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Abstract This paper proposes the use of Equivalence Partitioning techniques for testing
Models and Model Transformations. In particular, we introduce the concept of Classifying
Terms (CT), which are arbitrary OCL terms on a class model enriched with OCL constraints.
CTs permit defining Equivalence classes for partitioning the source and target model spaces
of the transformation, defining each class a set of equivalent models with regard to the
transformation. Using these classes, a model validator tool is able to automatically construct
object models for each class, which constitute relevant test cases for the transformation. We
show how this approach of guiding the construction of test cases in an orderly, systematic
and efficient manner can be effectively used in combination with Tracts for testing both
directional and bidirectional model transformations and for analysing their behavior.

Keywords Model Transformations · Contract-based Specifications · Equivalence Partition-
ing

1 Introduction

Model transformations (MT) are being increasingly used in many different contexts. From
simple structural migration, model queries or pattern-based code-generation, they now have
to cope with complex model synthesis, behavioural analysis and stream data processing.
This has led to a significant increase in their complexity and, hence, to the need of engineer-
ing model transformations [29].

In this context, the specification and testing of model transformations become critical
tasks to ensure the correctness of their implementations. Note that correctness is not an ab-
solute property. It needs to be checked against a contract, or specification, which determines
the expected behaviour, the context in which such a behaviour needs to be guaranteed, as
well as some other properties of interest. The specification states what should be done, but
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without determining how. The problem, again, is that the specification of a model transfor-
mation can be as complex as the transformation itself. This is why modular techniques are
needed for specifying and testing model transformations.

One of the problems of existing model transformation testing techniques lies in the
difficulty of selecting effective test cases [4]. In this paper we explore the use of Equivalence
Partitioning, a software testing technique that divides the input data of a software unit into
partitions of equivalent data from which test cases can be derived [7]. The fundamental
concept of this technique is based on the use of equivalence classes, and the selection of one
representative element from each class. An advantage of this approach is the reduction of
the total number of test cases to a finite set of testable test cases, still covering a maximum of
requirements. Testing time is also significantly reduced, due to lesser number of test cases.

The key idea of this approach is that we need to test only one input model from each
partition as we assume that all the models in a certain partition will be treated in the same
way by the transformation. If one model belonging to a partition has certain characteristics
of interest, we assume all of the models in that partition will have them too and thus will
behave the same. Therefore, there is no point in testing any of these others. Similarly, if one
of the models in a partition does not work, then we assume that none of the models in that
partition will work. Again, there is little point in testing any more in that partition. In sum,
this is because all models in a partition are equivalent.

The main issues are how to define the equivalence classes that define the partitions in an
expressive and flexible way, and how to automatically select one representative element of
each class.

To achieve this, our contribution proposes a new technique for developing test cases for
UML and OCL models, based on an approach that automatically constructs object models
for class models enriched by OCL constraints. By guiding the construction process through
so-called classifying terms, the built test cases in form of object models are classified into
equivalence classes. Classifying terms are arbitrary OCL terms on a class model that calcu-
late a characteristic value for each object model. Each equivalence class is then defined by
the set of object models with identical characteristic values and with one canonical represen-
tative object model. By inspecting these object models, a developer can explore properties
of the class model and its constraints.

In this contribution we also show how classifying terms can be effectively used in com-
bination with Tracts [25], a specification and black-box testing approach for model trans-
formations, providing a sound and practical mechanism for the automated generation of
suitable test models for Tracts. More specifically, we show how this approach of guiding the
construction of test cases in an orderly, systematic and efficient manner can be effectively
used in the specification and testing of both directional and bidirectional model transforma-
tions.

This paper is organized in 7 sections. After this Introduction, Section 2 introduces classi-
fying terms, describes how they are specified, and presents the mechanism available for au-
tomatically constructing the representative object models. Then, Section 3 introduces Tracts
and Section 4 describes how classifying terms can be used in the context of Tracts to imple-
ment model transformation testing. Section 5 goes a step further and also shows the use of
Tracts and classifying terms to specify and test bidirectional model transformations. Finally,
Section 6 relates our work to other similar approaches and Section 7 concludes and outlines
some future lines of work.
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2 Classifying Terms

Classifying terms are an instrument to explore model properties. We discuss their underlying
concepts and their implementation in the context of a tool, the UML-based Specification
Environment (USE). The underlying ideas can be employed however in similar modeling
tools. USE allows the modeler to describe a system with a UML class model (class diagram)
and OCL constraints, among other description means like, for example, UML protocol state
machines. USE is intended for validation and verification of UML models.

2.1 USE Model Validator

One central validation task is the automatic construction of object models (object diagrams)
for the class model including the OCL constraints. This task can be performed by a so-called
model validator that (a) transforms UML and OCL models into the relational logic [34] of
Kodkod [47], (b) analyzes the relational logic results, and (c) transforms the results back in
terms of UML. The object model construction is guided by a configuration that specifies how
classes, associations, attributes and data types are populated. Finite bounds must guarantee
that all model elements (classes, associations, attributes and data types) are associated during
the validation process with finite sets.

2.2 The Concept of Classifying Term

The running example in this section is a very simple Parenthood description as shown in
Fig. 1 with a UML class model and accompanying OCL invariants. Given an appropriate
configuration, the model validator can automatically construct object models like the ones
in Fig. 2.

Fig. 1 Example UML class model including OCL invariants.

In order to explain the need for classifying terms, the central new notion in this con-
tribution, let us consider the following model exploration task: for a given class model and
under a particular configuration, the developer wants to scroll through all valid object mod-
els, i.e., she wants to consider not only a single object model but the collection of all valid
object models. This is currently realized in the USE approach through the validation option
scrolling that spans up all object models.

Problem: The general difficulty appearing now is that many very similar object models
will be taken into account. The developer might expect to be shown interesting, structurally
different object models. For example, in the above Parenthood model under a configuration
requiring exactly three Person objects and two Parenthood links, the two rightmost object
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Fig. 2 Different example object models with partly isomorphic structure.

Fig. 3 Object model equivalence classes w.r.t. a classifying term.

models in Fig. 2 will typically appear as distinct models, although being different only in
the first name of the Person objects at the bottom. However, a development approach could
offer the option to prevent that isomorphic object models with the same Parenthood pat-
terns are presented as distinct object models, when scrolling through the collection of valid
object models

Solution: As an answer, our approach gives the developer an explicit option to formu-
late her understanding of two object models being different. The technical realization is as
follows: the developer specifies a closed OCL query term, i.e., a term without free variables,
that can be evaluated in an object model and returns an (for the time being) integer as a
characteristic value; in our approach, this term is called ‘classifying term’; each newly con-
structed object model has to show a different characteristic value. As sketched in Fig. 3, the
classifying term determines an equivalence relationship on all object models. Two object
models with the same characteristic value belong into the same equivalence class. The ap-
proach decides to choose only one representative from each equivalence class. We will later
lift the restriction that only one classifying term of type Integer is considered.

Example 1 As a first simple case, a classifying term can specify the number of objects
in a class. E.g., under a configuration requiring at least 2 and at most 4 Person objects,
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Fig. 4 Interplay between model validator and classifying term.

the classifying term Person.allInstances()->size() would yield three object models
with 2, 3, and 4 Person objects, respectively.

Example 2 Let us continue the Parenthood example and configuration with exactly three
Person objects and two Parenthood links from above. In order to prevent that the two right-
most object models from Fig. 2 are presented as different object models, the developer can
employ the following classifying term.

Person.allInstances()->select(p |
Person.allInstances()->exists(c,gc |

p.child->includes(c) and
c.child->includes(gc)))->size()

This term counts the number of Person objects that possess a child and a grandchild.
The term rates the two rightmost object models from Fig. 2 with the same value 1, and thus
only one object model would be chosen from the corresponding equivalence class. The term
rates the leftmost object model from Fig. 2 with the value 0.

2.3 Classifying Term Handling

The USE model validator and a classifying term play together as depicted in Fig. 4: as
an initial step, a first object model is constructed; then the value value1 of the classify-
ing term in the first object model is stored; afterwards, a constraint is added to the vali-
dation process, namely the constraint classifyingTerm<>value1; employing this con-
straint, a second object model is computed; the value value2 of the classifying term in
the second object model is stored, and a further constraint is added to the validation process
classifyingTerm<>value2; the general rule is that when computing the object model N+1,
the values value1, ..., valueN of the classifying term in the previous object models are used
to distinguish the newly computed object model from the already found ones; these steps
are repeated until no new object model is found. In our approach, classes, associations, at-
tributes and data types must be populated with elements specified by finite sets, and thus
only a finite number of object models exists.
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Fig. 5 Structurally different objects models constructed by a classifying term.

Example 3 We now consider a more practical classifying term that generates structurally
different object models. The configuration requires that between 1 and 3 Person objects and
between 1 and 3 Parenthood links exist. The classifying term uses the boolean properties
wGp (with grandparent), w2c (with 2 children) and w2p (with 2 parents).

let P=Person.allInstances in
let wGp=P->exists(g,p,c |

g.child->includes(p) and
p.child->includes(c)) in

let w2c=P->exists(p | p.child->size>=2) in
let w2p=P->exists(p | p.parent->size>=2) in
if wGp then 1 else 0 endif +
if w2c then 2 else 0 endif +
if w2p then 4 else 0 endif

In order to obtain as many combinations as possible, the three boolean properties are
considered as bits in a three-bit integer representation. The classifying term encodes this
representation. The resulting object models are shown in Fig. 5. The objects models show
different structural characteristics and are presented in the order in which the model validator
finds them. Please note that from the possible 8 combinations of the basic boolean proper-
ties only 5 options are considered. This is primarily due to the stated configuration (1 to
3 objects, 1 to 3 links). For example, the option (wGp=0,w2c=1,w2p=1) cannot be reached
with at most 3 objects, because combining w2c=1 and w2p=1 would lead to solution 5 in
which wGp=1 must hold; the option (wGp=0,w2c=1,w2p=1) can be reached however by
increasing in the configuration the number of objects to 4 (resulting in, e.g., p1 with chil-
dren {p2,p3} and p3 with parents {p1,p4}).

As mentioned above, employing one classifying term of type Integer is one option. In
general, more than one classifying term may be employed. Each term is allowed to be of
type Integer or Boolean. Thus the same collection of object models as in Fig. 5 may also
be achieved by specifying three Boolean terms.
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[ wGp ] Person.allInstances->exists(g,p,c |
g.child->includes(p) and
p.child->includes(c))

[ w2c ] Person.allInstances->exists(p |
p.child->size>=2)

[ w2p ] Person.allInstances->exists(p |
p.parent->size>=2)

The example demonstrates two new aspects of classifying terms. First, it is valuable to
use multiple classifying terms in one validation process. And second, with multiple terms
allowed, apart from integer expressions also boolean expressions can be used, which on
their own only allow for at most two results. Whereas with n boolean classifying terms up
to 2n possible solutions could be found. Consequently, the definition of classifying terms is
extended to allow for these features.

In order to find successively new object models for a given class model plus classifying
terms, the values of the classifying terms are stored for each solution. Using the classifying
terms and these values, constraints are created and given to the solver along with the class
model during the validation process. Informally, the constraint schema reads: There exists no
previous object model, in which the evaluation of all classifying terms in the object model
currently under construction equals the stored values of the previous object models. This
statement can be formally represented as:

¬
∨

om∈PreviousObjectModels

∧
ct∈ClassifyingTerms

ct = ct[om]

ct is a classifying term and ct[om] refers to the stored value of the specific classifying term
in the previous object model om. With this formula, the example can be realized with three
distinct classifying terms and the overhead in form of the binary addition disappears, pro-
viding a more efficient solution. All described features have been implemented in the USE
model validator and are available for download1.

2.4 Advantages of Classifying Terms

Classifying terms can be employed for exploring the class model in order to see few di-
verse object models instead of many similar ones. The focus of exploration is determined by
the modeler through the terms. By inspecting the constructed object models and checking
their properties, the modeler gains insight into the characteristics of the class model includ-
ing the OCL constraints and makes them alive. Using boolean classifying terms, one can
draw conclusions which model properties (expressed as classifying terms) are allowed si-
multaneously in an object model (see the Table in the bottom right of Fig. 5). Thus one can
analyze dependencies between requirements similar to invariant independence [24] which
checks whether a given invariant is a logical consequence from other invariants. Classifying
terms can employ all OCL constructs (e.g., logical connectives and collection operations as
forAll, collect, closure or size) supported by the transformation into relational logic
and allow to express quite general properties. They can be used to generate test cases in
form of object models based on the idea of building equivalence classes.

Furthermore, equivalence class partionioning is well-known and the classifying terms
inherit their advantages. Depending on the chosen classifying terms, the amount of generated

1 http://sourceforge.net/projects/useocl/ (USE and ModelValidator plugin)
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function nextSolution:
In: solverInstance // constraints representing the model and bound configuration
InOut: termValues // storage for values of classifying terms, initially empty
Out: result // solution instance within new equivalence class

solverInstance.CTConstraint← genCTConstraint(termValues)
// run SAT solver
result← solve(solverInstance)
if isSatisfiable(result) then

// record CT values for this solution
termValues← termValues ∪ readTermValues(result)

end
end

Algorithm 1 Iteration step to generate the next solution.

system states (test cases) is significantly reduced. In addition, each test case has a higher
potential of revealing defects, due to the diversity enforced by the classifying terms. Finally,
models become increasingly larger and although the testing is limited by the chosen bounds,
exhaustive testing of every single possible system state is not feasable.

2.5 Algorithm and Implementation

The USE model validator uses an iterative algorithm to successively generate the solution
instances for the given model and classifying terms. The steps produce a sequence like the
one shown in Fig. 4. After each step, the generated system state is loaded in USE and can
be inspected, e.g., using the visual representations or evaluating OCL queries on it. The user
can issue a command of the model validator to initiate the generation of the next solution.
Alternatively, the model validator can be configured to generate the complete sequence of
system states at once without user interaction.

Algorithm 1 shows the pseudo code of the iteratively invoked function nextSolution
which outlines an iteraton step in the generation of system states for each equivalence class.
The solverInstance contains the information from the model and the bound configuration
required by Alloy/Kodkod [35]. This input is prepared in advance of the iterations, since
the UML/OCL model and bound configurations are fixed for the duration of the process.
Next, the variable termValues is a list of mappings that stores the evaluated result per classi-
fying term for each generated system state. The function genCTConstraint generates the
formula to exclude system states that are in any of the equivalence classes of previous so-
lutions. The function implements the formula presented in Sect. 2.3. For the first run of the
function, termValues is empty and thus the generated constraint results in a tautology, not
restricting the generation of a system state.

Now, the solverInstance is complete and ready to be solved by a SAT solver using the
Kodkod library [47]. The result is either of two possibilities. In the first case, the solver does
not find a valid assignment and yields an unsatisfiable. This means, within the restrictions of
the bounds and classifying terms, there is no further solution, i.e., no system state that is not
within any of the previous equivalence classes. This case terminates the iterative algorithm.
In the other case, the solver is able to find an assignment and yields a satisfiable. This
implies that a new equivalence class has been found and the system state is analyzed for the
unique classifying terms values, which are added to the termValues in preparation for the
next iteration.
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Fig. 6 Building blocks of a tract as in [25].

3 Tracts

3.1 The concept of Tract

Tracts were introduced in [25] as a specification and black-box testing mechanism for model
transformations. They are a particular kind of model transformation contracts [4,9] espe-
cially well suited for specifying model transformations in a modular and tractable manner.
Tracts provide modular pieces of specification, each one focusing on a particular transfor-
mation scenario. Thus each model transformation can be specified by means of a set of
Tracts, each one covering a specific use case—which is defined in terms of particular in-
put and output models and how they should be related by the transformation. In this way,
Tracts permit partitioning the full input space of the transformation into smaller, more fo-
cused behavioral units, and to define specific tests for them. Commonly, what developers are
expected to do with Tracts is to identify the scenarios of interest (each one defined by one
Tract) and check whether the transformation behaves as expected in these scenarios. Tracts
also count on tool support for checking, in a black-box manner, that a given implementation
behaves as expected—i.e., it respects the Tracts constraints [6].

Fig. 6 depicts the main components of the Tracts approach: the source and target meta-
models, the transformation T under test, and the transformation contract, which consists of
a Tract test suite and a set of Tract constraints. In total, five different kinds of constraints
are present: the source and target models are restricted by general constraints added to the
language definition, and the Tract imposes additional source, target, and source-target Tract
constraints for a given transformation. These constraints serve as “contracts” (in the sense
of contract-based design [37]) for the transformation in some particular scenarios, and are
expressed by means of OCL invariants. They provide the specification of the transformation.

If we assume a source model m being an element of the test suite and satisfying the
source metamodel and the source Tract constraints given, the Tract essentially requires the
result T (m) of applying transformation T to satisfy the target metamodel and the target Tract
constraints, and the tuple < m,T (m)> to satisfy the source-target Tract constraints.

Example: In order to illustrate Tracts, consider a simple model transformation called
BiBTex2DocBook that converts the information about proceedings of conferences (in BibTeX
format) into the corresponding information encoded in DocBook format2. The source and
target metamodels that we use for the transformation are shown in Fig. 7. Seven constraint

2 http://docbook.org/
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Fig. 7 Source and target metamodels.

names are also shown in the figure. These constraints are in charge of specifying statements
on the source models (e.g., proceedings should have at least one paper; persons should have
unique names); and on the target models (e.g., a book should have either an editor or an
author, but not both). The constraints for the source are shown below.

context Person inv isAuthorOrEditor:
inProc->size() + proc->size() > 0

context InProc inv booktitleOccursAsProcTitle:
Proc.allInstances->exists(prc | prc.title=booktitle)

context Person inv uniqueName:
Person.allInstances->isUnique(name)

context Proc inv hasAtLeastOnePaper:
InProc.allInstances->exists(pap | pap.booktitle=title)

context Proc inv uniqueTitle:
Proc.allInstances->isUnique(title)

context Proc inv withinProcUniqueTitle:
InProc.allInstances->select(pap |

pap.booktitle=title)->forAll(p1,p2 |
p1<>p2 implies p1.title<>p2.title)

context InProc inv titleDifferentFromPrcTitle:
Proc.allInstances->forAll(p| p.title<>title)

In addition to constraints on the source and target models, tracts impose conditions on
their relationship—as they are expected to be implemented by the transformation’s exe-



Testing Models and Model Transformations using Classifying Terms 11

cution. In this case, the Tract class serves to define the source-target constraints for the
exemplar tract that we use (although several tracts are normally defined for a transforma-
tion, each one focusing on specific aspects or use-cases of the transformation, for simplicity
we will consider only one tract here). The following conditions are part of the source-target
constraints of the tract:

context t:Tract inv sameSizes:
t.file->size() = t.docBook->size() and
t.file->forAll( f | t.docBook->exists( db |

f.entry->selectByType(Proc)->size() = db.book->size()))

context prc:Proc inv sameBooks:
Book.allInstances->one( bk |

prc.title = bk.title and
prc.editor->forAll(pE | bk.editor->one( bE | pE.name = bE.name )))

context pap:InProc inv sameChaptersInBooks:
Chapter.allInstances->one( chp |

pap.title = chp.title and
pap.booktitle = chp.book.title and
pap.author->forAll(aP | chp.author->one(cA | aP.name=cA.name)) )

3.2 Tract Test Suites

In addition to the source, target and source-target tract constraints, test suites play an essen-
tial role in Tracts. Test suite models are pre-defined input sets of different sorts aimed to
exercise the transformation. Being able to select particular patterns of source models (the
ones defined for a tract test suite) offers a fine-grained mechanism for specifying the be-
haviour of the transformation, and allows the model transformation tester to concentrate on
specific behaviours of the tract. Note that test suites may not only be positive test mod-
els, satisfying the source constraints, but also negative test models, used to know how the
transformation behaves with them.

So far, the generation of test suites for tracts has been achieved using the ASSL language
(A Snapshot Sequence Language) [23], which was developed to generate object diagrams
for a given class diagram in a flexible way. ASSL is basically an imperative programming
language with features for randomly choosing attribute values or association ends. Although
quite powerful, this approach to generate source models for testing purposes presents some
limitations. In particular, it makes difficult to prove some of the properties that any test suite
should exhibit, such as completeness (are all possible sorts of input models covered?) and
correctness (are all generated models valid and correct?). In general, analysing the coverage
of the test suite w.r.t. the given tract is far from being a trivial task.

4 Using Classifying Terms in the Context of Tracts

4.1 Building Tract Test Suites with Classifying Terms

As mentioned above, classifying terms can be of great help in this context. They permit
guiding the construction process of the test suites using equivalence classes that determine
the sorts of input models of the tract. The process to build the test suite is then straightfor-
ward. We begin by identifying the sorts of models that we would like to be included in the
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test suite. Each sort is then specified by a classifying term, that represents the equivalence
class with all models that are equivalent according to that class, i.e., which belong to the
same sort. Once the classifying terms are defined for a Tract, the USE tool generates one
representative model for each equivalence class. These canonical models constitute the test
suite of the tract.

Example: Suppose that we want to concentrate on different characteristics of the input
models of the BibTex2DocBook transformation. First, proceedings have two dates: the year
in which the conference event was held (yearE) and the year in which the proceedings were
published (yearP). We want to have input models in which these two dates coincide in all
proceedings, and other input models with different conference event and publication years.
Second, we want to have some sample input models in which two editors of proceedings in-
vite the other to have a paper there; respectively, we also want to have input models in which
this “manus-manum-lavat” situation does not happen. Finally, we want to have some source
models with proceedings edited by one of the authors of the papers in the proceedings, and
other input models with no “self-edited” proceedings.

Producing test suite models to cover all these circumstances by an imperative approach
or by ASSL is normally tedious and error prone. However, the use of classifying terms
greatly simplifies this task. It is enough to give three Boolean terms to the model validator,
each one defining the classifying term that specifies the characteristic we want to identify in
the model. In this case, these Boolean terms are the ones shown below.

[ yearE_EQ_yearP ]
Proc.allInstances->forAll(yearE=yearP)

[ noManusManumLavat ]
not Person.allInstances->exists(p1,p2 |

p1<>p2 and p1.proc->exists(prc1 |
p2.proc->exists(prc2 | prc1<>prc2 and

InProc.allInstances->
select(booktitle=prc1.title)->

exists(pap2 | pap2.author->includes(p2) and
InProc.allInstances->

select(booktitle=prc2.title)->
exists(pap1 | pap1.author->includes(p1))))))

[ noSelfEditedPaper ]
not Proc.allInstances->exists(prc |

InProc.allInstances->exists(pap |
pap.booktitle=prc.title and
prc.editor->intersection(pap.author)->notEmpty))

Using the specifications of these classifying terms, the model validator finds 8 solutions,
which are shown in Fig. 8 in the order the model validator finds them. For each solution the
value of the three properties (yearE EQ yearP, noManusManumLavat, noSelfEditedPaper)
is indicated in the figure with integer values (0,1), indicating whether that solution fulfills
the condition (1) or not (0).

In summary, we have been able to define a set of 8 equivalence classes that characterize
the sorts of input models we are interested in, and have the model validator find represen-
tative (i.e., canonical) models for each class. In this way we make sure the models that
constitute the tract test suite cover all cases of interest.
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Fig. 8 The eight solutions found by the model validator.

4.2 Further Analysis of Model Transformations

Due to the way in which classifying terms can be specified (by means of Boolean terms)
for building the tract test suites models, they define a set of equivalence classes that con-
stitute a (complete and disjoint) partition of the input model space of the transformation.
This is useful to select sample input models of different sorts (one per equivalence class),
making sure that (a) we do not miss any representative model from any sort of model of
interest (completeness), and (b) no two sample models are of the same kind (disjointness),
as pictured in Fig. 9.
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Fig. 9 Classifying terms for defining partitions of source and target spaces.

But we can also apply the idea of partitioning a model space with the target domain,
characterizing the sorts of target models which are of certain interest to the modeler (or to
the model transformation tester). The equivalence classes defined by the target classifying
terms are very useful for checking several properties of the transformation. For example, we
could check that:

– All sorts of target models of interest are produced by the transformation—i.e., full cov-
erage of certain parts the target model space.

– No target models of certain forms (sorts) are produced because they would be invalid
target models—i.e., the transformation produces no junk.

– No target models of certain sorts are mapped to the same sort of target model when
they shouldn’t—i.e., the transformation introduces no confusion when it shouldn’t (two
models are not mapped to equal target sorts unless they belong to the same source sort).

Example: To illustrate this, let us go back to the BibTeX2DocBook transformation,
where we can identify some sorts of models of interest in the target model space.

For instance, we can be interested in a property that was also of relevance in the source
target space, such as self edited papers (i.e., whether the editor of a book is also the author
of one of the chapters). We can also be interested in normal books, i.e., those which are not
composition of papers selected by an editor, but instead all chapters are written by the same
person, the book author. Finally, books in which no author writes more than one paper could
be of interest too.

In order to specify these properties and define the appropriate equivalence classes we
just need to write the corresponding classifying terms:

[ noSelfEditedPaper ]
not Book.allInstances->exists(b |

b.editor->intersection(b.chapter.author)->notEmpty() )

[ onlyNormalBooks ]
Book.allInstances->forAll(b |

b.editor->isEmpty() and b.chapter->forAll(c | c.author=b.author))

[ noRepeatedAuthors ]
Book.allInstances()->forAll(b |

b.chapter->forAll( c1, c2 |
c1 <> c2 implies c1.author->intersection(c2.author)->isEmpty()))

These three boolean classifying terms produce only 6 equivalence classes in the target
model space, instead of the 8 (8 = 23) that could be expected. This is because self-edited
papers cannot be at the same time normal books, i.e., negation of noSelfEditedPaper and
onlyNormalBooks exclude each other.

It is now a matter of determining the expected behaviour of the transformation with
the input models from the source equivalence classes. In this respect, there are properties
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Source Target

[0,0,0] −→ [0,0,1]
[0,0,1] −→ [0,0,1]
[0,1,0] −→ [0,0,1]
[0,1,1] −→ [0,0,0]
[1,0,0] −→ [1,0,1]
[1,0,1] −→ [1,0,1]
[1,1,0] −→ [1,0,0]
[1,1,1] −→ [1,0,1]

Fig. 10 Mapping equivalence classes.

that should be preserved by the transformation (e.g., noSelfEditedPaper) and others that
cannot happen (e.g., given that proceedings must have at least one editor, no normal book
can be generated by the transformation).

In order to check that, it is a matter of analysing the behaviour of the model transforma-
tion with the representative models of each source equivalence class. Thus, with the set of
equivalence classes in the source and target model spaces, we can execute the model trans-
formation on the test suite and check whether the output models belong to the appropriate
equivalence classes in the target model space.

In this case, the mapping done by transformation for the 8 representative source models
of the equivalence classes (which are shown in Fig. 8) is as described by Fig. 10.

In the table, each equivalence class is represented by a tuple [x1,x2,x3] where xi ∈
{0,1} indicates if the model satisfies condition i of the corresponding classifying term.
Thus, in the source model space [1,1,1] means that model satisfies noSelfEditedPaper,
noManusManumLavat and yearE EQ yearP, while in the target model space the tuple [1,1,1]
corresponds to a model that satisfies conditions noSelfEditedPaper, onlyNormalBooks
and noRepeatedAuthors (in this order).

Thus we can see how in effect no normal books have been produced when the trans-
formation is executed on the source models. We can also see that with these input models,
all the rest of the equivalence classes that we have defined for the target space have been
reached.

Possible misbehaviours of a model transformation detected using this approach may be
due to several causes. In the first case, the equivalence classes of the transformed models in
the target model space do not coincide with the expected ones. This would mean a problem in
the implementation of the transformation. But it could also be the case of a wrong definition
of the source or target classifying terms, which would uncover a potential mistake in the way
the designer expects the transformation to work. In this respect, the model validator can also
be very useful to find counterexamples for situations that in principle should not happen, but
that are permitted by our specification because either the classifying terms or even the tracts
themselves are not properly defined, as discussed in [32].

4.3 Selecting more than One Sample per Classifying Term

So far, we have been able to check that indeed the behaviour of the transformation is as ex-
pected for the selected sample models. However, this does not prove that the transformation
will always work. What would have happened if the model validator would have selected
other representative models for the equivalence classes?
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This may happen, for instance, when the equivalence classes are not defined at the ap-
propriate level of granularity (either in the source or target model spaces). In this case, two
input models of the same source equivalence class would be transformed into two different
target equivalence classes.

This is why it would be interesting to ask the model validator to produce more than
one model for each equivalence class. There is another good reason for that: we know that
not all sorts of input models have the same likelihood of happening in the source model
space. Thus, we can select more sample models for those equivalence classes that we think
are more frequent. In this way we can exercise the model transformation in a more focused
manner, and produce a richer test suite for the tract (and hence for the transformation).

In order to ask the model validator to produce more than one object model for each
equivalence class, one could specify additional ‘second-level classifying terms’ that only
apply to non-empty ‘first-level’ equivalence classes. For example, a second-level classifying
term for the source model of the BibTeX2DocBook example could be:

[ exactlyOnePaperInProc ]
Proc.allInstances->forAll(prc |

InProc.allInstances->select(pap | pap.booktitle=prc.title)->size()=1 )

This term could produce for the second equivalence class in Fig. 8 (in which the proceed-
ings object has two papers) another representative with only one paper within a proceedings.
Working out the details for this sketch is left for future work. However, in this way one could
declaratively select a set of input models that will constitute the test suite of the tract, de-
ciding not only the sorts of models that we are interested in, but also how many different
sample models of each sort we want.

5 Using Tracts and CTs for BX Testing

An important task is to test that the implementation of a bidirectional transformation (BX)
between two metamodels conforms with the specification given by the designer and respects
its behavior. In this section, we use classifying terms in combination with Tracts to systemat-
ically explore the transformation and check that the behavior of its implementation conforms
with its expectations.

5.1 Bidirectional Transformations

When we think of a transformation we tend to consider a directional mapping between a
source and a target artefact that establishes a relationship between them. But other kinds of
model transformations are also gaining acceptance, in particular bidirectional transforma-
tions, which are responsible for checking if two (or more) models are consistent according
to the relationship established by the transformation, being able to restore the consistency
between them in case they are not [42,43]. A BX can be seen as two directional transforma-
tions that allow creating such links in both directions [12], subject to some properties such as
correctness, hippocraticness, and sometimes history invariance [14] or undoability [43]—or
their analogous laws for lenses: PUTGET, GETPUT and PUTPUT [18]. BX have many inter-
esting applications including the synchronization of replicated data in different formats [38],
presentation-oriented structured document development [33] or to implement coupled soft-
ware transformations [36].
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Bijective transformations constitute the simplest case of BX, where every source model
is related to exactly one target model according to the relationship defined by the transfor-
mation. In this case, the overall information managed by the two metamodels is exactly the
same, and there is no choice about what the transformation should do to restore consistency
when one of the models changes: given a source (resp. target) model, it must return the
unique target (resp. source) model which is correctly related to it.

However, bijective transformations are rare in practice because the metamodels related
by a BX normally address different concerns, and hence contain different information [43].
A normal situation is when one metamodel is a projection of the other. In fact, BX initially
originated in the database community to address the view-update problem, where one of the
models (the view) is a strict abstraction of the other (the database). Propagating changes
from the database to the view is easy, but propagating them in the other direction (e.g. the
addition of a new element) may not be easy because the view does not necessarily contain
all the information required to restore the consistency [15]. Nevertheless, there are some
properties that need to be ensured in all cases to guarantee the soundness of the relationship
defined by the transformation. This has led to the concept of lenses [18] with properties such
as PUTGET and GETPUT for well-behaved lenses, or weaker versions such as PUTGETPUT

= PUT [19], PUTGETPUT v PUT, or GETPUTGET = GET [38].
In the general case, none of the metamodels is a view of the other, and therefore both

handle information which is not reflected in the other. In this case, some properties such
as correctness, hippocraticness or undoability should be ensured so that the BX is indeed
capable of synchronizing and maintaining the consistency between the models involved in
a sound and reasonable manner [43,44,16].

5.2 Relating the Information of both Metamodels

A BX between two metamodels should be able to create one model from the other if it is
missing, or to restore consistency between them if they both exist and one of them is modi-
fied. The problem with any non-bijective BX is that there are some issues that the developer
has to face for which no easy solution exists. The first one is about how to deal with the
information that is missing in the target metamodel, as it happens in our example case study
with the years of the celebration of the event and the publication of the proceedings. Then, if
a Book is created by a librarian in the target model, how does the BX propagate that change
to the source? Which years are used in the corresponding source Proceedings?

Furthermore, there may be target models that do not correspond to any valid model in
the source domain. This could not happen if the target is a view (and hence a refinement) of
the source, but this is not our case. For instance, some books may have no editors, or may
have chapters with the title of the book, something which is not permitted for proceedings.
Similarly, normal books are permitted in the target models but they do not correspond to any
valid kind of proceedings in the source. Then, imagine that we start with a synchronized pair
of models, and the librarian decides to change a book in the target domain by making the
editor become the author, or making the title of one of its chapters coincide with the book
title. How does the BX behave with these target models when the consistency between the
source and target models should be restored?

In general terms, the question is now how to check that the behavior of a given imple-
mentation of a BX between these two metamodels is correct, or at least conforms to what
the designer expects from it. For that we need to be able to specify the expected behavior,
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(a) Case A (b) Case B

(c) Case C (d) Case X

(e) Case Y (f) Legend

Fig. 11 Possible situations when transforming elements forward and backwards.

and then check that the implementation respects such a behavior. This is precisely the goal
of this Section.

The behavior of the model transformation is clear and easy to specify for those models
in which the relationship between the source and target models is a bijection. Similarly, for
those models that belong to the image of the forward or backward transformation (i.e., those
that handle shared information between the two metamodels), the properties of correctness
and hippocraticness ensure a sound (or at least well-defined) behavior. The problem resides
in those models outside the images of the BX. Correctness ensures that after the transforma-
tion, the models are consistent. Hippocraticness ensures that if they were already consistent,
the transformation does nothing [43].

The diagram shown in Fig. 11 illustrates these situations, as well as the corresponding
reconciliation patterns. Starting from the source metamodel SMM, some elements (A) are
transformed in a bijective way to and from R(A). Other models, such as B, are transformed
to R(B) but their reverse image R−1(R(B)) does not coincide with B when transformed
back (note that hippocraticness ensures that the relation between R−1(R(B)) and R(B) is
maintained henceforth).
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Finally, some elements such as C do not match all the source constraints, and therefore
the behavior of the transformation cannot be guaranteed. The reason for considering these
kinds of elements is that they can be produced by the transformation when reconciling ele-
ments of the target metamodel outside the image of the forward transformation (this happen
for instance, with R−1(Y)).

We have discovered that these kinds of elements (C or R−1(Y)) can be treated by the
transformation in four different ways: (a) they are ignored by the BX and not transformed;
(b) they are transformed into elements (e.g., R(C)) that do not conform to the target meta-
model (i.e., they violate some of the metamodel constraints or some of the Tract target
constraints); (c) they are transformed into correct elements (e.g., R(C)’) but outside the ex-
pected image of the forward transformation; or (d) they are transformed into elements inside
the image of the forward transformation (R(C)’’). From that moment on, the reconciliation
pattern follows one of the situations described above for elements such as X or Y.

We have also seen that some model transformation engines exhibit a different behavior,
as it happens for instance with Medini-QVT: instead of transforming model C, only the sub-
set of that model that respects the source metamodel constraints (C’) is considered by the
BX and then transformed. This deviation from the expected behaviour is shown in Fig. 11
using a dotted line. Another interesting behavior that we have found is that the transforma-
tion may establish consistent relations even between elements which do not conform to the
metamodel, as it happens with R−1(R(C))) and C, once they are related. The reason is that
the trace model created by the transformation is strongly used by some BX implementation
engines (such as Medini-QVT or JTL), even when the related models are not fully correct.

The diagram in Fig. 11 also shows the equivalent situations when the backward transfor-
mation is considered (X playing the role of B, and Y the role of C). Note that for readability
reasons we have omitted some reconciliations because they follow the same patterns as
shown for other elements. This is the case for R(C’) and R−1(Y’), whose reconciling be-
havior is similar to that of R(C)’ and R−1(Y)’, respectively. Similarly, it could be the case
that R−1(Y)’ is reconciled either with Y (even if it falls outside the image of R) or with
R(R−1(Y’)), depending on whether the transformation engine makes use or does not make
use of the trace model created when transforming Y to R−1(Y)’.

For the BX user (and for the developer) it is very important to understand how the
transformation behaves in all these circumstances. This is why we need to be able to count
on specification and testing mechanisms and tools that permit representing these kinds of
elements and then checking that the behavior of the implementation of the BX is as expected
(and captured by the specifications). And this is where classifying terms in combination with
Tracts can play a significant role.

5.3 BX Specification using Classifying Terms and Tracts

Tracts are direction-neutral, and hence they can be read and used to specify the bidirectional
relationship that a BX defines between the metamodels involved in the transformation. In
particular, the Metamodel shown in Fig. 7 specifies the BibTex2DocBook Tract and it can
be naturally read in both directions.

Classifying terms are also very useful in this context because each of them can serve to
characterize a particular property of interest in the source or target model spaces. In partic-
ular, we would like to capture and represent the situations described above (and depicted in
Fig. 11) to understand how not only the transformation but also the reconciliation process
works in all possible circumstances, avoiding possible surprises. This is particularly relevant
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in the case of BX engines, whose behavior and semantics are normally underspecified and
hence difficult to predict [43].

Example: in our case study we are interested in a property (noSelfEditedPaper)
that is shared and relevant to the two domains and we want to check whether it is pre-
served by the transformation in both directions. Other classifying terms characterize ele-
ments that can only happen in one of the domains, such as yearE EQ yearP in the source
and onlyNormalBooks in the target. The first one deals with information only available in
the source domain (the years of the publication) and the second characterizes some kinds
of publications which are not possible in the source domain (namely normal books, which
do not have editors, but in fact are the most common kinds of book in a library). Finally,
the other two classifying terms characterize properties that focus on specific aspects of the
particular domain. In this case noManusManumLavat captures some aspects of ethical con-
cern in the editing of proceedings and noRepeatedAuthors identifies books in which no
author writes more than one paper. They should be preserved by the transformation in the
other domain, but there they do not have any significance and therefore they can be ab-
stracted away when making changes and selecting representative models according to the
counterpart equivalence classes.

Regarding the Tract constraints, we already specified the source and source-target con-
straints (see Section 3.1), but at that moment we did not worry too much about the target
constraints, i.e., those that define the well-formed rules of any DocBook model—basically
because they were ensured by the forward transformation when creating the target model.
Similar to the ones that were specified for the BibTeX models, the constraints for the target
model of the Tract that we shall use in this paper are the following:

context PersonD inv hasToBeAuthorOrEditor:
self.chapter->size() + self.bookE->size() > 0

context PersonD inv uniqueName:
PersonD.allInstances()->isUnique(name)

context Book inv uniqueTitle:
Book.allInstances->isUnique(title)

context Book inv withinBookUniqueTitle:
self.chapter->forAll( c1, c2 |

c1 <> c2 implies c1.title <> c2.title )

context Book inv hasAuthorXorIsProc:
self.author->isEmpty() xor self.editor->isEmpty()

context Book inv normalBookSectionsWrittenByAuthors:
self.author->notEmpty() implies

self.chapter->forAll(c|c.author = self.author)

Note that the invariant analogous to the hasAtLeastOnePaper invariant for Proceed-
ings is specified by the multiplicity of the association between Book and Chapter, demand-
ing that books should have at least one chapter. Note as well that the constraint that states
that the title of an article in a proceedings cannot coincide with the title of the proceedings
does not necessarily hold for books.
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Fig. 12 The six solutions found by the model validator for the target classifying terms.

5.4 Testing BX with Classifying Terms

In Section 4.2 we discussed how to test a directional transformation using CTs, i.e., we just
focused on the forward transformation. Let us discuss here how classifying terms can be
used to test and understand the behavior of both directions of the BX. The main process is
as follows.

1. First, we need to identify the (kinds of) models of interest in the source and target
model spaces by means of classifying terms that define the corresponding equivalence
classes. In our case study, they were noSelfEditedPaper, noManusManumLavat and
yearE EQ yearP for the BibTex domain; and noSelfEditedPaper, onlyNormalBooks
and noRepeatedAuthors for the DocBook domain (see Section 4.2).

2. Then, the USE model validator is used to generate the Test Suites (i.e., source and target
model samples) for the Tract using these CTs. As mentioned earlier, these classifying
terms define 8 equivalence classes for the source model space and 6 equivalence classes
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for the target, that constitute a complete and disjoint partition of these two model spaces.
The representative elements of these classes were shown in Fig. 8 and 12.

3. For the forward transformation, we execute it (employing an available BX transforma-
tion engine like MediniQVT or JTL [11]) for each model m in the source Tract suite, to
get the corresponding R(m) in the target, and then check whether the pair < m,R(m)>
conforms to the Transformation Model defined by the Tract, i.e., that it conforms to all
Tract source, target and source-target constraints. Note that such a pair should be consis-
tent according to the BX, since it has been created by the transformation with this goal
in mind.

4. We also need to check whether the classifying term of every R(m) in the target is the
expected one.

5. We repeat the analysis now for the transformed models. Namely, we start with the set
of R(m) models, and apply the model transformation to check whether we get the corre-
sponding source models m. As discussed previously (and depicted in Fig. 11) we could
get that R−1(R(m)) = m. But in case R−1(R(m)) 6= m, we then need to check whether at
least the values of the classifying terms for both m and R−1(R(m)) coincide.

6. Working similarly for the target, we then execute the backward transformation using
each model n in the target sample, to get the corresponding R−1(n) in the source, and
check whether the pair < R−1(n),n > conforms to the Transformation Model defined by
the Tract, i.e., that it conforms to all Tract source, target and source-target constraints.

7. We then need to check whether the values of classifying terms for R−1(n) in the source
are the expected ones.

8. Finally, we repeat the analysis for the transformed models by the backward transfor-
mation. Namely, we start with the set of R−1(n) models in the source, and apply the
forward model transformation to check whether we get the corresponding target models
n we started with. As discussed previously (and depicted in Fig. 11) we could get that
R(R−1(n)) = n. But in case R(R−1(n)) 6= n, then we need to check whether at least the
classifying terms for both n and R(R−1(n)) coincide.

Tables 1 and 2 summarize our findings for the BibTex2DocBook example, using a QVT-
R transformation that we wrote in Medini-QVT and another in JTL for relating both meta-
models.

Table 1 starts with the 8 models that represent the 8 equivalence classes (m1, ...,m8) and
then shows the tuple that represents their equivalence classes. The tuples with three values
in the columns follow the same convention used in Fig. 10: each equivalence class is rep-
resented by a tuple [x1,x2,x3] where xi ∈ {0,1} indicates if the model satisfies condition i
of the corresponding classifying term. Thus, in the source model space [1,1,1] means that
model satisfies noSelfEditedPaper, noManusManumLavat and yearE EQ yearP, while
in the target model space the tuple [1,1,1] corresponds to a model that satisfies conditions
noSelfEditedPaper, onlyNormalBooks and noRepeatedAuthors (in this order). Col-
umn TGT shows the equivalence class of the transformed model R(m). The following three
columns (under the common heading SRC:R−1(R(m))) show the equivalence class of the
reconciled model in the source; whether the model R−1(R(m)) coincides with m or not,
and whether the equivalence class of R−1(R(m)) coincides with that of m or not. The final
three columns (under the common heading TGT:R(R−1(R(m)))) show the behavior of the
BX after the reconciliation. As we can see, once the models are reconciled, the transfor-
mation keeps them in sync — something which is expected because of the correctness and
hippocraticness of the transformation.
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Table 1 Result of the forward testing process.

SRC SRC TGT BX Model Transf. SRC: R−1(R(m)) TGT: R(R−1(R(m)))

Solutions [m] [R(m)] Language [R−1(R(m))] = m? = [m]? [R(R−1(R(m)))] = R(m)? = [R(m)]?

m4 0, 0, 0 0, 0, 1
MediniQVT w/o Tr 0, 0, 1 N N 0, 0, 0 Y Y
MediniQVT w/ Tr — " — Y Y — " — Y Y

JTL — " — Y Y — " — Y Y

m8 0, 0, 1 0, 0, 1
MediniQVT w/o Tr 0, 0, 1 N Y 0, 0, 1 Y Y
MediniQVT w/ Tr — " — Y Y — " — Y Y

JTL — " — Y Y — " — Y Y

m1 0, 1, 0 0, 0, 1
MediniQVT w/o Tr 0, 1, 1 N N 0, 0, 0 Y Y
MediniQVT w/ Tr — " — Y Y — " — Y Y

JTL — " — Y Y — " — Y Y

m5 0, 1, 1 0, 0, 0
MediniQVT w/o Tr 0, 1, 1 N Y 0, 0, 1 Y Y
MediniQVT w/ Tr — " — Y Y — " — Y Y

JTL — " — Y Y — " — Y Y

m6 1, 0, 0 1, 0, 1
MediniQVT w/o Tr 1, 0, 1 N N 1, 0, 0 Y Y
MediniQVT w/ Tr — " — Y Y — " — Y Y

JTL — " — Y Y — " — Y Y

m7 1, 0, 1 1, 0, 1
MediniQVT w/o Tr 1, 0, 1 N Y 1, 0, 1 Y Y
MediniQVT w/ Tr — " — Y Y — " — Y Y

JTL — " — Y Y — " — Y Y

m2 1, 1, 0 1, 0, 0
MediniQVT w/o Tr 1, 1, 1 N N 1, 0, 1 Y Y
MediniQVT w/ Tr — " — Y Y — " — Y Y

JTL — " — Y Y — " — Y Y

m3 1, 1, 1 1, 0, 1
MediniQVT w/o Tr 1, 1, 1 N Y 1, 0, 0 Y Y
MediniQVT w/ Tr — " — Y Y — " — Y Y

JTL — " — Y Y — " — Y Y

Table 2 Result of the backward testing process.

TGT TGT SRC BX Model Tranf. TGT: R(R−1(n)) SRC: R−1(R(R−1(n)))
Solutions [n] [R−1(n)] Language [R(R−1(n))] = n? = [n]? [R(R−1(R(n)))] = R−1(n)? = [R−1(n)]?

n2 0, 0, 0 0, 1, 1
MediniQVT w/o Tr 0, 0, 0 Y Y 0, 1, 1 Y Y
MediniQVT w/ Tr — " — Y Y — " — Y Y

JTL — " — Y Y — " — Y Y

n3 0, 0, 1 0, 1, 1
MediniQVT w/o Tr 0, 0, 1 Y Y 0, 1, 1 Y Y
MediniQVT w/ Tr — " — Y Y — " — Y Y

JTL — " — Y Y — " — Y Y

n4 1, 0, 0 1, 1, 1
MediniQVT w/o Tr 1, 0, 0 Y Y 1, 1, 1 Y Y
MediniQVT w/ Tr — " — Y Y — " — Y Y

JTL — " — Y Y — " — Y Y

n5 1, 0, 1 1, 1, 1
MediniQVT w/o Tr 1, 0, 1 Y Y 1, 1, 1 Y Y
MediniQVT w/ Tr — " — Y Y — " — Y Y

JTL — " — Y Y — " — Y Y

n1 1, 1, 0
Incomplete model MediniQVT w/o Tr Incomplete model —
Incomplete model MediniQVT w/ Tr Y Incomplete model
Incorrect model JTL Y Model does not conform to the metamodel

n6 1, 1, 1
Incomplete model MediniQVT w/o Tr Incomplete model —
Incomplete model MediniQVT w/ Tr Y Incomplete model
Incorrect model JTL Y Model does not conform to the metamodel

Medini-QVT offers the possibility of using or not the trace model (if it already exists,
otherwise it is created) when executing a transformation, while JTL always uses it. For every
source model m, we can see in Table 1 that there are three rows, each one corresponding to
the results after executing the transformation using Medini-QVT without traces, Medini-
QVT with traces and JTL.

Focusing on Medini-QVT without using the trace model, we can see that no model
coincides with the original source, and only in some of them the equivalence classes are the
same after applying the forward and backward transformations. This is as expected because
there is missing information in the target models (the years of the conference), which is
returned as oclUndefined by Medini-QVT. Please note that this is a Medini-QVT specific
behavior, other model transformation engines may treat these cases differently.
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When using the Medini-QVT trace model the results are different. Model R−1(R(m)) is
always m and R(R−1(R(m))) is always R(m). The same happens with JTL.

Although in our case the results using JTL are the same as those obtained by Medini-
QVT using the trace model, the trace models are different. Let us assume we have a source
model m and we obtain R(m) from scratch. Let us also assume that accidentally m is partially
deleted and there are some Proc instances missing. Executing the backward transformation
to the model given by R(m) and using the trace model, Medini-QVT is able to restore the
missing instances but not their attributes yearE and yearP. However, JTL is able to obtain
the initial model m as it was originally. This is because the Medini-QVT trace model is only
used for synchronization purposes, i.e., in order to not re-create target model elements if
generated in previous transformations and in order to delete model elements if generated in
previous transformations—but not by the current transformation. In turn, JTL’s trace model
is more complete as it can be used to detect those elements that are not involved in the
mapping between the source and target models, forcing the transformation to write them in
the model that is being generated.

In turn, Table 2 represents the behavior of the BX when we start from the six models
that the model validator selected as representative elements of the corresponding classifying
terms of the target model space, and which were depicted in Fig. 12.

The behavior of the QVT backward transformation with n2, ...,n5 is rather homoge-
neous, because the transformation works in a bijective way with them. However, for the two
models (n1,n6) that represent normal books (i.e., those that do not have editors and hence do
not have a corresponding model in the source) different implementations work in different
ways.

Medini-QVT transforms them into a model that conforms to the source metamodel but
that is incomplete: given that the source metamodel does not permit the existence of a Pro-
ceeding with no editors, every Book with editors is transformed into a Proceeding while the
rest of the Books in the model are not transformed at all. This behavior corresponds to the
one showed for model Y in Fig. 11. The problem is that no warning is raised by the transfor-
mation, which silently omits model elements during the transformation process. From that
moment on, such elements are lost and the user will not be warned about this.

Therefore we emphasize the importance of checking the behavior of the transformation
against its specifications. This issue is identified in our approach because some of the source-
target constraints are violated, in particular those that state that the number of Proceedings
(in the source model) and Books (in the target) should always coincide (see Sect. 3.1).

In turn, JTL creates a Proceeding from every Book although it does not have editors. As
a consequence, the resulting model does not conform to the source metamodel—i.e., it is
incorrect. Fig. 13 illustrates the models generated by JTL (on the left) and Medini-QVT (on
the right) after executing R−1(n6).

In summary, using classifying terms, we have been able to identify certain classes of
models of interest in both the source and target model spaces and to identify the behavior
of a given implementation of the bidirectional transformation in an easy manner. Given the
complex behavior of any BX, these kinds of analyses are useful to spot unforseen behaviors
of the transformation or potential problems when propagating or reconciling changes.

Another benefit of this testing approach is that it is easily automatable. Starting with the
Tract specification, the classifying terms for the source and target model domains and the
implementation of a BX, the two tables presented in Tables 1 and 2 can be automatically
built using the Tract tools [5] following the process described above.
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Fig. 13 Models (JTL on the left and Medini-QVT on the right) for R−1(n6)

6 Related Work

The work presented in this paper is a revised and enhanced version of our original paper [26],
extended to improve the testing process of model transformations using classifying terms,
and to cover the testing of bidirectional transformations. In order to compare our contribu-
tion to similar works, we first present related approaches which are dedicated to generate
object models in a (semi-)automated manner, and then we discuss related work considering
approaches for testing and verifying model transformations.

6.1 Generating Object Models

The USE model validator, used in this work, is based on the transformation of UML and
OCL into relational logic [35]. Many approaches exist to generate object models from class
models using different languages and tools. Another approach within the same tool, USE,
is the Automatic Specification Snapshot Language (ASSL) [23], which uses an iterative
method to generate an object model from a given specification.

Further approaches rely on different technological cornerstones like logic programming
and constraint solving [8], relational logic and Alloy [2], term rewriting with Maude [41] or
graph grammars [17]. In contrast to the tool used in this work, these approaches either do not
support full OCL (e.g., higher-order associations [2] or recursive operation definitions [8]
are not supported) or do not facilitate full OCL syntax checks [41]. Also, the feature to
automatically scroll through several valid object models from one verification task is not
possible in all of the above approaches.

(Semi)-automatic proving approaches for UML class properties have been put forward
on the basis of description logics [40], on the basis of relational logic and pure Alloy [2]
using a subset of OCL, and in [46] focusing on model inconsistencies by employing Kodkod.
A classification of model checkers with respect to verification tasks can be found in [20].

The idea of classifying terms has similarities to the analysis of invariant independence [24].
The goal is to find invariants that are fully covered by means of other invariants or class
model inherent constraints (e.g. multiplicities). The goal can be achieved using boolean
classifying terms, resulting in detailed information about which invariants can be satisfied
independently of others.
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6.2 Testing and Verifying Model Transformations

In the field of Model-Driven Engineering, testing and analysis of model transformations has
been subject to investigations (see, for example, [13,1]). Regarding dynamic approaches,
for which the model transformation execution is needed and therefore input models, the au-
thors in [31] and [49] present their contribution for debugging model transformations. Also,
the work in [3] analyse the execution traces between the source and target models in or-
der to find errors, and in [27] a white-box test model generation approach for testing the
transformations is proposed. In this context, Tracts [48] are a complementary approach that
establishes contracts between the source and target metamodels which define the transfor-
mation specification.

In addition to Tracts, other static approaches have been proposed such as [30] that al-
lows the specification of contracts in a visual manner, and [21] that looks at the differences
between the actual output model generated by the transformation and the expected output
model. The first one also relies on OCL to give the user full expressiveness while the second
one needs the developer to provide output models—which is not always a feasible task, and
if feasible, it might require a lot of time and effort.

A test-driven method [22] is also proposed in the field of model transformation for
which the model transformation implementation itself is annotated by the transformation
developer removing the need of an independent specification description. A solution for the
QVTo language [39] is available and presented in [10]. Although achieving its goal, making
the specification of the transformation implementation-dependent prevents the separation of
concerns, which is even more serious in the field of MDE as there is no dedicated standard
transformation language.

Equivalence partitioning [7] is a software testing technique that assumes that the inputs
of the program can be divided into mutually exclusive classes according to the behavior of
the program on those inputs and, in some cases, on the outputs. In this regard, the work in [4]
proposed to pick a set of relevant properties for the input models, define ranges of values for
each property and check that there is at least one instance of each property that has one value
in each range. Nevertheless, this proposal is less expressive than classifying terms as they do
not consider the use of OCL, less flexible and lacks full automation. In [28], a mechanism for
generating test cases by analysing the OCL expressions in the source metamodel in order to
partition the input model space was presented. This is a systematic approach similar to ours,
but focusing on the original source model constraints. Our proposal allows the developer
partitioning the source (and target) model space independently from these constraints, in a
more flexible manner.

We recently started using Classifying Terms to check the specifications of a transfor-
mation, independently from any implementation [32]. The idea is to use the the completion
capabilities of the USE model validator to simulate possible behaviours of any valid imple-
mentation of the transformation, and then check whether these possible behaviors are indeed
acceptable.

Finally, BX testing is still a widely unexplored area of research. Most of the existing
work focus on establishing the properties that a BX should exhibit to provide a sensible
behavior. In this area, prominent works include those by Stevens [43,45], Foster [18] or
Dinski [14–16]. They do not, however, aim at checking that the behavior of a BX conforms
to its specifications as we focus on in this work.

Both Stevens [44] and Foster [19] have also used equivalence classes for characterizing
the behaviour of bidirectional transformations. The former author defines the equivalence
relations on the sets of models which are related by the transformation, i.e., the models



Testing Models and Model Transformations using Classifying Terms 27

which are indistinguishable from the other side. The latter author defines quotient lenses, i.e.,
bidirectional transformations that are well-behaved modulo equivalence relations controlled
by the programmer. That is, the equivalence classes collapse those model elements that
should be indistinguishable from the point of view of the lenses. Both works are of a finer
grain than ours: while they aim at identifying or characterizing the elements that should be
treated equally by the BX, our focus is on classes that represent specific patterns (or types of
elements) of particular relevance to the modeler who is interested in analysing the behavior
of the transformation.

7 Conclusions

This contribution has introduced classifying terms, an instrument for exploring object mod-
els in the context of a UML class model and accompanying OCL constraints. Classifying
terms allow the developer to construct relevant test cases in form of object models in a
goal-oriented way. Classifying terms determine equivalence classes of test cases, selection
of representatives and exploration of model properties. Their usefulness has been demon-
strated by generating input test models for model transformations, and shown how they can
be effectively used in combination with the Tract specification approach for testing both
directional and bidirectional transformations.

Our work can be continued in various directions. The translation to relational logic can
be improved and extended, for example, by considering further collection kinds. The cur-
rent user interface for classifying terms is minimal, names could be given to the terms, and
these names together with the values could be indicated in the resulting object models. The
restriction, that only integer and boolean terms are used, can be weakened, at least enu-
merations do not present any problem. It would be interesting to consider more than one
equivalence class representative by distinguishing between first and second level classify-
ing terms, where second level terms are only applied for non-empty first level equivalence
classes. Larger case studies should give more feedback on the features and scalability of
the approach. Particular tool support for model transformations with different options for
source and target is also needed. Last but not least, classifying terms could also be used
for testing model transformations specifications (i.e., transformation models) and not only
implementations, as we have initially outlined in [32]
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