment of EssentialOCL in terms of Core-

OCL, a precise and formal assessment of the forwardness

of the Ecore invariants becomes straightforward, i.e., by

checking if allInstances is called in the body of the invari-

ant expression.

We notice that none of the Ecore invariants in List-

ings 1, 2, 3 makes use of allInstances. Therefore, accord-

ing to Theorem 6, they are all forward invariants. As

a consequence of this fact and by Theorem 10, apply-

ing the EMF model decomposition technique to models

conforming to Ecore following the steps discussed in Sec-

tion 6.2 only returns conformant sub-models.

7.2 Case study 1: BPMN

As the first case study we have chosen to comprehend

the Gateway concept in BPMN [26]: business process

model and notation. Gateways are modeling elements

in BPMN used to control how sequence flows interact

as they converge and diverge within a business process.

Five types of gateways are identified in order to cater to

different types of sequence flow control semantics: exclu-

sive, inclusive, parallel, complex, and event-based.

Inputs to the comprehension tool for the case study

are the following:

– The BPMN Ecore model (bpmn.ecore) containing 156

classifiers (of which 134 are objects of EClass, 11 are

objects of EEnum, and 11 are objects of EDataType),
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Fig. 8 Launch the comprehension tool interactively from a class diagram view.

252 references (objects of EReference), and 220 at-

tributes (objects of EAttribute). Altogether, it re-

sults in a very large class diagram that does not fit

on a single page if one wants to be able to read the

contents properly.

– a set of EClass objects capturing the key notions of

the design of gateways in BPMN: Gateway, Exclusive-

Gateway, InclusiveGateway, ParallelGateway, Complex-

Gateway, and EventBasedGateway.

For this input the tool returns in around 0.8 seconds

a sub-model of the BPMN Ecore model that conforms to

Ecore, contains all the selected interesting objects, and

has only 17 classes, 2 enumerations, 7 references, and

21 attributes. We observe that all the other indepen-

dent concepts of BPMN such as Activity, Event, Con-

nector, and Artifact, are pruned out. The class diagram

view of the pruned BPMN model is shown in Figure 7.

Note that it corresponds well to the class diagram that

is sketched in the chapter for describing gateways in the

BPMN specification [26]. We have also verified that the

pruned BPMN model is indeed a valid Ecore model by

calling the Ecore Validator in EMF.

7.3 Case study 2: fUML

As the second case study we have chosen to study fUML [25]:

a subset of executable UML models. We take two steps.

In the first step, the key concept Class is selected as the

seed to produce a smaller sub-model of fUML. Inputs to
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Fig. 9 Pruned class diagram for understanding the Namespace concept in fUML with all irrelevant parts faded out.

the comprehension tool for the first step are the follow-

ing:

– The fUML Ecore model (fuml.ecore) containing 109

classifiers (in which 104 are objects of EClass and

5 are objects of EEnum), 160 references (objects of

EReference), and 56 attributes (objects of EAttribute).

Altogether, it adds up to a class diagram that is too

large to fit on the screen.

– the EClass object with name Class.

The sub-model returned by the tool contains 28 classes,

4 enumerations, 60 references, and 32 attributes. The

computation of the first step takes around 0.04 seconds.

Although the number of nodes does not decrease dramat-

ically after this step, the result becomes a class diagram

that fits on the screen (see Figure 8).

We then call the comprehension tool one more time

on the concept Namespace. Figure 8 illustrates how the

tool allows a user to launch the pruning functionality in-

teractively from the Sample Ecore Model Editor in EMF,

and Figure 9 shows the result where all irrelevant parts

for comprehending namespace are faded out. The high-

lighted part in Figure 9 contains 9 classes, 1 enumer-

ations, 19 references and 7 attributes, and corresponds

well to the class diagram appearing in the fUML specifi-
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cation [25] (p. 25). The computation of the second step

takes around 0.3 seconds including updating the class

diagram view in Sample Ecore Model Editor.

8 Discussion

8.1 About the inclusion conditions

When an instance is included in a sub-model, we decide

if a neighbour instance (i.e., an instance connected by

either an incoming or an outgoing link) should also be

included based on two conditions: Conditions 1 and 3,

for the purpose of preserving the conformance of the sub-

model. Recall that Condition 1 requires to always follow

outgoing links and include also the target instances, and

Condition 3 requires to always follow non-fragmentable

incoming links and include also the source instances.

However, these two conditions are not always necessary.

For example, regarding Condition 1, if an outgoing link

is target optional, i.e., its type has 0 as the lower bound

for its target multiplicity, and is not referred to in any

invariant evaluation scope, then it is not necessary to

also include the target instance to ensure conformance.

The generic nature of our technique and the attempt

to avoid sophisticated analysis of invariants account for

the existence of such a gap. On one hand, we target a

general solution that should work for models expressed

in any metamodels. On the other hand, arbitrary invari-

ants can be specified for a metamodel. We opt for a light-

weight strategy to automatically guarantee the preserva-

tion of invariants in sub-models by simply restricting the

invariants inside a property, i.e., being forward, which

can be checked easily at the syntax level as proved by

Theorem 6. (See Section 8.2 below for discussion on the

implication of this restriction.) The evaluation scopes of

forward invariants are always reachable from the con-

text instances, and Condition 1 ensures the inclusion

of all reachable instances from the context. These two

together guarantee a forward invariant always has the

same evaluation scope in a sub-model as in the original

model, hence preserved.

Egyed reports in [14] an efficient technique to auto-

matically compute evaluation scopes through model pro-

filing. This technique could be combined with our model

decomposition technique to reduce the gap from being

sufficient to being necessary. More specifically, for all tar-

get optional outgoing links from an instance already in a

sub-model, the corresponding target instances must be

included as well if and only if the latter appear in at

least one evaluation scope of the former.

8.2 About allInstances

Theorem 6 allows a user to simply check the occurrence

of calls to allInstances in the invariant body in order to

decide if an invariant written in CoreOCL (and eventu-

ally EssentialOCL) is forward (and eventually to decide

if the decomposition technique can be applied). However,

the applicability of our model decomposition technique

is not limited to only allInstances-free invariants.
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Firstly, not all calls to allInstances are necessary. A

typical example of abuse is shown below where P stands

for some property:

context A
inv: A.allInstances() -> forAll(a | P(a))

This invariant can be expressed in an equivalent way

without using allInstances as follows:

context A
inv: P(self)

Normalization is a process that removes unnecessary

calls to allInstances in a set of invariants and results

in an equivalent set of invariants. Two sets of invari-

ants are equivalent if they accept/reject the same set of

models. After normalization, the power of forward in-

variants is the same as the power of invariants excluding

allInstances.

Secondly, invariants with necessary calls to allInstances

do not alway stop holding after sub-modeling. Actually,

a big number of them are monotonic, i.e., if an invari-

ant holds for a model then it holds for any sub-models.

A typical example of a monotonic invariant checks for

identity uniqueness of all instances of a type in a model.

Only in case when invariants with calls to allInstances

are both necessary and non-monotonic, the conformance

of sub-models is not automatically guaranteed. However,

we can still apply our technique but need to re-validate

the concerned invariants on the sub-models produced by

the decomposition.

We have carried out an empirical study on a pool

of 707 invariants written in OCL collected from various

sources ranging from OMG (e.g., metamodel specifica-

tions of UML, MOF, and OCL), to academic community

(e.g., metamodel of RBAC for role-based access control

defined at University of Bremen and metamodel of B lan-

guage defined at IMAG), to industrial community (e.g.,

the SAM metamodel from the Topcased open source

software project). Out of these 707 invariants studied,

only 49 call allInstances. And among the 49, 5 can be

eliminated by normalization, 39 are monotonic, and only

5 left to be re-validated, which amounts to an overall per-

centage of 0.7%. Table 2 in the appendix gives a detailed

break-down of these numbers.

8.3 EMF opposite links

The model decomposition technique works with associ-

ations that have both a source end and a target end.

However, in EMF, the notion of a source end is indi-

rectly captured by an opposite reference. This brings

consequences to the model decomposition technique. For

example, when applying our model decomposition tech-

nique in the Ecore model comprehension tool, due to

the universal existence of opposite references to all con-

tainment references in Ecore (see Figure 5), any Ecore

model is a strongly connected graph and consequently,

the inclusion of any object in an Ecore model eventually

requires the inclusion of the whole model. (Note that

it is not a problem caused by containment references

themselves, whose links are fragmentable according to

our definition in Section 6.1.) A solution to this is to
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introduce extra pre-/post-processing before/after model

decomposition.

In our Ecore model comprehension application, we

omitted two references in the pre-processing: eClassifiers

(from EPackage to EClassifier) and eSubPackages (from

EPackage to EPackage). This omission breaks the strong

bi-directional connection between packages and their mem-

bers, being either sub-packages or classifiers. It opens up

opportunities for a desired degree of decomposition be-

cause the inclusion of a member in a package does not

imply the inclusion of all the other members in the same

package any more (as the outgoing links from packages to

their members are omitted). Let us refer to the abridged

metamodel by Ecore′. For each Ecore model M, a cor-

responding Ecore′ model M′ removes from M all links

of the two aforementioned references. Then M′ conforms

to Ecore′ if M conforms to Ecore. The actual input for

the decomposition is Ecore′ (as the metamodel) and M′

(as the model). Note that we have carefully chosen to

omit eClassifiers and eSubPackages instead of their op-

posites, i.e., ePackage and eSuperPackage. Omission of

the latter could also bring a good degree of decomposi-

tion but would lose the package hierarchy in the result

sub-models. Namely, the inclusion of a member does not

require the inclusion of its containing package because

containment references are fragmentable.

After decomposition, in the post-processing, links of

the omitted references can be restored. For each sub-

model of M′ in the sub-model lattice, called M′-sub, a

corresponding model M-sub adds for each link of ePack-

age (from EClassifier to EPackage) an opposite link in-

stantiating eClassifiers (from EPackage to EClassifier) and

for each link of eSuperPackage (from EPackage to EPack-

age) an opposite link instantiating eSubPackages (from

EPackage to EPackage). Then M-sub conforms to Ecore

if M′-sub conforms to Ecore′.

Pre-/post-processings customize our general purpose

solution to model decomposition to work in a specific

situation and/or for a specific need. They are appli-

cation specific, and therefore cannot be captured in a

general sense but need to be specified by the user case

by case. Moreover, extra effort may become necessary

to show that the pre-/post-processings do not influence

any properties established in the general settings. In

the Ecore model comprehension application discussed

above, it amounts to demonstrating the following two

properties: (1) M′ conforms to Ecore′ if M conforms

to Ecore, (2) M-sub conforms to Ecore if M′-sub con-

forms to Ecore′, which hold straightforwardly by sim-

ply checking against the conformance conditions listed

in Section 4.3.

9 Related Work

Model slicing In general model slicing consists in iden-

tifying sub-models of a model that satisfy certain prop-

erties. As such it is a generalization of the work on pro-

gram slicing to the domain of models. The slicing cri-

terion for model slicing depends on the purpose of the
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slicing process. In our case the primary purpose is model

comprehension.

Other authors have investigated other uses of model

slicing. For instance in [31] the goal is to check satisfi-

ability of a UML class diagram equipped with a set of

OCL constraints, i.e., to check the existence of an in-

stance of the class diagram that satisfies all the integrity

constraints. Each slice is a valid UML class diagram with

constraints belonging to the same slice if they constrain

the same model element. The work of [23] strives to

establish traceability links between safety requirements

and software design elements. The slicing criterion is the

inclusion of elements from a SysML model that are rel-

evant for a specific safety requirement.

Another difference between our technique and exist-

ing approaches is its genericity: it is not restricted to

a particular metamodel. Existing work on model slicing

generally applies only to a particular modeling language.

Two examples of UML-based model slicing approaches

are [20] where model slicing of UML class diagrams is in-

vestigated and [5] which considers the problem of slicing

the UML metamodel into metamodels corresponding to

the different diagram types in UML. With the emergence

of an increasing number of domain specific modeling lan-

guages genericity becomes an important issue. The need

for a generic model slicing technique was identified in [7]

which proposed a language for modeling model slicers,

allowing for automatic generation of model slicers for

any given metamodel.

Note that some work in model slicing allows rewrit-

ing of the original model when looking for “sub-models”.

Such slices are called amorphous slices [4]. These ap-

proaches clearly fall outside the scope of our paper since

they do not necessarily produce a proper sub-model of

the original model.

Metamodel pruning In a similar line of work some au-

thors have investigated the possibility of pruning meta-

models in order to make them more manageable. The

idea is to remove elements from a metamodel to obtain

a minimal set of modeling elements containing a given

subset of elements of interest. Such an approach is de-

scribed in [30]. This work differs from our work in several

respects: first, just like model slicing it focuses on a single

model rather than considering the collection of relevant

sub-models in its totality; second, it is less generic in the

sense that it restricts its attention to Ecore metamodels

(and the pruning algorithm they present is very depen-

dent on the structure of Ecore), and lastly their goal is

not just to get a conformant sub-model but rather to

find a sub-metamodel that is a supertype of the original

model. This added constraint is due to the main use of

the sub-metamodel in model transformation testing.

Model abstraction The general idea of simplifying mod-

els (which can be seen as a generalization of model slicing

and pruning) has also been investigated in the area of

model abstraction (see [18] for an overview). In the area

of simulation model abstraction is a method for reducing
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the complexity of a simulation model while maintaining

the validity of the simulation results with respect to the

question that the simulation is being used to address.

Work in this area differs from ours in two ways: first,

model abstraction techniques generally transform mod-

els and do not necessarily result in sub-models; second,

conformance of the resulting model with a metamodel is

not the main concern but rather validity of simulation

results.

Constraint evaluation scope A profiling based technique

was implemented in [14] for the computation of evalua-

tion scopes of invariants, where a model profiler monitors

what model elements the invariant evaluation engine ac-

cesses and logs the accessed model elements in a scope

database. Treating all invariants as black boxes, the pro-

filing based technique is independent of the language

in which the invariants are expressed. Complementar-

ily, we demonstrate how scopes are computed formally

when invariants are all white boxes, i.e., both the syntac-

tic representations and the formal semantics of invariant

evaluation are accessible.

In [14], scopes were used to detecting inconsistencies

(i.e., breaking of invariants) that occurs during model

changes. In our context, we exploit scopes of invariant

evaluation to determine if a sub-model automatically

preserves invariants satisfied by the original model. More

specifically, Theorem 5 demonstrates that letting a sub-

model contain the scopes of invariant evaluations suffices

to preserve the invariants hold in the original model.

Metamodel/model formalization There has been many

attempts at full formalization of metamodeling/model-

ing. Here we list a few representatives: [11] formally de-

fined the Meta-Modeling Language (a core of UML 2.0)

based on the ς-calculus of Cardelli and Abadi; [19] and

[6] followed a graph-based approach to formalizing meta-

models/models; [2] provided a rich set-theoretic setting

for metamodeling; and [8] presented an algebraic seman-

tics of MOF using membership equational logic and term

rewriting as a formal foundation.

Our formalization of metamodels and models in Sec-

tion 2 can be considered as a simplified version of graph-

based formalization exploited by work on model trans-

formations such as [6], where a metamodel is expressed

as an attributed type graph with inheritance, compo-

sition, and multiplicities and a model is captured as a

graph typed by the corresponding type graph. In com-

parison, we omit attributes, containment relations, and

operations in metamodels.

Formalizing OCL CoreOCL provides a formal account

of EssentialOCL to allow detailed elaborations of eval-

uation semantics and evaluation scopes. There are vari-

ous work in the literature formalizing OCL from differ-

ent aspects: A set theory based denotational semantics

for OCL was first defined in [28] then extended in [29].

A type inference system and a big-step operational se-
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mantics for OCL 1.4 were defined in [10]. [17] and [15]

completed existing work by formalizing the semantics of

OCL messages. In [16] a formal semantics is provided for

state-based temporal OCL expressions. A graph-based

semantics for OCL was developed by translating OCL

constraints into expressions over graph rules in [9], and

[13] provided a formal semantics of OCL by defining a

mapping from OCL to a temporal logic.

10 Conclusion and Future Work

A generic model decomposition technique is put for-

ward in this paper to work with metamodels and mod-

els that can be abstracted into a simplified graph-based

formalism. A formal foundation is established to demon-

strate properties of the technique including correctness

and conformance of derived sub-models. We position this

generic model decomposition technique as an infrustruc-

tural service that can be exploited in many concrete

application domains in model-driven software develop-

ment. A detailed instantiation of the technique to EMF

and EssentialOCL and an application of the instantiated

model decomposition technique for Ecore model compre-

hension are presented in this paper. We provide tool im-

plementation and report the results of two concrete case

studies on BPMN and fUML comprehension.

We plan to validate the Ecore model comprehension

method with more examples from model zoos such as the

Repository for Model Driven Development (ReMoDD) 5

5 http://www.cs.colostate.edu/remodd/v1/

and the AtlanMod metamodel zoos 6 to have a better

idea of the applicability of the method and the efficiency

of the tool implementation, and to discover potential

limitations.

Beyond the domain of model comprehension described

in this paper, the generic model decomposition tech-

nique, being a fundamental facilitating technique, can

have more applications in other kinds of tasks in the life

cycle of model-driven software development. We mention

in the following some examples. (1) Given a software that

takes models conforming to a metamodel as input (e.g., a

model transformation), an important part in testing the

software is test case generation. Our model decompo-

sition technique could help with the generation of new

test cases by using one existing test case as the seed.

New test cases of various complexity degree could be

automatically generated following the sub-model lattice

of the seed test case. (2) Our model decomposition could

also help with the debugging activity when a failure of

the software is observed on a test case. The idea is that

we will find a sub-model of the original test case which

is responsible for triggering the bug. Although both the

reduced test case and the original one are relevant, the

smaller test case is easier to understand and investi-

gate. (3) A major obstacle to the massive model reuse in

model-based software engineering is the cost of building

a repository of reusable model components. A more ef-

fective alternative to creating those reusable model com-

6 http://www.emn.fr/z-info/atlanmod/index.php/Zoos
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ponents from scratch is to discover them from existing

system models. Sub-models of a system extracted by fol-

lowing our model decomposition technique are all guar-

anteed to be valid models hence can be wrapped up into

modules and reused in the construction of other systems

following our modular model composition paradigm [21].

(4) Finally, applying the model decomposition technique

to system models in multi-view modeling so that distinct

and separate sub-models capturing different aspects of a

system can be extracted is a potential avenue for future

work.

Implementation at this stage is only for proof of con-

cept. As a consequence, neither user-friendliness nor effi-

ciency is of high priority in the current version (although

the performance is still agreeable, i.e., within a second

for the case studies). Optimization is also in our future

work agenda. We plan to equipe the comprehension tool

with a better graphical user interface and provide the

tool as an Eclipse plugin to reach a wider audience.
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7. Arnaud Blouin, Benôıt Combemale, Benoit Baudry, and

Olivier Beaudoux. Modeling model slicers. In the Pro-

ceedings of ACM/IEEE 14th International Conference

on Model Driven Engineering Languages and Systems

(MoDELS 2011), pages 62–76, 2011.
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A Appendix

A.1 Proofs

Theorem 2 Given a model M = (M,N,A, τ, src, tgt) and

an instance induced sub-model M′ = (M, N′, A′, τ ′, src′,

tgt′) of M, M′ satisfies both Conditions 1 and 3 if and

only if there exists a corresponding antichain-node of the

decomposition hierarchy of M where M′ is induced by all

the instances grouped in this antichain-node.

Proof We first demonstrate that if M′ is induced by the

set of instances that are grouped in an antichain-node

α of the decomposition hierarchy of M, then M′ satisfies

both Conditions 1 and 3.

– Check M′ against Condition 1: following the algo-

rithm in Section 3.2 to compute the decomposition

hierarchy, given a link a ∈ A, src(a) and tgt(a) are

either grouped in one scc-node, or the scc-node s1

that groups src(a) is different from the scc-node s2

that groups tgt(a) and s2 is a descendant of s1 be-

cause of the presence of a (which must be a frag-

mentable link). In both cases, grouping src(a) in an

antichain-node implies grouping also tgt(a) in the

same antichain-node. Therefore, if src(a) ∈ N′, i.e.,

src(a) is grouped in the antichain-node α, so is tgt(a),

i.e., tgt(a) ∈ N′.

– Check M′ against Condition 3: following the algo-

rithm in Section 3.2 to compute the decomposition

hierarchy, given a link a ∈ A that is non-fragmentable,

src(a) and tgt(a) are grouped in one wcc-node, hence

are grouped in one scc-node, hence will be grouped

always together in any antichain-nodes. Therefore, if

tgt(a) ∈ N′, i.e., tgt(a) is grouped in the antichain-

node α, so is src(a), i.e., src(a) ∈ N′.

We now demonstrate the other direction of the the-

orem, namely, if M′ satisfies both Conditions 1 and 3,

then there exists an antichain-node of the decomposi-

tion hierarchy of M such that M′ is induced by the set

of instances that are grouped in this antichain-node.

Let S refer to the set of scc-nodes in the decom-

position hierarchy, each of which includes at least one

instance of M′.

1. All the instances that are grouped in an scc-node in

S belong to M′. Indeed given an scc-node s ∈ S, there

must exist an instance n grouped in s and n ∈ N′ in

order for s to be included in S. Let n′ be another in-

stance grouped in s. Following the algorithm in Sec-

tion 3.2 to compute the decomposition hierarchy, n

and n′ are grouped in one scc-node either in the first

or the second step.

(a) If they are grouped in the first step, that means

the two instances are weakly connected by non-

fragmentable links, and because M′ satisfies Con-

ditions 1 and 3, n′ should also be in M′.

(b) If they are grouped in the second step but not in

the first step, that means n and n′ are grouped in

two separate wcc-nodes in the first step, called w
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and w′, which are strongly connected by a path

of fragmentable links. Referring to the other wcc-

nodes on the path by w1, . . . , wk, there exists a

set of instances n0 ∈ w, n′0 ∈ w′, and ni, n
′
i ∈

wi for 1 ≤ i ≤ k, such that the following frag-

mentable links exist: from n0 to n1, from n′i to

ni+1 (∀i.1 ≤ i < k), and from n′k to n′0. Since

M′ satisfies Condition 1, if the source instance of

these fragmentable links belongs to M′, so does

the target instance. Because the following pairs

of instances: n and n0, ni and n′i (∀i.1 ≤ i ≤ k),

and n′0 and n′, are respectively grouped in a wcc-

node, if one instance in a pair belongs to M′ then

the other instance in the pair must belong to M′

as well following Conditions 1 and 3. From the

above discussion and by applying mathematical

induction, n belonging to M′ implies that n′ be-

longs to M′ as well.

2. S constitutes an antichain plus descendant. We parti-

tion S into two subsets: S1 contains all the scc-nodes

in S that do not have another scc-node also in S

as ancestor; S2 contains the rest, i.e., S2 = S \ S1.

Clearly S1 constitutes an antichain, and any scc-node

in S2 is a descendant of an scc-node in S1 because

otherwise the former scc-node should belong to S1

instead of S2. Moreover, S2 contains all the descen-

dants of scc-nodes in S1. Indeed given a child s2 of

an scc-node s1 ∈ S1, the fragmentable link from s1

to s2 connects an instance n1 grouped in s1 to an

instance n2 grouped in s2. Because s1 ∈ S1, follow-

ing the demonstrated item 1 above, we have n1 ∈ N′.

Because of the outgoing fragmentable link from n1 to

n2 and since M′ satisfies Condition 1, we also have

n2 ∈ N′. Therefore we have s2 ∈ S. Furthermore,

s2 6∈ S1 because it has s1 ∈ S as its ancestor. Hence

we have s2 ∈ S2. Inductively we conclude that any

descendant of s1 belongs to S2 and hence S consti-

tutes an antichain plus descendant.

3. Collapse all the scc-nodes in S into an antichain-node

called α. We demonstrate that M′ is induced by the

instances grouped in α, i.e., N′ equals to the set of

instances grouped in α: any instance of M′ is grouped

in α because of the selection criteria of S, and any

instance grouped in α is an instance of M′ following

the demonstrated item 1 above.

ut

Lemma 4 Given a model EM, an evaluation environ-

ment Λ, and an expression of CoreOCL e, if Λ
EM

� e ⇓

(v,OS) holds, then for any object induced sub-model EM′

of EM where OS ⊆ O′, Λ
EM′

� e ⇓ (v,OS) also holds.

Proof We prove by induction on the depth of the struc-

ture of the expression e.

Base cases: expressions of depth 1

(e ≡ dv) Trivial.

(e ≡ x) Because of the same evaluation environment Λ

and OS ⊆ O′.

(e ≡ Bag{} | Set{} | Seq{} | OSet{}) Trivial.
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(e ≡ allInstances(c)) Because of {o | o ∈ O and τo(o)
EM
=

c} ⊆ O′, and the fact that EM′ is an object induced

sub-model of EM, we have {o | o ∈ O′ and τo
′(o)

EM′

=

c} = {o | o ∈ O and τo(o)
EM
= c}.

Induction cases: expressions of depth n We suppose

that for any expression of depth < n, the lemma holds.

We prove that it is also the case for expressions of depth

n. We distinguish the top most structure the expression

may have:

(e ≡ e1.sf) Assume Λ
EM

� e1.sf ⇓ (v,OS) holds. Follow-

ing StructuralFeatureCall, we have both Λ
EM

�

e1 ⇓ (o,O1
S) and o.sf

EM
= v hold, where OS =

O1
S ∪ OS(v). By induction hypothesis, we have also

Λ
EM′

� e1 ⇓ (o,O1
S) holds. According to Lemma 3

and the lemma assumption, o ∈ O1
S ⊆ OS ⊆ O′ and

OS(v) ⊆ OS ⊆ O′. Because EM′ is an object induced

sub-model of EM, o.sf computes to the same value v

in EM′ as in EM according to Table 1. Namely, we

also have o.sf
EM′

= v. As a consequence, by apply-

ing rule StructuralFeatureCall, we have Λ
EM′

�

e1.sf ⇓ (v,O1
S ∪ OS(v)) holds, i.e., Λ

EM′

� e ⇓ (v,OS)

holds.

(e ≡ Tuple{tn : t = v}) Following Tuple and by induc-

tion on the sub-expressions e.

(e ≡ e1.tn) Following TuplePartCall and by induction

on the sub-expression e1.

(e ≡ let x = e1 in e2) Following LetBinding and by in-

duction on the two sub-expressions e1 and e2.

(e ≡ def c :: op = λ(x : t).e1 in e2) Following DefExp and

by induction on the sub-expression e2.

(e ≡ e1.op(x := e)) Following ObjectOperationCall and

by induction on the sub-expressions: e1, e, and body

expression of the operation eop.

(e ≡ κ(e)) Following KappaCall and by induction on

the sub-expressions e.

(e ≡ if e1 then e2 else e3) Following IfTrue (respectively

IfFalse) and by induction on the sub-expressions e1

and e2 (respectively e3).

(e ≡ e1 asInstanceOf c) Following DownCastOK (respec-

tively DownCastNotOK), by induction on the sub-

expression e1, and because EM′ is an object induced

sub-model of EM, i.e., for an object o in both EM

and EM′, τo(o) 4 c iff τo
′(o) 4 [EM′]c (respectively

τo(o) 64 c iff τo
′(o) 64 [EM′]c).

(e ≡ e1 isInstanceOf c) Following IsInstanceOfTrue (re-

spectively IsInstanceOfFalse), by induction on the

sub-expression e1, and because EM′ is an object in-

duced sub-model of EM, i.e., for an object o in both

EM and EM′, τo(o)
EM
= c iff τo

′(o)
EM′

= c.

(e ≡ e1 isOfKind c) Following IsKindOfTrue (respectively

IsKindOfFalse), by induction on the sub-expression

e1, and because EM′ is an object induced sub-model

of EM, i.e., for an object o in both EM and EM′,

τo(o)
EM
= c′ iff τo

′(o)
EM′

= c′; and EM and EM′

have the same metamodel where c′ 4 c (respectively

c′ 64 c).
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(e ≡ e1 → iterate(x; y = e2 | e3)) Following evaluation rule

CollectionIteration and by induction on the sub-

expressions e1, e2 and e3.

ut

Theorem 6 Without calling allInstances, CoreOCL in-

variants are all forward following Definition 8.

Proof Let einv = (c, e) be a CoreOCL invariant de-

fined for the metamodel of a model EM where e is an

expression written in the sub-language of CoreOCL ex-

cluding allInstances. Let o be an object of EM where

τo(o) 4 c. Let Λ be the initial evaluation environment

for eval(einv,EM, o). Suppose Λ
EM

� e ⇓ (v,OS). The set

of objects in the scope of (einv,EM, o), i.e., OS , is reach-

able from o following the first statement of Lemma 7. ut

Lemma 7 Given a model EM, an object o in it, a Core-

OCL expression e with no calls to allInstances (i.e., e is

an expression written in the sub-language of CoreOCL

excluding allInstances), and an evaluation environment

Λ in which values bound to variables only refer to ob-

jects reachable from o if any, i.e., ∀x in the domain of Λ,

∀o′ ∈ OS(Λ(x)), o′ is reachable from o (see Definition 7).

Suppose Λ
EM

� e ⇓ (v,OS). We have the following two

statements hold:

1. ∀o′ ∈ OS, o′ is reachable from o;

2. ∀o′ ∈ OS(v), o′ is reachable from o.

Proof We prove by induction on the depth of the struc-

ture of the expression e.

Base cases: expressions of depth 1

(e ≡ dv) Trivial.

(e ≡ x) Because values bound in the evaluation environ-

ment Λ only refer to objects reachable from o.

(e ≡ Bag{} | Set{} | Seq{} | OSet{}) Trivial.

Induction cases: expressions of depth n We suppose

that for any expression of depth < n, the two statements

hold. We prove that it is also the case for expressions of

depth n. We distinguish the top most structure the ex-

pression may have:

(e ≡ e1.sf) Assume Λ
EM

� e1.sf ⇓ (v,OS) holds. Follow-

ing StructuralFeatureCall, we have Λ
EM

� e1 ⇓

(o1,O
1
S) and o1.sf

EM
= v hold, where OS = O1

S ∪

OS(v). By induction hypothesis, we have o1 reach-

able from o. Therefore we have also objects in OS(v)

all reachable from o via o1 and sf following Table 1

and Definition 7. As a consequence, objects in OS are

all reachable from o because it is the case for all the

objects in O1
S (by induction hypothesis) and OS(v).

(e ≡ Tuple{tn : t = e}) Assume Λ
EM

� Tuple{tn : t =

e} ⇓ (v,OS) holds. Following Tuple, we have Λ
EM

�

ei ⇓ (vi,O
i
S) holds for all ei ∈ e where 1 ≤ i ≤ k,

v = Tuple{tn1 : t1 = v1, . . . , tnk : tk = vk}, and

OS =
⋃

1≤i≤k Oi
S . By induction hypothesis, objects

in Oi
S and OS(vi) are all reachable from o for all

1 ≤ i ≤ k. Therefore, objects in OS and objects

in OS(v) = OS(Tuple{tn1 : t1 = v1, . . . , tnk : tk =

vk}) =
⋃

1≤i≤k OS(vi) are all be reachable from o.
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(e ≡ e1.tn) Assume Λ
EM

� e1.tn ⇓ (v,OS) holds. Follow-

ing TuplePartCall, we have Λ
EM

� e1 ⇓ (Tuple{tn :

t = v},OS) holds. By induction, objects in OS and

OS(Tuple{tn : t = v}) =
⋃

vi∈v OS(vi) are all reach-

able from o. Therefore, objects in OS(vi) are all reach-

able from o.

(e ≡ let x = e1 in e2) Following LetBinding, and by in-

duction on the two sub-expressions e1 and e2.

(e ≡ def c :: op = λ(x : t).e1 in e2) Following DefExp and

by induction on the sub-expression e2.

(e ≡ e1.op(x := e)) Assume Λ
EM

� e1.op(x := e) ⇓

(v,OS). Following ObjectOperationCall, we have

Λ
EM

� e1 ⇓ (o1,O
o1
S ), Λ

EM

� e ⇓ (v,OS), and

Λ ⊕ {(self : o1)} ⊕ {(x : v)}
EM

� eop ⇓ (v,Oop
S ),

where OS = Oo1
S ∪ (

⋃
OS) ∪ Oop

S . By induction hy-

pothesis, we have o1, objects in Oo1
S , objects in OS(v),

and objects in OS all reachable from o. Therefore, the

overridden environment Λ ⊕ {(self : o1)} ⊕ {(x : v)}

binds variables to values that only refer to objects

reachable from o if any. Hence by induction hypoth-

esis, objects in OS(v) and Oop
S are all reachable from

o. As a consequence, objects in OS are all reachable

from o.

(e ≡ κ(e1, . . . , ek)) Assume Λ
EM

� κ(e1, . . . , ek) ⇓ (v,OS)

holds. Following KappaCall, we have Λ
EM

� ei ⇓

(vi,O
i
S) holds for 1 ≤ i ≤ k, κ(v1, . . . , vk) = v,

and OS =
⋃

1≤i≤k Oi
S . By induction hypothesis, ob-

jects in Oi
S and OS(vi) are all reachable from o for

1 ≤ i ≤ k. Therefore, objects in OS are all reachable

from o. Moreover, κ being the pre-defined operations,

does not introduce any new objects other than those

are referenced in its operands, i.e., vi for 1 ≤ i ≤ k.

Hence objects in OS(v) should all be reachable from

o as well.

(e ≡ if e1 then e2 else e3) Following IfTrue (respectively

IfFalse) and by induction on the sub-expressions e1

and e2 (respectively e3).

(e ≡ e1 asInstanceOf c) Following DownCastOK (respec-

tively DownCastNotOK) and by induction on the

sub-expression e1.

(e ≡ e1 isInstanceOf c) Following IsInstanceOfTrue (re-

spectively IsInstanceOfFalse) and by induction on

the sub-expression e1.

(e ≡ e1 isOfKind c) Following IsKindOfTrue (respectively

IsKindOfFalse) and by induction on the sub-expression

e1.

(e ≡ e1 → iterate(x; y = e2 | e3)) Following evaluation rule

CollectionIteration and by induction on the sub-

expressions e1, e2 and e3.

ut

Lemma 8 Given an EMF metamodel EM = (C, DT,

DV, Rf, At), an EMF model EM = (EM, O, τo, RA, τra,

rat, ras, AA, τaa, aas, aat), and an object induced sub-

model of EM, written EM′ = (EM, O′, τo′, RA′, τra′, rat
′,

ras
′, AA′, τaa′, aas

′, aat
′), suppose that:

1. EM conforms to EM;
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2. EM’ satisfies Condition 4;

3. EM satisfies Condition 5;

then EM’ also conforms to EM.

Proof To check the conformance of EM′ to EM, it amounts

to checking against the ten conformance conditions in

EMF summarized in Section 4.3.

1. Reference typing condition holds in EM′ because EM′

is an object induced sub-model of EM, i.e., a refer-

ence assignment in EM′ is also in EM, and EM is

conformant to EM, i.e., all reference assignments in

EM are type valid.

2. Attribute typing condition holds in EM′ because EM′

is an object induced sub-model of EM, i.e., an at-

tribute assignment in EM′ is also in EM, and EM is

conformant to EM, i.e., all attribute assignments in

EM are type valid.

3. Reference multiplicity condition holds in EM′ because

EM′ is an object induced sub-model of EM and EM′

satisfies Condition 4, i.e., for any object in EM′, the

set of reference assignments whose source is the ob-

ject is exactly the same as in EM, and EM is confor-

mant to EM, i.e., the number of reference assignments

is in the correct range.

4. Attribute multiplicity condition holds in EM′ because

EM′ is an object induced sub-model of EM, i.e., any

object in EM′ has exactly the same set of attribute

assignments as in EM, and EM is conformant to EM,

i.e., the number of attribute assignments is in the

correct range.

5. Opposite reference condition: given two references of

EM called rf1 and rf2 where rf1.eOpposite = rf2,

two objects o1, o2 ∈ O′, and a reference assignment

ra1 ∈ RA′ where τra
′(ra1) = rf1, ras

′(ra1) = o1, and

rat
′(ra1) = o2, because EM′ is an object induced

sub-model of EM, o1, o2 ∈ O and ra1 ∈ RA. Be-

cause EM is conformant to EM, there exists a ref-

erence assignment ra2 ∈ RA such that τra(ra2) = rf2,

ras(ra1) = o1 = rat(ra2), and rat(ra1) = o2 = ras(ra2).

Again because EM′ is an object induced sub-model

of EM, we have ra2 ∈ RA′ where τra
′(ra2) = rf2,

rat
′(ra2) = o1, and ras

′(ra2) = o2.

6. Containment condition: on one hand, because EM′

is an object induced sub-model of EM, an object o2

is contained in another object o1 in EM′ if and only

if it is also the case in EM; on the other hand, EM

is conformant to EM, i.e., no object is contained in

more than one object, neither is it contained in itself.

Therefore, it is also the case in EM′.

7. Abstract class condition holds in EM′ because EM′

is an object induced sub-model of EM, i.e., all the

objects in EM′ are also in EM, and EM is conformant

to EM, i.e., none of the objects in EM are instantiated

from an abstract class.

8. Uniqueness condition holds in EM′ because EM′ is an

object induced sub-model of EM, i.e., any object in

EM′ has the subset of reference and attribute assign-



52 Qin Ma et al.

ments as in EM, and EM is conformant to EM, i.e.,

reference and attribute assignments are never dupli-

cated for unique references and attributes. A subset

of a non-multiset is also a non-multiset.

9. Invariant condition: because EM satisfies Condition 5,

all invariants to be checked are forward. Because EM′

satisfies Condition 4, for any forward invariant einv

of EM, an object o in EM whose type is compatible

with the context of einv, the scope of (einv,EM, o) is

included in EM′ as long as o is. Following Theorem 5,

we thus have eval(einv,EM, o) = eval(einv,EM′, o).

We already know that einv holds in EM because it

conforms to EM. As a consequence, einv also holds in

EM′.

ut

Lemma 9 Given an EMF model EM = (EM, O, τo,

RA, τra, rat, ras, AA, τaa, aas, aat) conforming to an

EMF metamodel EM, and any object induced sub-model

of EM derived by the EMF model decomposition algo-

rithm, written EM′ = (EM, O′, τo′, RA′, τra′, rat
′, ras

′,

AA′, τaa′, aas
′, aat

′), EM′ satisfies Condition 4.

Proof Let M = (M,N,A, τ, src, tgt) be the corresponding

abstract model of EM (i.e., M = F(EM)) and M′ = (M,

N′, A′, τ ′, src′, tgt′) be the sub-model of M, from which

EM′ is constructed. Assume the setting as illustrated in

Figure 10 holds. We demonstrate that EM′ satisfies Con-

dition 4 in three steps:

EM

o o0ra

M

n n0a

FN

FA

FA

FN

EM M

c c0 n0n a

⌧ ⌧

rf

⌧ra⌧o ⌧o ⌧

(0,1)

Fig. 10 Setting assumed for the proof of Lemma 9

1. according to step 3 of the EMF model decomposition

algorithm, o ∈ O′ =⇒ n ∈ N′;

2. according to Theorem 2, model M′ satisfies Condi-

tion 1, i.e., n ∈ N′ =⇒ n′ ∈ N′;

3. according to step 3 of the EMF model decomposition

algorithm, n′ ∈ N′ =⇒ o′ ∈ O′.

ut

A.2 Statistical Table of the Usage of allInstances
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Metamodel Source # Invariants # Invariants with allInstances

originally

# Invariants with allInstances

after normalization

monotonic non-monotonic

UML OMG 172 0 0 0

MOF OMG 85 0 0 0

OCL OMG 46 13 13 0

CORBA OMG 40 1 1 0

CWM OMG 90 0 0 0

DiagramDefinition OMG 16 0 0 0

BLanguage Academia 9 0 0 0

SAD3 Academia 9 0 0 0

CPFSTool Academia 27 0 0 0

DeclarativeWorkflow Academia 23 0 0 0

ER2RE Academia 59 11 11 0

RBAC Academia 33 6 0 1

DBLP Academia 26 7 7 0

SAM Industry 73 11 7 4

Total N/A 707 49 39 5

Table 2 Statistics on the Usage of allInstances in Metamodel Specifications


