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Abstract Testing model transformations poses sev-
eral challenges, among them the automatic generation
of appropriate input test models and the specification
of oracle functions. Most approaches to the generation
of input models ensure a certain coverage of the source
meta-model or the transformation implementation code,
whereas oracle functions are frequently defined using
query or graph languages. However, these two tasks are
usually performed independently regardless of their com-
mon purpose, and sometimes there is a gap between the
properties exhibited by the generated input models and
those considered by the transformations.

Recently, we proposed a formal specification lan-
guage for the declarative formulation of transformation
properties (by means of invariants, pre- and postcondi-
tions) from which we generated partial oracle functions
used for transformation testing. Here, we extend the us-
age of our specification language for the automated gen-
eration of input test models by SAT solving. The testing
process becomes more intentional because the generated
models ensure a certain coverage of the transformation
requirements. Moreover, we use the same specification
to consistently derive both the input test models and
the oracle functions. A set of experiments is presented,
aimed at measuring the efficacy of our technique.

Key words Model Transformation – Model Transfor-
mation Specification – Model Transformation Testing –
Model Finding – Test Oracle

1 Introduction

Model transformations are the pillars of Model-Driven
Engineering (MDE), and therefore they should be devel-
oped using sound engineering principles to ensure their
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correctness [24]. However, most model transformation
technologies are nowadays centered on supporting the
implementation phase, and few efforts are directed to
the specification of requirements, design, or testing of
transformations. As a consequence, transformations are
frequently hacked, not engineered, being hard to main-
tain, incorrect, or buggy.

In order to alleviate this situation, we proposed
transML in the past: a family of modelling languages
for the engineering of transformations using an MDE
approach [24]. The transML languages provide support
for the gathering of requirements, their formal specifi-
cation, the architectural, high-level and low-level design
of transformations, as well as the specification of test
scripts, which themselves are also models. An engine
called mtUnit is able to execute these test suites in an
automated way to detect errors in the transformation
results.

transML includes a language with formal semantics
called PaMoMo (Pattern-based Model-to-Model Spec-
ification Language) [25] for the contract-based specifi-
cation of transformation requirements. In this way, the
designer may specify requirements of the input models
of a transformation (preconditions), expected properties
of the output models (postconditions), as well as proper-
ties that any pair of input/output models should satisfy
(invariants). Similar to software requirement specifica-
tion languages such as Z [46] or Alloy [29], PaMoMo’s
formal semantics enables reasoning at the level of re-
quirements, while being independent of the particular
transformation language used for the implementation.

In [25], we explored the use of PaMoMo for testing.
In particular, we showed how to automatically derive
OCL partial oracle functions from PaMoMo specifica-
tions, and used these oracles to assert whether a partic-
ular implementation satisfied a specification. Still, the
transformation tester had the burden to produce a rea-
sonable set of input test models and build a test script
to exercise the transformation with them, using the gen-
erated oracle function. Hence, if a specification states



how to transform certain structures (e.g. an inheritance
cycle, an unconnected object of a given type, or a par-
ticular attribute value), it is important that some input
test models include such structures, to assert whether
their transformation has been correctly implemented.
Unfortunately, the manual creation of input models is
tedious and time-consuming, and it does not guarantee
an appropriate coverage of all requirements in the spec-
ification, as hand-crafted models may focus on certain
requirements while leaving others untested.

In this paper, we tackle these problems by deriving
not only the oracle function but also a set of input test
models from the transformation specification. As a con-
sequence, we ensure the coverage of the properties in the
specification. The input models are calculated using SAT
solving techniques on OCL expressions generated from
the specification [45], and it is possible to choose between
seven levels of coverage to obtain different degrees of
exhaustiveness when testing. Additionally, a dedicated
mtUnit test suite is generated for the automated testing
of the transformation implementation using the gener-
ated input models and oracle functions.

While there are several approaches for the automated
testing of transformations, ours is unique because the
generated test models aim at testing the requirements
and properties of interest as given in a specification.
Current approaches either focus on producing input test
models ensuring a certain coverage of the input meta-
model [14,42], or do not consider specification-based
testing. Hence, our approach is directed to test the in-
tention of the transformation. Moreover, the use of the
same specification to consistently derive both the input
models for testing and the oracle functions for different
coverage criteria is also novel.

This paper extends [22] by including a more thorough
related work section, a formal presentation of our spec-
ification language, an integral exposition of the whole
framework, and more importantly, we discuss the results
of a set of experiments to measure the effectiveness of the
different levels of coverage defined for specifications. In-
put test model generation in these experiments has been
carried out using the ocl2smt model finder [45], which
has been recently integrated in our transformation test-
ing tool. This has been done for performance reasons,
as we noticed that the SMT formalization was advanta-
geous compared to the CSP formalization for the con-
sidered model transformations. Instead, in [22], we used
the UMLtoCSP [8] solver for model generation, as it is
also integrated in our testing tool.

The remainder of the paper is organised as follows.
Section 2 reviews related works, focusing on existing ap-
proaches to model transformation testing. Afterwards,
Section 3 sketches our proposal and introduces a run-
ning example that we will use throughout the paper.
Section 4 presents our specification language PaMoMo,
whereas Section 5 describes our approach to derive input
test models with a certain level of specification coverage.

We present tool support in Section 6. Next, in Section 7,
we use this tool to study the effectiveness of different
coverage criteria, using as a testbed a set of ATL trans-
formations. Finally, we draw some conclusions and lines
of future work in Section 8. The paper includes an ap-
pendix with a formal definition of the core concepts in
PaMoMo, originally introduced in [25,26].

2 State of the art

Validation and verification is an integral task of software
development. In the context of model transformations,
the works targeting their validation and verification can
be classified in three categories: (i) those using a formal
language to implement the transformations, so that it
is possible to ensure or analyse transformation proper-
ties such as termination or determinism [11,12,16,32];
(ii) those translating the transformations into formal
domains for analysis, such as Petri nets [23], rewriting
logic [3,49] or SAT problems [7]; (iii) and those focusing
on testing of transformations. The first two approaches
allow for the analysis of general properties such as ter-
mination, determinism, rule independence, rule applica-
bility or reachability of system states. In this paper we
follow the third approach; hence, in the following, we
review related works on model transformation testing,
paying special attention to black-box testing approaches
as this is the scope of the work that we will present in
this paper.

There are three main challenges in model transfor-
mation testing [2]: the generation of input test models,
the definition of test adequacy (or coverage) criteria, and
the construction of oracle functions.

Input models. Most works dealing with the genera-
tion of input test models are for black-box testing
and only consider the features of the input meta-
model but not properties of the transformation. For
instance, in [14,42], the authors perform automatic
generation of input test models based on the in-
put meta-model and some typical coverage crite-
ria (e.g. partitioning of attribute values and num-
ber of classes). Using this approach, in [42], the au-
thors present an experiment where different input
test sets are generated for different strategies, ob-
taining mutation scores ranging from 72% to 87%.
In [20], the generation of input test models must be
hand-coded using an imperative language with fea-
tures for randomly choosing attribute values and as-
sociation ends. Input models are also hand-crafted
in [43], although they are only required to conform
to a relaxed version of the input meta-model without
mandatory references and general constraints. These
so-called partial models are transformed into Alloy
and fed into a constraint solver to find valid instances
of the original meta-model which can be used for test-
ing. A similar approach is presented in [14], where the
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term model fragment is used instead of partial model,
and some coverage criteria of the input meta-model
are also considered.
Closer to our philosophy, contracts in [13] are used
both to generate test input models and as oracle func-
tions. Models, meta-models, and specifications must
be defined using constructive logic, and the meta-
model’s OCL constraints must be translated to this
logic as well, thereby limiting the applicability of the
proposal. As in the previous works, the authors only
foresee coverage of the input meta-model.
Finally, there are also a few white-box testing ap-
proaches to validate transformations. For example,
in [33], the authors propose using all possible over-
lapping models of each pair of rules in a transforma-
tion as input models for testing. More recently, [21]
exploits the structure of ATL transformations to gen-
erate input models: they extract the dependency
graph of the transformations (similar to a control
flow graph), and each traversal of the graph is trans-
formed into a set of constraints used to compute an
input model by means of constraint solving.

Coverage criteria. Existing black-box testing ap-
proaches for model transformations either do not
consider coverage criteria [20,43], or support input
meta-model coverage (partitioning of attribute val-
ues, number of classes and associations, etc.) [13,14,
42]. A drawback in these works is that some trans-
formation properties of interest may remain untested
as they are not taken into account when building
(manually or automatically) test models.
On their turn, white-box testing approaches usually
adopt a mix of classical white-box coverage crite-
ria [21] and others specific for transformations, such
as rule coverage or decision coverage [41]. For in-
stance, in [41], the authors measure the decision cov-
erage of input test sets, however, there is no discus-
sion of the correlation between this coverage criterion
and the efficacy of a test set.

Oracle function. Regarding the third challenge in
model transformation testing, we distinguish be-
tween complete and partial oracle functions. The
former are defined by having the output models at
hand. For instance, the test cases for the C-SAW
transformation languages [35] consist of a source
model and its expected output model. Partial ora-
cle functions express contracts that the input and
output models of a transformation should fulfil.
Most proposals to partial oracle functions use OCL
to specify the contracts [9,20,37]. The approaches
in [15,17] follow a similar philosophy to the xUnit
framework, and the oracle functions can be specified
as OCL/EOL assertions. There are other approaches
that permit the specification of partial oracle func-
tions as graph patterns or model fragments [1].
Finally, in previous works, we presented our visual
language PaMoMo to specify contracts for transfor-

mations and provided compilations of this language
into OCL [25] and QVT-Relations [26], thus enabling
the use of PaMoMo contracts as oracles. None of
these approaches provide a mechanism to assert the
adequacy of the specified tests and automate their
generation.

In conclusion, we observe that some transformation
testing approaches provide automated test execution [15,
17], but do not support the generation of input mod-
els and the oracle needs to be specified manually. Other
works focus on the automatic generation of input mod-
els [14,42], but do not consider transformation properties
or different levels of exhaustiveness for testing. In this
paper, we present our approach to specification-based
transformation testing which automates the generation
of the input test models, the oracle function and exe-
cutable test scripts from the same transformation specifi-
cation. As a distinguishing feature, the generated models
enable the testing of relevant properties of the transfor-
mation, as given by its specification. Moreover, we define
a set of specification coverage criteria which enable test-
ing with increasing levels of exhaustiveness.

It is worth noting that, for general software testing,
we can find several works where the generation of test
cases is performed from specifications, which has been
reported to allow a more efficient generation of test cases
based on some notion of coverage of properties or error
domains [28,38]. Moreover, the idea of synthesizing both
input test data and oracle functions from a specification
has been successfully applied to general software testing,
if we look at the broader scope of model-based testing.
For instance, in [4], the authors generate both artefacts
for automated testing of Java programs based on Java
predicates from which all possible non-isomorphic inputs
(up to a certain size bound) are efficiently generated.
This yields complete coverage of the input state space.
Similarly, in [18,47], the authors propose parameterized
unit tests (PUTs) to cover the input state space. For
this purpose, they are using symbolic execution tech-
niques and constraint solving in order to obtain a high
coverage, and to generate new PUTs. In our case, we
aim at generating test models ensuring coverage of the
transformation requirements; complete meta-model cov-
erage (i.e. generating all meta-model instances of a cer-
tain size) does not guarantee this, and may lead to the
so-called state explosion problem. Moreover, automated
test case generation such as described in this paper can
be compared to techniques outside of software testing,
e.g. the testing of executable language definitions. As
an example, a grammar-based testing method has been
presented in [27,34].

3 A framework for specification-driven testing

Fig. 1 shows the working scheme of our approach. In
a first step, the designer specifies the requirements (i.e.
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the preconditions, postconditions, and invariants) of the
transformation using our language PaMoMo. The de-
veloper can use this specification as a guide to imple-
ment the transformation using his favourite language
(e.g. ATL [30], ETL [31], etc.). Indeed, in our experience,
we have found that the specification and the implemen-
tation are frequently refined iteratively.

report 

select 
specification 

coverage  
criterion 

mtunit  
script 

oracle 
(assertions) 

input test 
models 

  .xmi 

   SAT solver 
model  
  transformation 

transformation 
specification 

.pamomo 

transformation 
implementation 

  .etl, .atl… 

refers to 

tester mtunit  
engine 

t it

1 

2 

3 

designer 

developer 

Fig. 1 Framework for specification-driven testing.

Starting from the specification, the transformation
tester can automatically generate a complete test suite
that can be directly used to test the transformation im-
plementation. This test suite comprises: (i) an oracle
function that encodes the invariants and postconditions
in the specification as assertions [25], (ii) a set of input
test models enabling the testing of all requirements in
the specification according to certain coverage criteria
selected by the tester, and (iii) a test script that auto-
mates the execution of the transformation for each test
model, checks the conformance of the result using the or-
acle function, and reports any detected error using the
mtUnit engine [24]. Roughly, in order to generate the
input test models we translate the preconditions and in-
variants in the specification into OCL invariants, which
we combine and feed into a SAT solver to find models
that contain certain combination of properties. The way
in which the different properties are combined to find
models depends on the selected coverage type.

The details of this framework will be presented in
Section 5. Before, we introduce our specification lan-
guage PaMoMo in the next section, and use it to spec-
ify a transformation from the Business Process Model-
ing Notation (BPMN) [5] into Petri nets. The goal is
to analyse BPMN models to detect deadlocks, incorrect
termination conditions, or tasks that can never be com-
pleted. The upper part of Fig. 2 shows a BPMNmodel. It
specifies a flow initiated in a start event (the circle), and
consisting in the completion of different tasks (rounded

rectangles). The diamonds in the model are called par-
allel gateways, and split the execution in several paral-
lel branches (first gateway) which are later synchronized
(second gateway). From this BPMN model, our trans-
formation should create a Petri net like the one shown
below the BPMN model.

..... Invent
gadget

..

File
patent

.

Create
prototype

.. Get
rich

.

..........

Invent
gadget

.

File patent

.

Create prototype

. Get rich

.

BPMN model

.

Petri net

Fig. 2 BPMN model and equivalent Petri net.

Fig. 3 shows an excerpt of the OMG standard BPMN
2.0 meta-model [5] with the main classes and references
that we will consider in our example. As the meta-
model shows, a BPMN model is made of a set of flow
nodes of different types (activities, events and gateways)
which can be interconnected through sequence flows,
thus defining a process.

Fig. 3 Excerpt of the BPMN meta-model [5].

4 A specification language for transformations

PaMoMo is a formal, pattern-based, declarative, bidi-
rectional specification language to describe correctness
requirements of the transformations and of their input
and output models in an implementation-independent
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way [25]. These requirements may correspond to precon-
ditions that the input models should fulfil, postconditions
that the output models should fulfil (beyond meta-model
constraints), as well as invariants1 of the transformation
(i.e. requirements that the output model resulting from
a particular input model should satisfy).

Preconditions, postconditions, and invariants are
represented as graph patterns, which can be positive to
specify expected model fragments, or negative to specify
forbidden ones. They can have attached a logical for-
mula stating extra conditions, typically (but not solely)
constraining the attribute values in the graph pattern.
In this paper and in our prototype tool, these formulas
are written in OCL. Optionally, patterns can define one
enabling condition and any number of disabling condi-
tions, to reduce the scope of the pattern to the locations
where the enabling condition is met, and the disabling
conditions are not.

Next, we illustrate these concepts in an intuitive
manner through our running example. The interested
reader can find their formal semantics in the Appendix.

Fig. 4 shows some transformation preconditions for
our running example, expressing requirements that any
input model should fulfil beyond its meta-model con-
straints2. The name of each precondition is shown in
parenthesis and preceded by P or N to denote whether
the precondition is Positive or Negative. For instance,
our transformation expects models with one start event
from which only one sequence flow goes out. This is spec-
ified by the positive precondition OneStartEvent (i.e.
there must exist one start event with one outgoing flow
in the input model) and the negative precondition Mul-
tipleStartEvents (there cannot be several start events).
These conditions are not demanded by the BPMN meta-
model, which allows models with any number of start
events, each one of them with multiple outgoing flows,
but are required by our transformation.

Preconditions, as well as postconditions and invari-
ants, can include an enabling condition to specify a local
satisfaction context. In such a case, the precondition is
not evaluated globally in the model, but in the context
of each occurrence of its enabling condition. As an ex-
ample, Fig. 4 shows a precondition, PathsForGateway,
with an attached enabling condition, AnyGateway. The
precondition demands that each gateway (enabling con-

1 Please note that PaMoMo invariants, which express
properties of any pair of input and output models, are some-
times called postconditions [9] or domain/range contracts [37]
in the model transformation testing literature. In PaMoMo,
a postcondition is just a requirement of the output model
alone. Moreover, PaMoMo invariants do not describe con-
ditions to be maintained on the state of the transformation
execution, but they are statements that the result of any
possible execution of the transformation should satisfy.

2 In this section, we use a graphical concrete syntax for
the specification. In Section 6, we will show an alternative
textual syntax that is supported by our prototype tool.

.....
e

.
e.outgoing.size()=1

..

P(OneStartEvent)

.
.....

N(Multiple
StartEvents).

.. g. g...

P(Any
Gateway)

.

P(Paths
ForGateway)

. ⇒

Fig. 4 Some preconditions of the transformation.

dition) defines at least one input and one output flows
(precondition). The precondition contains the abstract
class Gateway, becoming applicable to all concrete gate-
way types inheriting from it (see BPMN meta-model in
Fig. 3).

Postconditions are similar to preconditions, but they
express requirements of the output models. Fig. 5 shows
some postconditions for the generated Petri nets, such as
the absence of unconnected places (UnconnectedPlaces),
the existence of input and output places for all transi-
tions (ConnectedTransition), and the existence of a sin-
gle place with one token and without input transitions
(InitialMarking and InitialPlace).

.....
pl

.

pl.inarcs.size()=0 and
pl.outarcs.size()=0

..

N(Unconnected
Places)

.

....
pl

...

N(Initial
Place)

.

.... tr. tr...

pl1

.
pl2

..

P(Any
Transition)

..

P(Connected
Transition)

. ⇒
.

..
Place::allInstances()->collect(pl|pl.tokens)->sum()=1

.P(InitialMarking)

Fig. 5 Some postconditions of the transformation.

Finally, invariants express how certain structures in
the input models should be transformed. They are made
of a source graph, a target graph, and a formula relating
both. Roughly, a positive invariant holds on a pair of
source and target models if for each occurrence of its
source graph, there is an occurrence of the target graph.
If the invariant is negative, then we should not find an
occurrence of the target graph.

For instance, Fig. 6 shows some invariants describing
the transformation of tasks and gateways. Tasks must
be transformed into equally named places (Task1). Since
tasks can only have one outgoing flow, the correspond-
ing places cannot be connected to two output transi-
tions (Task2). Each parallel gateway should be trans-
formed into a transition (ParallelGateway1), and the
places for all incoming tasks to the gateway should be in-
put to the transition (ParallelGateway2). Invariant Par-
allelGateway3 includes a disabling condition, named Un-
connectedTask, which restricts the scope of the invariant
to the occurrences of the source part for which the dis-
abling condition is not met. Altogether, this invariant
states that if a parallel gateway does not have a task
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t2 as input (disabling condition), then the place for t2
cannot be connected to the transition (as the invariant
is negative). Preconditions and postconditions can also
define any number of disabling conditions. Our specifi-
cation contains similar invariants for the tasks going out
from parallel gateways. The two remaining invariants in
Fig. 6 state that exclusive (also called choice) gateways
should be transformed into an intermediate place, plus
one transition for each outgoing branch.

The use of a formal specification language such as
PaMoMo to specify transformation properties has the
following advantages: (i) it enables reasoning on the
transformation requirements before their implementa-
tion, as well as detecting contradictions in the require-
ments early in the project [26]; (ii) it provides a high-
level notation to specify pre/postconditions and invari-
ants of the transformations; and (iii) it is possible to
automate the generation of an oracle function from the
specification and use it for automated testing [25]. How-
ever, the challenge of generating input test models sat-
isfying the meta-model constraints and all preconditions
in the specification remains, as tests models have to be
built by hand, which is a tedious and error-prone task.
Moreover, it is difficult to ensure that the input test set
will enable the testing of all relevant properties in the
specification. For instance, the input test set of the run-
ning example should include some model containing an
exclusive gateway with several output tasks, in order to
check the correct implementation of the invariant Ex-
clusiveGateway, and similar for the rest of invariants in
the specification. To solve this problem, next we present
an approach to generate input test models ensuring the
coverage of a specification.

5 Specification-driven generation of input test
models

Our approach to specification-driven testing consists of
the following steps: (1) translation of the properties in
the specification into a suitable format for model find-
ing, (2) selection of a level of specification coverage, re-
sulting in a particular strategy to build expressions that
demand the satisfaction (or not) of a number of prop-
erties in the generated models, (3) use of a constraint
solver to find models satisfying concrete combinations
of properties (according to the selected coverage) and
all integrity constraints of the input meta-model, and fi-
nally, (4) identification of the assertions that should be
checked after testing the transformation with a partic-
ular input model. In the remaining of this section we
present in detail this procedure.

5.1 Translation of properties in the specification

As a first step, we translate the specification into a lan-
guage that allows automating the generation of models.

In particular, we use OCL as target language because
there are available solvers that find models satisfying a
set of OCL constraints [8,45] and we do not need to
parse the OCL formulas in the properties of the speci-
fication to a different language. Nonetheless, this is our
particular option and the framework could be used with
a different target language whenever a translation from
our specification language is provided.

Although a specification includes preconditions,
postconditions and invariants, only preconditions and
invariants contain useful information for the input
model generation. Postconditions refer to properties of
the output models and are only used to generate oracle
functions, but not input models.

An invariant expresses a property of the form: if
certain source pattern appears in the input model, then
certain target pattern should be present (or not) in the
output model. Thus, it is interesting to generate input
models containing instances of the source pattern, to
test whether transforming these models actually yields
output models containing the target pattern. For the
purpose of generating such input models, from each
PaMoMo invariant we generate an OCL expression
which characterises the source pattern of the invariant.
Listing 1 shows a scheme of the generated expression. It
iterates on the objects of the source graph of the main
constraint (lines 1–3), and checks that there is no oc-
currence of the source graph of any disabling condition
(lines 4–7, this code is generated for each disabling con-
dition). The function conditions corresponds to an OCL
expression checking the conditions that the traversed ob-
jects should fulfil, namely the existence of the links spec-
ified in the invariant (oi.link = oj if the maximum car-
dinality of the association is 1, and oi.link->includes(oj)

otherwise), inequalities for the objects with the same
type (oi<>oj), and all terms in the invariant formula
over elements of the input domain only. The enabling
condition of the invariants is ignored because it is sub-
sumed by the invariants. Moreover, if the invariant is
negative, the generated expression is the same (i.e. it is
not preceded by the not particle) because the source part
of the invariant is still positive (if X appears then. . . ).

1 o1.type::allInstances()−>exists(o1 | ...
2 oi.type::allInstances()−>exists(oi |
3 conditions(o1,...,oi)
4 < and not
5 oj.type::allInstances()−>exists(oj | ...
6 ok.type::allInstances()−>exists(ok |
7 conditions(o1,...,oi,oj,...,ok) >∗ ) ...)

Listing 1 OCL template for invariants.

As an example, from invariant ParallelGateway3 in
Fig. 6 we generate the expression shown in Listing 2.
Lines 1–7 correspond to the encoding of the source pat-
tern of the invariant, whereas lines 8–9 encode its dis-
abling condition.

1 Task::allInstances()−>exists(t1 |
2 Task::allInstances()−>exists(t2 |
3 ParallelGateway::allInstances()−>exists(g |
4 SequenceFlow::allInstances()−>exists(s1 |

6



....t..
pl

.

t.name = pl.name

..

P(Task1)

. .. t....
pl

.

t.name = pl.name

..

N(Task2)

.

..
t
... pl.

g

..

t.name = pl.name

..
P(ParallelGateway1)

.

.. t1. t2...
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..
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.

g

..

t1.name = pl1.name and
t2.name = pl2.name

..

P(ParallelGateway2)

.

..
t1
.

t2
... pl1.. pl2.

g

..

t1.name = pl1.name and
t2.name = pl2.name

..
N(ParallelGateway3)

.
t2

..

g

..

N(Unconnected
Task)

.

⇒

.

...
g

.

t1

.

t2

..
pl

..

tr1

..

tr2

..

pl1

..

pl2

.

t1.name = pl1.name and
t2.name = pl2.name and
tr1.inarcs->size() = 1 and
tr1.outarcs->size() = 1 and
tr2.inarcs->size() = 1 and
tr2.outarcs->size() = 1

..

P(ExclusiveGateway1).

...
g

.

t1

.

t2

..
pl

..

tr1

..

tr2

..

pl1

..

pl2

.

t1.name = pl1.name and
t2.name = pl2.name and
tr1.inarcs->size() = 1 and
tr1.outarcs->size() = 1 and
tr2.inarcs->size() = 1 and
tr2.outarcs->size() = 1

..

P(ExclusiveGateway)

..
g

.

t1

.

t2

.

t3

..
pl

..

tr1

..

tr2

..

tr3

..

pl1

..

pl2

..

pl3

.

t3.name = pl3.name and
tr3.inarcs->size() = 1 and
tr3.outarcs->size() = 1

..

P(ExclusiveGateway2)

.

⇒

Fig. 6 Some invariants for the transformation.

5 s1.sourceRef = t1 and
6 and s1.targetRef = g
7 and t1 <> t2
8 and not SequenceFlow::allInstances()−>exists(s2 |
9 s2.sourceRef = t2 and s2.targetRef = g)))))

Listing 2 OCL expression for invariant ParallelGateway3.

Frequently, specifications include invariants with
same source and different target. For instance, Task1 and
Task2 in Fig. 6 have both a task as source, as the for-
mer specifies how to translate a task correctly, whereas
the latter identifies an incorrect translation. In this case,
generating an input model containing a task enables the
testing of both invariants. Thus, from the set of gener-
ated OCL expressions, we eliminate redundant source
conditions (i.e. equal source in the main constraint and
disabling conditions). We do not eliminate subsumptions
to allow for the testing of models with different size and
context conditions.

Finally, preconditions specify requirements of the in-
put models of a transformation. A transformation is not
demanded to work properly for input models that do
not satisfy these preconditions. The validity of the input
models is hardly ever done by the transformation, but by
an external procedure, or otherwise it is ensured by the
transformation application context. Thus, we take the
convention that all generated input models must fulfil
all preconditions in the specification. For this purpose,
we generate an OCL constraint from each precondition,
and enforce their satisfaction in all generated input mod-
els by adding them to the expressions used to generate
them (see next subsection). The scheme of the gener-
ated OCL code is shown in Listing 3. The expression
looks for all occurrences of the enabling condition (lines
2–4), and demands that for each one of them there is an
occurrence of the main constraint (lines 6–8) satisfying
the disabling conditions (lines 9–12). If the precondition

has no enabling condition, the resulting expression is the
same as the one for invariants, and if it is negative, the
generated expression is preceded by not (line 1).

1 < not >?
2 < o1.type::allInstances()−>forAll(o1 | ...
3 oi.type::allInstances()−>forAll(oi |
4 conditions(o1,...,oi)
5 implies >?
6 oj.type::allInstances()−>exists(oj | ...
7 ok.type::allInstances()−>exists(ok |
8 conditions(o1,...,oi,oj,...,ok)
9 < and not

10 ol.type::allInstances()−>exists(ol | ...
11 om.type::allInstances()−>exists(om |
12 conditions(o1,...,oi,oj,...,ok,ol,...,om) >∗ ...)

Listing 3 OCL template for preconditions.

Listing 4 shows the OCL expressions generated from
the preconditions depicted in Fig. 4: OneStartEvent (line
1), MultipleStartEvents (lines 3–5) and PathsForGate-
way (lines 7–14).

1 StartEvent::allInstances()−>exists(e | e.outgoing−>size() = 1)
2

3 not StartEvent::allInstances()−>exists(e1 |
4 StartEvent::allInstances()−>exists(e2 |
5 e1 <> e2))
6

7 Gateway::allInstances()−>forAll(g |
8 true
9 implies

10 SequenceFlow::allInstances()−>exists(s1 |
11 SequenceFlow::allInstances()−>exists(s2 |
12 s1.targetRef = g
13 and s2.sourceRef = g
14 and s1 <> s2)))

Listing 4 OCL expressions for preconditions in Fig. 4.

From the invariants and postconditions in the spec-
ification, we generate a set of OCL assertions that will
act as oracle function in the generated test suite. The
scheme to generate these assertions will be presented in
Section 5.4. Before, the next section presents a set of
coverage criteria for specifications.
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Table 1 Expressions generated from a specification with 3 invariants I = {I1, I2, I3}. The terms i1, i2 and i3 represent the
OCL code generated from the corresponding invariant in the specification (i1 = ocl(I1), i2 = ocl(I2), i3 = ocl(I3)).

closed closed closed
property property 2-way 2-way combinatorial combinatorial exhaustive (for i1, i2)

i1 i1 i1 ∧ i2 i1 ∧ i2 i1 i1 true
i2 i2 i1 ∧ i3 i1 ∧ i3 i2 i2 i1
i3 i3 i2 ∧ i3 i2 ∧ i3 i3 i3 i2

¬i1 ¬i1 i1 ∧ i2 i1 ∧ i2 ¬i1
¬i2 ¬i2 i1 ∧ i3 i1 ∧ i3 ¬i2
¬i3 ¬i3 i2 ∧ i3 i2 ∧ i3 i1 ∧ i2

i1 ∧ i2 ∧ i3 i1 ∧ i2 ∧ i3 i1 ∧ ¬i2
¬i1 ¬i1 ∧ i2
¬i2 ¬i1 ∧ ¬i2
¬i3

5.2 Coverage criteria for input model generation

The model generation process is performed in two steps.
First, we compose an OCL expression for each input
model to be generated, identifying the properties that
this model should fulfil. These expressions are built ac-
cording to certain specification coverage criteria. Then,
we feed each expression, together with the input meta-
model and the OCL code generated from the precondi-
tions, to a constraint solver. The solver will try to find a
valid input model satisfying the given OCL expression,
preconditions and meta-model integrity constraints. For
a particular expression, the solver may not find a model
in the given scope. In such a case, we can either widen
the search scope, or do not generate a model for that
particular expression.

We identify seven levels of specification coverage for
the generated test set, with increasing degrees of ex-
haustivity: property, closed property, t-way, closed t-way,
combinatorial, closed combinatorial and exhaustive. The
property, t-way, combinatorial and exhaustive levels gen-
erate models enabling the testing of a number of invari-
ants in the specification by combining their source mod-
els. The remaining levels generate also models that do
not contain occurrences of certain invariants. In the fol-
lowing, we present each level in detail.

Property coverage. This is the least exhaustive level
of coverage, appropriate when the invariants in the
specification are independent. It generates as many
input models as invariants in the specification, each
one including at least one occurrence of the source of
an invariant. The rationale is to use each generated
model to test one property of the transformation,
given by one invariant in the specification. For this
purpose, given a specification with I = {I1, . . . , In}
invariants (with different source), we generate n ex-
pressions of the form ij = ocl(Ij). Each expression
demands the existence of an occurrence of the source
of invariant Ij . As an example, Table 1 shows in the
first column the expressions generated from a spec-
ification with three invariants, where each ij term

represents the OCL code generated from the invari-
ant Ij as explained in Section 5.1.

Closed property coverage. This criterion extends
the previous one by generating additional mod-
els that do not contain occurrences of the source of
some invariant in the specification. The goal is check-
ing whether the transformation under test handles
properly the absence of certain patterns in the input
models. These limit cases, usually due to under-
specifications, frequently lead to errors in the final
implementations, yielding malformed output mod-
els. Thus, given a specification with I = {I1, . . . , In}
invariants, we also generate n additional expressions
of the form ¬ ocl(Ij). The second column of Ta-
ble 1 shows the generated expressions assuming a
specification with three invariants.
Interestingly, any model that does not contain the
source of an invariant will satisfy the invariant vacu-
ously, as an invariant states the consequences of hav-
ing some pattern in the source model, but not the
consequences of its absence. Nonetheless, the input
models generated in this way are still interesting be-
cause their transformation has to yield valid target
models satisfying the rest of invariants and postcon-
ditions in the specification as well as the target meta-
model integrity constraints.
Finally, this coverage criterion is also indicated for
specifications that use a closed world assumption (i.e.
any property not included in the specification is false)
by generating models which potentially may not be-
long to the input language according to the specifica-
tion. Currently, PaMoMo does not support a closed
world semantics.

t-way coverage. Most faults in software systems are
due to the interactions of several factors or prop-
erties. Based on this observation, t-wise testing [44]
consists of the generation of test cases for all pos-
sible combinations of t properties in the system un-
der test. Pairwise testing is a particular case of this
kind of testing for t = 2 (i.e. the generation of test
cases for pairs of properties) which yields smaller test
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... 1.. 2

(a) ocl(Task1) ∧ ocl(ParallelGateway3)

... 1.

(b) ocl(ParallelGateway1) ∧ ¬ ocl(ParallelGateway3)

... 1.. 2

(c) ocl(ParallelGateway1)∧¬ ocl(ParallelGateway3), with failure
due to disabling condition

Fig. 7 Generated models for OCL expressions.

suites than exhaustive generation yet being able to
find many errors. In our case, we are interested in
detecting errors coming from an incorrect implemen-
tation of the combination of several requirements in a
specification. These errors are frequent when each re-
quirement is implemented as a transformation rule or
relation that interacts with other rules in the trans-
formation, e.g. through explicit invocation.
In this case, given a specification with I =
{I1, . . . , In} invariants, we generate an expression
of the form ocl(Ij1)∧· · ·∧ocl(Ijt) for all

(
n
t

)
t-tuples

of invariants in the specification, demanding the
existence of an occurrence of the source part of each
invariant in the tuple. In the limit, 1-way testing
is equivalent to property coverage. Table 1 shows
the expressions generated for pairwise (i.e. 2-way)
testing.
As an example, Fig. 7(a) shows a model generated
for pairwise testing, considering the properties Task1
and ParallelGateway3. The model contains two tasks,
the first one is input to the gateway, and the second
one not (as required by the disabling condition of the
second invariant). The solver introduces a start event
which does not appear in any of the invariants, as it is
required by precondition OneStartEvent. Moreover,
the tasks in the two invariants are not required to be
different in the generated model, hence we obtain a
model with two tasks instead of three.
In the MDE community, pairwise testing is being suc-
cessfully used for software product line testing [39,
40], considering pairs of features in a feature model.
In our case, there are additional challenges, because
our specifications do not explicitly encode depen-
dencies between their requirements, and the model
generation procedure has to consider the constraints
given by the input meta-model and preconditions as
well.

Closed t-way coverage. As discussed previously,
sometimes it is desirable to test also that the in-
put models that do not contain occurrences of the
source of invariants are handled correctly. Hence,
in this criterion we generate the same models as in
t-way coverage, as well as models generated from

expressions of the form ¬ ocl(Ij), as Table 1 shows
for t=2.

Combinatorial coverage. It generates all models for
1-way, 2-way, . . . , n-way coverage, where n is the
number of invariants in the specification. Thus, here
we consider all combinations of properties, including
all of them simultaneously (n-way case). A total of
2n − 1 models are generated (see Table 1).

Closed combinatorial coverage. It generates the
same models as in combinatorial coverage, and a
model from each negated invariant (see Table 1).

Exhaustive coverage. This is the most exhaustive
level of coverage, generating models for all combi-
nations of the occurrence or absence of the source of
the invariants in a specification, or their obliteration.
For this purpose it generates different OCL expres-
sions where the existence of the source of each in-
variant can be either mandatory (ocl(Ij)), forbidden
(¬ ocl(Ij)), or ignored (i.e. the invariant is not taken
into account). This yields a number of 3n potential
models, also including the expression true in which
all invariants are ignored. The last column of Table 1
shows the OCL expressions for a specification with
two invariants.
As an example, Fig. 7(b) shows a model generated
for the OCL expression

ocl(ParallelGateway1) ∧ ¬ ocl(ParallelGateway3).

In particular, invariant ParallelGateway3 is not satis-
fied in the model as there is no occurrence of its main
constraint (i.e. there are not two different tasks).
For a more exhaustive coverage we can enforce the
absence of a property in the generated models in sev-
eral ways. Up to now, this was achieved by negating
the source of the invariant (¬ ocl(Ij)). However, there
are different ways in which we can “disable” the test-
ing of a particular invariant: either because there is
no occurrence of the source of its main constraint, or
because there are occurrences of the main constraint
but these do not satisfy some disabling condition.
Thus, we can choose to generate a different OCL ex-
pression for each way to disable the property (i.e. the
source of the main constraint of the invariant is not
found, or it is found but it does not fulfil some dis-
abling condition). Fig. 7(c) shows a model used to
test invariant ParallelGateway1 and the absence of
ParallelGateway3, the latter due to the occurrence of
its disabling condition (as both tasks are input to the
gateway).
Altogether, this coverage uses a brute-force approach
to the generation of test models. Notice that some of
the generated OCL expressions may be unsatisfiable
if they contain contradicting requirements. For in-
stance, the expression

ocl(ParallelGateway2) ∧ ¬ ocl(ParallelGateway1)
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has no solution because it looks for an input model
with two tasks connected to a gateway (first invari-
ant), and simultaneously forbids having tasks con-
nected to gateways (negation of the second invari-
ant). The problem is that the negated invariant is
included in the required one.
Finally, it is for us an open question whether such a
deep degree of exhaustivity is worth for certain kinds
of specifications, or whether it is more effective to use
less exhaustive types of coverage as the previous ones,
enriched with heuristics that allow for the genera-
tion of bigger sets of test input models (for instance,
generating several models from the same OCL ex-
pression, or demanding more than one occurrence of
the invariants). Section 7 presents the results of some
initial experiments in this line, although focussed on
less exhaustive coverage kinds.

5.3 Customization

Some expressions generated from the above mentioned
coverage levels might be unsatisfiable and if many com-
binations are unsatisfiable, e.g. when using the exhaus-
tive strategy, a lot of unnecessary run-time is spent by
the constraint solver. To avoid getting too many unsat-
isfiable problem instances, we propose to generalise the
expressions. For this purpose, one general expression is
formalized for each level of coverage which encodes how
many invariants shall be considered and if some of them
may be negated, but not specifies them precisely. If the
constraint solver finds a satisfying assignment, then from
this assignment not only the model but also the consid-
ered configuration of invariants can be deduced from it.
In iterative runs, already found solutions are explicitly
blocked until either all combinations have been consid-
ered or the constraint solver cannot find a satisfying as-
signment any longer. Then, the search can be stopped
as it is ensured that no other configuration can be sat-
isfiable. For this purpose, we make use of select vari-
ables sj and polarity variables pj for each OCL con-
straint ij = ocl(Ij) as well as cardinality constraints. A
flexible polarity can be added to an expression by replac-
ing each OCL constraint ij with the term (pj ↔ ij), i.e.
the invariant is inverted if, and only if pj is assigned 0.
In a similar way, select variables are introduced by sub-
stituting each ij with the term (sj → ij), i.e. the invari-
ant ij is disabled if, and only if sj is assigned 0 and ij
must hold only if sj is assigned 1. Both concepts can be
combined to (sj → (pj ↔ ij)) embracing both a flexible
polarity and the possibility to disable the invariant.

Table 2 shows the generalised expressions for most
of the presented levels of coverage. It turns out that the
generalised closed t-way coverage and closed combinato-
rial coverage are too complex and thus do not justify the
additional overhead.

Regardless the chosen level of coverage, there are
some configurable aspects (or heuristics) in the model

Table 2 Generalised expressions for the different levels of
coverage with νs =

∑n
j=1 sj .

Coverage level Generalised expression

property
∧n

j=1(sj → ij) ∧ νs = 1

closed property
∧n

j=1(sj → (pj ↔ ij)) ∧ νs = 1

t-way
∧n

j=1(sj → ij) ∧ νs = t

combinatorial
∧n

j=1(sj → ij) ∧ νs > 0

exhaustive
∧n

j=1(sj → (pj ↔ ij))

generation process, which may affect the size and num-
ber of generated models. For example, when looking
for models aimed at testing several invariants with
non-empty intersection, different levels of overlapping
between them can be considered, ranging from non-
overlapping (the source of the invariants is taken to be
disjoint) to a maximal overlap. Second, for specifications
with a high number of requirements or for exhaustive
testing, we can minimise the size of the generated test
set by skipping the generation of a model for a particular
combination of properties if this combination is already
present in a model previously generated.

Finally, as the reader may have noticed, the solver
may yield the same model for the resolution of two dif-
ferent OCL expressions. For instance, if the input meta-
model for our running example requires exclusive gate-
ways to have at least two output tasks, then the solver
will always try to complete the source model in invari-
ant ExclusiveGateway1 with a new task connected to
the gateway, i.e., it will try to find a model like the one
in invariant ExclusiveGateway2. Thus, the expressions
ocl(ExclusiveGateway1) and ocl(ExclusiveGateway2) are
likely to produce the same input model. At this point,
we can simply remove one of the generated input models
from the test set and continue processing the next OCL
expression, as the model enables the testing of both in-
variants.

5.4 Linking input models and oracles

As a final step, we automatically derive a test suite to au-
tomate the testing of the transformation using the gener-
ated models. The test suite includes a test case for each
invariant and postcondition in the specification, defining
the input models to be used in the test case, and an asser-
tion checking the particular invariant or postcondition.
In this way, the test suite will execute the transformation
for each generated model, checking in each case whether
the output model fulfils the assertions in the test cases.
By default, all assertions are checked after transforming
each test model. However, if a model was generated from
an expression that negated an invariant, then the asser-
tion derived from this invariant is not checked for that
particular model, as we already know that the model
satisfies the invariant vacuously. This allows for a more
efficient testing process, as a given assertion will not be
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checked in any model for which we already know that
the assertion will always hold.

The generation of OCL assertions from the invari-
ants and postconditions in the specification follows the
schema shown in Listing 5. Given an invariant, the gen-
erated assertion iterates on the objects of its enabling
condition and the source of its main constraint (lines 1–
3). For all possible bindings of these objects into objects
of the checked source and target models, the assertion
retains those that do not violate the disabling condi-
tions (lines 4–7). Finally, it iterates on the objects of
the target of the invariant main constraint, demanding
their existence for each valid binding of the source (lines
9–11) [25].

1 o1.type::allInstances()−>forAll(o1 | ...
2 oi.type::allInstances()−>forAll(oi |
3 conditions(o1,...,oi)
4 < and not
5 ol.type::allInstances()−>exists(ol | ...
6 om.type::allInstances()−>exists(om |
7 conditions(o1,...,oi,ol,...,om) >∗ ...)
8 implies
9 oj.type::allInstances()−>exists(oj | ...

10 ok.type::allInstances()−>exists(ok |
11 conditions(o1,...,oi,oj,...,ok)

Listing 5 OCL template for oracle function.

Altogether, the generation of input models, oracle
functions and scripts is done automatically from the
same specification. This has the advantage that the
transformation tester does not need to build them sepa-
rately by hand, identify the oracle functions to be used
for each input model, and build a script to execute the
test. More importantly, being generated from the same
specification, both the models and the oracle functions
will work together to validate the same properties of in-
terest: the models will enable the testing of these proper-
ties, and the oracle functions will check their satisfaction.

Fig. 9 shows an excerpt of the test suite generated
from our specification example, using the property cov-
erage level. The test suite is defined using mtUnit, which
is another language in our transML family of languages
[24]. Lines 4–21 in the upper window contain the defini-
tion of the test case generated from the invariant Paral-
lelGateway1. For space constraints, the figure only shows
two of the input models for this test case (lines 5–6). Be-
low, the figure partially shows the result of running the
test.

6 Tool support

The presented framework is supported by an Eclipse,
EMF-based prototype tool which allows building
PaMoMo specifications using a textual editor, and
automates the generation of input models and mtUnit
test scripts for them. Fig. 8 shows part of our specifi-
cation example using the textual editor, in particular
the definition of the invariants ParallelGateway1 (lines
3–13) and ParallelGateway3 (lines 15–37).

Fig. 8 Tool support for PaMoMo specifications.

The generation of the test suite and input models
from this specification is push-button. In our case, it
yields the mtUnit file that is partially shown in the up-
per window of Fig. 9. The first two lines declare the
file with the transformation to be tested (either ATL or
ETL) and the source and target meta-models. Lines 4–
21 correspond to the test case for the ParallelGateway1
invariant. Two of its input test models are listed in lines
5–6, whereas the OCL assertion generated from the in-
variant is shown in lines 9–20. Executing the test suite
will run the transformation for each input model and
report whether the result verifies the assertions in the
different test cases (see lower window in the figure).

In the back-end, we are using the ocl2smt model
finder [45] which is based on SMT (Satisfiability Mod-
ulo Theories) and in turn uses the Z3 solver [10]. Since
the model finder is used as a black box, also other SAT
solving tools like UMLtoCSP [8] can be integrated into
the flow. In such a case, it may be necessary to trans-
form the input and output formats to the model find-
ers. As an example, since ocl2smt is written on top of
USE [19], the EMF meta-model has to be transformed
into a USE model and the resulting USE system state
given by ocl2smt needs to be transformed into an EMF-
conformant representation for its use in mtUnit. Cur-
rently, we do not provide support for model generation
heuristics such as different overlapping degrees or detec-
tion of redundant models. Also the generalised expres-
sions as given in Table 2 are not yet implemented as they
require adjustments to the internals of the model finder.
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Fig. 9 Tool support for model transformation testing.

7 Experiments

In this section, we report on some experiments aimed
at measuring the effectiveness of our generated input
models to detect transformation failures. This is called
vigilance [48], which is the degree in which contracts can
detect faults in the running system. Our goal is identi-
fying which coverage criteria allow for the detection of
a higher number of errors with less effort (i.e. with a
smaller test data set). In these experiments, we have fo-
cused on the following coverage kinds: property, closed
property, 2-way, and closed 2-way. These are the sim-
plest coverage criteria, and consequently, the most in-
expensive in generation time, and those that yield the
smallest test data sets. Thus, it is interesting to know
whether even with the simplest criteria, the generated
test suites are able to detect a significant number of er-
rors. The sources of these experiments are available at
http://www.miso.es/tools/transML.html.

7.1 Testbed setup

The testbed for our experiments is a set of ATL model
transformations, which includes a transformation of 120
lines of code that we implemented for the running ex-
ample, as well as some existing transformations from
the ATL zoo3: one transforming class schema models
into relational database models4 of 107 lines of code,

3
http://www.eclipse.org/atl/atlTransformations/

4
http://www.eclipse.org/atl/atlTransformations/

#Class2Relational

and another one from BibTeX into the XML-based for-
mat for document composition DocBook5 of 261 lines
of code. The PaMoMo specification for the running ex-
ample was created before its implementation, whereas
in the rest of cases the specification was created after
the implementation, from the documentation provided
in the zoo. This documentation contained a quite de-
tailed description of the transformation rules, in natural
language, which we encoded as PaMoMo patterns. We
did not add to the specification anything that was not
in the documentation, so in this sense, the completeness
of the specifications for the transformations in the zoo
depended on the available documentation.

Table 3 gathers the number of preconditions, post-
conditions and invariants in the resulting specifications,
as well as the size of the input meta-models for each case.
The BPMN meta-model is the most complex in terms of
the number of associations between classes, while the
class schema meta-model is the simplest of the three,
and the BibTeX meta-model has few associations but
makes heavy use of inheritance.

Table 3 Size of specifications and input meta-models in the
testbed: (a) Class-to-Relational, (b) BPMN-to-Petri nets, (c)
BibTeX-to-DocBook.

Specification Input meta-model
#pre. #inv. #pos. #classes #assoc. #inh.

(a) 3 10 1 6 4 5
(b) 12 10 5 18 9 15
(c) 3 18 4 21 1 31

7.2 Test suite generation

From the PaMoMo specifications we derived a test suite
for each coverage type under study (property, closed
property, 2-way, and closed 2-way). The test suites were
automatically generated by using the tool presented in
Section 6. Fig. 10 shows the test suite generation time in
each case, measured on an Intel Core i7-2600 CPU 3.40
GHz with 12 Gb RAM. The numbers depicted close to
the graphic lines correspond to the number of generated
models out of the number of sought models (as for some
expressions, the solver did not find a solution model in
the given scope). In general, a bigger number of invari-
ants implies the generation of more models, and conse-
quently, higher generation times. Nonetheless, the size of
the input meta-model and the number of preconditions
in the specification have a bigger impact on the model
finding time. This is why the time for the BibTeX-to-
DocBook specification is much lower than the time for
BPMN-to-Petri nets, even if the former specification de-
fines more invariants and more models are generated, as

5
http://www.eclipse.org/atl/atlTransformations/

#BibTeXML2DocBook
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the size of the input meta-model and the number of pre-
conditions to solve in each model search is smaller in the
first case.
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Fig. 10 Test suite generation time.

Let’s take a closer look to the generation time per
model. The graphic in Fig. 11 shows the median of the
time it took our tool to find each test model using the
property coverage. We use the median as metric to lessen
the effect of outliers. This median was 1.9 seconds for the
Class-to-Relational specification, 5.9 seconds for BPMN-
to-Petri nets, and 2 seconds for BibTeX-to-DocBook. As
previously stated, the reason for this difference in the
model generation time is primarily the different size of
the input meta-models and the number of preconditions
in the specifications. For BPMN-to-Petri nets, the maxi-
mum generation time was 232.5 seconds in one occasion,
6 models were generated in less than 6 seconds, and 3
models were generated in 14 seconds.
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Fig. 11 Model generation time for property coverage.

The graphic in Fig. 12 shows the same metric but for
the 2-way level of coverage (i.e. the model finder must
consider pairs of invariants). The difference in the gener-
ation time with respect to the property coverage is negli-
gible for the Class-to-Relational and BibTeX-to-DocBook
specifications. In contrast, for our running example, the
median is more than the double for the 2-way coverage
(14.9 seconds compared to 5.9 seconds), and the incre-

ment in the value of the first quartile6 (from 3.33 seconds
to 6.3 seconds) indicates that the model generation time
was higher in more occasions (i.e. there were more mod-
els with higher generation time). We do not show the
generation time for the closed variants of the property
and 2-way coverage criteria because the results are sim-
ilar.
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Fig. 12 Model generation time for 2-way coverage.

It is worth mentioning that, even for the least exhaus-
tive coverage, the generated test suites were able to dis-
cover non-deliberate errors in the implementation of the
BPMN-to-Petri nets and BibTeX-to-DocBook transfor-
mations. In the latter case, the error was in the value of a
literal (“Authors List”), which was different in the doc-
umentation and the implementation. For the Class-to-
Relational transformation, the test suites reported some
errors as well. In this case, the problem was that the
transformation assumed certain preconditions for the in-
put models which were not documented, and therefore
were neither included in the specifications nor consid-
ered for model generation. For instance, the fact that
the transformation only admitted input models with a
“String” datatype was not in the documentation, but
only mentioned in the code. Thus, we had to refine our
specification to include all necessary preconditions and
thus generate input models accepted by the transforma-
tion.

7.3 Effectiveness of generated test suites

A technique to measure the effectiveness of a test suite
and help to improve it is mutation testing [6]. In muta-
tion testing, faults are injected in a program to produce
erroneous versions of it, which are called mutants. Then,
each mutant is tested with the test suite. If the test suite
detects the error, then the mutant is killed, otherwise the
mutant remains alive. The mutation score, which is the
number of killed mutants divided by the total number of
mutants, gives a measure of the quality of the test suite.

We have used this technique to measure the effective-
ness of our generated test suites. Thus, we first manually
created mutants of the transformations in the testbed

6 The first quartile q1 is the median of the lower half of the
data.
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by injecting faults that followed the systematic classi-
fication of transformation mutations presented in [36].
These mutations are classified in three types: navigation,
filtering, and creation mutations. Navigation mutations
replace the navigation towards a class with the naviga-
tion towards another, remove the last step of a chain of
navigations, or add a last step of navigation in a navi-
gation chain. Filtering mutations introduce disturbances
in the filters of a collection, either by modifying the at-
tributes used in the filter, or by selecting only some in-
stance types when the collection is defined on a generic
class. Finally, creation mutations replace the creation of
an object with another with compatible type, delete the
creation of a relation between two objects, or add a use-
less relation between two objects. While navigation and
filtering mutations apply to both the input and output
of transformations, creation mutations concern only the
output.

Table 4 shows the mutation operators used to cre-
ate the mutants in the experiment, which altogether be-
long to all possible mutation types (navigation, filtering
and creation). Each mutant was created by applying one
mutation operator once to the original transformation.
Thus, each cell in the table corresponds to the number
of mutants created using a particular mutation operator.
The last column in the table summarizes the number of
mutants created for each transformation.

Table 4 Mutation operators [36] used for the creation of
transformation mutants: rscc (relation to the same class
change), cfca (collection filtering change with addition), cfcd
(collection filtering change with deletion), cfcp (collection fil-
tering change with perturbation), caca (classes’ association
creation addition), cacd (classes’ association creation dele-
tion), cccr (class compatible creation replacement). The three
rows correspond to (a) Class-to-Relational, (b) BPMN-to-
Petri nets, (c) BibTeX-to-DocBook.

navigation filtering creation number of
rscc cfca cfcd cfcp caca cacd cccr mutants

(a) 6 1 1 1 4 12 - 25
(b) 12 4 2 18 2 2 - 40
(c) - - 2 6 - - 4 12

Table 5 shows the number of mutants created from
each transformation, as well as the mutation score of the
generated test suites. Surprisingly, the mutation score is
the same for all levels of coverage under study, and it is
not better when using the closed variants. This means
that the effectiveness is the same (i.e. we detect the same
number of mutants or injected errors) regardless the size
of the input test model set, which is much bigger for the
2-way coverage and its closed variant in all cases (see
Fig. 10).

Interestingly, for the Class-to-Relational, all non-
detected errors were of the Classes’ association creation
addition (CACA) mutation type [36]. This mutation
type adds a useless relation between two class instances

of the output model. Fig. 13 shows an example of one
of such mutations, using the ATL syntax to the right
and an abstract syntax representation to the left. The
injected error is highlighted in a coloured square. In par-
ticular, the error consists in the creation of an unneces-
sary relation of type key between the table and one of
the columns created by the transformation rule. Actu-
ally, the generated test suites did not discover any CACA
mutation in the transformation mutants.

a:Attribute 

name=na 

multiValued=true 

dt:DataType 

type 

c:Class 

name=nc 

owner 

att 

id:Column 

name=nc+’Id’ 

t1:Type 

type 

out:Table 

name=nc+’_’+na 

owner 

col 

val:Column 

name=na 

t2:Type 

type 

owner 

col 

rule MultiValuedDataTypeAttribute2Column { 

  from  

    a : UML!Attribute ( 

        a.type.oclIsKindOf(UML!DataType)  

        and a.multiValued  

    ) 

  to 

    out : Rel!Table ( 

      name <- a.owner.name + '_' + a.name, 

      col <- Sequence {id, val}, 

      -- ***** INJECTED ERROR ***** 

      key <- Sequence{id} 

      -- **************************   
    ), 

    id : Rel!Column ( 

      name <- a.owner.name + 'Id', 

      type <- thisModule.objectIdType 

    ), 

    val : Rel!Column ( 

      name <- a.name, 

      type <- a.type 

    ) 

} 

key 

keyOf 

Fig. 13 Mutation example of type Classes’ Association Cre-
ation Addition (CACA). A useless relation key is created be-
tween the target objects out and id.

The reason why the generated test suites do not de-
tect this kind of errors is in our specification, as it only
considers positive information (i.e. it says which is the
correct translation of elements) but it does not spec-
ify elements that should not appear. For instance, our
specification includes an invariant stating that the cor-
rect translation of multivalued attributes with a primi-
tive datatype is a table with two columns (i.e. the case
shown in Fig. 13). However, it does not explicitly for-
bid the created table to have a key. Hence, even if our
tool generates a model which allows testing the invariant
(i.e. a model that includes multivalued attributes with a
primitive datatype), the generated oracle does not check
that no useless elements are created, and therefore, it
does not notify the error. If we add to our specifica-
tion negative invariants forbidding useless elements, and
then regenerate the oracle function, we obtain a muta-
tion score of 100% for all levels of coverage.

In general, it is frequent to forget specifying negative
information (which elements should not appear), also be-
cause it is a tedious and error-prone task, as there may
be many ways in which useless elements can be added
to the target models. Thus, we foresee adding a closed-
world semantics to our specification language which au-
tomatically enhances the generated oracle with asser-
tions aimed at detecting useless elements. In our con-
text, an element is useless if it is not demanded by any
positive invariant or postcondition in the specification.
Another possibility is making explicit this semantics in
the specification by generating extra negative invariants
that handle these cases. The idea is to let the tester se-
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Table 5 Mutation score of the generated test suites.

number of closed closed
mutants property property 2-way 2-way

Class-to-Relational 25 21/25 ( 84% ) 21/25 ( 84% ) 21/25 ( 84% ) 21/25 ( 84% )
BPMN-to-Petri nets 40 27/40 ( 67.5% ) 27/40 ( 67.5% ) 27/40 ( 67.5% ) 27/40 ( 67.5% )
BibTeX-to-DocBook 12 10/12 ( 83.3% ) 10/12 ( 83.3% ) 10/12 ( 83.3% ) 10/12 ( 83.3% )

lect whether he wants to add this semantics or not to
his specification, as well as how to realise it.

For the other two transformations in our testbed, the
undetected errors were of any possible kind, and some-
times, were located in parts not covered by the speci-
fication. In most of the cases, it is enough to add new
assertions to the generated oracle to detect the errors,
being not necessary to increase the number of input test
models.

7.4 Effectiveness vs completeness of specifications

A second relevant question in our context is the level
of detail required in contracts to find a significant num-
ber of errors and obtain high vigilance. In the previous
section, we observed that the test suites generated for
different levels of exhaustiveness had the same mutation
score. Next, we discuss the results of a set of experi-
ments we have performed to study how the degree of
completeness in specifications may affect the quality of
the generated tests.

Starting from the specifications in our testbed, we
have built new specifications where we have only re-
tained a fixed percentage (25%, 50% and 75%) of their
invariants, in order to obtain specifications with varying
degrees of completeness. Then, we have generated test
suites (including both the input models and the oracle
function) from these specifications, and we have mea-
sured the effectiveness of the test suites by analysing
the mutation score. The results are summarized in Fig.
14.

Unsurprisingly, the test suites generated from less
complete specifications are less effective. Moreover,
whereas in the three cases we obtain the same muta-
tion score if we start from the complete specification,

when we move to less complete specifications there are
differences in the quality of the generated test suites
depending on the selected coverage. For instance, the
mutation score for the 50% of the Class-to-Relational is
44% if we use the property coverage, and higher (48%)
if we use 2-way testing. We can also see that, in some
cases, the closed variants help in detecting more errors
than the non-closed counterparts. For instance, the ob-
tained mutation score in case of using the property and
2-way coverage on the 25% of the BPMN-to-Petri nets
is 35%, and this score reaches 60% if we use any of their
closed variants.

Altogether, the less complete a specification is, the
more important may be moving to more exhaustive cov-
erage criteria in order to obtain test suites with higher
vigilance.

7.5 Comparison with random model generation

To conclude, we report on a last experiment that com-
pares our proposal with random model generation.

Random model generation was implemented as fol-
lows: first, we generated a random model conforming to
the input meta-model (i.e. all generated models were al-
ways valid instances of the meta-model), and then, we
checked whether the model satisfied the preconditions in
the specification, as only these models are valid inputs to
the transformation. If the model satisfied the precondi-
tions, it was included in the input test set, otherwise, it
was discarded and a new random model was generated.
Following this process, we generated test sets of different
size, containing as many models as the studied cover-
age criteria may generate (see Fig. 10). For instance, we
generated input test sets of size 10, 20, 45 and 55 ran-
dom models for the Bpmn-to-Petri nets transformation,
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Fig. 14 Mutation score of the test suites generated from specifications with different degrees of completeness. In particular,
we consider subsets of size 25%, 50%, 75% and 100% of the original specifications.
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Fig. 15 Mutation scores using random model generation vs specification model generation.

as this is the number of models that one would poten-
tially generate from its specification using the property,
closed-property, 2-way and closed 2-way coverage crite-
ria, respectively.

Interestingly, about 1 out of 5 generated Class models
satisfied the preconditions and therefore was valid for
testing purposes, whereas this ratio for BibTeXML was
1 out 28. However, we were not able to generate any
random BPMN model satisfying all preconditions in a
reasonable amount of time (i.e. less than 1 hour). In this
case, models had to be generated pseudo-randomly, that
is, enforcing some of the preconditions a priori, to speed
up the generation process. Using this optimisation, we
were able to produce 1 valid BPMN model satisfying all
preconditions out of 448 generated models. Altogether,
fully random model generation do not seem appropriate
when the models to be generated need to fulfil many
constraints, or these are complex.

To measure the quality of the generated test sets, we
calculated the mutation score using the same mutants
and oracle functions as in the previous experiments,
but with the new test sets. The results are displayed
in Fig. 15, as well as their comparison with the muta-
tion scores obtained by our approach using test sets with
the same size. Since random generation can yield dif-
ferent models each time, the graphics show the average
mutation score for 10 different randomly generated test
sets in each case. We obtained the same mutation score
for both random and specification-driven approaches in
only one case: the BibTeX-to-DocBook transformation.
In the other two cases, the graphics show that in ran-
dom model generation, having bigger test sets usually
lead to better mutation scores (i.e. test sets with better
quality). This does not seem the case in our approach,
as we obtained the same mutation score for all coverage
criteria analysed. The mutation scores for the randomly
generated test sets were never bigger that those obtained
using our approach, and indeed, in most cases they were
smaller. This is especially the case for the smallest test
sets, which in our approach correspond to those gener-
ated using the property coverage criterion. For instance,

for the Class-to-Relational transformation, the average
mutation score for 10 test sets of 10 random models was
68.67%, while this score was 84% using our property
coverage criterion. This indicates that the test sets gen-
erated with our approach are successful in testing the
properties in a specification, and are more intentional
than those generated randomly, providing some evidence
of our starting hypothesis.

8 Discussion and lines of future work

As discussed in Section 2, most black-box testing ap-
proaches use meta-model coverage criteria to ensure that
the generated input models will include, altogether, in-
stances of all classes and associations in the meta-model,
and extreme values for the attributes. However, it is diffi-
cult to ensure that the generated models will include cer-
tain structures enabling the testing of relevant transfor-
mation properties, whereas unimportant class instances
or model fragments may appear repeatedly in the gen-
erated models.

In contrast, the presented specification-driven ap-
proach aims at testing the intention of the transforma-
tion, and ensures that the generated models will allow
testing transformation properties of interest. Moreover,
the models we generate with our technique tend to be
small. This has the advantage that the test models re-
main intentional: they are generated for testing a par-
ticular combination of transformation invariants, which
will be checked by the oracle function more efficiently.

We have conducted some experiments in which
we automatically generated test suites from several
transformation specifications according to different
specification-based coverage criteria, and then measured
the efficacy of the generated tests. Our findings can be
summarized as follows:

– The models generated with our techniques are useful,
even if we use the least exhaustive coverage, as they
were able to detect non-deliberate errors in our trans-
formation implementations. Moreover, their genera-
tion is effortless and ensures the models will conform
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to their meta-model and fulfil extra conditions (i.e.
preconditions) when required by a transformation.
To this respect, the automatic model generation also
helped us to identify preconditions for the input mod-
els, which were assumed by the transformations but
not documented (such in the case of the Class-to-
Relational transformation).

– The quality of the generated test set highly relies on
how complete a specification is. If a specification only
covers part of the transformation requirements, then
the generated models may not enable the testing of
the underspecified parts. For instance, our running
example does not include invariants over the End-
Event BPMN class, and therefore the generated test
models may not include instances of this type, leaving
its transformation untested. Thus, we foresee com-
plementing our techniques with additional coverage
criteria, also meta-model based.

– For rather complete specifications, the most simple
coverage criterion (i.e. property) yields test suites as
good as other coverage criteria that generate more in-
put models, being these latter more expensive to pro-
duce and execute. However, as we move towards less
complete specifications, we sometimes obtain more
effective tests when using more exhaustive criteria
than using simpler ones, as well as when using the
closed variant of coverages (i.e. when we include mod-
els that purposely do not contain occurrences of some
invariant in the specification).

– In our experiments, an error which was recurrently
undetected by the generated oracles was the creation
of extra classes or relations in the output models,
apart from the expected ones. This is due to the
fact that, when defining the requirements of trans-
formations, we tend to focus on the elements that
the transformation should create (e.g. from each class
we should create a table), but forget to specify what
should not occur (e.g. the generated table should not
have a key). This negative information is tedious to
specify by hand, and it is difficult to ensure that any
non-allowed configuration has been specified. Thus,
we foresee adding a closed-world semantics operation
for our specifications which regards any output model
not belonging to the language of the specification to
be invalid. Two realisations of this operation are un-
der consideration: extending the specification with
extra negative information (e.g. negative invariants),
or generating oracle functions that take this seman-
tics into account.
Notice that detecting this kind of errors is not a mat-
ter of generating more input test models, but it re-
quires extending the oracle function to make it more
precise.

In the future, we plan to perform further experiments
with larger case studies to evaluate whether, in such
cases, there is more variability in the mutation score for

the test sets generated using different coverage criteria.
Starting from the results in these experiments, we plan
to integrate additional techniques for input model gener-
ation, both meta-model based and white-box based. In
particular, given a set of input models generated from
a specification, we plan to extend them to create new
models that enable the testing of a transformation im-
plementation according to some white-box coverage cri-
terion (e.g. rule coverage, OCL expression coverage [21],
etc.). The implementation of a mechanism for the de-
tection and elimination of redundant models in the gen-
erated test sets is also future work. More in detail, we
plan to compare the source model of invariants to elim-
inate duplicated ones and obtain a smaller input test
set that still enables the testing of all invariants in the
specification, as well as using model differencing after
model generation to detect whether two models are the
same. Finally, we plan to develop tool support for the
automatic generation of transformation mutants, which
is time-consuming, as well as heuristics to produce new
input models from live mutants.
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by contract to improve software vigilance. IEEE Trans.
Software Eng., 32(8):571–586, 2006.

49. J. Troya and A. Vallecillo. A rewriting logic semantics
for ATL. Journal of Object Technology, 10:5: 1–29, 2011.

Appendix

This appendix presents the formal semantics of
PaMoMo. Further details of this formalisation, as
well as additional examples, are available in [25,26].

The building blocks in PaMoMo are constraints of
the form C = ⟨Gs, Gt, α⟩, where Gs is a graph that con-
forms to the source meta-model of the transformation,
Gt is a graph that conforms to the target meta-model
of the transformation, and α is a Boolean formula over
the elements and attributes in both graphs. We say that
a constraint C is empty if it has empty graphs Gs and
Gt, and its formula α is true. We write α|s (resp. α|t) to
refer to the terms of the formula α that contain only ob-
jects and variables in Gs (resp. Gt). Given a constraint
C, we can build the constraints C|s = ⟨Gs, ∅, α|s⟩ and
C|t = ⟨∅, Gt, α|t⟩.

We define relations between constraints by means of
morphisms. Given two constraints C1 = ⟨G1

s, G
1
t , α

1⟩
and C2 = ⟨G2

s, G
2
t , α

2⟩, a morphism m : C1 → C2 is
given by two embeddings G1

s ↪→ G2
s and G1

t ↪→ G2
t , such

that α2 ⇒ α1, α2|s ⇒ α1|s and α2|t ⇒ α1|t.
Finally, we define a gluing construction which merges

two constraints through a common intersection. In par-
ticular, given the constraints C1 = ⟨G1

s, G
1
t , α

1⟩ and
C2 = ⟨G2

s, G
2
t , α

2⟩ to be merged, a constraint D =
⟨Ds, Dt, α

D⟩ identifying the common elements in C1 and
C2, and the morphisms C1 ←− D −→ C2, we define the
gluing construction C1 +D C2 = ⟨G1

s +D G2
s, G

1
t +D

G2
t , α

1 ∧ α2⟩, which yields a constraint built componen-
twise by gluing the graphs in C1 and C2 through the
elements identified in D (formally a pushout construc-
tion [11]) and taking the conjunction of the formulas
in C1 and C2 [25]. For simplicity, we use the shortcut
C1 + C2 (instead of C1 +D C2) when there is no room
for misunderstanding.

As an example, Fig. 16 shows four constraints. The
left compartment in each constraint corresponds to the
source graph Gs, the right compartment corresponds to
the target graph Gt, and the formula α is depicted below
(we hide the formula if it is the true formula). The mor-
phisms between constraints are depicted as arrows, and
the identification of elements across constraints is given

by equality of identifiers (e.g. we identify all tasks in the
constraints by using the same identifier t). The gluing of
constraints C1 and C2 via D yields constraint C1+DC2,
where object t appears once as it was identified in D,
and the formula is the conjunction of the formulas in C1

and C2.

..t..
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s
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t

..

C1
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t
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pl
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s
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t
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t.name = pl.name

..

C1 +D C2

Fig. 16 Gluing of constraints.

A PaMoMo invariant I : Ce
e−→ C

di−→ Cdi is made
of a main constraint C, a constraint Ce (which may be
empty) called enabling condition, a set of constraints Cdi

called disabling conditions, and morphisms e : Ce → C
and di : C → Cdi from the enabling condition to the
main constraint, and from this latter to each disabling
condition. Moreover, invariants can be positive or nega-
tive.

As an example, the upper part of Fig. 17 shows a
hypothetical invariant with a non-empty enabling con-
dition Ce and a disabling condition Cd1 , just for illustra-
tive purposes. Below, we show the same invariant using a
more compact notation that we use in this paper, where
the disabling condition only contains the elements that
do not appear in the main constraint (and their con-
text), and we omit repeated terms in formulas across
constraints. The letter N on the main constraint indi-
cates that the invariant is negative. Altogether, the pur-
pose of this invariant is specifying the following property:
if we have a task t and a place pl with the same name
(enabling condition), and t is not the first task after the
start event (disabling condition), then there cannot be a
place with one token connected through a transition to
pl (because the invariant is negative).

Let I : Ce
e−→ C

di−→ Cdi be an invariant, with α, β
and γi being the formulas defined in C, Ce and Cdi

, re-
spectively. If the invariant is positive, then it will hold on
a pair of source and target models if: (i) for each occur-
rence occ of the enabling condition Ce plus the source
graph of the main constraint C, (ii) if there is no oc-
currence of any disabling condition Cdi which embeds
occ, (iii) then there is an occurrence of the target graph
of C which embeds occ. We formalise this semantics as
follows:

∀ occ(C|s + Ce)
s.t. β ∧ α(C|s + Ce) holds ∧
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Fig. 17 Invariant in theoretical and compact formats.

(∀ Cdi @ occ(C|s + Ce + Cdi |s)
s.t. γi(C|s + Ce + Cdi |s) holds),

∃ occ(C) s.t. α holds

where occ(x) represents an occurrence of the constraint
x, and α(x) is the part of the formula α that contains
only objects, attributes and variables defined in the con-
straint x (and similar for γi(x)). If the invariant is nega-
tive, its semantics forbids finding and occurrence of the
target graph of C, for which purpose we need to change
the ∃ by @ in the last line of the previous formula. For
invariants without enabling and disabling conditions we
can simplify the formula as follows:

∀ occ(C|s) s.t. α|s holds,
∃ occ(C) s.t. α holds

Fig. 18 illustrates the satisfaction checking procedure
for the invariant shown in Fig. 17. First, we look for all
occurrences of the constraint that results from gluing
C|s and Ce. There are two occurrences in the models:
one made of the start event and the task and place “In-
vent gadget”, and another one made of the start event
and the task and place “Get rich”. Secondly, we retain
only the occurrences that do not violate the disabling
condition (i.e. those which are not embedded in a bigger
occurrence of the gluing of C|s, Ce and the source part
of the disabling condition). Since the start event in the
BPMN model is connected to task “Invent gadget”, we
discard this occurrence; on the contrary, we retain the
other occurrence that contains task “Get rich” because
this is not connected to the start event. Thirdly, for the
retained occurrences, we check whether they cannot be
completed to the main constraint (because the invariant
is negative). Since the place “Get rich” is not connected
to a place with a token, we conclude that the invariant
holds in this pair of models.

Pre- and postconditions have the same structure as
invariants, but the target (source) graph in preconditions
(postconditions) is empty. Their interpretation is also
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Fig. 18 Checking satisfaction of a negative invariant.

different. A pre/postcondition holds if, for each occur-
rence of the enabling condition, there is an occurrence
of the main constraint for which no occurrence of the
disabling conditions is found. Formally:

∀ occ(Ce) s.t. β holds,
∃ occ(C) s.t. α holds ∧

(∀ Cdi @ occ(Cdi) s.t. γi holds)

In case of negative pre- and postconditions, we should
not find occurrences of the main constraint (i.e. there
should be @ in the second line of the formula). More-
over, for pre- and postconditions without enabling and
disabling conditions, we obtain the simpler formula:

∃ occ(C) s.t. α holds
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