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Abstract Business process (BP) designs and enter-

prise information system (IS) designs are often not well

aligned. Missing alignment may result in performance

problems at run-time, such as large process execution

time or overloaded IS resources. The complex interre-

lations between BPs and ISs are not adequately under-

stood and considered in development so far. Simulation

is a promising approach to predict performance of both,

BP and IS designs. Based on prediction results, design

alternatives can be compared and verified against re-

quirements. Thus, BP and IS designs can be aligned to

improve performance. In current simulation approaches,

BP simulation and IS simulation are not adequately in-

tegrated. This results in limited prediction accuracy due

to neglected interrelations between the BP and the IS in

simulation. In this paper, we present the novel approach
Integrated Business IT Impact Simulation (IntBIIS) to

adequately reflect the mutual impact between BPs and

ISs in simulation. Three types of mutual impact between

BPs and ISs in terms of performance are specified. We

discuss several solution alternatives to predict the im-

pact of a BP on the performance of ISs and vice versa. It

is argued that an integrated simulation of BPs and ISs

is best suited to reflect their interrelations. We propose

novel concepts for continuous modeling and integrated

simulation. IntBIIS is implemented by extending the

Palladio tool chain with BP simulation concepts. In

a real-life case study with a BP and IS from practice,

we validate the feasibility of IntBIIS and discuss the

practicability of the corresponding tool support.
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1 Introduction

Business processes (BPs) and enterprise information

systems (ISs) mutually affect each other in non-trivial
ways [1]. The complex interrelations between BPs and

ISs, however, are not adequately researched so far. Es-

pecially interrelations between quality aspects (such as

performance, reliability, or maintainability) concerned

with business people and those concerned with IS de-

velopers are not well understood. Frequently, a direct

mapping of metrics is not possible as the representation

of a certain quality aspect may differ in the BP and IS

domain. For example, reliability in the business context

is often understood as fault tolerance and capability

of fault handling (e.g., [16]). In the hardware context,

reliability is typically represented in the form of mean-

time-to-failure [43] of a hardware component (e.g., CPU

or hard disk), where reliability in the software context is

often described as failure probability of a certain system

call in percent (e.g., [7]).

Engineering methods for aligning one domain to the

quality objectives of another are missing. One major

reason for insufficient quality engineering is that current

approaches lack an integrated consideration of quality

aspects among several domains. Frequently, BPs and

ISs are not well aligned, meaning that BPs are designed

without taking IS impact into account and vice versa [2,

9,54]. Neglecting the mutual impact between BPs and

ISs in the joint development leads to serious practical

issues. On the one hand, it is not known whether a

particular requirement can be satisfied by a proposed IS

design, because it is not known how the system is used in

the BP scenario, and how this usage affects the IS quality.

On the other hand, it is unknown whether a particular

requirement can be satisfied by a proposed BP design,

because it is unknown whether involved ISs adequately
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support the adherence of the requirement. Decisions in

IS development are not reliably made since important

BP-related information may not be considered. Insuf-

ficient consideration of BP properties may decelerate

IS development due to rework needed in subsequent

development phases. The same applies to neglected IS

properties in BP development. A positive effect of the

interrelations, however, is that new opportunities for

BP evolution may come up due to novel capabilities

provided by ISs [55,9].

Simulation is a powerful approach to predict the

impact of a certain BP design on the quality of ISs

and vice versa. BP design and IS design can be aligned

by making adjustments based on the predicted quality

impact. Performance is one of the quality aspects most
addressed by current approaches. There are simulation

approaches aiming at IS performance prediction (e.g.,

[4]) as well as approaches targeting BP performance

prediction (e.g., [25]). However, current approaches do

not adequately integrate both in simulation. Only few

approaches in literature (cf. [36,13,5,23]) address the

alignment of BPs and ISs. These approaches exchange

information between isolated BP simulation and IS sim-

ulation. Simulating BPs and ISs in isolation is not an

adequate approach as this neglects the mutual impact

on workload burstiness [18]. Workload burstiness has

“paramount importance for queuing prediction” [33] be-

cause it reflects whether load is dispersed equally or in

bursts in a BP scenario. Thus, prediction accuracy of

approaches using isolated simulations is limited.

In this paper, we present the novel approach Inte-

grated Business IT Impact Simulation (IntBIIS) that ad-

equately represents workload burstiness in performance
simulation. IntBIIS enables the integrated simulation

of BPs and ISs. Palladio [4] is an established approach

to predict quality of software properties from software

architecture models. The Palladio Component Model

(PCM) [4] provides domain-specific modeling concepts

and thus better supports modelers compared to tradi-

tional quality prediction formalisms, such as Petri nets

and queuing networks. However, Palladio does not con-

sider the business context of a software system. This

work is an extension of the PCM and the event-based

simulator EventSim [32] by BP-specific properties pro-
posed in [19]. Parts of the content presented in this

paper have been developed in the context of the first

author’s dissertation, which is published in [18].

Knowing that quality of BPs and ISs is a multi-

dimensional concept (cf. [22]), we focus on performance

in this paper due to the following reasons. Performance

is one of the most demanded quality aspects across sev-

eral domains, including BP [9] and IS [46]. In contrast to

other quality aspects, foundations are available in form

of established prediction methods and formalisms (e.g.,

[29,38,3]) that can be built upon. The performance of

an existing BP and IS can be measured relatively easy

(e.g., using monitoring techniques [50,11]), where other

quality aspects, such as reliability, may require remark-

ably high number of observations, e.g., to gather events

that happen very rarely [6]. Consequently, performance

prediction methods can be validated quickly and easily,

by comparing prediction results with measurements.

Van der Aalst et al. [49] distinguish operational de-

cision making and design decision making. Operational

decision making is conducted to solve a concrete prob-

lem at hand, e.g. by mobilizing additional resources

[49]. In contrast, design decision making addresses fun-

damental and long-term modifications of structure or

behavior, e.g. by introducing a new IS. This terminol-

ogy is comparable to that used in software engineering

where one distinguishes evolution and adaptation [17].

In the context of this paper, we focus on design decision

making.

IntBIIS contributes to (a) the alignment of BP de-

signs and IS designs while considering the mutual impact

in between, (b) a more accurate performance prediction

compared to isolated simulation, especially in cases of

high workload burstiness, (c) the comparison of design

alternatives and the verification of a design against re-

quirements based on the predicted impact. Considering

this, IntBIIS aims at reducing time and costs caused by

rework in subsequent development phases.

IntBIIS supports several roles in the joint develop-

ment of BPs and ISs: (i.) Requirement engineers can

verify in the design phase whether an IS performance

requirement can be satisfied by a proposed IS design

for a given BP design. (ii.) IS designers can compare

the performance of proposed design alternatives of ISs

invoked in a given BP without implementing IS pro-

totypes. (iii.) Hardware administrators can check the

utilization of hardware resources such as a CPU or a

hard disk drive for a proposed IS design or BP design.

(iv.) Business analysts can verify in the design phase

whether a BP performance requirement can be satisfied

by a proposed BP design and a given IS design. (v.)

Process designers can compare BP design alternatives

without executing a BP in practice while the IS impact

is included in the comparison.

The paper is structured as follows: In Sec. 2, we

introduce definitions required to understand the paper.

Sec. 3 introduces the order picking process. Three types

of mutual impact between BPs and ISs in terms of per-

formance are described in Sec. 4. In Sec. 5, we discuss

related work. Several solution alternatives to represent

the mutual impact in simulation are discussed in Sec. 6.

In Sec. 7, we describe IntBIIS by introducing BP-specific
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modeling constructs and simulation concepts. In Sec. 8,

the feasibility of IntBIIS is validated and the practica-

bility of our tool support is discussed.

2 Definitions

A business process is a “set of one or more linked ac-

tivities which collectively realize a business objective or

policy goal, normally within the context of an organiza-

tional structure defining functional roles and relation-

ships” [57]. Each activity within the BP is composed of

a set of one or more linked steps. Steps are either per-

formed completely by a human actor – called actor steps

– or performed completely by an IS – called system steps.

The representation of a BP or an IS in a model is called

design hereafter. IS design refers to the meta-models

in [4] while a BP design is described using the meta-

models proposed in Sec. 7.1 through Sec. 7.3. System

steps within a BP design refer to interfaces of software

components in the IS design that implement services
specified by the interfaces. In other words, system steps

are system entry calls invoked by a human actor. They

make the transition between BP and IS modeling by

referring to IS-intern behavior [4].

Adapting the definition of instance in [57], we de-

fine a BP instance as the “representation of a single

enactment” of a BP design. Similar to workloads in

queuing networks [29], the BP workload specifies the in-

tensity of process execution by determining the amount

of BP instances that traverse the BP. Often workload is

measured in BP instances per time unit. BP instances

traverse all the actor steps and system steps on a certain

path through the BP from the process starting point to

a process end point. If the workload does not change

over time, it is called time-invariant, otherwise it is

called time-variant.

Several performance measures are applied in this

paper. A short form of the definitions is given in the

following, where a complete definition based on queuing

network terminology is given in [18]. The total time

required by a BP instance to traverse a system step is

called response time. The total time required by a BP

instance to traverse an actor step is named execution

time. The time needed to traverse an activity within

the BP or an entire BP is also termed execution time.

These performance measures are predicted in simula-

tion as described later in the paper. The performance

measures are also applied to specify performance require-

ments on a BP design or an IS design. The requirements

may be specified among others in the form of mean

values, thresholds or intervals. Comparing the predicted

performance measures to the requirements allows for
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Fig. 1 The order picking process (simplified overview)

determining whether a certain requirement is satisfied
by a design or not.

A set P of BP designs and a set S of IS designs are

aligned in terms of performance, if

– each system step in a Pi ∈ P refers to an interface

of a Sj ∈ S

– each system step that refers to an interface of a Sj

is contained in an element of P

– ∀ Sj ∈ S: Sj meets its requirements

– ∀ Pi ∈ P: Pi meets its requirements

At a particular point in time, each BP instance

has its own position relative to the BP design, which
represents its progress towards completion. A position is

a model element in the BP design such as an actor step.

The difference in time in which two BP instances reach a

certain position is called distance. The distance in which

two subsequent BP instances come into the process start

position is named inter-arrival time (cf. [29]). Workload

burstiness refers to the distance in which subsequent BP

instances come into a specific position in the BP design.

For example, three BP instances come into a specific

position within a minute. The BP instances can come

into the position at a constant distance (30 seconds)

to each other, or they can occur in bursts. In both

cases, the workload is three BP instances in one minute

however the burstiness differs. A formal characterization

of workload burstiness is given by the index of dispersion.

Mi et al. [33] tailored the index of dispersion originally
used in network analysis to IS requests. It is applicable

to human actors alike as the ratio of the variance of the

number of completed steps to the mean service rate.

3 The Order Picking Process

In this section, we introduce the order picking process

and involved IS as a case of application from practice

which is used for demonstration and validation purposes

in this paper.

Fig. 1 shows a simplified representation of the order

picking process at Thor GmbH, a multinational manu-

facturer and distributor of specialty chemicals. Parts of
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Fig. 2 IS on software component level (simplified overview)

the process description have been presented in early ver-

sions in [19,23]. A more detailed model is contained in

the appendix of the first author’s dissertation [18]. The
simplified overview consists of a starting point and an

end point, both represented by circles, and a sequence

of steps in between. For a better understanding, activi-

ties that hierarchically nest the steps, loops, and path

branches included in the process are not depicted in the

figure. Steps are visualized by rectangles with rounded

corners. “AS:” denotes actor steps. “ISS:” denotes sys-

tem steps. Lanes represent roles of human actors. In

the order picking process, goods requested by an or-

der are taken out of the stock of the organization and

are packed for transportation by truck. First, the shift

leader releases orders for packing. The IS inserts the

order data into a database (cf. Oracle database in the

next paragraph) and transfers the order data from the

database to a mobile client of the fork–lift driver. Then,

the fork–lift driver accepts the order, which is registered

in the database by the IS. The fork–lift driver takes

the goods out of the stock and puts them on a location

where they are packed for transport. Then, the fork–

lift driver confirms the transport. The IS updates the

database and informs the warehouser. The warehouser

packs the goods for transport, takes them to a location

where they are collected by a truck later, and confirms

the transport. Finally, the IS updates the database.

Fig. 2 shows a simplified representation of the IS

involved in the BP on software component level. Further

details are given in [18]. Logical software components

are represented as rectangles marked with a compo-

nent symbol. The software components are deployed on

several hardware nodes which are depicted as cuboid.

Interface symbols indicate the source and target of call-

dependencies between the components. PPS is a German

abbreviation for the production planning and controlling

component. ADS stands for Advantage Database Server.

WHM is an abbreviation for Ware House Manager and

STLS is a German abbreviation for the fork-lift control

component.

The PPS component is used to present all order-

related information to the shift leader. It is also used

to trigger the release of new orders. PPS uses the ADS

database component. The ADS database contains all in-

formation of an order such as ordered goods, quantities,

and pricing. The WHM component communicates with

the mobile clients located in each fork-lift. All move-

ments of packing units are sent to the WHM component.

The WHM component uses the Oracle database compo-

nent to store all information related to the processing of

the released orders such as storage places, movements

of packing units, and the status of each order. When an

order is released, the STLS component is responsible for
the data exchange between the ADS database and the

WHM. The STLS reads data from the ADS database

and transfers it to the WHM component. Finally, the

WHM inserts the order data into the Oracle database.

4 Mutual Performance Impact

between BPs and ISs

In this section, we discuss the mutual impact between

BPs and ISs regarding performance which represents

the requirements on simulation approaches discussed in

Sec. 5.

4.1 BP Impact on IS Performance

IS performance is affected by the BP design as well

as by the BP workload. The BP design represents the

usage profile of the IS at an abstract level. It determines

which and when a specific system step is invoked, and

which system steps are invoked concurrently. As the

BP workload determines the number of BP instances

traversing the actor steps and system steps in the BP,

it also determines the workload of the IS. BP workload
is performance-relevant since the performance of the IS

may differ depending on its usage intensity [29].

4.2 IS Impact on BP Performance

Two kinds of IS impact on BP performance have been

identified. First, permanently overloaded ISs impede BP

execution. If one or more resources of an IS are perma-

nent overloaded (e.g., by too many actor requests), the

IS may no longer be available for actors in the BP. Sec-

ond, the response time of ISs can significantly increase

the process execution time. Frequently, IS response time

is in a millisecond range. However, large database re-

quests, complex calculations or data transmission to

mobile systems may result in response times of several

minutes. If the response time of the IS is in its extent

comparable to the execution times of actor steps within

the BP, IS response time may significantly affect BP

performance. For example, in the order picking process,

the transfer of order data to the mobile client of the



Integrating Business Process Simulation and Information System Simulation for Performance Prediction 5

fork–lift driver lasts up to 40 minutes and more, which

heavily impairs the process execution time as it extends

accordingly.

4.3 Joint Impact on Workload Burstiness

The way human actors process jobs (i.e. actor steps)

can be reflected by queuing network theory. Regarding

this, the job processing by human actors is similar to

those by hardware resources. However, there are specific

differences (e.g., [49,56,34]) which are initially ignored

in this section to focus on similarities, instead they are

further discussed in Sec. 7.5. Human actors as well as

hardware resources have a kind of waiting queue – called
worklist for human actors [57]. Both resource types offer

a certain service to their environment; jobs carry an

amount of work to be done (the demand) and line up

in a waiting queue when the resource is occupied. They
process jobs from their waiting queue in a certain order,

e.g. in FIFO or in a priority-based order. Human actors

as well as hardware resources affect workload burstiness.

Suppose the FCFS (first-come, first-served) scheduling

principle. If an actor is already busy when an actor

step has to be performed by this actor, the execution

of the actor step is blocked until the actor is ready to

perform the actor step. If a hardware resource used in

a system step is already busy when it is invoked by an

actor request, the request must wait until the resource

is ready to process the request.

Moreover, also passive resources can cause waiting

times. Passive resources in a BP are non–Information

Technology devices or machines, such as a fork–lift.
Passive resources in ISs, for example, are threads in a

thread pool or database connections. They are available

in a limited capacity and shared among all BP instances.

If more passive resources are requested in the steps than

currently available, the requesting BP instances have to

wait until passive resources are released again.

Waiting times hinder the BP instances in travers-

ing the BP design. For each step in the BP design,

waiting times of BP instances may differ from one an-

other depending on the waiting queue length of the

corresponding resources. In a BP, it is common that

several instances are processed concurrently by several

actors of the same role whose waiting queues may dif-

fer. Frequently, hardware resources are also available

in multiple replications, each of them having a differ-

ent waiting queue length. Consequently, the distances

between the BP instances in the BP design may vary

during process execution. High workload burstiness of-

ten leads to increasing mean execution/response times

(cf. [33]). Further discussion and demonstration on this

is given in [23] and [18].

5 Related Work

Van der Aalst et al. [49] analyzed existing BP simulation

tools and criticized the rather naive representation of the

behavior of human actors. They identified limited sup-

port for modeling the organizational environment. This

means that process models need to be complemented
by information about resources [49] (e.g., human actors

and their particular role). Thus, van der Aalst et al.

concluded that existing BP simulation tools are not

very useful for performance prediction. We share this

criticism and address it by the modeling constructs and

simulation strategies proposed in this paper.

The appearance of the BPMN [35] brought a variety

of associated modeling and simulation tools with it [8].

We analyzed BPMN tools for quality modeling and pro-

posed extensions in previous work [20,21]. The BPMN

is appropriate to model human tasks and software ser-

vice calls, and how they are embedded in BPs. The
BPMN per specification, however, lacks the represen-

tation of service internals and their execution context,

such as the software architecture and hardware resources.

Hence, BPMN-associated simulation approaches are in-
adequate to reflect the mutual performance impact be-

tween BPs and ISs. Furthermore, what is called simu-

lation in BPMN-associated tools is mostly limited to

a sequence of steps in which one or more tokens pass

through the process elements [8], however, does not take

into account the utilization of resources, for example.

Few simulation tools, such as ADONIS1, come along

with BPMN extensions by modeling and simulation

concepts, i.a. to reflect human actors. The upcoming

BPSim standard [53] is an extension of the BPMN that

addresses limited simulation capabilities by offering di-

verse parameters (e.g., time parameters) that can be

applied to predict BP performance. Nevertheless, also

BPSim neglects IS internals and thus cannot adequately

reflect interrelations between BPs and ISs. In contrast,

we target a much more in-depth simulation of BPs and

ISs building upon queuing network theory.

Furthermore, van der Aalst et al. [49] propose mak-

ing use of event log analysis to gather data needed to

create simulation models. More and more simulation

tools are interconnected to event analysis techniques

(e.g., via process mining [50] and system monitoring

[11]). ProM [51] is an established process monitoring

framework which is applied to provide inputs to BP sim-

ulation [39]. Kieker [10] is an IS monitoring framework

that is currently extended [24,17] to provide inputs to

the Palladio simulator [4]. Some techniques are applied

to analyze the behavior of resources within the BP based

on event logs recorded by ISs [47,34]. Event log analysis

1 http://www.adonis-community.com/
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to gather simulation inputs related to the IS and the

BP is also a part of the simulation study conducted in

the context of this paper. However, event logs are solely

one possible data source. In practice, many information

is not ascertainable from event logs (e.g., non-visible ac-

tivities [56]) and must be gathered by other techniques,

such as interviews. This is further described in Sec. 8.1.

There are few approaches in literature that address

the mutual performance impact between BPs and ISs

in simulation. Painter et al. [36] use BP simulation and

computer network simulation in isolation in order to

predict BP and IS performance. Giaglis et al. [13] present

an approach to support concurrent engineering of BPs

and ISs and to facilitate investment evaluation. BP

simulation is used to predict BP performance. Computer

network simulation is used to depict several alternative

network architectures and topologies. Betz et al. [5]

sketch a framework to integrate the lifecycles of BPs

and business software for requirements coordination

and impact analysis. Still, they use BP simulation and

component-based software architecture simulation in
isolation. In a prior publication [23], we present an

approach to define interfaces between isolated BP and

IS simulations for information exchange in order to

predict the mutual impact. This is described in more

detail in Sec. 6.1.

Although some of the approaches are not described

in detail, it can be seen that all the approaches: (a)

consider the BP impact on IS performance, as described

in Sec. 4.1, and (b) IS performance is considered as a

factor of BP performance, as described in Sec. 4.2.

The approaches by Serrano & den Hengst [44] as

well as Tan & Takakuwa [48] only predict the impact of

ISs on BP performance but do not consider the impact

of BPs on IS performance.

All the approaches we found use BP simulation and

IS simulation in isolation. Isolated simulations do not

adequately reflect workload burstiness within the BP as

described in Sec. 4.3. As workload burstiness may impact

the performance significantly, the prediction accuracy

of approaches using isolated simulations is limited. Mi

et al. [33] showed how big the deviations can be. In

an experiment, they observed bursts in workload of

an IS. They compared the response time of a system

step in the case of a random workload burstiness to the

response time of the system step in the case that all

the requests are compressed into a single large burst. In

case of the burst, they observed that the mean response

time is approximately 40 times longer than in random

burstiness. The 95th percentile of the response times

is nearly 80 times longer in bursts. Since human actors

process jobs in a similar manner as hardware resources

(cf. description in Sec. 4.3), we expect similar results

for actor steps in the case of bursts. This leads to the

conclusion that in case of bursts, one cannot expect

accurate simulation results using existing approaches.

6 Discussion of Solution Alternatives

The coupling of multi-domain models for usage in simu-

lation is a common problem found in many engineering

disciplines. This coupling usually is done to analyze

(mutual) interactions between modeled domains. A gen-

eral overview on available techniques and frameworks

is given in [37]. Simulation developers are challenged to

find a meaningful mapping of entities and interactions

to create an interoperable simulation composition. In

our example, the system steps in the BP design have to

match system entry calls of the IS design.

In the following, four solution alternatives for sim-

ulating the mutual impact between BPs and ISs are

presented (see Fig. 3). These solutions can be classified
by the heterogeneity (or homogeneity) on simulation

model and infrastructure level. Moreover, we applied

three criteria for comparing the solution alternatives:

C1 Workload burstiness: refers to the capability of the

solution alternative to reflect the joint impact on

workload burstiness.

C2 Modeling concepts: refers to relevant modeling con-

cepts, such as time-variant workloads and suspend-

able resources, that have to be supported by the

domain modeling languages.

C3 Realizability: refers to prerequisites that must be

met to realize the solution alternative.

6.1 Isolated Simulations

The simplest solution to the interoperability problem is

to run simulations in isolation and only exchange simula-

tion results. In [23] we describe an approach where an IS

usage profile describing the workload of the IS is derived

from a BP model. The results of the IS simulation are

written back as stochastic values to the BP model and

used for consequent BP simulations.

Both simulations are conducted in isolation and in-

formation is exchanged ex-post. Thus, we have hetero-

geneity on both simulation model and infrastructure

level.

6.2 Online Co-Simulations

Another approach is the usage of online co-simulation,

where models remain in their specialized simulators
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Fig. 3 Comparison of Solution Alternatives

which, however, are interlinked. This co-simulation com-

monly require additional efforts, e.g. a Coordinator for

time management, model synchronization and connectiv-

ity in order to coherently integrate the simulations. With

this kind of approach simulation models can remain het-

erogeneous, while at infrastructure level simulators have

to assure technical interoperability.

The High-Level Architecture (HLA) [45] is a stan-

dard for federated co-simulations. It uses separately

defined object models to describe shared objects along

with possible interactions. These descriptions are do-

main specific and have to be created in coordination

with the simulations. The HLA requires a central compo-

nent (Run-Time-Infrastructure, RTI) which controls the

simulation execution and manages the communication

between simulations. Moreover, simulators commonly
have to be adapted to interface and interact with the

RTI and the shared object model.

6.3 Formalism Transformation

By formalism transformation, we understand the usage

of model transformations for creating a homogeneous

simulation model. A characteristic of this approach is

that a single-formalism model is used as input to the

simulation. Commonly, general purpose simulation for-

malisms like Petri nets or queuing networks are used as

target formalisms [52]. The mapping of domain elements

to the formalized simulation execution semantics is ex-

pressed in the used model transformations. Thus, the

problems of technical interoperability can be neglected

as only a single simulation infrastructure is used.

To employ this approach, simulation developers have

to find a common formalism suitable for all simulated

domains. Petri nets and queuing networks have a long

tradition as formalisms to describe ISs as well as BPs.

Moreover, there are transformations for translating IS

models to the Layered Queueing Networks (LQNs) and

Queueing Petri Nets (QPNs) [38,3] formalisms. Trans-

formations and corresponding formalisms have been

successfully applied, e.g., in [26,27]. There are also ap-

proaches to translate BP models to the LQN or QPN

formalism, e.g., in [15].

Current transformation approaches, however, have

strong restrictions on supported modeling concepts and

have a lower prediction accuracy, compared to dedicated

simulation tools [31].

6.4 Integrated Simulation

By integration, we understand that models of the dis-
tinct domains are combined to form a comprehensive

model and are evaluated in a single simulator. In such a

unified simulation framework the heterogeneity on sim-

ulation infrastructure level is eliminated. Thus, there is

no need for external communication or additional time

synchronization. In contrast to the priorly mentioned
approach, heterogeneity on model level is preserved and

no unified execution semantics has to be found. Still,

the comprehensive simulation model has to include an

alignment of used domains to enable interoperability.

An integrated simulation of IS and BP domain seems

to be a promising approach, as there are several analo-

gies: Both kinds of simulations usually built upon queu-

ing theory concepts, use a specification of a sequence of

actions to be processed by resources, and use hierarchical

compositions of actions.

6.5 Comparison

When using the simulation in isolation approach, the

impact of one simulation on the workload burstiness

represented in the other is neglected. Consequently, this

approach cannot satisfy criterion C1, resulting in re-

duced prediction accuracy. All other approaches support

direct interaction on workload level and thus satisfy C1.

Considering criterion C2, both, LQNs and QPNs

do not have support for modeling concepts, such as

suspendable resources, and complex scheduling strate-

gies related to them. To our knowledge, no support for

time-variant workload is integrated in widespread QPN
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and LQN simulators (e.g., [12,26]). Consequently, crite-

rion C2 is not fulfilled, by the formalism transformation

approach.

We encountered problems for the realizability of

the formalism transformation and the co-simulation ap-

proach: No formalism transformation for BPs covering

all required concepts and no co-simulation enabled sim-

ulators were readily available. Moreover, the existing

BP simulation could not be retrofitted due to the closed

source nature and, to our knowledge, available open

source BP simulations do not cover required concept.

Therefore, criterion C3 cannot be fulfilled by both ap-

proaches without major modifications to transformation

and simulation approaches.

In the integrated simulation approach, a lot of the

existing simulation infrastructure for the IS model can

be reused or easily be adapted for the new BP elements,

since actors and hardware resources often behave simi-

larly, while processing jobs. We therefore consider this

approach as realizable. One potential drawback of an

integrated solution, however, is the lack of modularity

and reusability of the simulation parts. Thus, although

integrated, the simulations must be structured in a mod-

ular way, such that both the IS simulation and the BP

simulation parts can be reused in other settings. That

means that both simulations share a common basis for

running and a set of glue elements for combining the
domains (cf. Sec. 7). This allows us to use a shared

single future event list for both simulations. A more

loosely coupled variant, e.g. using remote interface com-

munication, introduces the aforementioned drawbacks

of requiring additional efforts for time synchronization

and other communication overheads.

The discussion is summarized in Tab. 1. The cells

represent whether a criterion is expected to be fulfilled

or not (yes/no). The table clearly shows that an inte-

grated simulation is the best alternative, since only the

integrated simulation fulfills all three criteria.
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Workload burstiness no yes yes yes
Modeling concept no yes no yes
Realizability yes no no yes

Table 1 Comparison of Solution Alternatives

ScenarioBehaviour J 
(from UsageModel) ...... . 

scenano 

!successor O .. * ,~ .. · 
predecessor AbstractUser Action 

(from UsageModel) 0 .. 1 
~ 

1t 
ActorStep Activity 

processing Time 
restingTime 
interruptible 
continuouslyPerformed 
responsibleRole 

EntryLeveiSystemCall Acquire Release 
(from UsageModel) DeviceResource Device Resource 

Fig. 4 Business Process Meta-Model (excerpt)

7 Integrated Simulation

In this section, we present the integrated simulation
approach IntBIIS. We build upon the Palladio approach

for realizing the integrated simulation of BPs and ISs.

While Palladio already provides adequate means for

modeling and simulation of IS designs, our work extends
Palladio by modeling and simulation of BP designs.

Extensions to the PCM meta-model are described in

Sec. 7.1 through Sec. 7.3. An overview on how IntBIIS

deals with BP properties in simulation is given in Sec. 7.4

through Sec. 7.6.

7.1 Business Process Model

The business process model represents a set of BPs,

each basically described by a sequence of actor steps

and system steps, as defined in Sec. 2. For each BP,

the business process model also contains a workload

specification. In this section, we focus on the behavior

specification of BPs, while a discussion of workloads is

deferred to Sec. 7.3.

An excerpt of the meta-model for business process

models is depicted in Fig. 4. It extends the existing

PCM usage model by BP-specific model elements. The

proposed meta-model is compatible to established pro-

cess modeling notations, such as the BPMN, in terms

of actions and the control flow in between. However, we

initially focus on the elements essential to describe the

interrelations between BP and IS as our research targets

the analysis of their mutual impact, not a complete

support for exiting notations. Supporting existing BP

notations is a topic of future work.

If meta-classes are taken from the original PCM, this

is mentioned in parentheses in the figure. A business

process model consists of one or more ScenarioBehaviours,
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each representing a BP in our context. The behavior

of a BP is specified by a sequence of AbstractUserActions,

which are interconnected by a predecessor-successor

relationship. All types of actions allowed in a regular

PCM usage model can also be used within a business

process model, including control flow elements such as

loops and branches. For business process modeling, we

introduced four additional actions: ActorStep, Activity,

AcquireDeviceResource and ReleaseDeviceResource.

An ActorStep denotes a process step to be performed

by a human actor in a specified role (responsibleRole).
Each actor step requires a certain time to be processed

by the assigned actor (processingTime) and can be fol-

lowed by a timespan in which the corresponding BP

instance rests (restingTime). For example, after mixing

chemicals a certain waiting time might be needed before

further processing. Otherwise, there is a risk of explo-

sion. The interruptible attribute indicates whether the

actor step may be interrupted. Interrupting an actor

step is desirable in the following situations: (i) the as-

signed actor stops working, e.g., due to lunch break or

to prevent working overtime, or (ii) the corresponding

actor gets assigned an actor step with higher priority.

Non-interruptible actor steps are given preferential treat-

ment in that they always “overtake” interruptible steps

queued for processing by the same resource and are

not interrupted due to an imminent break. The corre-

sponding scheduling policy is presented in more detail

in Sec. 7.4. The continuouslyPerformed attribute indicates

that a sequence of actor steps for which the attribute

is set true, is performed by the same actor, if the same

responsibleRole is allocated for all the actor steps.

A system step in the business process model is rep-
resented by an EntryLevelSystemCall which denotes a step

to be performed by an IS, as described in [4].

An Activity serves as container for AbstractUserActions

to allow for modeling hierarchically nested processes.

The actions AcquireDeviceResource and ReleaseDeviceRe-

source are used together to define a sequence of actions,

that a particular device or machine is required.

7.2 Organization Environment Model

The organization environment model represents the orga-

nizational context of BPs in terms of resources involved

in the BPs. Resources encompass human actors and

their equipment – devices or machines, e.g., a fork–lift

used by a warehouser. In this sense, an organization en-

vironment model is the counterpart of a PCM hardware

environment model, which specifies available hardware

resources, such as CPUs.

The meta-model for organization environment mod-

els can be seen in Fig. 5. ActorResources represent human

0 rga n ization En vi ron mentModel 

t 
roles device Resources 

0 .. \ 0 .. * \ 
actorResources v 0 .. * v v \ 

0 .. * actors Device Resource 
Role ActorResource 

roles 0 .. * capacity 

t 
workingPeriods , v 1 .. * 

Working Period 

pe riodSta rt Time Point 
period EndTi m ePa int 

Fig. 5 Organization Environment Meta-Model

actors (hereafter also referred to as actors), each of which

is assigned to one or more roles. A Role is an abstraction

of concrete actors. It comprises several actors that have

the same properties. In BP modeling, it is common that

steps do not refer to actors directly but point to roles

instead. Actors adhere to working hours determined by

one or more WorkingPeriods. A working period is specified

by a periodStartTimePoint and a periodEndTimePoint. For

example, a workday split by a lunch break would be

represented by two successive working periods – one

before lunch, and one after. DeviceResource is a device or

machine which is required to perform an actor step of

the process but does not actively process the step. Thus,

it is called a passive resource. The attribute capacity

indicates the number of resource instances available to

be shared among the BP instances.

7.3 Business Process Workload

The business process workload specifies the inter-arrival

time of BP instances as a function of simulation time. It

is part of the business process model, i.e., for each BP

there is a corresponding workload specification. Work-

load specifications are also part of regular PCM us-

age models. These workloads, however, do not change

over simulation time. This reflects Palladio’s orienta-

tion towards steady-state analyses, where the focus is

on predicting certain quality measures as simulation

time approaches infinity. A simulation run is said to be

in steady state with regard to a certain performance

measure, if the performance measure becomes stable

in the long run, i.e., if the underlying probability dis-

tribution does not change any longer when simulation

time approaches infinity [28]. Changing workloads over

simulation time could easily affect the stability of per-

formance measures, which is one of the reasons why the

original PCM kept workloads fixed.
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Workload variations, however, are a fundamental

property of BPs. Especially when studying how per-

formance measures evolve over simulation time, it is

vital to consider workloads as a function of time. There-

fore, we extend the PCM usage model by time-variant

workloads which may change over time according to

their specification. Thereby, changed intensities of BP

execution over the course of a day, a month, or even

a year and more can be reflected. Fig. 6 exemplifies a

varying workload over the course of a day and its effects

on the queue length of an active resource. It can be seen
how the workload variation leads to temporary overload

conditions at peak load, which might be interesting to

examine using simulation. As a side-effect from time-

variant workloads, steady-state analyses of simulation

results are often not viable as has been discussed above.

Instead, analysis techniques known from terminating

simulations have to be used (cf. [28]) to gather perfor-

mance measures with sufficient statistical confidence. If

the workload is specified in terms of repeating periods

(e.g., when assuming that weeks do not differ in their

workload pattern), a special case of steady-state analysis

can be conducted, which involves so-called steady-state

cycle parameters [28].
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Fig. 6 Example: Time-Variant Workload on a Resource and
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The meta-classes for workload specifications are de-

picted in Fig. 7. The ProcessWorkload is an open workload

whose intensity changes over simulation time, i.e., the

inter-arrival time is specified as a function of time. For

this, each ProcessWorkload may be decomposed into a

sequence of non-overlapping, but not necessarily con-

tiguous time periods (ProcessTriggerPeriod). Each period

is specified by a start and an end point along with the

inter-arrival time valid in between.

Workload 1 

~ 
UsageScenario 

(from UsageModel) (from UsageModel) 

1\ 

Open Workload 
(from UsageModel) 

1\ 
Process TriggerPeriod 

Process 
~ 

1 .. * periodStartTimePoint 
...... periodEndTimePoint Workload 
.... 

i nterArrivaiTime 

Fig. 7 Business Process Workload Meta-classes

7.4 Scheduling Policy for Human Actors

In simulation, it is feasible in particular situations to

treat human actors as processing resources like a CPU,

for example. However, there are specific differences, e.g.

in working hours [56,49], priority [49] and interruptibil-

ity [56] of steps, effects of workload on processing speed

[34,49], etc., that must be considered when reflecting

human behavior in simulation. Hence, the scheduling

policies commonly used with simulation of hardware

resources do not meet our requirements for BP simu-

lation. Specifically, first-come, first-served (FCFS) or

processor sharing (PS) assume continuous operation

without interruptions (due to holidays, lunch breaks, or

non-working hours) and do not take into account prefer-

ential treatment of steps before others. For considering

this in simulation, IntBIIS provides the opportunity to

implement scheduling policies specialized for human ac-

tors. An example of a human actor scheduling policy is

given in the following. Implementing further or extended

scheduling policies to represent additional specifics of

human actors is easily possible. The proposed scheduling

policy supports suspension of resources and provides

preferential treatment for non-interruptible actor steps.

The latter involves two waiting queues per actor re-

source, one for interruptible actor steps (low priority)

and one for non-interruptible steps (high priority). This

allows for separated treatment of both kinds of steps

instead of rearranging a single queue each time a higher

prioritized step is allocated to the actor resource. In

order to manage the suspension and resuming of an

actor resource, it is described as a finite-state automa-

ton by different states and transitions in between. The

scheduling policy is defined by the following rules:

1. Non-interruptible (NI) actor steps have priority over

interruptible (I) actors steps, meaning that no I-step

is processed when there is an NI-step waiting to be

processed.

2. Actor steps are processed in FIFO (first-in, first-

out) order, as long as the abovementioned priority

condition is not violated.
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3. Whenever the actor is about to stop working (e.g.,

due to an imminent break), an I-step is immediately

interrupted while an NI-step is still completed, even

if this means working overtime.

4. If an NI-step is being enqueued while the actor is

about to stop working, the newly arrived actor step

is processed before the actor actually stops. I-steps,

in contrast, do not delay the time until the actor

stops.

7.5 Discussion on Human Actor Behavior

Now that we proposed modeling constructs and a schedul-

ing policy for human actors, we discuss how they address

open issues in resource modeling listed in literature. Van
der Aalst et al. [49] identified an open issue regarding

modeling the actors’ availability when they are involved

in multiple processes. They state that current simulators

often focus on a single BP. We address this issue by the
business process model (cf. Sec. 7.1), which allows for

specifying several BPs, and by the scheduling policy

for human actors, which allows for distributing an ac-

tor’s workforce over various BPs based on priorities and

workload, as demanded in [49]. Non-visible activities as

mentioned by Wombacher & Iacob [56] refer to the same

issue.

Another issue is that the performance of humans is

affected by the workload they face [34,49]. Observations

indicate that the relationship between performance and

workload follows an inverse U-shaped curve. As our sim-

ulation determines the workload intensity per actor (by

the length of waiting queues), all information is avail-

able to implement this observation in the scheduling

policy and thus reflect it in simulation. Nevertheless,

we neglect modeling variations in the processing rate

of actors but assume a static rate instead. This is be-

cause in most countries, it is not allowed to determine

the processing rate of a particular actor, due to regula-

tions of law or the works councils (e.g., §87 BetrVG in

Germany). Besides workload intensity, the processing

speed of human actors in terms of performed activities

is affected by a variety of influence factors [49,14], such

as motivation, physical condition (e.g., the actor is tired

or ill), or batch processing. An outlook is given in the

future work section.

As demanded in literature [49,56], our organization

environment model (cf. Sec. 7.2) allows for modeling

working hours, part-time work, holidays, and lunch

breaks of human actors and our scheduling policy allows

considering this in simulation.

Van der Aalst et al. [49] point out the necessity

of modeling priorities of tasks which is comparable to

“preemption of activities” mentioned by Wombacher &

Iacob [56]. Both is addressed by the proposed scheduling

policy in simulation.

The last issue identified by van der Aalst et al. [49]

is that BPs as well as the organization may change over

time. This means that the process configurations and

resource allocations may change flexibly depending on

the context. As we focus on design decision making in

this paper, supporting operational decision making is

a topic of future work. For this purpose models must

reflect the current state of process and organization.

First ideas for reflecting the current IS state based on
the Palladio approach have been proposed in [24]. These

ideas may be extended for BPs and the organization

building upon IntBIIS. However, design decisions have

to be understood first. Then, the corresponding concepts

can be applied to operational decision making.

7.6 Simulator Extensions

In order to simulate the mutual impact between BPs

and ISs, we decided to extend the event-driven PCM

simulator EventSim [32]. EventSim has been specifically

developed for extensibility, which is especially reflected

by the concept of traversal strategies. A traversal strat-

egy encapsulates the simulation behavior for a specific

type of action, an ActorStep for example. In this way the

existing simulation semantics for PCM models can be

easily modified or extended by registering an adapted

or newly created traversal strategy with the simulator.

Furthermore, EventSim has been shown to be faster and

more resource-efficient in several scenarios compared to

Palladio’s reference simulator SimuCom [32]. Simulation

speed is important in the BP context since long periods

of time are simulated, which often span months or years.

Inspired by SimuCom, EventSim simulates the op-

eration of a software system at different layers. This is

illustrated in Fig. 8, where elements with a stickman

indicate layers and elements introduced as a result of

our work. The remaining layers and elements can also

be found in Palladio’s reference simulator. A run of

the integrated simulation starts at the topmost layer

with simulating time-variant business process workloads.

For each workload specification, a workload generator

spawns a new BP instance whenever the inter-arrival

time has been passed. Each BP instance is then simu-

lated individually by traversing the corresponding action

chain specified in the BP model. When the traversal

procedure arrives at an action, basically two cases can

be distinguished: (i) the simulation encounters an ac-

tor step, or (ii) it encounters a system step (i.e., an

EntryLevelSystemCall).

In case (i), a suitable human actor is requested (layer

5, left). When multiple actors are available, the actor
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Fig. 8 Extended Simulation Layers

resource with the shortest waiting queue in terms of

pending demand is selected. If the selected actor is

already busy with another actor step or is temporarily

suspended (e.g., due to a lunch break), the actor step

is enqueued. This induces a waiting period not only for

the actor step, but in particular also for the enclosing

BP instance.

In case (ii), resource demands are not issued di-

rectly by the BP instance, but emerge as the system
request propagates through components (layer 3), their

service effect specifications (layer 4), down to hardware

resources (layer 5, right). Like with actor resources, hard-

ware resources may block a request, leading to a block

of the enclosing BP instance.

The integrated simulation method IntBIIS2 is ca-

pable of reflecting workload burstiness as has been re-

quested in Sec. 4.3. Namely, the simulation considers

the BP impact on IS waiting queues (of hardware re-

sources) as well as the IS impact on BP waiting queues

(of actor resources). In dependence upon the individ-

ual hardware resource utilization, each call to the IS

causes the distance between concurrent BP instances to

grow or to shrink. Likewise, each actor step affects the

distance between concurrent BP instances depending

on the individual actor resource utilization. Moreover,
breaks of actor resources influence the distance. Ex-

hausted passive resources have the same effect since

they temporarily block BP instances or system requests

until the requested amount of resource instances be-

comes available. As a consequence, occasional bursts

may arise over simulation time leading to temporary

overload conditions of both hardware resources as well as

actor resources. Furthermore, occasional bursts may lead

to situations in which passive resources are temporarily

exhausted. Both, – overloaded processing resources and

exhausted passive resources – (a) affect the performance

of BPs and ISs, since they cause waiting times, due to

blocked instances and increased queue lengths, and (b)

again affect workload burstiness. This can be reflected

by IntBIIS, due to the integrated simulation.

2 IntBIIS is available online http://sdqweb.ipd.kit.edu/

wiki/IntBIIS

8 Validation

Böhme & Reussner [6] introduce three types of valida-

tions for prediction methods. Type I (Feasibility) studies

validate the accuracy of a prediction method by compar-

ing prediction results to measurements from reality or

results of another method. Subsequent to the description

of data elicitation and simulation model construction in

Sec. 8.1, we describe a feasibility study in Sec. 8.2 to

validate whether IntBIIS yields accurate results under

the assumption that its inputs were accurate. Type II

(Practicability) studies validate the practicability of a

method, when it is applied by the target users instead of

the method developers. We discuss this in Sec. 8.3. Type

III (Effort-Benefit) studies analyze the effort-benefit ra-

tio of a prediction method by comparing the effort for

conducting the same project at least twice. Once without

using the prediction method, which may cause higher

effort for rework, and once with using the prediction

method, which may cause higher up-front effort. Type

III validations are very seldom conducted due to (a) the

high efforts required and (b) it is unlikely to convince
an organization to conduct a project many times [6].

For this reasons, we did not conduct a Type III study.

The order picking process (see Sec. 3) is a compre-

hensive process from practice. Since an IS is involved in

the process, it satisfies our requirements to analyze the

mutual impact between BP and IS applying IntBIIS.

On the one hand, simulation results can be compared

to measurements (Type I). On the other hand, the ma-

turity of the tool support and the interpretability of the

results can be examined on a real-life example (Type

II). For these reasons, the real-life validation is based

on the order picking process, which was examined us-

ing IntBIIS and the approach in [23] for comparison.

Using IntBIIS, we apply our Palladio extension which

explicitly reflects the interrelations between the BP and

the IS. For conducting [23] we chose the simulation tool

ADONIS [25] and the original Palladio tooling. ADO-

NIS enables the simulation of BPs and organizational
resources, such as human actors, for business evaluation

and process optimization. The ADONIS model takes

into account only how the IS affects the BP, but not

vice versa. Prior to the ADONIS simulation, the IS

performance has been determined using the original Pal-

ladio tooling and annotated to the ADONIS model. The

models are parameterized with data gathered in reality.

8.1 Data Elicitation and Model Construction

Before discussing the case study results, it is impor-

tant to know how the simulation inputs and reference

outputs were elicited in reality and how the simulation
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models were created. For elicitation, we follow the guide-

lines of empirical research in software engineering by

Runeson et al. [42]. Where possible, we use multiple

sources for the same data (i.e. data source triangulation

[42]) to increase precision and validity of the simulation

inputs. Thereby, we closely involve process owners (i.e.

BP experts) and technical staff (i.e. IS experts) of the

organization in the data elicitation by conducting inter-

views. The experts were motivated to participate in the

study as they recognized the problems with the status

quo of the process in their everyday work.

The process model depicted as a simplified overview

in Fig. 1 results from several interview sessions with

BP and IS experts. Moreover, observations in reality

and event log analysis have been conducted to elicit in-
formation required for model construction, e.g. path

probabilities or number of loop iterations. In order

to construct the IS model (depicted as a simplified

overview in Fig. 2), we conducted reverse engineering

of software components and interviews with IS experts.

Performance-relevant data from reality, such as resource

demands, frequencies and workloads, have been mea-

sured using event logs recorded by the IS. In order to

check our measurements, the execution of several BP

instances were observed and further interviews with BP

and IS experts have been conducted. From the inter-

views and observations we gathered further performance-

relevant data not available in the recorded event logs,

for example the processing time of the single actor steps.

The execution time distribution depicted in Fig. 9 has

been measured over a period of more than six weeks

by event log analysis which results in logs containing

more than 1 200 observed BP instances. The distribu-

tion represents per BP instance the time required from

the process start position to the process end position.

Besides process start and end, we recorded various other

events to gather aforementioned information, such as

path probabilities or interaction with and workloads

of the IS, which results in logs containing up to about

74 000 events.

After the entities had been elicited, we created the

simulation models as described hereafter. It is impor-

tant to note that the parameters of IntBIIS meta-models

can be found in a comparable form in ADONIS meta-
models, e.g. inter-arrival rate, step durations, etc. For

corresponding parameters in the meta-models, we made

the same settings. For specifying the IS, we used the

original Palladio meta-models in both simulation stud-

ies.

Workload burstiness at the process start position

must be mapped to the model. The BP instances start

executing the BP in several bursts. Between the bursts,

there are long time frames in which no BP instances start

executing the process. Owing to the long time frames

between the bursts, a mean distance between all the BP

instance start time points over the whole day would not

adequately reflect the workload burstiness. Therefore,

we recorded an exemplary day. We decomposed the

day into several process trigger periods in which the

distance between the BP instance start time points is

about the same. Each period indicates a burst. Initially,

we determined the periods’ inter-arrival times by the

mean distance between the BP instance start times

points in the corresponding period. Per period, the start
time point, the end time point, and the inter-arrival time

is specified in the process model. As mentioned above,

we verified the simulation inputs whenever possible.

For verifying the period specification in the models, we

conducted a preliminary simulation run and compared

the number of BP instances in the run to the number

of BP instances observed in the same time span in

reality. We identified that the number was too low in

the preliminary run. Therefore, we adapted the period

specifications (in both models, ADONIS and IntBIIS)

to approach the workload in simulation to the workload

observed in reality. We varied the period properties

(start, end, interarrival) to ensured adequate simulation

inputs.

Hardware resources as well as human actors execute

several BPs concurrent to the order picking process,

such as loading and shipping. They are demanded by

other BPs which causes waiting time in the order pick-

ing process. However, we were not able to model all

concurrent BPs and include them in simulation. There

would be high additional effort required to include the

concurrent BPs in the study. Since this effort would ex-

ceed the scope agreed with the organization, we decided

to create default resource utilizations which estimate
the load induced by concurrent BPs. This is a common

procedure in performance prediction. In order to model

the IS default utilization, we measured the utilization

of hardware resources used in the order picking process.

We added hardware resource demands to a concurrent

BP model until the simulated resource utilization ap-

proached the measured resource utilization. For human

actors we added several actor steps to a concurrent BP

model. Actor steps were added until the minimum and

maximum value of the execution time distribution of

the order picking process in simulation approached the

minimum and maximum value of the distribution mea-

sured in reality. We proceed this way because we could

not measure the default actor resource utilization.

Each working day is divided into three shifts (early

shift, late shift and night shift), but only one shift – the

late shift – was recorded in detail. The late shift was

chosen because mainly the orders are packed in this shift.
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This was the result of interviews with experts of the

organization and a six-week observation of the process in

reality. In consequence, the models and corresponding

simulation runs also consider only the late shift. BP

instances whose steps cannot be completely processed

in a single shift, are carried over to the next shift. In

the next shift, processing is continued. Since the early

shift has not been modeled, there is no way for the

simulation to know the amount of work carried over to

the late shift. To mitigate this problem, we approximate

the carryover to the late shift with the carryover from
late shift to night shift of the previous day. This is a

worst-case approximation of the carryover since most

orders are packed in the late shift. The carryover from

one shift to another, however, is quite small. Even in

the late shift, the carryover is about one of more than

thirty BP instance handled per late shift on average.

Thus, the carry over does not significantly affect the

simulation results.

In reality, we did not observe significant differences

in execution time among recorded workdays. The sim-

ulation results reflect this observation, which is why

simulation of longer periods can be considered as a

sequence of replicated simulation runs. With each fur-

ther simulated day, we receive an additional replication

leading to an improved confidence in the simulation

results. With this technique, we ensured a sound basis

for statistical comparisons.

8.2 Feasibility

The mutual impact between BPs and ISs affect hardware

resources as well as actor resources. We assume that

Palladio correctly simulates the behavior of hardware

resources as demonstrated in several case studies (such

as [4,30]). The mutual impact is correctly represented

by the integrated simulation, if also the actor resources’

behavior is correctly reflected.

8.2.1 Real-life Validation

In order to validate whether the actor resources’ behav-

ior is correctly simulated, we compare results of IntBIIS

to values measured in reality. Mapping human actor

behavior to a model is hard. Thus, we decided to addi-

tionally compare the results of IntBIIS to the results

of another model-based simulation approach to exclude

influencing factors caused by modeling. The approach

in [23] was applied to specify interfaces between exist-

ing simulation tools to provide an alternative way of

predicting the mutual impact between BP and IS. The

simulations are conducted in isolation and information

is exchanged via the interfaces ex-post. In the following,

IntBIIS denotes the results of the integrated simulation

whereas ADONIS denotes the results of the isolated

simulation [23].

IntBIIS predicted a mean process execution time of

5 409 sec. (about 1h 30min). The ADONIS simulation

predicted a mean value of 4 954 sec. (about 1h 23min).

In reality we measured a mean process execution time

of 5 326 sec. (about 1h 29min). The distributions of

the predicted and measured process execution time are

depicted in Fig. 9. The left side shows the estimated

probability density, where the right side depicts the

corresponding cumulative density.

It is seen in the figure that the curves follow a similar

trend. Compared to the measured curve, the simulated

curves show higher peaks but less variance in execu-

tion time, which is reflected by the width of the curves.

Deviation between the curves can be explained by the

following three reasons. (i) It is hard to map the be-

havior of human actors to a model and reflect it in

simulation because, in reality, actors do not always be-

have in exactly the same manner. Actors do not always

start processing the next step directly after the former

has been finished. Sometimes they have to take a break

within a working period (e.g., to go to the toilet) or

have a conversation. This causes variability in BP per-

formance. (ii) The processing rate of actors may differ

from one actor to the other in reality. Even the pro-
cessing rate of a certain actor may vary, as discussed in

Sec. 7.5. (iii) Simulation inputs might have limited ac-

curacy. The order picking process is a real-life example.

Thus, it is hard to gather accurate data. For example,

data gathered in an interview or an observation typically

has a certain deviation to reality. This is why we used
measurements from event logs recorded by the IS where

possible. Fig. 9 also shows some deviations between the

ADONIS curve and the IntBIIS curve. Deviations may

be caused by differences in the simulation strategies

of both methods and the mutual impact on workload

burstiness, which is considered in IntBIIS but not in

ADONIS.

At a first glance, both simulation methods yield rea-

sonable accuracy, where the mean value predicted by

IntBIIS better fits measurements than the one predicted

by ADONIS. It is hard to judge visually which of the

simulation methods performs better in the validation

scenario. This is why we applied a distance measure

to make the mutual differences tangible. A comparison

of distribution-based similarity metrics in [40] confirms

the earth mover’s distance (EMD) [41] as the most ap-

propriate one. Moreover, EMD operates in an intuitive

manner and takes into account differences both in shape

and location of probability distributions. For these rea-

sons, we choose EMD as a distance measure. Given two
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Fig. 9 Comparison: IntBIIS, ADONIS and Reality

probability distributions, the EMD algorithm calculates

their distance in terms of the effort that must be un-

dertaken to transform one distribution into the other.

Figuratively speaking, a distribution’s probability mass

is moved to the distribution under comparison until

they are aligned [41] – the amount and distance of mass

transported yields the EMD metric.

IntBIIS vs. Measured: 559.43
ADONIS vs. Measured: 696.66

IntBIIS vs. ADONIS: 460.05

Table 2 Earth mover’s distance between predictions and
measurements

Execution Time Probability Probability Probability
(Seconds) (IntBIIS) (ADONIS) (Measured)

0–5 000 0.63 0.67 0.54
5 000–10 000 0.26 0.25 0.38

10 000–15 000 0.07 0.04 0.07
15 000–20 000 0.03 0.02 0.01
20 000–25 000 0.01 0.01 0.00
25 000–30 000 0.00 0.00 0.00

Table 3 Execution time (probabilities rounded)

Tab. 2 presents the mutual differences. Although re-

ported values are dimensionless, they meet the definition

of a metric and thus are suited to give an impression on

relative distances. With a distance of 559 and 697 for

IntBIIS and ADONIS, respectively, IntBIIS resembles

the measured distribution better than ADONIS. The

distance of 460 between IntBIIS and ADONIS is compar-

atively small, which reflects the aforementioned observa-

tion that both curves follow a similar trend. A compari-

son of the probabilities for various ranges of execution

time leads to a similar conclusion (cf. Tab. 3). Except

for the range 15000 to 20000, compared to ADONIS,

IntBIIS yields for each range a probability closer or

equal to the probability calculated from real-world mea-

surements. This observation is also supported by the

three quartiles Q1, Q2, and Q3 shown in Tab. 4. For

all quartiles, the predictions with IntBIIS are closer to

the measurements than ADONIS. In summary, these

findings confirm the feasibility of IntBIIS. Compared

to ADONIS, IntBIIS seems to have a higher prediction

accuracy as the mean values, distances, probabilities,

and quartiles consistently indicate.

Moreover, IntBIIS reduces effort compared to iso-

lated simulation of BPs and ISs as described in [23].

Using isolated simulations, (a) an IS usage profile has to

be derived from the BP model for IS simulation and (b)

the BP model must be extended by IS simulation results

for BP simulation. Further reading on the effort needed
for both tasks in the order picking study is given in [18].

Both tasks are not necessary using the integrated simu-
lation since all the information is either contained in a

single model or results from the integrated simulation.

Simulator Min Q1 Q2 Q3 Max

Measured 754 2 862 4 688 6 964 24 610
IntBIIS 400 2 988 4 208 6 184 27 560

ADONIS 754 2 630 3 814 5 798 27 010

Table 4 Quartiles for the probability distribution from Fig. 9
(decimal places truncated)

8.2.2 Experiment on Workload Burstiness

In the order picking process, too much influence fac-

tors are involved that may hamper the observation of

workload burstiness. Thus, after examining the real-life

example, an experiment based on a minimum process

example taken from [23] is conducted to investigate the

representation of workload burstiness in simulation.
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The burstiness experiment is constructed so that tar-

geted, occasional bursts of BP instances emerge, which

results in temporary overload situations. The minimum

example consists of a sequence of two steps, i.e., an actor

step (AS1) succeeded by a system step (ISS1). There

are two actors A1 and A2 available to perform AS1.

ISS1 is executed by an IS that contains one hardware

resource, the CPU. Owing to the experiment design

(see [23] for details), pairs of BP instances reach the

system step ISS1 at the same time, although they had

a certain distance before the actor step AS1. This is
because the BP instances are processed concurrently

by the two actors. Reaching the system step, one BP

instance receives service from the CPU immediately,

which results in a response time of one time unit, be-

cause there is no waiting time. Another BP instance has

to wait until its predecessor has been processed, before

receiving service, which results in a response time of

two time units. The expected mean response time of

ISS1 is 1.5 time units which is predicted by two different

simulation approaches hereafter.

Using the isolated simulation in [23], the actor step

AS1 was modeled in ADONIS and the system step ISS1

was modeled in the original Palladio tooling. IS simu-

lation and BP simulation were conducted in isolation

which results in a mean response time for ISS1 of 1.0

time units. The BP instances arrive at ISS1 in their ini-

tial distance before the actor step. The distance between

the BP instances does not shrink at AS1 due to isolated

simulations. Using IntBIIS, both AS1 and ISS1 were

modeled in the Palladio extension described in Sec. 7.

The integrated simulation comprises the IS and the BP.

The predicted mean response time of ISS1 is 1.5 time

units. Both BP instances arrive at ISS1 at the same time.

The temporary overload situations is correctly reflected

in the integrated simulation. The experiment shows the

impact of workload burstiness on performance predic-

tion. IntBIIS correctly reflects workload burstiness in

simulation. Therefore, the IntBIIS result matches the

expected mean response time of ISS1. In contrast, apply-

ing isolated simulations [23] a high deviation of about

33 percent has been shown, as workload burstiness is

not correctly represented.

8.2.3 Scalability Analysis

For an integrated BP and IS simulation, the ability to

cope with long simulation runs that resemble one or

more years of operation is just as important as its abil-

ity to handle large input models, i.e. complex business

processes and information systems, gracefully. There-

fore we examine and discuss the scalability of IntBIIS

and show its ability to handle long and complex simula-

tion runs. The starting point of our scalability analysis

is an artificial base model that contains just enough

information to constitute a valid model. Then, we grad-

ually increase the model’s complexity or the length of

the simulation, respectively, and observe how this influ-

ences simulation performance. In our scalability study,

simulation performance is the wall-clock time required

to simulate a certain model until the simulated time

reaches a specified upper limit, the stopping condition.

In the following, we denote the required wall-clock time

by simulation execution time. The resulting performance
measurements give an impression of IntBIIS’s scalability.

Note that we focus on the BP extensions introduced

with IntBIIS – the scalability of its underlying simulator

EventSim has been shown in an earlier publication [32]

and applies to the IS parts of IntBIIS.

The scalability analysis addresses the following ques-

tions. First (Scalability Experiment 1), to what ex-

tent does modeling granularity affect simulation perfor-

mance? Virtually every human tasks can be decomposed

into multiple smaller tasks, and, conversely, multiple

small tasks can be composed to a single larger task. It

is up to the modeler to choose the appropriate level of

detail. More detailed models however tend to consume

more simulation resources thereby posing a potential

scalability issue. Second (Scalability Experiment 2), with

increasing model complexity, does the simulation execu-

tion time increases linearly? By model complexity we

mean the number of elements used in a model, e.g. the

number of business processes or human actors. If we

observe a superlinear increase, the simulation’s efficiency

will fall as complexity rises. In this case, complex models

could not be simulated in acceptable time. And third

(Scalability Experiment 3), with increasing simulation

length, does the simulation execution time increases
linearly? When we double the simulation length, the

simulation execution time should increase no more than

by the factor two. Otherwise, the simulation’s efficiency

will fall as the simulation length rises.

For each question, we now briefly present the exper-

imental design and discuss the analysis results. Each

experiments starts with a base model. As described ear-

lier, the base model contains just enough information

to constitute a valid model that can be simulated in

IntBIIS. Namely, the base model comprises a single

business process with a single actor step demanding

1000 work units served by a single actor resource. The

inter-arrival time of the business process is set to 1000

so that the actor resource is neither underloaded nor

overloaded: at the moment an actor step’s demand is

processed completely, a new BP instance arrives. Start-

ing from the base model, each experiment gradually

adds complexity as decribed below.
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Scalability Experiment 1 examines how modeling

granularity affects simulation performance. First, we

slightly increase the base model’s complexity by chang-

ing the number of business processes and actor resources

to 10 each. This reduces the relative influence of measure-

ment errors. Then we gradually increase the modeling

granularity by splitting the actor step of each business

process into i parts while holding their total demand

fixed at 1000. Hence the total demand issued by each

business process instance remains unchanged; only the

modeling granularity changes. The variable i has been
varied in the ranges 10, 20, ..., 100 and 100, 200, ..., 1000.

The simulation execution time of each variation can be

seen in Fig. 10 (left). The execution times rises slowly

until reaching a fairly fined-grained modeling granularity

of 100 actor steps per business process. For even finer

granularities, we observe a linear increase in execution

time. Note, linearity is given since the graph has two

exponential axes. Although modeling granulary affects

simulation performance, the linear increase prevents the

granularity level from becoming a scalability issue. In

consequence the modeler is free to choose the desired

level of granularity.

Scalability Experiment 2 examines how model com-

plexity affects simulation performance. Again, we start

from the base model. This time, we gradually increase

two variables i and j in dependence upon each other,

with i being the number of concurrent business processes

and j being the number of actor resources available to

serve their demands. We consider two cases. In the first

case, the actor resources are fully utilized, neither un-

derloaded nor overloaded. For this to hold we set i = j.

The simulated systems is then in a steady state. In the

second case, we drive the simulated system into overload

by demanding more capacity from human actors than
they are capable of serving. For this we set j = i−10, i.e.

we have always 10 more business processes than actor

resources. The variable i has been varied in the range

10, 20, ..., 100. From Fig. 10 (middle) we can see that

the simulation scales linearly, even for the second case

where queues of actor resources are overloaded. This is

interesting because in the latter case the queues become

more and more crowded without any chance of recov-

ering. The missing effect on simulation execution time

can be explained by the scheduling policy employed. We

use a variant of a FCFS policy which allows all relevant

operations to be performed in constant time. Of course,

memory usage can still become an issue and we can

actually observe that in the next experiment.

Scalability Experiment 3 examines how expensive it

is to simulate an additional time unit, i.e. how much pro-

cessing time – measured in wall-clock time – is needed

for that additional step in simulated time. The ratio

between simulated time and wall-clock time must not

increase over the course of a simulation. Otherwise, the

longer we simulate the less efficient becomes the simula-

tion. We consider the same two cases introduced before

and compare the simulation performance for a steady

state system and for a system with overloaded actor

resources. In the first case, we modify the base model

to comprise 10 business processes, each consisting of 10

actor steps, and 10 actor resources. Opposed to the scal-

ability experiments discussed before, we do not apply

any further gradual modifications to this model. Instead,
we vary the length of the simulation, expressed in sim-

ulated time units, in the range 105, 106, ..., 108. In the

second case, we add 10 more business processes, so that

10 actor resources face 20 business processes. The results

are depicted in Fig. 10 (right). For the steady state sys-

tem, we see a curve that is even sublinear, meaning the

abovementioned ratio even improves. This could be at-

tributed to the ongoing optimisation effort by the JVM.

For the overloaded system, however, the ratio tends

to deteriorate over simulation time. Again, we see the

cause in the JVM infrastructure. As the queues of simu-

lated actor resources grow, the management overhead

for the queued jobs grows too. This includes especially

garbage collection activities. The last simulation run

(108) even fails under the given configuration with an

OutOfMemoryError. This shows clearly a scalability limit

in regard to the available memory. The second scenario

of permanently overloaded human actors is, however,

artificial and would not occur in practice – at least not

to that extent. For this reason we consider this issue

rather a theoretical scalability issue than a practical

one.

We conclude that IntBIIS is able to cope with com-

plex input models, where the modeling granularity has

no major impact on the simulation performance. From

the variety of modeling elements introduced, we focused

on the most important ones in our scalability study. Our

observation that IntBIIS scales well is therefore to be

understood as a general tendency that should be under-

pinned by additional scalability experiments in future.

Each measurement shown in the results has been re-

peated 10 times to alleviate measurement errors, i.e. we

performed 10 independent simulation runs. From these

10 results, we visualized the median in the result plots.

For all experiments, we used DESMO-J 2.3.3 running

in Oracle’s Java 1.7 HotSpotTM 64-bit server virtual

machine (Version 24.65-b04). The -xmx VM argument

was set to 2048M to increase the available memory to

2 GB. The simulation was executed on Windows 8.1 run-

ning on an AMD FX-8350 octa-core processor clocked

at 4 GHz per core and equipped with a Samsung 840

Pro SSD.
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Fig. 10 Scalability of IntBIIS: Increasing Modeling Granularity (left), Increasing Model Complexity (middle), Increasing
Simulation Length (right)

8.3 Practicability

Since there are several analogies between BP simulation

and IS simulation, there are also several analogies in the

application of the corresponding tool supports. Similar

models have to be created. As described in Sec. 7, the

business process model is constructed based on the PCM

usage model and the organization environment model is

related to the PCM hardware environment model. The

simulations are configured and executed in a similar

way. Metrics such as mean response/execution time or

resource utilization determined by the tool support and

presented to the user are closely related.

The practicability of the Palladio approach and the

related tool support was validated by Martens [30]. The

results confirm the practicability of Palladio for third-

party users. We are currently validating the practicabil-

ity of IntBIIS from the practitioners’ point of view in a

case study. In this paper, we discuss the practicability

and maturity of our prototypical tool support by apply-

ing it to the real-life example. We extended the Palladio

tool chain by model elements and simulation behavior,

as described in Sec. 7. Thus, the practicability of our

tool support is widely determined by the practicability

of the Palladio tool chain. From the user’s perspective

the Palladio tool chain comprises the graphical editors
for modeling PCM instances, the configuration and ex-

ecution of the simulation, and the presentation of the

simulation results [4]. Martens [30] validated these fea-

tures as an influence factor of practicability. In the

following, we discuss our extensions to these features.

Editors: Currently, we are extending the Palladio

tool chain by a new graphical editor for organization

environment models, as specified in Fig. 5. Moreover,

we are extending the usage model editor by the new

meta–model elements presented in Fig. 4 to provide

comprehensive process modeling capability.

Simulation Execution: The Palladio tool chain pro-

vides automated model checking for violations of con-

straints. Simulation settings can be edited in a configu-
ration dialog and automated execution of the simulation

can be triggered. We reused the model checking and sim-

ulation setting functionality without making changes.

Presentation of simulation results: The Palladio tool

chain provides a sensor framework to gather performance-

relevant data during simulation and to calculate various

performance metrics. The tooling also comprises a chart-

ing framework to visualize simulation results in several

forms, such as mean values or histograms. We added
sensors related to the new model elements, such as execu-

tion time of actor steps or utilization of actor resources,

and reused the charting framework for the new metrics.

None of the functionality, basic behavior, or visual-

ization related to the features were changed, but applied

to the integrated tooling. Thus, indicators for the practi-

cability from third-party users’ view can be transferred

from the results by Martens. We are confident that the

integrated tool support is practicable for third-party

users, however, this needs to be further investigated in

the future.

The integrated tool support could be used to (a)

model a BP and IS from practice, (b) execute the sim-

ulation of the BP and the involved IS and (c) obtain

interpretable simulation results (as shown in Fig. 9).

Thus, we consider our prototypical tool support as ma-

tured enough to handle real-life BPs.

8.4 Threats to Validity

In case study research, four aspects of validity are dis-

tinguished [42] – internal validity, external validity, con-

struct validity, and conclusion validity (i.e., reliability).
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Internal validity: in the order picking study, sim-

ulation results were compared to measurements from

reality. Reality was mapped to a model that was input

to the simulation. Consequently, the mapping from real-

ity to the model may influence the simulation results.

Therefore, the results of IntBIIS were compared to the

results of another simulation method to exclude influ-

ence factors caused by modeling. However, both simula-

tion methods use different simulation strategies, which

again may influence the simulation results although the

models used in the simulations are similar.
External validity: according to Runeson et al. [42], in

case study research, the representativeness of a sample

case may be sacrificed to achieve a deeper understanding

and better realism of the phenomena under study. Con-

sequently, the results achieved in the order picking study

might not be transferable to an arbitrary other case,

due to the individual properties of each case. However,

the case study gives important insights and provides

indicators for cases having similar properties.

Construct validity: in the particular case of the order

picking process, BP workload did not suffice to drive the

IS into an overload situation. Also the mutual impact of

BP and IS on workload burstiness does not significantly

affect the simulation results, as shown in the figures. The

order picking process was not selected with the focus on

this criterion, but rather as it represents a real-life exam-

ple where IS response times significantly affect the BP

performance. Nevertheless, the burstiness experiment

conducted in Sec. 8.2.2 demonstrated the mutual im-

pact on workload burstiness which significantly affects

performance.

Conclusion validity: while analyzing simulation re-
sults, the effects of interpretation by a specific researcher

must be eliminated. In order to analyze the response

time distributions of the order picking process, we apply

statistical tests which give a reasonable evidence and

reduce the need for interpretation. In the burstiness
experiment, IntBIIS matched the expected mean value

for adequate workload burstiness, whereas the approach

in [23] exhibits a high deviation. Consequently, due to

the experiment design, there is hardly an interpretation

that may lead a researcher to another conclusion.

8.5 Assumptions and Limitations

The contributions proposed in this paper rely on as-

sumptions that may bear some limitations. As we build

upon the Palladio approach, its assumptions and limita-

tions (cf. [4]) also apply to IntBIIS. Besides the static

processing rate of human actors (justified in Sec. 7.5),

the modeled BP and organizational environment are as-

sumed to be static in IntBIIS. This means that dynamic

selection of suppliers or temporary adaptations in the

control flow, for example, is not supported.

Another possible limitation of IntBIIS is that the dif-

ferent granularities of events in terms of their duration

may limit the feasibility of the integrated simulation. In

cases where many fine-grained IS events happen during

a short time frame (e.g., a second) simulating a week

or even a year may take a long time. This is because

fine-grained simulation (which takes long per simulated

second) is required but also a long simulated time frame

is needed. However, this seems to be a hypothetic lim-

itation as we focus on IS response times that have a

discernible impact on BP performance. We do not need

to consider cases in detail where the IS simulation has a

large number of fine-grained events per second. Because

fine-grained IS events neither affect the BP performance

directly nor significantly influence the workload bursti-

ness in a BP scenario. Only if IS events get a granularity

that is comparable to BP events, they obtain impor-
tance from a business perspective. Rough estimates of

fine-grained IS events are sufficient for BP performance

prediction. The order picking process example includes
IS events in a millisecond range where it is simulated

over a long time frame (a year). As we were able to apply

IntBIIS to the example, we could demonstrate the feasi-

bility of the integrated simulation, even if fine-grained

IS events are included in the simulation study.

9 Conclusion and Future Work

In this paper, we presented the novel approach IntBIIS

for the integrated analysis of BPs and ISs using simula-

tion. We proposed a holistic simulation that combines

performance prediction on software architecture level

and business process level. IntBIIS predicts the impact

of an IS design on BP performance and vice versa. In

contrast to existing approaches, workload burstiness is

reflected adequately in simulation, since both, the BP

impact as well as the IS impact on workload burstiness,

is considered. This results in increased prediction accu-

racy compared to isolated simulation approaches. We
proposed a scheduling policy to specifiy the behavior

of human actors in simulation. IntBIIS supports the

comparison of design alternatives and the verification of

a certain design against requirements. In this way, the

alignment of BP and IS design can be supported.

IntBIIS builds upon the Palladio tool chain to imple-

ment the integrated simulation of BPs and ISs. Based

on a BP example from practice, we examined the fea-

sibility and practicability of the approach and tooling.

Compared to values measured in reality and prediction

results of another BP simulation tool, IntBIIS yields
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accurate simulation results. We argued for the practica-

bility of IntBIIS and the maturity of the tool support.

In the future, we plan to improve the usability and

expandability of our prototypical tool support. We plan

to include further quality aspects, such as reliability

and maintainability, in modeling and analysis. A better

modularization of the PCM and related simulators con-

tributes to this intention. We also plan to completely

support an established BP notation, e.g. BPMN, and

adapt or extend it by the modeling constructs and sim-

ulation strategies proposed in this paper.

Another topic of future work is improving the re-

flection of human behavior in simulation. Beyond the

proposed scheduling policy, there are various aspects

that might influence the behavior and performance of

human actors in terms of the activities to perform, for ex-

ample the humans’ stress level, whether they are tired or

ill, whether they like the activity to perform, or whether

they have experience with the activity or similar activi-

ties, and so on. Modeling the behavior of human actors

is one of the major challenges in business process simula-

tion. There is a lot of future work to do, which must be

conducted in a close interaction with social sciences, to

adequately reflect the characteristics of humans. It is an

open issue to find a trade off between the representation

of realistic human behavior and modeling effort.

Moreover, we want to apply IntBIIS to further in-
dustrial cases and to conduct further investigation on

the practicability of the tool support, for example us-

ing controlled experiments. Further investigations may

also examine the usefullness of IntBIIS for operational

decision making.
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