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Abstract. A notion of hierarchical scope is commonplace in many pro-
grammatic systems. In the context of model, and in particular graph
transformation, the use of scope can present two advantages: first, more
natural expression of transformation application locality, and second, re-
duction of the number of match candidates, promising performance im-
provements. Previous work on scope, however, has focused on applying
it to rule hierarchies, which reduces the number of matches performed,
but not necessarily the cost of finding a single match. In this paper we
define and explore a hierarchical scope formalism applied to the input
graph, with associated modifications to the transformation rule defini-
tion. We then experimentally evaluate the benefits and challenges of our
scoped model transformations in the state-of-the-art graph rewriting tool
GrGen and our research-oriented, meta-modeling and rule-based model
transformation tool AToMPM. We use a non-trivial “fire spreading” sim-
ulation transformation taken from distributed simulation community and
a mutual exclusion transformation benchmark to demonstrate that in-
tegration of scope results in an elegant, intuitive, and efficient way of
solving model transformation problems.

Keywords: scope, graph scoping, graph grammar, rule-based model
transformations, search plans, efficient pattern matching

1 Introduction

Scoping, i.e., grouping of related elements within a model is a common approach
to dealing with complexity. Use of scope in models in some form or another
has advantages in terms of improving scalability, especially for visualization of
large graphs? [1], as well as in representing the natural hierarchy or scoping that

4 Throughout this paper we refer to model representations as graphs, and use both
terms interchangeably.
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exists within the underlying problem domain. In the context of model trans-
formation (MT), the integration of scope allows for a more natural expression
of locality of transformation rule execution, and has the potential to provide
performance benefits as well. The latter is of particular importance, since the
declarative nature of rules in many model transformation environments leads to
expensive matching procedures based on subgraph isomorphism [2]. A matching
process that is constrained by scope to a subgraph may be faster (depending
on the implementation and the problem), addressing one of the main concerns
in the industrial-scale implementation of graph-based model transformation sys-
tems. A difficulty exists, however, in that the scope best used for a given model
transformation may not trivially conform to the notion of scope used in the base
modeling formalism—the method by which a hierarchical system is transformed
does not always need to respect its original hierarchy.

In this work we address this concern by developing a graph transformation
language that incorporates scope directly into the input (host) graph, while also
allowing for easy and natural manipulation of scope within rule syntax. This is
in contrast to previous efforts at using scope that either concentrated primarily
on developing hierarchical rule structures [3], or focused on domain-specific im-
plementations of transformations [4]. Our effort is aimed at integrating a general
and flexible form of hierarchical scope directly into model transformation, while
still maintaining practicality of implementation, and indeed heading towards
useful efficiency improvements. The system we design has the further advantage
of being a natural extension of existing graph transformation approaches, and
we present an initial non-trivial prototype implementation that demonstrates
real speedup in a state-of-the-art research modeling environment. Specific con-
tributions of our work include:

— We present a unified way to model and utilize scope in MT. Instead of
being a runtime artifact, the scope becomes a first class citizen in MT. We
develop a formalism for representing multiple scope hierarchies in a host
graph, orthogonal to any internal hierarchy of the underlying model. Our
approach is designed as a natural extension of basic graph transformation
environments, allowing for implementation within an existing framework and
supporting tools. This enables straightforward and incremental migration to
an optimized, scope-aware transformation system.

— We define a modified rule syntax that tightly integrates scope into rule
matching and rewriting. Rule structure is selected to elegantly reflect an
intuitive understanding of how scope is used, without overly compromising
the ability to ensure efficiency in a realistic implementation.

— Practical utility of our scope model is demonstrated by an initial proto-
type implementation within the AToOMPM [5] meta-modeling tool. Perfor-
mance evaluation is performed on a forest-fire spreading simulation and a dis-
tributed mutex benchmark (from a model transformation benchmark suite
[6]). In addition we map our scope concept to an efficient and highly op-
timized transformation tool GrGen [7]. Our experience indicates that our
scope design is very usable and also capable of significant speedup.
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— The actual scoped pattern matching is presented in the context of search
plans (SP) [8]. We demonstrate that adding scope to existing pattern may
result in the reduction of SP costs. This leads to accelerated pattern matching
and performance gains in MTs in general.

The rest of the paper is organized as follows. Sections 2 and 3 describe related
work and background. Section 4 formally introduces our interpretation of scope
and offers a running example. Section 5 investigates the use of scope in rule-based
model transformations. Section 6 concentrates on implementation, experimen-
tal evaluation and interpretation of results. Section 7 concludes the paper and
discusses future work.

2 Related Work

Our focus on scope in this work explores an aspect of graph transformation
that has not been deeply investigated in the past. Formal models of scope do
exist [9], but the majority of scope applications in model transformation con-
texts are aimed towards using rule applications as the scope of subsequent rule
productions, rather than incorporating scope directly into the host graph. In
the graph rewriting community, rule-based scope is a variation on amalgamated
rules [10-12]. This is demonstrated, for example, in GXL—a graph transforma-
tion language with rule-based scoping and graph parameters [3]. GXL inherits
greatly from TXL, a tree transformation language [13], but operates on graphs
rather than on trees. Scoping in GXL means that a scope produced by one rule
application can be passed by value and used by other rules, and so on. To en-
sure unambiguous host graph segmentation into subscopes, selection of a match
for a rewrite out of multiple available matches in GXL must be deterministic.
Our extension to the transformation system does not impose a match selection
strategy. In addition, we create scope hierarchies that can be transformed.

Scope in the host graph is most typically approached in terms of the natural
structure of the host graph domain. A subtree of an abstract syntax tree (AST),
for instance, defines scope in term rewriting systems. Stratego/XT [14], a pro-
gram transformation, term rewriting language and a collection of tools, allows for
scoping of dynamic rewrite rules by limiting their lifetime to a specific rewriting
strategy, localizing application of a rewrite rule to a part of a program’s AST.

A somewhat similar approach is taken by MGS, a domain specific language
(DSL) aimed at simulating biological systems [4]. MGS was designed to express
and manipulate local transformations of entities structured by abstract topolo-
gies. A set of entities organized by an abstract topology is called a topological
collection, meaning that each collection type defines a neighborhood relation-
ship of locality and subcollections as well. Transformation in MGS involves an
identification of subcollection, followed by its rewriting and insertion back into
the host collection. MGS explores the neighborhood relationships of collection
types to define subcollections within the host collection. Both Stratego and MGS
exploit the natural hierarchy of an underlying model. In contrast, our approach
is applicable to graphs irrespective of the hierarchy of the underlying model.
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A more flexible representation of scope is found in other existing systems.
The standard QVT-Operational (QVT-0) [15] language, for instance, provides
a feature that can also be used to implement a scoping mechanism, and in-
deed demonstrates how we can map our design into an existing transformation
system. In QVT-O a transformation may define intermediate properties (with
simple or complex types) in the context of the transformation itself (e.g., Trans-
formationl::scopel) or a given metaclass referenced by it (e.g., Classl::scopel),
in which case it dynamically gets added to the metaclass. Such properties can
be used to dynamically define scopes for the model elements being transformed.
For example, a transformation using a metaclass Employee with a metamodel-
defined container property “company” of type Company can define an interme-
diate property “director” of type Employee as a scope property. The value of
such a property can be expressed in OCL as the first director in an employee’s
reporting chain. The property can consequently be used by a rule transforming
employees under (in the scope of) a given director by simply referencing the
new property (without having to use the possibly complex expression). If the
transformation processes the employee model as a source model only (i.e., read
only), then such an intermediate property value can also be cached and reused,
potentially resulting in performance gains. Our approach here provides a less ad
hoc, more formal integration of scope, directly exposing scope in the rule design,
constraining the representation with an eye to efficiency, and making it an in-
tegral to the matching process. This allows the matching engine to more easily
take advantage of the scope concept.

Scoping properties are also found in container-based approaches, where event-
driven grammars have also been defined to manipulate the associated spatial
relationships [16]. A container housing several elements, for example, can be
considered a scope over the enclosed elements. Mechanisms that ensure the con-
tainment (or association) relationship is maintained when the container is moved
could then be repurposed to automatically maintain scoping relationships, and
so provide similar functionality.

Our interest in scope was originally driven by a desire to improve the per-
formance of graph transformation by reducing the size of the potential match
set. Other techniques have also been applied to this problem. The idea of piv-
ots, [17] for example, is to exploit the fact that subsequent rule matches may
have dependencies that reduce the number of candidates. Initial partial matches
(pivots) can be passed as parameters to the matching algorithm which then per-
forms localized matching starting from and around the pivots. The approach
of using pivots in model transformations has been implemented in a number of
modeling tools; in AToM? [18], pivots are passed between transformation rules,
and similarly, the tool GReAT [17] performs localized searches in the host graph
using pivots, called pivoted pattern matching. T-Core, a collection of transfor-
mation primitives [19], also supports pivots. T-Core operates on graphs encap-
sulated in packets and pivots can be added to these packets. The packets are
then exchanged between the matching and rewriting transformation primitives.
An important difference between scope and pivots is that pivots are assumed to
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induce a valid binding produced from the previous rule application, while scope
may not necessarily contain valid bindings, due to the heterogeneous concept
of scope as a “bag” of host graph elements. We view scopes as complementary
to pivots, providing another way to reduce the search space for graph pattern
matching.

Other techniques attempt to prioritize parts of the matching process so as
to reduce cost in practice. The high-level, multi-paradigm language PROGRES
[20], for instance, employs the technique of discarding graph pattern match can-
didates as early as possible. Restriction and attribute verifications are given
priority, which, along with attribute indexing, improves efficiency. In our design
we prioritize scope verification on the host graph to achieve a similar result.

Incremental bidirectional model transformations is another area where effi-
ciency of pattern matching is important [21]. For example, in [22] the authors
avoid matching in the whole input model by keeping track of the triple graph
grammar correspondence nodes. Exploring application of scope to the bidirec-
tional MTs is an interesting topic for future work.

A very fast pattern matching technique is based on incremental pattern
matching, as discussed in [23,24], and notably used in the VIATRA tool [25].
In essence, the incremental pattern matchers cache the matches as the input
model is “consumed” during a warmup phase. Subsequent changes to the model
are propagated to the engine and the matches are accordingly updated. This
technique delivers matches extremely fast at the expense of memory and match
update costs (when model changes are frequent). Therefore it is beneficial to use
local search-based techniques, described in the next paragraph, when memory
is at a premium or an MT performs frequent updates. For such cases, an adap-
tive approach switching between incremental and search plan-based matching is
presented in [26].

Generation of model dependent search plans from patterns was presented
by Varro et al. [8], with GrGen used to demonstrate implementation [7]. A dy-
namic programming-based, generalized search plan algorithm was presented in
[27]. Search plans are an efficient way to match graph patterns as they incorpo-
rate a fail-first matching strategy and heuristics to prioritize match operations.
Match operations are given weights based on heuristics; in the simplest case,
weights can be based on statistical information about the host graph, e.g., num-
ber of nodes and edges of a particular type. Operations are then sorted and
executed, such that more expensive operations that can result in a large num-
ber of match candidates are executed after less expensive operations, where the
number of candidates is as small as possible. GrGen also provides facilities for
scope implementation. The use of containers, such as sets and dictionaries in
rules, constrains the search effort to a selection of the input model, and model
attribute indices can also be used to filter the search space. The GrGen man-
ual suggests using additional edges in the model to guide the search and thus
improve the performance. These so-called reflexive edges are well suited for the
implementation of our scope concept. The SP-based techniques mentioned in
this paragraph can be used in our approach without modification to the SP al-
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gorithm, as we will demonstrate with GrGen in Section 6. This is possible due
to the fact that the patterns augmented with scope are treated as regular pat-
terns. However, in order to harness scope performance benefits the SP algorithm
should be either model sensitive, or allow prioritization of bindings, such as in
GrGen through the prio flags.

In the context of search plans our use of scope aims at reducing the number
of match candidates for selected match operations: scope information is used to
produce a search plan with reduced costs. A dynamic scope technique described
in [28] complements this paper and aims at reducing the number of candidates
for each match operation by discovering the scope or model element grouping au-
tomatically at runtime, based on model transformation statistics. In this paper,
we formalize the notion of scope as a logically distinct part of the input model
and investigate the use of scope as a first class citizen in model transformations.

3 Background

Our work depends on a number of specific technologies and tools. In this section,
we give essential background information that is necessary for understanding our
work. We start with a description of our tool AToMPM. We conclude this section
with the description of search plans, an efficient pattern matching technique and
the industrially relevant GrGen tool.

3.1 AToMPM

AToMPM [5], A Tool for Multi-Paradigm Modeling, is a multi-formalism /multi-
abstraction meta-modeling and model transformations tool, developed as a suc-
cessor to AToM?3. One of the distinguishing features of AToMPM is the multi-
view, multi-user browser-based user interface that eliminates the need for com-
plex installations and setups for DSL engineers and users. In AToMPM every-
thing is modeled explicitly, from the tool bars in the browser to the user interface
behavior. The tool is under active development and aspires to be the answer to
the shortage of accessible and usable model-driven engineering (MDE) tools.

The graph rewriting capability of AToMPM is powered by T-Core, a col-
lection of transformation primitives which abstracts the graph matching and
rewriting aspects of graph transformation rules and provides a universal way of
dealing with graph rewriting problems and in particular, the rapid design and
implementation of transformation languages.

Graph representation and transformations are actually carried out within the
C-based igraph library [29], contained within a Python implementation called
Himesis [30]. Graph structures in igraph have a simple and well-optimized rep-
resentation. Nodes, for instance, are implicitly represented by an integer index,
allowing the system to allocate nodes simply by incrementing a maximum node
counter. Once a node is allocated, edges can be constructed as (directed) pairs of
node indexes, and are themselves referenced by an index. This design allows for
straightforward and efficient access to graph structures, using array-like access
semantics.
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3.2 Search Plans

We present a brief overview of the search plan-based graph pattern matching in
order to explain the matching of scoped patterns presented later in this paper. In
addition, we explain primitive match operations composing the SP and discuss
the cost of an SP. For in-depth explanation of SPs consult the original works of
Batz [31] and Varré et. al [8].

A search plan is an ordered list of primitive match operations. The execution
of these operations results in a binding of pattern nodes and edges to the input
graph nodes and edges. The operations are executed in order. The ordering can
be based on the cost of these operations in terms of their branching factor. The
branching factor corresponds to the number of bindings each primitive match
operation returns. Only a single binding is considered for expanding the match
further while others are kept for a backtracking step which happens if the next
operations fail to produce a binding. In a bad case, the search plan execution
can result in a lot of backtracking, causing all of the bindings to be explored
while constructing a match. Therefore, it is desirable to first execute operations
with a small branching factor and thus minimizing the backtracking. Typically,
the following primitive match operations are distinguished:

— A lookup operation lkp(x) establishes a binding from the pattern node or
edge z to the matching host graph’s node or edge. Valid search plans must
start with a lookup operation to create the initial binding.

— The incoming and outgoing edge operations: in(v,e) and out(v,e) require
an already bound node v as a parameter to establish the binding for the
incoming or outgoing edge e of the node v.

— The source and target operations: src(e) and trg(e) require an already bound
edge e as a parameter to establish the binding with its respective source and
target nodes.

For a binding to be valid, the pattern element type must match the input graph
element type. In addition, for operations that concern edges, corresponding inci-
dence relationships must exist. Pattern attribute conformance, such as for node
labels, may be treated within the primitive match operations or as a separate
operation. In this paper we assume the treatment of node label conformance is
within the primitive operations and disregard attribute verification for brevity.

In Figure 1 an input graph is shown in column e and a pattern to match
in column b. Column ¢ presents the search graph corresponding to the pattern.
The nodes (as circles) and edges in the pattern are labeled with their respective
types.

The edges in the search graph correspond to primitive match operations,
and each node in the search graph corresponds to a pattern element, with the
addition of a special root node (we underline the node in the search graph cor-
responding to an edge in the pattern). Nodes representing pattern elements are
connected according to pattern connectivity and in a way to allow for bidirec-
tional navigability. The root node is connected to each search graph node with a
single outgoing edge representing a lookup operation. To produce a match each
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Figure 1. Input graph in column a with the pattern to match in column b. A cor-
responding (input sensitive) search graph is shown in column ¢, with its minimum
spanning tree indicated by bold edges.

node in the search graph must be visited once by following the edges representing
primitive match operations and executing them, in essence traversing a spanning
tree of the search graph, as shown by the bold edges in column c¢ of Figure 1.

Statistical information about the input graph can be used to estimate oper-
ation costs (e.g., their branching factors). The host graph information typically
includes the number of nodes and edges of a particular type. This information
results in a production of input model sensitive search plans [7,8]. Model sensi-
tive search plans are constructed from a weighted search graph representing the
match pattern. In column ¢ of Figure 1, for example, each edge is weighted with
the cost of its operation.

There are several search plans possible for the pattern in Figure 1. Let us
consider a search plan Py =lkp(X),out(X,Z),trg(Z) represented by the spanning
tree on the left of Figure 2. This is not the best possible SP. The lookup op-
eration, executed first, returns the bindings for all three nodes of the type X.
The following outgoing edge operation fails for two of the three @ nodes be-
cause of the missing outgoing edge. When the match operation fails to produce
a binding backtracking occurs and other unexplored candidates are considered.
Thus, a single binding for X is used to bind the outgoing edge successfully.
As backtracking is expensive, the search plan that causes the fewest backtrack-
ing steps is preferable. With this in mind, a better search plan in our case is
Py=lkp(Z),src(Z),trg(Z). Py is based on the search graph’s minimum spanning
tree, as shown on the right in Figure 2 (and also in Figure 1), which will produce
no backtracking. In this case, the first lookup operation binds the lone edge of
type Z, and execution of the source operation binds pattern element @ to the
node of type X at the endpoint of the edge Z. The target operation is executed
last, resulting in a pattern element (Y) binding to the node of type Y in the
input graph.

The minimum spanning tree of a directed graph, weighted with operation
costs can be constructed by using Edmonds’ polynomial time algorithm [32].
The minimum spanning tree is then used to produce the ordered search plan
with the smallest cost.
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P, =lkp(X),out(X,Z),trg(Z) P,=lkp(2),src(2),trg(Z)

Figure 2. Spanning trees corresponding to the search plans P; and Ps.

The cost of a search plan corresponds to the size of its search space tree
representing the number of host graph elements visited during matching. The
it level of the tree corresponds to the execution of the i** match operation. The
number of nodes at the i** level of the tree is equal to the product of the costs
of match operations (branching factors) up to the i level.

Let us first consider the cost of each individual operation. The cost of a lookup
operation is equal to the number of candidate bindings. Therefore c(lkp(X)) = 3
and ¢(lkp(Z)) = 1. In case of the incoming and outgoing edge operations let us
consider out(X, Z) for the same graph and pattern in Figure 1. Depending on
the @ node, we may or may not have an outgoing edge Z resulting in a number
of candidate bindings equal to 0 for the two nodes and 1 for the third. We
then consider c(out(X, Z)) = 0.3 as the average between the three nodes. The
source and target operations are simple and both cost 1, because once the edge
is bound, the number of candidates at each endpoint is equal to 1 (we do not
consider hyperedges in this paper).

Therefore, the cost of the search plan P=(oy,...,0x) is calculated by ¢(P)=c;+
cicy + -+ cicy--cp Or Z?:l [T7_; ci- Here ¢; is the cost of the i’ primitive
match operation and k is the number of pattern elements. For example, the cost
of Py is ¢(P1) =3+ 3%0.3+3%0.3x1 = 4.8, which is larger than ¢(P) = 3,
as all three operations in the latter case have branching factor of 1. Note that
the search plan cost equation is dominated by the early terms, and therefore it
is important to reduce the cost of early match operations.

As demonstrated in Section 5.4, our technique aims at reducing the cost of
search plans by introducing early match operations with small branching factor.
These operations are then prioritized in an SP and positively affect its overall
cost.

3.3 GrGen

GrGen [7] is a highly efficient graph rewriting and model transformation system.
GrGen compiles everything that is necessary to run the transformation into
executable binaries. This, along with the use of search plan-based matching
results in very fast transformation executions [33].
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Other than the use of a textual language, the process of specifying the trans-
formation and DSL in GrGen is similar to ATOMPM. A meta-model (MM) is
defined and models conforming to the MM are instantiated. Rules and their ex-
ecution sequences are specified. Then, the pattern matching backend generates
model sensitive search plans.

As described in the GrGen manual, several optimizations aimed at speeding
up the graph rewriting are available for a transformation engineer with deep
knowledge of the problem domain. Below we list some of the available optimiza-
tions we used in our evaluation of GrGen to implement our scope concept. The
way each of the following optimizations was used to implement our scope concept
and the experimentation results are presented in the implementation section.

— An annotation prio is used in rules to indicate to the transformation back-
end which pattern element should be bound first in the search plan-based
matching. Assume, for example, the engineer anticipates that there are ten
nodes of type A versus thousands of nodes of type B in the input model.
Marking the A type related pattern element with prio annotation will then
force the first lookup operation to bind a node of type A, significantly re-
ducing the cost of the search plan. This annotation overrides model sensitive
search plan generation or is used in the case when the input model statistics
is not available.

— A transformation engineer can define custom model attribute indices in the
meta-model. These indices are then used in the rules to reduce the search
space. During matching model elements can be queried based on the exact
value or the range of attribute values.

— It is also possible to use containers in the transformation rules. Sets and
maps promise node lookup performance gains in addition to the convenience
of passing them between the rules.

— The GrGen manual also suggests to introduce extra edges into the DSL.
Provided the number of such edges is smaller than the number of DSL type
elements, the use of these edges in the model will cause model sensitive
search plans to bind with these edges first.

It is not of course our goal to present an exhaustive list of possible GrGen opti-
mizations. We concentrated on including those optimizations that can be used
to implement our scope concept or those that have some overlap in the func-
tionality of reducing the search space. Parallelization was purposefully omitted
from the evaluation as the benchmarks implemented in our AToMPM tool do
not execute transformations asynchronously.

4 Scope

There are many possible ways to express and use scopes in a model transforma-
tion system. Our approach here is necessarily a compromise intended to allow
for reasonable expressiveness, while still ensuring a realization that is as efficient
as possible. Below we describe the core ideas underlying our approach and give
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an initial formal definition, followed by an introduction of our running example,
and efficiency motivation behind scope-based matching.

The basic idea of scopes we use is built on the notion of a secondary scope
forest, connected with, but logically distinct from the underlying host graph. The
scope forest is formed as a set of hierarchies, represented by a scope hierarchy
forest (SF') consisting of one or more scope hierarchy trees (ST's), and such that
each node in the SF has a unique label. The use of multiple ST's allows a node to
simultaneously exist in multiple hierarchies, while unique names and the single-
parent and acyclic properties of ST's make certain scope patterns unambiguous,
and improve the efficiency of determining whether a scope pattern applies to a
given node.

Figure 3 shows a simple example of a scoped graph as used in this paper.
Labeled, dashed rectangles identify the two main components of a scoped graph,
the host graph and the SF. To avoid confusion we represent the host graph in
terms of connected, labeled circles, while the SF' is represented using labeled and
rounded-rectangles. In Figure 3, we have two distinct ST's in the SF. Dashed
lines from ST nodes to host graph nodes represent innermost scope labeling or
mapping, while edges within ST nodes represent the scope hierarchy relation.
Here, node @ is understood to be in scope C and D with the innermost scope D,
and node (Y) is in all 4 scopes, with the innermost scopes D and B. Note that the
expression of scope in this fashion allows for a straightforward implementation,
even in scope-unaware systems, either by including scope nodes directly, or by
expressing scope as an additional attribute of host graph nodes. In the case of
encoding scope as attributes, the tool may gain performance during matching
by performing attribute indexing. A scope-aware implementation will obviously
exploit the extra information to increase performance.

i i
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Figure 3. The scoped graph with the scope hierarchy forest (SF') containing two scope
hierarchy trees (ST')
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4.1 Formal Definitions

The above description can be formalized by defining a scoped graph as a 7-tuple
G = (Vg,Eq,Lg, Vs, Es, Lg, R), where:

— Vi is a finite set of host graph wertices,

— Eg C Vg x Vg is a set of directed edges in the host graph,

— Lg : Vg — String is a node labeling function; duplicate names are allowed.

— Vs is a finite set of scope vertices, disjoint from Vg (Vs N Vg = 0),

— Eg C Vg x Vg is a set of of directed edges such that (Vs, Eg) forms a forest,

— Lg : Vg — String is a scope-node labeling function, assigning unique labels
to each scope node: Yy, v € Vg, L(vy) = L(vg) = v1 = vs.

— R C Vg x Vg defines the innermost scoping relation; which must fulfill the
conditions enumerated below.

With this definition, we have a formal way of evaluating whether a node is
in a scope or not. A node n € Vg is considered in a scope s € Vg if there exists
a path from s to some s’ such that (s',n) € R. We will also be concerned with
an innermost scope: s € Vg is an innermost scope of n € Vi if (s,n) € R. Note
that we allow a node to belong to multiple scopes, and thus innermost scope
is not a unique property. However, to better reflect the conceptual hierarchy
each ST represents, we will also impose a requirement that each node has at
most one innermost scope in each ST; that is, ((s,n),(s’,n) € RAs # &) =
35" s.t. path(s”, s) A path(s”, s").

4.2 Running Example

To motivate the use of hierarchical scopes in model transformations we present
our running example. For this we used a simulation of forest-fire spreading,
where fire spreads across a 2D grid of neighboring cells. Each cell in a grid
represents a forested area which may catch fire if any neighboring cells are on
fire. Once fully burned, a cell represents a barrier to further fire spreading.
The simulation terminates when no burning cells remain. There are of course
many fine-grain details that may be added to the base simulation model, such
as the duration of forest burning, wind effects, and so forth [34]. This overall
geometric approach however is recognized as a standard way of modeling the
dynamics of fire spreading scenarios [35]. Additionally, in [6] the grid approach
is used to benchmark transformations that mostly perform matches without
changing the structure of the source graph. Due to strong localization in where
rule transformations occur and which rules can apply, the forest-fire constitutes
an interesting problem to evaluate efficiency in model transformations. This
localization is highly dynamic, changing as the simulation progresses. Thus, it
provides an excellent test-case for evaluating the impact and suitability of scoped
versus non-scoped transformations.

We use a SF' to capture both the domain-oriented structure and the dynamic
knowledge of forest-fire spreading dynamics. Tree burning time can be affected
by several factors. For example, the type of trees in the forest and their moisture
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content may be static aspects of our model that form a natural hierarchy for
the domain. Thus, the forest cells (assuming sufficiently small cells to guarantee
homogeneity) can be grouped into scopes by their type and moisture content. In
Figure 4 we thus introduce two ST's to represent this structure, dividing trees
into classes of hardwoods and conifers in the Tree Type scope hierarchy and
introducing two moisture levels in the Moisture scope hierarchy.

Tree Type

[ Conifer ] [ Hardwood ]

e e () L)

Figure 4. Extended forest-fire scope hierarchy

The dynamic property of fire spreading is also captured in the scope hierarchy.
This represents a scoping orthogonal to the natural, static domain hierarchy, and
introduces a Region ST with three active scopes F', B, and D (highlighted with
a dashed rectangle in Figure 4). Scope F' contains burning forest cells, scope D
represents cells with dead trees, and scope B represents cells with healthy trees
that border cells in scope F (think of scope B containing smoldering trees to
ignite soon). We illustrate the entire scoped graph in Figure 5, where filled round
nodes representing cells in the 3 by 3 grid of host nodes are connected by dashed
edges from SF nodes, indicating the innermost scope relationships.

Figure 5. Forest-fire scope hierarchy applied to the forest grid

In this example we can see that some of the cells are in the scope of conifers
while others are in the scope of hardwoods. There is one cell in the fire scope
and the moisture content scope encompasses several cells. Note that there are
unmarked cells in the grid. These indicate nodes without any scope relationship.

The dynamics and evolution of the forest-fire spreading, encoded in scopes,
can be related to the concept of activity tracking in a cellular or a Discrete Event
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System Specification (DEVS) based modeling and simulation, such as presented
by Muzy et al. [36,37]. In fact, the active regions of the transformation were some
of the first candidates to be represented as scopes. This is one of the examples of
how hints from the problem domain can be used for defining scopes. Similarly, in
previous work on automated and runtime scope discovery [28], the active parts
of the transformed model are considered as dynamic scope candidates.

4.3 Efficiency Motivation

We use scope areas to demonstrate possible matching efficiency gains. Consider
an N x N grid of forest cells, as shown on the left in Figure 6. This is the actual
simulation of forest-fire spreading using our scope concept. On the right is a
model of the forest-fire spreading over the grid on the left. Concentric annuli
marked B, F' and D represent the Region scope hierarchy from our running
example and correspond to the scope regions marked on the screenshot. The
areas bound by these regions approximate the number of grid nodes that need
to be iterated over to find all matches of a pattern containing a single forest
cell. We are interested in a symmetrical spreading of the forest-fire (conceptu-
ally circular, but appearing diamond-shaped due to the taxicab geometry in the
forest-fire spreading screenshot), and so are primarily interested in the dynam-
ically expanding fire-front area B containing candidate cells to be moved into
F scope (as well the F' cells which eventually finish burning and change to D
cells).

NxN

Figure 6. A screenshot of the forest-fire simulation and the model of the forest-fire
spreading over the grid

The number of match searches performed without using scope is equal to
N2, the entire area of the grid. Considering only the scope relevant to a rule
application can dramatically decrease this cost. The area of the B annulus, for
instance, is B = 2mrA 4+ wA2. Dividing both sides of the equation by r? we get
B =272 + 7(£)2. We can eliminate (£)? as negligible when r is significantly
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larger than A. Now we can approximate the area to B ~ 2nrA. When r = % the
annulus area is B ~ 7N A, this yields a linear complexity of O(NN) to enumerate
the nodes inside the scope defined by annulus B.

Dynamically changing scopes such as the one represented by annulus B in
the previous example requires runtime modification to scope membership—we
gain nothing in efficiency if the entire grid must be traversed to change scopes
during the transformation. To solve this problem, we can maintain scope B from
within its neighbor scope F'. For this we need to incorporate scope modification
directly into the rule syntax.

5 Scope in Rule Based Model Transformations

In this section we describe the syntax and semantics of scoped model transfor-
mations. First, we look at possible scope patterns, their use in transformation
rules, and provide some justification based on usage scenarios and constraints.
We then introduce an extension to our own transformation rules that allows
for the manipulation of scope hierarchies. We describe the semantics of scoped
transformations and scoped matching using search plans. Finally, we address
scoped graph rewriting with its well-formedness concerns.

5.1 Scope Syntax

Our full design applies a syntax to the conceptualization of scope presented
earlier. This simplifies and constrains rule specification in the presence of scopes,
reducing potential for specifying malformed rules, and overall providing a more
intuitive format for describing scope matching and construction. Our goal is
to be sufficiently expressive while ensuring that an efficient implementation is
possible.

In general, we will need to know whether nodes are in different scopes, and
may be concerned with combinations of scopes, or inheritance within a scope.
For this, we define scope patterns as core constructs of our syntax. Figure 7
visually summarizes this approach. For each of the 6 panels, a scope pattern
syntax is presented on the left, and a corresponding scoped graph (host graph
and SF') that would match the pattern is shown on the right. In patterns, the
shaded, rounded-rectangles represent scopes, and labeled circles represent nodes
of a source graph. The items placed inside a scope imply a direct relationship.
Thus the semantics of a circle node drawn inside a scope rectangle is a node
inside that scope (this is similar to the notion of containment in hierarchical
graphs described in [38]), and that scope also constitutes the node’s innermost
scope. Similarly, a scope immediately inside another scope represents an edge in
the scope hierarchy relationship, with the outer scope being the direct parent of
the inner scope.

The graph on the right of each panel shows source nodes slightly larger than
on the left in order to emphasize the distinction between template host nodes in
our pattern syntax and host nodes in the actual scoped graph.
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Pattern Scoped graph Pattern Scoped graph

Hardwood

Birch

®
O,

Birch Tree Type

Birc

O

ORE

Figure 7. Six core scope patterns, each with the pattern on the left, and a possible
matching scoped graph on the right. Panel 2 shows a labeled scope pattern, panel 3
contains an anonymous scope pattern, and nested and overlapping scope patterns are
shown in panels 4 and 6 respectively. A dashed scope pattern is shown in panel 5.
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We now discuss each of the 6 panels. As an example, and to help motivating
the syntax of our scope patterns, we use our running example.

— Panel 1. The node @ is not placed inside a scope pattern. The intention is
to ignore the scope during matching. Using this construct we can match any
forest cell in the grid, regardless of its type, moisture content, or fire region.
We refer to this construct as no scope.

— Panel 2. The node @ is placed inside a single, labeled scope. This indicates
the innermost scope relationship for node @ Here we match all birch cells
in the forest.

— Panel 3. The node @ is placed inside an unlabeled scope. Such a pattern
represents an arbitrary scope in the SF, and we refer to it as an anony-
mous scope. This pattern will produce a match if the corresponding source
node has any (innermost) scope relationship. In a negated rule application
condition, anonymous scope can also be used to determine the absence of
scope for the node it contains.

— Panel 4. The node (X) is placed inside a hierarchical (nested) scope construct.
Such patterns can be used to designate a specific portion of the scope hierar-
chy while matching. In hierarchical scope constructs, labeled or anonymous
scope represents one level of scope hierarchy inside a single ST below the
scope that directly contains it. Here we are trying to match all hardwood
cells that are birches.

— Panel 5. Here we introduce an unlabeled, dashed scope. It represents 0 or
more levels of scope hierarchy inside a single ST below the labeled or anony-
mous scope that directly contains it. As opposed to panel 2, this allows us to
identify nodes within an inherited scope; here, any scope under Tree Type.
A dashed scope is not allowed to be used on its own or as the outermost
scope in nesting constructs, as that results in the source of the inheritance
being undefined. Dashed scope patterns are in a way similar to the use of
rules with inheritance [39], where a pattern is specified using an abstract
type and is applicable to the subtype model elements.

— Panel 6. Pattern 6 demonstrates a node having multiple innermost scopes.
Here we are matching nodes that are both pine cells and have 30% moisture
content. Multiple scopes enclosing a node must be in separate ST's, as men-
tioned in the formal scope definition. In our design, an attempt to match a
node in multiple scopes from the same ST will result in an error. We base
this on the assumption that a node in two scopes of the same ST properly
belongs to its single least-ancestor.

Core scope constructs, labeled, anonymous, and dashed, can be combined
using nesting (such as in panel 4 in Figure 7) and intersection (panel 6 in Fig-
ure 7). Not all scope nesting combinations make sense. In particular, nesting of
dashed scopes is redundant if expressed as a single parent-child nesting, and so
is disallowed.

Intersection of scopes is meant to be simple, representing a conjunction of
distinct scope patterns that must apply to the same host graph node. Thus nests
of scope pattern specifiers may not intersect except at the leaf-level. As well, to
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ensure we can easily distinguish which nest of patterns to apply to a given scope
tree, we also require the outermost scope of each intersecting scope nest to be a
labelled scope.

It is also worth pointing out that the knowledge of the exact scope hierarchy
may render some scope combinations such as nested labeled scopes unnecessary.
In panel 4 of Figure 7, for example, it is actually sufficient to use a single labeled
scope construct (such as in panel 2) to indicate just the innermost scope rela-
tionship, since we already know that birches are a direct subscope of hardwood.
Specifying parts of the hierarchy is mainly useful when the scope hierarchy is dy-
namically modified, or when the same rule set may be used in distinctly different
scope contexts.

5.2 Expressiveness

Our scope pattern constructs are defined to accommodate an intuitive under-
standing of how scope may be used and required in practice, while trying to
guarantee that an efficient runtime test will still be possible. We would still like,
however, to guarantee some degree of expressiveness, ensuring reasonably general
applicability, and also better formalizing our allowable scope pattern constructs.
For this we can relate our constructs to other ways of expressing path properties
in graphs, and consider our patterns as a form of path expression [40] or regular
path query [41] over the SF. To do this we show that the paths within the SF
encoded in the scope constructs can be mapped to simplified regular expressions
(RE) over the labels of the scoped graph. Table 1 gives the basic translation,
relating each of our scope pattern operators to corresponding RE syntax. In this
mapping « represents a label of a SF node and n indicates a label of a host
graph.

Table 1. Operators

Scope Operator  RE Operator
(L) labeled scope e
(A) anonymous scope
(D
(

) dashed scope K

n) host graph node n

In order to perform this mapping, we first define the language of well-formed
scope path expressions (SPEs) by converting the nesting hierarchy to an RE-
language,

SPE = (L|A)(D? (L|A))* D? n

with a restriction of no nested dashed scopes to respect the constraints given
earlier. A scope hierarchy path starts with L or A, followed by a combination of
scope operators and terminates at the host graph node n. The sequence of oper-
ators read from left to right defines scope nesting order. The leftmost operator
indicates the outermost scope, and subsequent operators represent subscopes of
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the parent scope denoted by the preceding operator. The innermost scope re-
lationship for the terminating node n is defined by its immediate predecessor.
Scope intersection is interpreted through a finite set of paths, each terminating
at the same host node, but otherwise evaluated separately. Recall that we also
require intersecting patterns to have a labeled node at the top level.

Mapping a particular pattern p € SPE to an RE itself is then defined by
translating p according to the mapping given in Table 1: . x (p[A — .][D — .«])n
(an arrow here means replacing construct on the arrow’s left to the construct on
its right side). Here we also prepend .x to represent an arbitrary starting point in
the SF for RE matching. Matching over the SF is then conceptually performed
in a depth first manner, beginning at the first operator and terminating at n. We
also perform the shortest match, that is useful in the context of search plan-based
matching described in Section 5.4. There we navigate up the scope hierarchy
from the graph node and if the anonymous scope contains the dashed scope
we terminate our matching at the very first scope node encountered (innermost
scope) instead of searching such a construct all the way up the hierarchy until
the root scope node.

We now map as an example some of the patterns in Figure 7 to REs.

— Panel 5 is: . % Tree Type. * X
— Panel 6 is a combination of two REs: . *x Pine X and . * 30% X

All our patterns are required to terminate at a single host graph node. In
many cases, however, a designer may wish to specify that the same pattern
applies to multiple host nodes, and patterns similar to the one on the left in Fig-
ure 8 may thus be desirable. Since the host graph does not in general conform
to the same restrictions we impose on our SF' that make RE expression straight-
forward, describing such patterns introduces significant complexity into our RE
translation process. To reason about such patterns, we thus instead rely on a
flattening operation, conceptually decomposing a non-conforming pattern to du-
plicate the scope pattern such that there is a single well-formed path expression
for each host node. The result of flattening is shown on the right in Figure 8.
Note that this reduces the ability for a pattern to guarantee it refers to the same
scope node containing different host nodes: even if we draw X and Y within
the same anonymous scope A, once flattened the respective anonymous scopes
could be bound to different ST's. Avoiding the need to find a scope binding that
is the same for all nodes, however, simplifies the matching process, and so we
only permit non-conforming patterns such as these when there is unambiguous
use of scope (no rewriting of anonymous scopes). The use of anonymous scope
(or dashed scope) in conforming patterns similar to the pattern on the right in
Figure 8 is allowed. The user should be aware of the resulting matches of differ-
ent scopes or different parts of the scope hierarchies (in the case of dashed scope
use).

Finally, we note that extensive use of scope combinations such as intersection
can stress the visual syntax of our scope formalism. In more complex cases we
can use a textual format to describe SPEs, or a layered, hierarchical visual
representations to deal with the complexity.
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Birch

Figure 8. Flattening of a scope pattern on the left, with a result on the right.

5.3 Transformation Rule Structure

Graph transformation rules in our design follow a traditional composition of a
left-hand side (LHS) graph pattern, a possible negative application condition
pattern(s) (NAC), and a right-hand side (RHS) transformed pattern. Note that
the rule systems traditionally also include unique labels associated with pattern
elements, to allow LHS, NAC, and RHS elements to refer to specific matched
instances, and thus identify elements which are specifically deleted or modified.
For clarity and simplicity in depicting the patterns in transformation rules, we
do not show these unique labels in our examples.

A straightforward rule design would be to simply allow our scope syntax to be
employed in LHS, RHS, and NAC specifications. An interesting complexity in
defining rules for a scoped transformation system, however, arises from the need
to express scope manipulations independently of source graph manipulations.
This is due to the fact that a naive change in scope hierarchy has the potential
for non-trivial side-effects on the graph structure, not easily visible in the rule
structure.

An example motivating this concern is given in Figure 9. The rule in column a
is attempting to express an inversion of the scope hierarchy relation between A
and B. Consider, however, a source graph consisting of two connected nodes @
and @ and a single ST, as depicted in column b of Figure 9. The LHS will match
a node labeled @ which is marked with innermost scope B, such that scope A
is a parent scope of B. After execution of the RHS, node @ is moved into the
scope A. And the scope hierarchy manipulation occurs: scope B now becomes
the parent of scope A, as shown in column ¢. The new scope hierarchy, however,
indirectly affects node (¥); its immediate scope is still B, but scope B is now a
parent of scope A, and thus (¥) is no longer (by transitivity) in scope A. This
may be the desired, correct behavior, but is also potentially confusing in that
it is not clear whether a scope pattern in the RHS is intended to represent a
global transformation of scope relations or just specification of a single, bound
host node’s new scoping relation.

To more cleanly separate these issues we decided to perform SF and ST
manipulations orthogonal to the main transformation rule rather than implicitly
in the normal RHS. This ensures that the intent of any scope manipulations
is overt. Attempts to modify the scope hierarchy itself in the RHS are thus
disallowed.

Figure 10 presents an extension to our existing transformation rule that il-
lustrates our final rule design. This rule creates a scope hierarchy between un-
connected ST nodes A and B and places node @ into scope A. Node @ must
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Figure 9. Ambiguity in modifying scope hierarchy in RHS.

not be in C scope as dictated in the NAC part of the rule. The top part contains
DSL and scope patterns, while the bottom part of the rule is reserved for scope
hierarchy manipulation only, with matching and rewriting performed in typical
model transformation fashion on the SF. Thus, only labeled scopes with nesting
to represent hierarchy are allowed in the bottom part. We will now refer to the
top part as LHSy, RHSt, NACy and to the bottom part as LHSg, RHSp, NACp.

NAC LHS RHS
NAC top LHS top RHS top
A A
NAC bot. LHS bot. RHS bot.

Figure 10. Extended model transformation rule.

There are constraints on placing certain scope patterns in the top parts of
the rule. Anonymous and dashed scope constructs are ambiguous in labeling
source graph nodes in the RH Sy and should be disallowed when creating new
innermost scope relationships. Nested scope constructs such as in pattern 4 from
Figure 7 are not allowed in RHSy if they attempt to modify the scope hierarchy
because of the hierarchy manipulation problem described in Figure 9.

In RHS7, labeling of source graph nodes with the corresponding innermost
scope occurs and the bottom part with its RHSp is reserved for scope hierarchy
manipulation. A runtime check will ensure that the RHSt is using (assigning) a
scope that exists in the scope hierarchy. This is necessary when the scope is not
matched prior in LHST or present in RHSp, which guarantees scope existence
through either matching or creation of the scope. If the scope does not exist



22 Jukss, Verbrugge, Elaasar, Vangheluwe

the rule application will result in a failure. Scope well-formedness is discussed in
Section 5.6.

Returning to our example of the ambiguous intent in the transformation
shown in Figure 9. We can now use the extended rule structure to more clearly
express the transformation engineer’s intent. Figure 11 shows the resulting rule
(a), and behavior in terms of the input scoped graph (b) and rewritten output
graph (c). Here, in the top left part of the rule it is clear that we wish to match
@ with an innermost scope of B and a parent to that scope A. The top right
shows us changing @’s innermost scope relation from B to A. The actual SF
manipulation itself, however, is now separately specified in the bottom part of
the rule, showing that we require B to be nested immediately inside A, and wish
to invert that relation. The end effect is the same, but the change to the SF by
the rule designer’s choice is intentional, explicit and is more clearly affecting the
entire scoped graph.

Final argument in favor of our extended rule structure is to allow for the
flexibility to execute the top part of the rule when the bottom part is applicable
(LHSp match is found in SF) and vice versa. It is also possible to omit either
the top or bottom parts of the rule. In this way a rule designer can easily sepa-
rate SF manipulation from any transformation of the host graph and the scope
relationships it includes.

Figure 11. The extended rule applied to the ambiguity problem.

5.4 Semantics

In this section, we give the semantics of our scoped rule application a visual
description.

In Figure 12 an extended rule application is shown using notation similar
to that used in algebraic single-pushout (SPO) graph rewriting [42] (with the
NAC portion of the rule omitted for brevity). Top and bottom parts of LHS and
RHS are shown separately as they represent different parts of the extended rule.
For simplicity the morphisms are indicated by the bold outlines of the nodes
and edges. Morphism of the bottom parts pertaining to the SF are indicated
by dashed bold rectangles. The application of this rule creates a node Birch in
the scope hierarchy and a node (¥) connected to node @ Both top and bottom
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patterns must have a match in the scoped graph for the rule to apply. That is
m top: LHST — G and m bot. : LHSp — G morphisms must exist.

LHS top

RHS top
é r top
r bot. ( f > : )

LHS bot. RHS bot.
_M_ i (/ [(—
|
| . Pine| | Birch| |
== R T
m top m* top
*
¥ m bot N bot
G H

r r Y
B 16

-
| ya

oo & B0

Figure 12. Scoped matching visualized (scoped graph syntax for patterns) using SPO
notation.

Y

Note that matching the scope labeled Pine in the top and bottom parts of
the rule may seem redundant, as both ensure the existence of a node labeled Pine
in SF'. This need not be true in general, however, and there is no requirement
that LHS7 be related to LHSp, giving us the flexibility to modify the SF as
a consequence of rule application, without needing that rule to directly refer to
host nodes in the portion of the SF' being modified.

Finally, due to a restriction on the use of unique labels in the SF, we ensure
that the Pine scope patterns in both LHSp and LHSp match the same Pine
node in G. The use of anonymous and dashed scope constructs is forbidden
in the bottom part of the rule for the reason of ambiguity in modifying the
scope hierarchy (see Section 5.6). This eliminates the situations with unclear
matching semantics, such as the presence of the anonymous scope constructs in
both LHST and LHSp parts of the rule.

5.5 Scope Matching Using Search Plans

We now present scoped matching in the context of search plans (SP). We believe
that this is the most natural way of dealing with scoped matching, because our
scope constructs translate into search plans in a straightforward way. Below
we discuss the generation of SPs for the scoped patterns and address possible
matching scenarios and strategies.
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Matching is a process of finding an occurrence or a binding of a pattern
(including scoped pattern) in the input graph. We consider the scoped graph
as a whole for the purpose of SP-based matching. Note that matching routines
typically produce a set of occurrences of a pattern in a host graph, called the
matchset [19]. A match is then selected from a matchset for a rewrite. To under-
stand our process, however, it is sufficient to provide a description of locating a
single match, and this can be trivially extended to multiple matches. Some of
the fine details of SP-based matching are not in the scope of this paper and are
omitted.

To demonstrate how scope augments the SP-based matching we start with a
non-scoped pattern and add scope. In Figure 13 an input graph is shown in col-
umn a. Assume that the host graph is analyzed to collect statistical information
for the purpose of calculating the costs of primitive match operations. In this
demonstration we count the number of types in the input model. We get 4 @
node types and 4 e edge types between the nodes. The resulting search graph
for the pattern given in column b is shown in column c. Edges are labeled with
corresponding primitive match operations, their cost shown after the comma,
and a minimum spanning tree is marked over the search graph with bold edges.
Note that this minimum spanning tree is not unique, and thus other lowest-cost
search plans are possible. In this case a SP is Py =lkp(e),src(e),trg(e) with a cost
of 12.

Figure 13. A minimum spanning tree over the search graph in bold edges on the right.
The input graph is on the left, and the pattern in the middle.

Consider Figure 14 with the same layout as Figure 13. We add scope to
the input graph and augment the pattern with the scope (shown using input
graph syntax, a dashed edge representing an innermost scope relationship). The
input graph statistics remains unchanged by the addition of a single scope node
and its immediate scope edge (labeled s). The resulting SP from a minimum
spanning tree Py =lkp(Pine),out(Pine,s),trg(s),out(X,e),trg(e) is longer in terms
of the number of operations. The scoped search plan however, is much cheaper
at a cost of 5.

The generation of scoped SP can be applied in the same way to labeled and
anonymous scopes with nesting, as well as the scope intersections after flattening
operation. Simple scoped patterns are treated just like any other pattern. If the
anonymous scope construct is present in the search graph, the primitive match
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Figure 14. After addition of scope to the input graph and the pattern, the search plan
generated from the search graph on the right has a cost of 5 as opposed to 12 without
scope.

operations should accommodate returning a binding for any scope node in the
SF. This could mean considering all the nodes in the SF' which is expensive.
Therefore, depending on the input graph statistics, it could be beneficial to
force the SP to start from the input graph node and then match up the scope
hierarchy until the outermost scope construct. This can be demonstrated in an
alternative (and not necessarily the best) search plan, searching right to left
through Figure 14. In this case we start at an input graph node and match up
the scope hierarchy: P3=lkp(X),in(X,e),src(e),in(X,s),src(s).

Dashed Scope Matching is addressed next. The dashed scope constructs
require slight modification to the search plan-based matching. We introduce two
extra match operations down and up. These two new operations are functions
that contain calls to the primitive match operations with additional branch and
loop control structures. In Figure 15 in column a is the scoped pattern and the
search graph corresponding to that pattern in column b. Now, during search
graph generation the dashed construct within a labeled scope is treated with
these new operations. The match operation down is used when the matching
process starts binding the pattern from the scope node (Pine node in this ex-
ample) down the hierarchy towards the input graph node ® The up operation
on the contrary, is used when we match up the scope hierarchy from the input
graph node. In Figure 15 lookup operation edges are present. Based on the input
graph statistics, lookup of the node (including the scope hierarchy nodes) whose
type is least represented in the model may be chosen to be at the start of a
search plan list. This results in a matching up or down the hierarchy.

The down operation requires two parameters, an already bound scope node
and the information about the non-scope node where the pattern terminates.
The information about non-scoped node is used to decide whether matching
reached the terminating host graph node. In reverse, the up operation requires
an already bound host graph node and the information about the terminating
scope pattern node. In a case when the scope pattern node is an anonymous
scope, the generic type of the scope node is provided to indicate that any node of
the SF will be satisfactory for a binding. Then, the up routine should terminate
as soon as the innermost scope relationship from the bound host graph node
is found by traveling up the scope relationship edge satisfying shortest match
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a b

down(Pine,X)

Ikp(X)

Figure 15. The search graph in column b displaying two new match operations tar-
geting dashed scope constructs

semantics. In Figure 15 operation costs are not shown. At this point we do not
attempt to reason precisely about the cost of the up and down operations, except
to estimate the maximum or minimum values based on the information about
SF. The cost depends on the number of levels and branching of the ST's. Let
us first consider dashed scope patterns inside labeled scope as in Figure 15. The
best case for an up operation is when Pine is the immediate scope to @ The
worst case is when the scope of interest is not present or is the root of the ST.
Similarly, for a down operation the intermediate scope relationship presents the
best case. However, the worst case is when all of the ST is traversed from the
root scope down.

When the anonymous scope contains dashed scope, a down operation can be
very expensive. Bindings to all scope nodes may need to be evaluated in an effort
to discover the host graph node down the ST. In addition to that, the match
can contain portions of the ST of different length (depending on the starting
point). The up operation starting from the host graph node will match the very
first immediate scope node discovered. Depending on the cost of a binding to
the host graph node, this can be an expensive operation. Calculating the cost of
the nested operations presents an interesting case for future work in the field of
search plans.

Below are algorithmic descriptions of down and up operations. For brevity,
we assume that the primitive operations inside these functions return a single
binding out of all possible; anonymous scope treatment is also omitted because
extending these functions to support such scopes is trivial. To concisely convey
the semantics of dashed scope matching in a simple way, in these functions we
do not deal with failures to produce a binding and the resulting backtracking.
The S parameter passed into in and out match operations represents a generic
scope hierarchy edge type that needs to be bound, including the innermost scope
edge.
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function DOWN(Scope, Node) function UP(Node, Scope)
result = Scope result = Node
while result = Node do while result = Scope do
ScopeEdge = out(result, S) ScopeEdge = in(result, S)
result = trg(ScopeEdge) result = src(ScopeEdge)
end while end while
return result return result
end function end function

Inside the down function, the outgoing scope hierarchy edge is bound and
stored inside the variable ScopeEdge. The edge is then used to bind the target
node at its endpoint. The binding stored in result is tested for the conformance
to the terminating non-scope node. If it conforms, the binding is returned, if not,
the routine continues looking for the non-scope node in a depth first fashion. Note
that intermediate scope hierarchy bindings are not returned from this function.
If necessary, these bindings can be stored within the function and returned. In
the case of the up function, the same principles describing down operation apply,
only in reverse. From the starting binding of the non-scope node, the matching
travels up the scope hierarchy edges until the labeled scope (outermost scope in
the pattern) is reached.

5.6 Rewriting

As mentioned in Section 5.3, we rely on unique labels within the rule patterns to
determine which nodes and edges are being added as opposed to being removed
or updated in the match bindings. If we have a match for both LHSy and LHSp,
we perform the corresponding graph modifications to rewrite the host graph and
the immediate scope relationships according to RHS, and the SF', according to
RHSE. Recall that in RHSy, we only deal with innermost scope relationships.
Therefore, all scope relationships and nodes that are not intermediate to the
host graph nodes in the LH St are ignored for the rewriting. Rewriting within
the scoped graph occurs using standard graph transformation operations that
add, update, or remove nodes and relations. Note that treatment of NAC scoped
patterns is similar to the treatment of LHS patterns described above. The ef-
ficient treatment of NAC patterns when common parts of LHS and NAC are
matched first is outside of the scope of this paper.

Scope Well-Formedness is addressed next. This additional complication
shows up in terms of ensuring that the innermost relation between host and SF
nodes is properly updated and still well-formed. Our constraints on RHST ensure
that we only need to consider innermost bindings of RHST, but even there we
still need to ensure that the innermost bindings are not created to the new or
matched scope nodes that would violate our property of each host node having
only one innermost scope in a given ST'. Failures in this represent runtime errors,
as do rewrites that would violate the forest nature of the SF'.

A constructive technique presented in [43], which derives application con-
ditions from global constraints and adds them to the transformation rules to
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ensure valid models (w.r.t. constraints) by design, could possibly be used in
this context as well. In [44] the authors ensure EMF model consistency, such as
avoiding cyclic containment, by introducing restricted rules. That work could
be applied to ensuring certain consistency requirements of our scope hierarchy
forest, such as absence of cycles. Another way to ensure consistency is by us-
ing a tool such as IncQuery [24]. This tool is used successfully in the industry
to facilitate verification of models by efficiently matching (IncQuery uses incre-
mental pattern matching) anti-patterns, the patterns that break consistency. It
would be possible to implement scope hierarchy consistency verification as the
rules are being constructed. This would be facilitated by the fact that the bot-
tom part of our scoped rule is reserved for scope hierarchy manipulations. The
MT engineer could then be alerted to any problems in advance of executing the
transformation.

As mentioned in Section 5.3, the top part of the rule is intended for inner-
most scope manipulations. Thus, RHSr will only have labeled scope constructs
without any nesting when new innermost scope relationships are created. The
scoped pattern found in the LHS7T may need to be replicated in the RHSy if the
intent is to preserve the relationship discovered. The bottom part of the rule can
only contain labeled scopes (with possible nesting) to allow for SF manipula-
tions. Anonymous and dashed constructs are not permitted in the bottom part.
We may also need to delete innermost bindings from arbitrary other nodes if a
scope node is destroyed. This requires simply removing dangling edges between
deleted scope nodes and affected source graph nodes. Runtime well-formedness
verification implies the use of some form of the transactional rewriting system
with checkpointing and backtracking. In case of a failure, the previous well-
formed state of the scoped graph is restored. Note that T-Core within AToMPM
supports backtracking.

In general, and although pathologically expensive scope-based manipulations
can be easily defined, we envision the scope hierarchy to be much smaller than
the related host graph, and scope modifications to be much less frequent. We thus
expect the overall SF modification time to be negligible, at least in comparison
to the cost of host graph manipulations.

6 Implementation

We first describe the mutual exclusion and the forest-fire simulation transfor-
mations. We then discuss a basic design in the industry-standard context of
QVT and the state-of-the-art graph rewriting tool GrGen demonstrating that
our approach does not require any fundamental changes to existing transforma-
tion systems in order to realize an implementation. The implementation of our
scope concept in GrGen in the context of the forest-fire and mutual exclusion
benchmarks is evaluated to establish the performance benefits. In addition, a
prototype implementation in our tool AToMPM, allows us to show a prelimi-
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nary performance comparison between a scoped and a non-scoped (baseline)®
implementations of the forest-fire and mutual exclusion benchmarks.

6.1 Mutual Exclusion

We wanted to evaluate the use of scope on a well known benchmark in the model
transformation community. For this we chose the mutual exclusion benchmark
in its as long as possible (ALAP) form, as introduced in [6] with a complete
specification presented in [45]. In this benchmark processes are attempting to
access shared resources. In order to ensure exclusive access to resources, the pro-
cesses are interconnected to model a token ring. We use the non-scoped mutual
exclusion implementation for AToMPM described in [28] and augment it with
scope. On the left in Figure 16 is an example of an initial mutex model. The
edge labels are omitted, but the processes are interconnected using next associ-
ations, forming a ring. of processes The resources corresponding to a process are
linked with held_by association. We are concerned with the sequential execution

Resource Resource Resource Resource

l Process Prucess l Process Process ‘

Resource

Process

Resource

Resource Resource

Figure 16. The initial mutual exclusion model on the left and the resulting model
after transformation sequence execution on the right. Each resource is moved to the
next process in the process ring.

of this benchmark because AToMPM does not support parallel rule execution.
We place resource model elements into scopes, and the other model elements
such as processes and associations are not placed into scope. Thus, each rule of
the transformation uses scope for matching resources except for the releaseRule
transformation rule that places each resource into a single scope in the SF. In
Figure 17 is the example of the giveRule transformation rule with the added
scope labeled Res (other scoped and non-scoped rules are omitted for brevity).

Process
Resource
Figure 17. Scoped giveRule; resources in scope Res are used for matching the pattern
in LHS.

giveRule

! Resource I

token

® Non-scoped and baseline implementations are the same and are used interchangeably.
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Note that it is of course possible to implement scoped transformation in
different ways (this is also true for the forest-fire simulation described in the
following section). For example by placing processed model elements into the
scope to eliminate them from consideration in the following rules. In this paper
we added the scope to the benchmarks in a way to keep the likeness of scoped
and non-scoped rules as much as possible (no introduced NAC for example)
and capture the resulting performance effects. A short transformation sequence
(STS) mutex benchmark was briefly evaluated in GrGen (using the implemen-
tation provided in the GrGen source tree). The STS benchmark differs from the
ALAP test in using a single resource.

6.2 Forest-Fire Simulation

In experimental work we wanted to validate that our scope model was feasible in
implementation, allowed for reasonably intuitive rule constructions, and was able
to demonstrate some improvement in efficiency. For this we used our running ex-
ample with its Region scope hierarchy, examining both scoped and non-scoped
designs in AToMPM and GrGen. The forest-fire example was partially moti-
vated by the “comb structure” MT benchmark from the MT benchmark suite
[6]. There, the MT is executed with the aim of measuring the comb pattern
matching performance (the model itself is not modified) over a grid of graph
nodes. Note that in this paper we demonstrate the application of scope to in-
place transformations; however, there is no restriction on the use of scope in
model-to-model transformations.

Figure 18 shows the abstract syntax model of the forest-fire spreading for-
malism. The Cell class instances can form the forest by connecting to each other
using the Next association. For simplicity we do not create any specialization
of the connection between the cells such as North, East, or West. The state of

Cell

0..* type

Figure 18. Forest-fire abstract syntax

the forest cell, healthy, on fire, smoldering or dead, is denoted by the integer
attribute type, as inspired by Muzy et al. [37]. The concrete (visual) syntax of
the cell icon is a rectangle (although the underlying representation is fully graph-
based), colored according to the state of the cell: healthy—green, on fire-red, and
dead—gray. The smoldering cells have no color of their own for simplicity and to
allow scope labels B displayed over them as shown in Figure 22 on the right.

6.2.1 Implementation in AToMPM Operational semantics of the forest-
fire simulation are defined using transformations. To be able to compare the
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scoped transformations to non-scoped ones, we design transformations to pro-
duce similar simulation results. In our case the fire-spreading pattern is uniform
for both transformations.

The baseline transformation is presented in Figure 19. The first rule, “Cells
catch fire” marks (by changing the type attribute to smoldering) the cells neigh-
boring the cells with burning trees (they catch fire). Note that in Figure 19 and
Figure 20 we show undirected edges in “Cells catch fire” rule. In the actual im-
plementation, the rule has two versions for the incoming and the outgoing edges
from and to the neighboring cell to catch fire. The smoldering cells are then set
on fire in the rule “Cells ignite”. Note that we do not regulate burning time for
both transformations, since this is an as fast as possible simulation. The final
rule “Cells burn out” finds the cells that are on fire and marks them as dead.
Thus the fire front spreads in the same fashion as in the scoped transformation
described below.

Cells catch fire

Vo

Cells ignite Cells burn out

1 ] ] |

I:l Healthy I:l Burning - Dead |:I Smoldering

Figure 19. Core rules of the baseline forest-fire simulation shown using AToMPM
syntax. Here and in the scoped transformation the cells are colored according to the
type attribute value.

Our scoped transformation uses the Region scope hierarchy from our running
example. For simplicity in this simulation the scoped rules do not utilize the
hierarchical nature of the SF'. Instead we just use the leaves of Region ST, such
as with I’ as shown in Figure 20. There are 4 rules in the core of fire spread
simulation, as displayed in Figure 20. The first rule “Init F' scope” is intended
for one-time initialization; it places a cell on fire into F' scope and also creates
Region ST in SF. The initialization rule also uses our extended rule structure
to change the SF. Note that the subsequent rules omit the bottom part of the
scoped rule, because it is not used. Rule “Cells catch fire” puts any neighbors
of cells in the F scope into the B scope (they catch fire) and marks them as
smoldering. Rule “Cells ignite” sets the cells in B scope (smoldering) on fire and
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Init F scope Cells catch fire

s [ | of))om
) Biag]

Cells ignite Cells burn out

o) )m | | )

D Healthy |:| Burning . Dead [] Smoldering

Figure 20. Core rules of scoped forest-fire simulation shown using AToMPM syntax.

puts them into F' scope. Finally, the rule ‘Cells burn out” seeks out the cells in F’
scope. The cells are then marked dead and put into scope D. The transformation
rules for both the scoped and non-scoped implementations are then scheduled as
per the sequential scheduling approach given in Figure 21 (the first rule “Init F'
scope” is scope-specific). The sequential approach aims to produce uniform fire
spreading (in our case circular, as in taxicab geometry, since we do not model
the effect of the wind).

AToMPM simulation screen shots of the results for both baseline and scoped
transformations are shown in Figure 22. We chose to use Tkinter [46] as our can-
vas for fast prototyping and running transformations in a stand-alone rendering
outside AToMPM. The use of Tkinter allows us to display extra information
that is not part of the formalism, e.g. scope of the source node.

6.2.2 Implementation in QVT We include excerpts of QVT-Relational
(QVT-R) [15] and QVT-O transformations implementing our forest-fire simula-
tion. Class Cell represents a single cell in the forest grid. The cell neighborhood
relationship is denoted by the next property (similar to the next association in
Figure 18). Property type is an enumeration mirroring the state of the cell de-
scribed in Section 6.4. For simplicity, the transformation’s intermediate property
Scope is defined as a non-hierarchical enumeration of F; B, and D scopes from
our running example. However, the intermediate property can be of any com-
plexity and can mimic the abstract syntax of the scope formalism (in Figure 23)
allowing for hierarchical scope constructs during transformation. The intermedi-
ate property is a good facility to implement scope as it does not exist outside the
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Forest-Fire Schedule

[ Init F scope
N

Cells catch fire

= o

Cells burn out

5 <

Cells ignite
N @ Y

Figure 21. The sequential scheduling of the scoped and non-scoped rules.

—

)

(S

Figure 22. The Result of execution in both baseline (left) and scoped (right) cases in
AToMPM simulation: the fire spreads uniformly.
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context of the transformation that defines it. This ensures a non-invasive scope
application as the MM of the language transformed will remain unchanged.

Below is the QVT-R transformation with the implementation of our “Cells
catch fire” rule (in Figure 20). The rule “Cells catch fire” puts any healthy forest
cells adjacent to cells in F' scope into the B scope (they catch fire). Definitions
of the QVT classes Cell and ForestFire are not listed.

metamodel ScopeMM {
enum Scope { F, B, D };
}
transformation FireSimulation (ff : ForestFire) {
intermediate property Cell::scope : Scope;
toplevel relation CellsCatchFire {
checkonly domain ff healthy:Cell {
type = healthy,
next = burning:Cell {
scope = Scope::F

}

3

enforce domain ff healthy:Cell {
scope = Scope::B
type = smoldering

3

The same rule in QVT-O is presented below.

metamodel ScopeMM {
enum Scope { F, B, D };
}
transformation FireSimulation (inout ff : ForestFire) {
intermediate property Cell::scope : Scope;
mapping inout Cell::CellsCatchFire()
when {
self.type = healthy
self .next->exists(scope = Scope::F)

b
{
scope := Scope::B
type := smoldering
b

6.2.3 Implementation in GrGen We also consider the forest-fire simula-
tion for scope evaluation using GrGen. We ported the non-scoped transformation
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from Figure 19 and its schedule to GrGen and refer to it as a baseline transfor-
mation. Below is the baseline “Cells catch fire” rule.

rule CellsCatchFire {
t1:Cell <-:Next- t2:Cell;
if {tl.type == 1 && t2.type == 0;}
modify {eval {t2.type = 2;}}}

We then use some of the available optimizations GrGen provides (listed in Sec-
tion 3) to implement/simulate a scope-aware system. Note, that in the actual
implementation of the simulation we use a node replacing an edge of the type
Next between the forest cells to align the benchmark with the implementation
in AToMPM.

Container. First, to model the scope, sets are introduced directly into the
rules, a transformation we refer to as “Container”. The forest cells, such as the
cells on fire are maintained inside a single set container and so there exists a
container for each region of the forest-fire. GrGen then performs the search plan
pattern bindings from these containers. It is up to transformation engineer to
maintain model elements inside the containers, whereas the AToMPM scope
implementation aims at a transparent and automatic scope implementation. Be-
low is the “Cells catch fire” rule. Notice the familiar F' and B scope mirroring
variables.

rule CellsCatchFire (ref F:set<Cell>, ref B:set<Cell>){
t1:Cell{F} <-:Next- t2:Cell;
if {t2.type == 0;}
modify {
eval {
B.add(t2);
t2.type = 2;}}}

The t1:Cell{ F} construct signals to the search plan backend to perform a binding
to the pattern variable ¢1 during a lookup from a container set named F.
Index. The forest cell attribute type goes hand in hand with the forest-fire
regions. The cells with type values equal to 1 represent the fire front and so
forth. We thus implement the attribute indexing inside GrGen, referring to this
transformation as “Index.” First, the index for cell types is specified in the MM.
Then, the index is used in rules for binding pattern elements. GrGen takes care
of index maintenance. Below is the same “Cells catch fire” rule using the TYPE
attribute indexing that embodies scoping or grouping based on attributes values.

rule CellsCatchFire {
t1:Cell{TYPE==1} <-:Next- t2:Cell;
if {t2.type == 0;}
modify {eval {t2.type = 2;}}}

The t1:Cell{ TYPE=1} construct signals to the search plan backend to perform
a binding to the pattern variable ¢I during a lookup from the dictionary where
keys are type attribute values.



36 Jukss, Verbrugge, Elaasar, Vangheluwe

Scoped graph. Finally, we implement the scoped graph by adding scope
nodes and scope relationships to the forest-fire MM. We refer to this transfor-
mation as “Scoped graph” in this section, and our scope implementation is a
direct mapping of our scope concept onto GrGen. Placing of the forest cells
into scopes is performed by drawing a scope relationship edge between the cell
nodes and the scope nodes. In the rule below, the immediate scope relationship
is matched in the pattern using the edge of type S. Below we show the “Cells
catch fire” rule using the scope directly in the input graph.

rule CellsCatchFire {
Flprio = 10000] :Scope{NAME=="F"} -:5-> t1:Cell <-:Next- t2:Cell;
B:Scope{NAME=="B"};
if {t2.type == 0;3}
modify {
B -:5-> t2;
eval {t2.type = 2;}}}

Scope is now part of the pattern. In this rule we use prio to ensure that the
search plan starts matching from the scope node F. We also use scope name
indexing to locate a scope node based on its name. In the rewrite part we place
the t2 forest cell into scope B with B -:5-> t2;.

Amalgamated Forest-Fire. It is possible to use amalgamated rules to im-
plement forest-fire transformation, and we also modified the forest-fire example
to investigate the effects of scope on the amalgamated rules. For this we use
undirected edges between the forest cells. Before, to align the GrGen example
with the implementation in AToMPM, the forest-fire transformation was imple-
mented using directed edges. The undirected edge implementation is simpler and
cleaner, as it allows us to specify successor and predecessor neighbors with one
rule (in GrGen, it is still possible to make a pattern that matches directed edges
in both directions). Below is the meta-model of the modified forest-fire example
including the scoping information.

node class Cell { type: int; }
node class Scope { name: string; }
edge class S

connect Scope [1] --> Cell [1];
undirected edge class C2C;

We amalgamate the “Cells catch fire” rule. Its non-scope, baseline version is
shown below. In this rule, after a single execution all cells neighboring burning
cells catch fire. The attribute indexing in the baseline transformation is also
performed.

rule CellsCatchFire {

multiple{
t1[prio=10000] :Cel1{TYPE==1};
multiple {

t1l -:C2C- t2:Cell;
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if {t2.type == 0;}
modify {eval {t2.type = 2;3}}
} modify {eval{}}}}

We now add scope in a similar fashion to how we showed earlier. In the rule
below, a single match of the scope node F, is used to iterate over all scope edges
to find the neighboring cells of all burning cells.

rule CellsCatchFire {
B:Scope{NAME=="B"};
Flprio = 10000] :Scope{NAME=="F"};

multiple{
F -:S-> t1:Cell;
multiple {

tl -:C2C- t2:Cell;
if {t2.type == 0;}
modify {
B -:S5-> t2;
eval {t2.type = 2;1}}
} modify {eval{}}}}

Note that we now use an iterator multiple in the amalgamated rules of the forest-
fire example. Previously, in AToMPM and GrGen the rewrites happened on the
first match found. As demonstrated with an amalgamation example in Section
6.5, the iteration may not always be beneficial.

6.3 Implementation of Scope in AToMPM

A prototype of scoped transformations is implemented in the AToMPM meta-
modeling and graph rewriting tool [5]. Our design is intended mainly to establish
additional proof of feasibility, and to serve as baseline for further research into
optimizing performance. At the same time, we use this naive approach as another
example, demonstrating that our scoped model can be easily and incrementally
integrated into an existing framework.

For scope implementation in AToMPM we use our model sensitive search
plan matcher. There, the SF' is implemented trivially, by using sets containing
input graph node identifiers. Each set represents a single scope. This imple-
mentation is not well suited for dealing with hierarchical scopes as opposed to
what was shown in GrGen where we directly write scope hierarchy into the
input graph. Nevertheless, this approach allowed us to easily use the existing
subgraph matching algorithm. Within this process we do make one important
modification to the part of the algorithm where candidate nodes are evaluated
for compatibility in type/name and degree during a primitive lookup operation.
Here we prioritize scope in the search plan generation process causing search
plan to start from scope node. The candidate bindings are then taken from the
scope sets. Only the nodes that are in scope are considered as candidates. As we
will show, even this simple change led to a performance improvement.
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Other changes were made to accommodate the new rule and the scope formal-
ism in the tool. For this we need syntactic changes to introduce a universal scope
formalism that can be used with any AToMPM DSL model in transformation
rules. For abstract syntax AToMPM uses a variant of the UML diagram formal-
ism, and a reconstruction of the abstract syntax model is shown in Figure 23.
The class Scope_ represents a scope. The class $* is an implementation-specific
way of defining a wildcard class (i.e., any class). The type of Has_ association is
containment, such that it allows Scope_ instances to contain any class instance,
including Scope_ instances themselves. This allows for hierarchical construction
of scope. In addition, the resulting implementation makes our tool scope-aware.
Scope is now a part of MT language formalism, applicable to any DSL without
modification of its MM. Such scope integration becomes transparent to the user,
and can now be used without the far reaching effects of a language specification
modification. This also addresses an aspect of a model and model transformation
evolution problem [47]. Finally, as a side effect, in this fashion the scope hierar-
chy can also be used to encode certain domain specific information omitted at
the language design time.

Scope_ $*

.* Has_ 0.%
name 0——0>

Figure 23. Scope abstract syntax used in AToMPM.

6.4 Experimental Evaluation

In the experimental evaluation we investigate if our scope concept can indeed
bring performance improvements. This implies the following research questions:

— Does the application of scope to the baseline transformation reduce the total
transformation execution time?
— What is the penalty of scope maintenance?

To answer these questions we perform the following experiments. For the forest-
fire benchmark, the forest grids of N x N cells similar to one on the left in
Figure 6, are generated in conformance with the meta-model. In AToMPM the
grid is generated programmatically for N values of 100 and 200. In GrGen trans-
formation rules are used to create the grid for NV values of 100, 1000, and 2000.
Smaller grid sizes in our tool compared to a highly optimized GrGen were nec-
essary because of performance advantage of GrGen. A single cell in the middle
of the grid is placed on fire before executing the transformation. In AToMPM
scoped and baseline transformations were executed, while in GrGen baseline
(non-scope), index, container, and scope graph experiments were executed. Each
experiment was executed 3 times and the average was taken for total, match, and
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rewrite times of the simulation. Rewrite time allows for estimating scope mainte-
nance penalty. The amalgamated forest-fire example was evaluated on a grid of
1000 by 1000 cells, on which baseline and scoped transformations were executed.
Because the baseline amalgamated transformation is already using attribute in-
dexing, we exclude indexing/container type experiments for the amalgamated
forest-fire transformation in GrGen.

The mutual exclusion ALAP benchmark was executed in AToMPM. Initial
mutex models for N values of 100, 1000, and 10000 were generated programmat-
ically. Each experiment for scoped and non-scoped transformations was executed
3 times. The average total, match, and rewrite times were taken. The short trans-
formation sequence (single resource) mutex benchmark implementation found in
GrGen source tree was augmented with scope and evaluated on a million process
model. The evaluation was performed on an x64 i7 mobile quad-core processor
with 16 GB RAM running Ubuntu 12.10.

6.5 Results

Note that throughout this section standard deviation is not reported, as it was
within ten percent of the mean.

Forest-fire results. In Figure 24 total, rewrite and match times are pre-
sented for the forest-fire benchmark in GrGen. The total time is displayed to
contrast for the unaccounted time in the case of container and index experi-
ments. GrGen match and rewrite times were taken as reported by the system. It
appears that container and index maintenance time is not fully accounted for.
There is also an anomaly for the index simulation. For N = 1000 match and
rewrite times add up to match the total execution time. In N = 2000 however
this is not the case. A possible explanation is the large graph size and that at
such size index maintenance becomes an issue and it is not tracked.

GrGen forest-fire total, rewrite, match times

100000 18,925.5
Q 2,771.6
w 1000 83 5 M Rewrite
'§ o ® Match
8 0.4 0.6 Total
2 0.3
B S
100 1000 2000
N, cells

Figure 24. GrGen forest-fire total, rewrite and match times for Baseline (B), Scope
Graph (S), Index (I), and Container (C) variations. Note the log-scale in time.

The container transformation results are only reported for N = 100. Due
to large forest grids the runtime exceeded the practical limit of 10 hours and
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further experiments were not executed. The container scope implementation is
not feasible due what likely is a prohibitive penalty in container maintenance.
The scope implementation using indexing does not show a speed up compared
to a baseline transformation, although index maintenance is evidently cheaper
than container maintenance judging by total time. Finally, from the results we
conclude that applying the scope directly into the host graph is a better opti-
mization to an already fast baseline transformation in GrGen. This is attributed
to the search plan cost reduction described in Section 3.

The only downside to the scoped graph use is shown by the larger portion of
the transformation dedicated to the rewriting comparing to other transforma-
tions (this is also true for the container transformation). However, the rewriting
penalty associated with the scope maintenance within the input graph is dimin-
ished by the improvement in matching and total time compared to the baseline
transformation.

In Figure 25 we show total, rewrite and match times for the forest-fire bench-
mark executed in AToMPM. Is it clearly evident that the scoped transformation
outperforms baseline by close to two orders of magnitude, again the only side
effect being the increase in the rewriting time due to scope maintenance.

AToMPM forest-fire total, rewrite, match times = Rewrite

» 100000 26,023.8 W Match
T 10000 3,047.9 Total
& 1000 216.8
4 100 622
C
2 N
(9]
v 1
B s B S
100 200
N, cells

Figure 25. AToMPM forest-fire total, rewrite and match times for Baseline (B) and
Scope Graph (S)

The results of the amalgamated forest-fire transformation demonstrate the
effects of scope inclusion in GrGen. On average, the baseline amalgamated trans-
formation on a 1000 by 1000 cell grid took 1448 seconds. This result is similar to
the indexed transformation for the same grid size model in a non-amalgamated
version. This result does not demonstrate an improvement. We believe that this
is due to the use of undirected edges and possibly the amalgamation itself. The
amalgamation may help to reduce matching costs in theory, because a series of
steps is merged into one. However, the actual implementation of the amalgama-
tion within a tool does not necessarily guarantee improved efficiency. It remains
unclear whether amalgamation would improve efficiency in another tool.

The addition of scope shortened the total simulation time to about 43 sec-
onds. This demonstrates an excellent use case for scope. Even though the non-
amalgamated forest-fire model was larger (due to the encoding of directed edges),
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its baseline runtime is faster than the amalgamated baseline. The indexing in the
amalgamated example as opposed to the non-amalgamated one was beneficial.
Removal of indexing in the amalgamated example was detrimental to perfor-
mance resulting in a runtime of about 5500 seconds on average. This indicates
that the indexing was a good performance hint to the pattern matcher in this
situation.

Mutex results. In Figure 26 total times for the ALAP mutual exclusion
benchmark executed in AToMPM are presented. In this case adding scope to
the transformation did not result in an improvement. This was due to the fact
that the number of host graph nodes in scope was large and constantly equal
to the number of resources in the input model. In the context of search plans,
this means that match operations related to scope had large branching factor
(as if scope was not applied) and the cost of search plans with the introduction
of scope did not improve. There is a minuscule improvement for the scoped
transformation and that most likely is attributed to faster lookup inside the sets
used for implementing the scope in AToMPM.

AToMPM mutex total time
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Figure 26. AToMPM ALAP mutual exclusion total time for Baseline (B) and Scope
Graph (8S)

Inclusion of scope in a single resource version of the mutex benchmark (STS)
was evaluated. We applied the scope to the STS benchmark found in the GrGen
source tree. The test was executed on a one million process model. Inclusion
of scope resulted in a close to doubling of the runtime of the STS benchmark
on average. This is due to the fact that the baseline transformation is already
exploiting the single resource node for search plan matching. The inclusion of
scope in this situation creates additional, unnecessary overhead. This example
represents the case where scope use may result in performance degradation.

7 Conclusions and Future Work

The use of hierarchical scope represents an interesting and potentially fruitful
research topic in the context of model transformations. Our experience demon-
strates by reducing the matching time by close to one and two orders of magni-
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tude in GrGen and AToMPM respectively, that application of scope to the host
graph is a path towards more efficient model transformations. Scope has the
additional benefit of proving an intuitive and natural mechanism for expressing
hierarchical concepts that transcend individual DSL boundaries.

Our scope concept, as demonstrated in the case of GrGen may be imple-
mented in various ways, such as container, indexing, and finally scoped graph.
The use of scope syntax at the rule level and automatically translating scope into
the most efficient implementation is the best way to deal with our scope concept
and to apply optimizations to transformations without the engineer knowing
the inside of the tool engines. In addition we demonstrate that scope can be
beneficial for the amalgamated rules as well.

We do observe situations where scoping may not be as useful (the mutex
example). This is usually the case when the matcher already exploits match-
ing hints to the fullest. It is interesting therefore, to investigate what types of
transformations benefit the application of scope.

Future work for our design is currently concentrated on implementing changes
to AToMPM to more efficiently support the scoped formalism. Even though
the naive approach taken in our prototype implements scope used sets, as was
demonstrated in the case of GrGen the use of scope directly in the input graph
is feasible and desirable. We are also interested in variations and extensions
of how scope is represented in transformation rules. Our syntax and seman-
tics here is aimed at a restricted use of scope, as a reasonable balance between
implementation complexity and ensuring sufficient expressiveness. More varied
parametrization of scope specification in rules, allowing for example complex
scope specifiers that do not always resolve to simple path searches, is also po-
tentially interesting, and while this can pose challenges in terms of maintaining
an efficient match process it may also offer even more flexibility in scoped graph
specification and manipulation. A thorough investigation would also need to
look at how scope hierarchies and various scope management strategies impact
transformation efficiency. Finally, we would also like to further investigate scope
workflow in solving various MT problems. An appropriate workflow intended for
a transformation engineer should include well defined guidelines on scope cre-
ation and scope use. A user study could be a source of valuable information in
designing such a workflow.
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