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In the communication systems domain, constructing and maintaining network topolo-
gies via topology control algorithms is an important cross-cutting research area. Network
topologies are usually modeled using attributed graphs whose nodes and edges represent the
network nodes and their interconnecting links. A key requirement of topology control algo-
rithms is to fulfill certain consistency and optimization properties to ensure a high quality
of service. Still, few attempts have been made to constructively integrate these properties
into the development process of topology control algorithms. Furthermore, even though
many topology control algorithms share substantial parts (such as structural patterns or
tie-breaking strategies), few works constructively leverage these commonalities and differ-
ences of topology control algorithms systematically. In previous work, we addressed the
constructive integration of consistency properties into the development process. We out-
lined a constructive, model-driven methodology for designing individual topology control
algorithms. Valid and high-quality topologies are characterized using declarative graph con-
straints; topology control algorithms are specified using programmed graph transformation.
We applied a well-known static analysis technique to refine a given topology control algo-
rithm in a way that the resulting algorithm preserves the specified graph constraints.
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In this paper, we extend our constructive methodology by generalizing it to support the
specification of families of topology control algorithms. To show the feasibility of our ap-
proach, we reneging six existing topology control algorithms and develop e-kTC, a novel
energy-efficient variant of the topology control algorithm kTC. Finally, we evaluate a sub-
set of the specified topology control algorithms using a new tool integration of the graph
transformation tool EMOFLON and the SIMONSTRATOR network simulation framework.

Keywords Graph transformation · Graph constraints · Static analysis · Model-driven
engineering ·Wireless networks · Network simulation

1 Introduction

In the communication systems domain, wireless sensor networks (WSNs) [66, 80] are a
highly active research area. For instance, WSNs are applied to monitor physical or environ-
mental conditions using distributed, autonomous, battery-powered sensor nodes that coop-
eratively transmit their collected data to a central location. To improve important properties
(e.g., the battery lifetime of these devices), a topology control (TC) algorithm [66] inacti-
vates redundant communication links of a WSN. Key requirements on a TC algorithm are
to (i) handle continuously changing network topologies, (ii) operate in a highly distributed
environment, in which each node can only observe and modify its local neighborhood, and
(iii) guarantee important local and global formal properties (e.g., bounded node degree or
connectivity of the topology) for their neighborhood and the whole network, respectively.

The design and implementation of a TC algorithm are, therefore, challenging and elab-
orate tasks, which are typically carried out by highly skilled experts. The development of a
new TC algorithm is usually an iterative process. In each iteration, (i) a new variant must be
individually designed and implemented for a distributed environment, (ii) the preservation
of required formal properties must be proved, and (iii) performance measurements must be
carried out in a corresponding runtime environment, which is either a network simulator or
a hardware testbed. On the one hand, the specification of a TC algorithm often builds on
a mathematically well-founded framework (e.g., graph or game theory), which allows the
TC developer to prove formal properties. On the other hand, the implementation of a TC
algorithm is typically written in a general-purpose programming language (e.g., Java for
simulation [61] or C for testbed evaluation [21]). Additionally, the TC algorithm and the
runtime environment (often continuously) interact: The TC algorithm activates and inacti-
vates links in the topology, and the runtime environment causes context events (e.g., node
removals due to battery depletion). A dynamic TC algorithm has to handle such context
events. In many application scenarios of WSNs (e.g., environmental monitoring), these con-
text events are small compared to the size of the entire topology. Therefore, it is crucial that
a dynamic TC algorithm reacts to context events in an incremental manner, i.e., by retaining
unaltered parts of the topology as much as possible.

Current shortcomings State-of-the-art TC literature reveals that the traditional development
process of TC algorithms exposes two major shortcomings.

S1 A systematic mapping between the specification and the implementation is missing. This
makes it extraordinarily difficult to verify that both representations are indeed equiva-
lent. Incremental TC algorithms are considerably more difficult to develop compared to
their batch version, which complicates the traceability between specification and imple-
mentation even more.
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S2 Novel TC algorithms tend to build on former TC algorithms. Still, these inherent com-
monalities and differences of TC algorithms are not specified systematically. This re-
duces reusability among and comparability of TC algorithms. Moreover, such a system-
atic specification could also enable us to prove formal properties not only for individual
TC algorithms but for whole families of TC algorithms at once.

Both shortcomings are well-known research challenges in the communication systems do-
main. For instance, S1 is addressed in [20, 42, 49, 51, 57, 85, 86] (see also Section 7.1), and
S2 is addressed in [3, 4, 8, 18, 26, 53, 55, 64, 65] (see also Section 7.3).

Previous work on S1 In [42, 43], we showed that model-driven principles [10], as applied in
many success stories [34, 79], are suitable to address S1. We describe topologies as graph-
based models and possible operations of topology control algorithms as declarative graph
transformation (GT) rules [63]. Although this approach provides a well-defined procedure
for modeling the static and dynamic aspects of TC algorithms in general, it does not en-
sure that all required formal properties are fulfilled for the resulting topology. To this end,
a well-known, constructive, static analysis technique [33] has been established in the GT
community to formulate structural invariants in terms of graph constraints and to guarantee
that these graph constraints hold. Graph constraints specify positive or negative graph pat-
terns, which must be present in or missing from a valid graph, respectively. Based on these
graph constraints and a set of GT rules, a refinement algorithm enriches the GT rules with
additional application conditions. These application conditions are derived from the graph
constraints and ensure that the applying the refined GT rules never produces invalid graphs
w.r.t. the graph constraints. This technique could previously only be applied to scenarios
where invariants must hold permanently (e.g., [44]). In the WSN domain, the situation is
different because context events inevitably violate the specified graph constraints. To ad-
dress this problem, we first relaxed the original constraints by introducing appropriate inter-
mediate states of links. Then, we ensured that the specification of the TC algorithm always
preserves the relaxed constraints, using the constructive approach described in [33]. Finally,
we iteratively modified the state configuration of the topology to enforce the original, strong
constraints. We illustrated the proposed constructive methodology by re-engineering a sin-
gle existing TC algorithm, kTC [69]. Yet, S2, i.e., describing commonalities and differences
of TC algorithms, still remained an open issue in [42, 43].

Contribution In this paper, we tackle S2 by generalizing the constructive, model-driven
methodology for designing TC algorithms using graph transformation [42, 43] to support
the development of families of TC algorithms. This paper has four major contributions:
(i) We model commonalities and differences of TC algorithms by extracting common struc-

tural constraints and specifying the individual part of each TC algorithm in terms of in-
dividual attribute constraints. We lift all steps described in our original approach [43] to
operate on abstract representations of TC algorithm families.

(ii) To demonstrate the applicability of our approach, we re-engineer six existing TC algo-
rithms (kTC [69], l-kTC [70, 71], XTC [81], RNG [39], GG [80], Yao Graph [84]) and
propose e-kTC, a novel, energy-aware variant of kTC [69] that has been inspired by the
CTCA algorithm [15].

(iii) We extend the constructive approach with a step that systematically derives context event
handlers, which repair all constraint violations that may result from the context events.

(iv) We perform a comparative, simulation-based evaluation of kTC and e-kTC to showcase
an integration of the GT tool EMOFLON [47] and the SIMONSTRATOR network simula-
tion environment [61].
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Shortcomings in current de-

velopment of topology control

algorithms: gap between spec-

ification and implementation

(S1) and missing reuse (S2)

[Section 1]

Model wireless sensor net-

work topologies and topol-

ogy control algorithms

[Section 2]

NEW:

Modular specification of six TC

algorithms + e-kTC

Model consistency proper-

ties using graph constraints

[Section 3]

NEW:

Lift proves to families of TC al-

gorithms

Model topology modifi-

cations using GT rules

and programmed GT

[Section 4]

Derive constraint-preserving

graph transformation rules

[Section 5]

NEW:

Derive context event handlers

Simulation-based evalua-

tion of network lifetime

[Section 6]

NEW:

Entirely

Fig. 1: Structure of this paper (NEW: extensions compared to [42, 43])

Structure Figure 1 maps the major contributions of this paper to the following sections. In
Section 2, we specify valid topologies using metamodeling and introduce the six existing and
one novel TC algorithm using first-order logic predicates. In Section 3 we specify the TC
algorithms using graph constraints and conduct the prove of connectivity based an abstract
specification of the family of TC algorithms. In Section 4, we specify topology modifications
using GT rules and TC algorithms using programmed GT. In Section 5, we refine the GT
rules based on the graph constraints to ensure that the refined GT rules preserve the graph
constraints. Additionally, we derive handler operations for the context event rules and ensure
that the refined TC algorithm terminates. In Section 6, we present the results of a simulation-
based evaluation. In Section 7, we survey related work and conclude this paper in Section 8.

2 Metamodeling and Topology Control

In this section, we introduce basic concepts of metamodeling and TC. Afterwards, we intro-
duce the considered TC algorithms and analyze them w.r.t. recurring substructures.

2.1 Basic Metamodeling Concepts

A model describes a set of related entities as a graph whose nodes are objects and whose
edges are references. A metamodel specifies all well-formed models of the considered do-
main as a multi-graph whose nodes are the classes, which describe possible entities and
serve as object type, and whose edges are associations, which describe possible relations
between entities and serve as reference type. Object and reference types have to be compat-
ible, i.e., the types of the source and target of a reference are the source and target class of
its corresponding association. A class may have multiple typed attributes, which represent
properties of its instances. An association end is labeled with a role name, which further
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describes the corresponding relation, and a multiplicity, which restricts the number of cor-
responding references in a model.

2.2 Topologies

A (network) topology represents the state of a communication system as an attributed graph
consisting of nodes and (communication) links [66]. In this paper, we consider topologies of
WSNs, i.e., nodes in the topology correspond to battery-powered wireless sensor nodes, and
links correspond to the possible direct wireless communication connections between sensor
nodes. This implies that a topology is a simple graph, which neither contains loops nor
parallel links, i.e., the source and target node of a link are unequal, and each pair of nodes is
connected by at most one link. We denote links with the letter e1 in running text, e.g., e12,
eab, eAB, and as arrow-headed lines in compact notation, e.g., 1 2 . By convention,
a link eab has source node na and target node nb. A path P(na,nz) = (eab,ebc, . . . ,eyz) from
node na to node nz is a list of links where the target node of one link in P is the source node
of its successor link in P. In the following, we introduce node and link properties that are
required to model the TC algorithms in this paper. A sensor node na exposes the following
properties:

– An integer-valued unique identifier id(na) = a allows to distinguish na from other nodes.
The identifier of a node is shown in subscript notation in running text, e.g., n1, and as
white label inside the corresponding solid black circle in compact notation, e.g., 1 .

– A real-valued energy property E(na) stores the current energy level of node na, which is
typically measured in Joule.

– The real-valued latitude lat(na) and longitude long(na) capture the position of node na
(e.g., Euclidean or GPS coordinates).

– The integer-valued hop count hops(na) stores the shortest distance (w.r.t. the number of
hops) between na and a dedicated second node n0. A hop is the traversal of a single link.
This property is required in application scenarios such as data collection, where each
sensor node periodically sends collected data of its environment to a dedicated base
station node n0. A routing protocol (e.g., RPL [83], AODV [13]) operates on top of the
output topology of the current TC algorithm and determines the path between na and the
base station.

A link eab exposes the following properties:

– A real-valued generic weight w(eab) stores the cost of using eab for message transfer.
For example, the weight of eab may be derived from the distance of its incident nodes or
the received signal strength indicator (RSSI) at nb.

– The real-valued angle α(eab) of a link eab can be derived from the positions of its inci-
dent nodes as follows:

α(eab) = atan(lat(na)− lat(nb), long(na)− long(nb))+180◦

With atan, we denote the arcus tangens operator, which maps a pair of latitudinal and
longitudinal differences to the corresponding angle.

– The state s(eab) stores the processing state of eab during the execution of the TC algo-
rithm. Details follow in Section 2.3.

1 We use e instead of l or ` for better readability.
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Topology

Node

id : Integer
hops: Integer
energy : Real
latitude : Real
longitude : Real

Link

state : LinkState
weight : Real

outgoing

incoming

0..*

0..*

source

target

1

1

topology

nodes

topology

links

≪enumeration≫
LinkState

Active : LinkState
Inactive : LinkState
Unclassified: LinkState

0..* 0..*

1 1

Fig. 2: Topology metamodel

Topology metamodel Figure 2 depicts the metamodel of topologies and contains three classes,
Topology2, Node, and Link (depicted as rectangular boxes). Its eight associations (depicted
as four bidirectional arrows) specify that (i) each Node and Link is contained in a single
Topology, (ii) each Topology contains an unlimited number of Nodes and Links, and (iii) a
Node serves as the unique source (target) of any of its zero or more outgoing (incoming)
Links. The class Node has two integer-valued attributes (id and hopCount), and three real-
valued attributes (energy, latitude, longitude). The class Link has a real-valued weight and
a state that can take values Active, Inactive, and Unclassified, specified in the enumeration
type LinkState. All attributes and types correspond to the aforementioned node and link
properties of the same name.

Figure 3 shows a (directed) triangle of links in object and compact notation. In this
example, latitude and longitude are Euclidean coordinates, link weights represent the Eu-
clidean distance between the incident nodes, and the hop count is relative to node n1.
Throughout this paper, we assume that every node and link is part of a single topology
G with node set V and edge set E. For brevity, we use the compact notation and depict only
the relevant attribute values (e.g., the link weight in this case) in the following.

2.3 Topology Control

Topology control (TC) is the discipline of adapting wireless sensor network topologies to
optimize network metrics. As described earlier, wireless sensor nodes are typically battery-
powered, and often the energy source is not (easily) exchangeable or rechargeable. This
makes prolonging the network lifetime a key optimization goal for WSNs [66].

Figure 4 sketches the three phases of the TC process: topology monitoring, planning, and
execution. The topology monitoring detects context events, which are external modifications
of the physical topology. In this paper, we consider the following six types of context events:
node addition, node removal, link addition, link removal, node property modification, and
link property modification. The execution of the TC process is triggered either periodically
or on-demand, e.g., when a batch of context events has finished. In the planning step, the
TC algorithm analyzes the input topology and produces a corresponding output topology.

2 We use sans-serif font when referring to metamodel elements.
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source
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source

source

nodes
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n1 : Node

id(n1)=1
hops(n1)= 0
E(n1) = 100
lat(n1) = 0
long(n1) = 0

n2 : Node

id(n2)=2
hops(n2)= 1
E(n2) = 30
lat(n2) = 0
long(n2) = 50

e12: Link

w(e12) = 50
s(e12) = Inactive

e32: Link

w(e12) = 40
s(e12) = Unclassified

e13: Link

w(e12) = 30
s(e12) = Active
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id(n3)=3
hops(n3)= 1
E(n3) = 50
lat(n3) = 24
long(n3) = 18

G : Topology

nodes

nodes

links

links
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(a) Object notation

1

3

2
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50
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Legend
Active link
Inactive link
Unclassified link

(b) Compact notation

Fig. 3: Triangle topology in object and compact notation. Hop count is relative to n1.

Planning step

TC
Algorithm

Enforcement of 
decisions in planning 
step

Execution step

Batch: Analyze all Re-calculate
Incremental: Analyze selectively Update

1

2

3

4

Input topology Output topology

1

2

3

4

Observe and handle 
context events

Topology monitoring Triggering
(e.g., periodic, 
on demand)

Fig. 4: Topology control process

The output topology contains all links of the input topology that are necessary to fulfill the
specified consistency properties (e.g., reduced node degree or connectivity). We distinguish
between batch and incremental TC algorithms: A batch TC algorithm analyzes the entire
input topology and outputs an entire output topology. An incremental TC algorithm selec-
tively analyzes the modified parts of the topology and updates the output topology accord-
ingly. This behavior requires that all links that are modified, added, and removed between
two iterations of the planning step are marked. In the execution step, the sensor node ensures
that all links in the output topology are available for message transfer. The planning step is
a link classification problem, whereas the execution step and the topology monitoring are
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highly platform-specific tasks. Therefore, we focus on the planning step in this paper and
leave the necessary refinement of the metamodel for the other two steps as future work.

In Figure 4, we use a joint representation for the input and output topology. The phys-
ically possible links in the topology are shown as directed lines. The decision of the TC
algorithm is stored as state s(eab) attribute for each link eab. This representation allows us to
store previous decisions of the TC algorithm for each link, which is essential for incremental
TC algorithms. More precisely, we say that a link eab in the output topology is

– active if s(eab)=Active if it is part of the output topology (denoted as solid line in
compact notation, e.g., 1 2 ),

– inactive if s(eab)=Inactive if is not part of the output topology (denoted as dotted line
in compact notation e.g., 1 2 ),

– classified if s(eab) ∈ {Active,Inactive} if the TC algorithm has made a decision for
eab (denoted as mixed dotted-solid line in compact notation, e.g., 1 2 ),

– unclassified s(eab) = Unclassified if either the TC algorithm has not considered link
eab yet or a context event has invalidated the decision of the TC algorithm (denoted as
dashed line in compact notation, e.g., 1 2 ), and

– undefined if we either do not know or do not care about the state of eab (denoted as gray
line in compact notation, e.g., 1 2 ).

A link state modification is the modification of the state of a single link, i.e., activation,
inactivation, or unclassification of the link.

2.4 Specifying Valid Output Topologies with First-Order Logic Predicates

In the following, we specify required properties of output topologies in terms of first-order
logic predicates. We begin with two general properties that must hold for any TC algorithm.
Afterwards, we introduce additional algorithm-specific conditions for seven TC algorithms
(six existing TC algorithms and one new TC algorithm variant).

2.4.1 General Required Properties of Output Topologies

Upon termination of every TC algorithm, each link in the topology should be classified and
the output topology should be connected. These requirements are described by the following
two predicates.

Complete Classification Constraint φCC: A TC algorithm should make a definite decision
for each link in the topology, i.e., the output topology of every TC algorithm should only
contain classified links. This postcondition ensures that a TC algorithm may only terminate
after completely classifying the input topology; more formally:

φCC(G(V,E))⇔∀eab ∈ E : s(eab) ∈ {Active,Inactive} (1)

A-connectivity Predicate φA-conn: The output topology must be connected, i.e., each pair of
nodes na,nb ∈V must be connected by a path Pout(na,nb) of active links if a path Pin(na,nb)
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of edges exists in the input topology. This requirement can be described by the following
A-connectivity predicate φA-conn:

φA-conn(G(V,E))⇔∀(na,nb) ∈V ×V :(
∃Pin(na,nb)⇒∃Pout(na,nb) : ∀e ∈ Pout : s(e) = Active

)
(2)

Note that A-connectivity can only be evaluated based on a global view of the topology,
whereas complete classification can be checked based on local knowledge of each node’s
outgoing links.

2.4.2 Algorithm-Specific Properties

Each TC algorithm has specific optimization goals, which jointly describe when a link may
be inactive in a valid output topology; all links that do not fulfill these conditions have to be
active. As an example, we consider the TC algorithm kTC [69]. In a valid output topology
of kTC, a link eab is inactive if and only if (i) it is the weight-maximal link in a triangle,
together with classified links eac and ecb, and (ii) its weight is additionally k times larger
than the weight of the weight-minimal link in the same triangle; more formally:

∀eab ∈ E : s(eab) = Inactive

⇔ eab is in a triangle with classified links eac,ecb

∧ w(eab)≥max(w(eac),w(ecb))

∧ w(eab)≥ k ·min(w(eac),w(ecb)) .

(3)

The core idea of kTC is that it is often beneficial to use multiple shorter (i.e., more energy-
efficient) links (here: eac and ecb) instead of one long link (here: eab) for transferring a mes-
sage because the required transmission power grows at least quadratically with the length of
a link [25].

A closer look at Equation (3) reveals that the algorithm-specific condition contains a
structural predicate (the first line, here: a triangle) and an additional attribute predicate (the
remaining two lines), which refers to the links identified by the structural predicate. In fact,
this is a recurring property in specifications of TC algorithms. We express this separation in
the following reformulation of Equation (3).

∀eab ∈ E : s(eab) = Inactive

⇔ ∃eac,ecb : φ∆(eab,eac,ecb)∧ φ kTC(eab,eac,ecb)

with

φ∆(eab,eac,ecb) = eab is in a triangle with classified links eac,ecb

φ kTC(eab,eac,ecb) = w(eab)≥max(w(eac),w(ecb))

∧ w(eab)≥ k ·min(w(eac),w(ecb)) .

(4)

The directed-triangle predicate φ∆ reflects the structural condition that an inactive link eab
must be part of a triangle. The kTC predicate φ kTC specifies the condition that eab must be
the weight-maximal link and at least k times larger than the weight-maximal link among eac
and ecb.
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Example: Incremental TC using kTC Figure 5 shows the evolution of a sample topology
(Figure 5a). For conciseness, we show a link and its reverse link as a single double-headed
line. The topology is first optimized by invoking kTC (k = 2) (Figure 5b). Then, two links
e79 and e97 are added (e.g., because an obstacle between node n7 and node n9 has moved
out of the way), and node n10 is removed (e.g., because its battery is empty). The resulting
topology is shown in Figure 5c. The context event handling has unclassified the new links
e79 and e97 and all links around the removed node n10. Finally, the topology is processed
by kTC again (Figure 5d). Now, the added links e79 and e97 as well as the formerly inactive
links e3,11, e11,3, e9,11 and e11,9 are active, and the links e3,9 and e9,3 are inactive.

2.4.3 The Tie-Breaking Predicate φtie-break

A recurring issue while developing TC algorithms is that more than one link, e.g., in a
triangle, may fulfill the algorithm-specific predicate, which may cause multiple links to be
inactivated. In case of kTC, this may even lead to a disconnected output topology. As a
resort, tie breaker are applied in such situations. For instance, a link eab is only inactivated if
it has the largest identifier compared to all other links in the triangle that fulfill the algorithm-
specific predicate. For triangles of weighted links, the tie-breaking predicate φtie-break is
defined as follows:

φtie-break(eab,eac,ecb) = (w(eab) = w(eac)⇒ id(eab)> id(eac))

∧ (w(eab) = w(ecb)⇒ id(eab)> id(ecb))
(5)

The following Equation (6) shows how the tie-breaking predicate φtie-break can be used to
compose a variant of kTC that is guaranteed to inactivate only one weight-maximal link in
each triangle.

s(eab) = Inactive⇔∃eac,ecb : φ∆(eab,eac,ecb)∧φ kTC(eab,eac,ecb)∧φtie-break(eab,eac,ecb)

with

φ∆ eab,eac,ecb = eab is in a triangle with classified links eac,ecb

φ kTC(eab,eac,ecb) = w(eab)≥max(w(eac),w(ecb))

∧ w(eab)≥ k ·min(w(eac),w(ecb))

φtie-break(eab,eac,ecb) = (w(eab) = w(eac)⇒ id(eab)> id(eac))

∧ (w(eab) = w(ecb)⇒ id(eab)> id(ecb))

(6)

2.4.4 Maxpower Topology Control

The Maxpower TC algorithm activates all links in a topology. Its name derives from the
fact that its output topology contains all links that are available if the node transmits with
maximum power. Maxpower TC is a generally accepted baseline for performing network
evaluations. The predicate φ Maxpower of this algorithm is false because it never inactivates
a link: Note that Maxpower TC does not even require the additional triangle-identifying
predicate φ∆, i.e., the full specification of Maxpower TC looks as follows:

∀eab ∈ E : s(eab) = Inactive⇔ φ Maxpower(eab)

with φ Maxpower(eab) = false.
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Fig. 5: Example of incremental TC with kTC (k = 2)
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2.4.5 XTC Algorithm

The idea behind the XTC algorithm [81, Sec. 3] is that a large link weight indicates a low
link quality. A link eab is inactive in the output topology of XTC if there exist links of
higher quality, i.e., smaller weight, that connect the source with the target of eab, possibly
via multiple intermediate links. This is equivalent to the following property: A link in the
output topology of the XTC algorithm is inactive if it is the weight-maximal link in some
triangle; more formally: w(eab) > max(w(eac),w(ecb)). In [81, Sec. 4], the authors refine
the XTC algorithm to using the same tie breaking predicate as in Section 2.4.3: Whenever
the triangle contains multiple links of the same minimum quality (i.e., of the same maximum
weight), only the link with the unique maximum ID is considered. Therefore, we define the
XTC predicate φ XTC as

φ XTC(eab,eac,ecb) = w(eab)≥max(w(eac),w(ebc))

∧ φtie-break(eab,eac,ecb).

2.4.6 Gabriel Graph Algorithm

The output graph of the Gabriel Graph (GG) algorithm [62, 80] conforms to the following
geometric definition. A graph is a GG if for each link eab, the circle with diameter eab and
center between na and nb contains no nodes apart from na and nb [28]. The original formu-
lation is position-based, i.e., each node requires knowledge about its latitude and longitude.
By Thales’ theorem [1, p. 50], the following equivalent formulation can be obtained. In each
triangle, a link is inactive if its squared weight is smaller than the sum of the squared weights
of the other links eac and ecb:

φ GG(eab,eac,ecb) = w2(eab)> w2(eac)+w2(ecb).

2.4.7 Relative Neighborhood Algorithm

The output topology of the Relative Neighborhood Graph (RNG) algorithm [39, 80] is an
RNG, which is defined as follows. In each triangle, the weight of the weight-maximal link
eab in the triangle must be less than or equal to the weight of the other links eac and ecb. This
means that a link eab is inactive if it is part of a triangle with shorter links eac and ecb:

φ RNG(eab,eac,ecb) = w(eab)> w(eac)∧w(eab)> w(ecb)

Note that the RNG predicate is similar to XTC, which may lead to the impression that the
output topology of XTC is (almost) identical to RNG. However, this is true only if (i) the link
weight (as used by XTC) correlates strictly negatively with the Euclidean distance (used by
RNG), and (ii) link-distances are unique because RNG applies the >-operator while XTC
applies the ≥-operator with ID-based tie breaking.

2.4.8 Local kTC Algorithm

l*-kTC [71] is a variant of kTC that is tailored to many-to-one communication scenarios
(e.g., data collection). Here, the hop count attribute hops(na) stores the length (in hops) of
the shortest path from na to a dedicated base station node. In the output topology of l*-kTC,
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a link eab is inactive if (i) eab fulfills φ kTC and (ii) if its inactivation does not extend the
length of the path to the base station by more than a factor a:

φ l*-kTC(eab,eac,ecb) = φ kTC(eab,eac,ecb)

∧min(hops(na),hops(nb),hops(nc))≥ 0(
hops(na) = hops(nb)⇒ true

∧hops(na)> hops(nb)⇒
hops(nc)+1

max(1,hops(na))
< a

∧hops(na)< hops(nb)⇒
hops(nc)+1

max(1,hops(nb))
< a
)

(7)

The second line of Equation (7) ensures that the hop count is defined for each participating
node. The third line covers the case that na and nb have the same distance to the base station.
The fourth line considers the case when na is farther away from the base station than nb. In
this case, we may estimate the path length after inactivating eab as hops(nc)+1. As na may
be the base station itself (i.e., hops(na) = 0), we ensure that the denominator is always at
least 1. The fifth line is symmetric to the fourth line. More details of the algorithm can be
found in [71, p.5].

2.4.9 Yao Graph Algorithm

The Yao graph algorithm [84] is the only location-dependent TC algorithm considered in
this paper. This means that it requires information about the latitude and longitude of each
node. The Yao graph algorithm separates the environment of a node into cones of uniform
angle. If we denote the cone count with ncone, each cone covers an angle of 360◦

ncone
. A link eac

is inactive if a link eac in the same cone exists that has a smaller weight:

φ Yao(eab,eac,ecb) = w(eab)> w(eac)

∧ ∃x ∈ {1,2, . . . ,ncone} :(
α cone · (x−1)≤ α(eab)< α cone · x

∧ α cone · (x−1)≤ α(eac)< α cone · x
)

with α cone =
360◦

ncone

2.4.10 e-kTC Algorithm

As the last TC algorithm considered in this paper, we derive a novel, energy-aware variant
of kTC, called e-kTC. Its distinctive feature is that it considers the remaining energy of
nodes. We begin with an illustrative example that highlights a situation in which the output
topology of kTC is suboptimal w.r.t. network lifetime. Afterwards, we present e-kTC and
show that it improves the network lifetime of the sample topology.
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Network Lifetime In the WSN community, extending the lifetime of a network is a key
optimization goal. There are many alternative definitions of network lifetime [14]. We apply
a definition that is tailored to the per-node lifetime. A node na is alive if its remaining energy
is positive, i.e., E(na)> 0. Likewise, a node na is dead if its battery is empty, i.e., E(na) = 0.
The d-lifetime Ld of a network is defined as the first point in time at which at least d nodes
are dead.3 The following values of d are of special interest:

– d = 1 because the network is fully intact before L1 and
– d = |V | because the network is no longer operational after L|V |.

As a shorthand, Lx% denotes the point in time when x% · |V | nodes are dead, i.e., Lx% =
Lx%·|V |. For an energy-aware TC algorithm, it is important to estimate the remaining life-
time of the topology. This allows the TC algorithm to proactively relieve nodes that would
otherwise fail soon. The expected d-lifetime L̂d(G) of a topology G estimates the d-lifetime
of the topology. For simplicity, we focus on L̂1(G) in this paper. The expected transmission
power P̂(eab) for each link eab represents the power that is required to reach nb from na.
According to Friis’ free space propagation model, P̂(eab) grows at least proportionally to
the squared distance (here: weight) of eab [25]:

P̂(eab) ∝ w2(eab)

We may estimate the expected lifetime L̂(eab) of a node na w.r.t. a link eab as follows:

L̂(eab) =
E(na)

P̂(eab)
(8)

Here, we estimate the number of messages that can be transmitted with the remaining energy
E(na) of na. Equation (8) presumes that transmitting a message consumes energy only at
the sending node. On real hardware, transmitting a message will also consume energy at the
receiving node. In this paper, we neglect this additional cost for simplicity, which is common
in the network community (e.g., [15]). We define the expected lifetime L̂(na) of a node na

as the minimum expected lifetime L̂(eab) of its outgoing links:

L̂(na) = min
eab∈E

L̂(eab)

Finally, we lift this definition to topologies: The expected 1-lifetime L̂1(G) of a topology G
is the minimum expected lifetime L̂(na) of its nodes:

L̂1(G) = min
na∈V

L̂1(na)

Motivating example with kTC In the following, we analyze the remaining 1-lifetime L1
of the sample topology shown in Figure 6a. Each node n is annotated with its remain-
ing energy E(n), and each link eab is annotated with its weight w(eab) and its expected
1-lifetime L̂1(eab). We simulate the behavior of the network over a number of discrete time
steps until the first node runs out of energy, using the following workload. In each time
step, the remaining energy of a node decreases by the greatest required transmission power
among all of its active outgoing links. This is a simplified simulation, e.g., of a Gossiping
protocol [37] that broadcasts a message in each time step from a node to all its neighbors.
For instance, in each time step, the remaining energy of node n4 decreases by 9. Only one

3 The variable d alludes to the metric dead node count.
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Fig. 6: Applying kTC to the sample topology (k = 2, L1 = 12)

execution of kTC (k = 2) is required because the link weights are constant (Figure 6b).
The example shows that n4 is the first node to run out of energy after 12 time steps, i.e.,
L1(G) = 12 (Figure 6c).

Specification of e-kTC The problem of unbalanced energy consumption is well-known in
the WSN literature. A number of TC algorithms have been proposed that explicitly take
the remaining energy of nodes into account (e.g., [15, 41]). Inspired by [15], we propose to
modify the predicate of kTC to take the expected remaining lifetime of nodes into account.
We call this energy-aware variant e-kTC. After executing e-kTC, a link is inactive if and only
if this link is part of a triangle in which it has the minimum expected remaining lifetime
among the links in the triangle and if its expected remaining lifetime is at least k times
shorter than the maximum expected remaining lifetime of the other links in the triangle:

φ e-kTC(eab,eac,ecb) = L̂1(eab)≤min(L̂1(eac), L̂1(ecb))

∧ L̂1(eab)≤ k ·max(L̂1(eac), L̂1(ecb)).
(9)

Motivating example with e-kTC Figure 7 illustrates the processing of the same topology as
in Figure 6 with e-kTC (k = 2). The expected remaining lifetime of a link changes in each
time step and opposite links may have different states. To establish comparability with kTC,
we invoke e-kTC only once in the beginning (Figure 7b). After 12 time steps, the remaining
energy of node n4 is now 96 (Figure 7c), and the minimal remaining energy among all
nodes is 36. Therefore, executing e-kTC increases the remaining 1-lifetime L1 of the sample
topology.
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Fig. 7: Applying e-kTC to the sample topology (k = 2, L1 = 16)

Lifetime preservation with e-kTC In fact, the benefit of applying e-kTC in the previous
example can be generalized: For each triangle of links, consisting of eab, eac, and ecb, e-kTC
preserves the expected lifetime of na without decreasing the lifetime of nb and nc, compared
to applying Maxpower TC. The expected lifetime of na even increases if the inactivated link
eab has the minimum expected lifetime among all outgoing links of na.

2.4.11 The Minimum-Weight Predicate φmin-weight

In the following, we introduce the novel minimum-weight predicate φmin-weight, which can
be combined freely with all specified TC algorithms. It serves to reduce the memory foot-
print and the runtime of the TC algorithm. Working memory is a highly limited resource
on wireless sensor nodes. For this reason, keeping the entire neighborhood of a sensor node
in working memory may be infeasible if the topology is dense. Fortunately, it is often un-
necessary to store links to close neighbors because the energy consumption is typically
predominated by links to distant neighbors. Additionally, reducing the size of the processed
neighborhood may speed up the planning step.

The following minimum-weight predicate φmin-weight formalizes this reduction step. The
parameter wthres represents the configurable minimal weight of a link to be included in the
considered neighborhood.

φmin-weight(eab,eac,ecb) = min(w(eab),w(eac),w(ecb))≥ wthres (10)

This predicate may now be used to compose new variants of the previously specified TC
algorithms. For instance, a modified version of kTC with minimum-weight predicate is

φ kTC+min-weight(eab,eac,ecb) = φ kTC(eab,eac,ecb)∧φmin-weight(eab,eac,ecb).
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Fig. 8: Overview of configuration options of a sensor node

2.5 Summary of TC Algorithms

Figure 8 and Table 1 summarize the results of this section. Figure 8 illustrates the config-
uration options of a single sensor node: the possible TC algorithms, the minimum-weight
optimization, and the relevant node and link properties. Black solid lines indicate the hierar-
chical decomposition relation between configuration options. Gray lines indicate dependen-
cies from TC algorithms to properties. Dashed black lines indicate the relationship between
the components of the considered TC algorithms and their corresponding predicate.

The output topology of any TC algorithm must fulfill the complete-classification pred-
icate φCC and the A-connectivity predicate φA-conn (Section 2.4.1). The triangle-identifying
predicate φ∆ is common to all considered algorithms except for Maxpower TC. In contrast,
the predicate φ A ∈ {φ kTC,φ Maxpower,φ XTC,φ GG,φ RNG,φ l*-kTC,φ Yao,φ e-kTC} describes
the algorithm-specific attribute constraints. The auxiliary predicates φtie-break and φmin-weight
describe the ID-based tie-breaking (Section 2.4.3) and the minimum-weight optimization
(Section 2.4.11). Table 1 summarizes the algorithm-specific predicates φ A. For simplicity,
we write φ instead of φ A in the following.

3 Characterizing Valid Topologies with Graph Constraints

In this section, we introduce graph patterns and graph constraints to specify the desired
formal properties of topologies. Compared to first-order logic predicates, the main advantage
of graph constraints is that they can be constructively combined with GT rules to produce
refined constraint-preserving GT rules. The specification using graph constraints allows us
to prove that all considered TC algorithms produce connected output topologies. As one
main contributions of this paper, we lift the proof of connectivity to entire families of TC
algorithms.
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Table 1: Attribute predicates of the considered TC algorithms

Algorithm A Algorithm-Specific Predicate φ A(eab,eac,ecb)

Maxpower TC false

XTC [81]

w(eab)≥max(w(eac),w(ecb))

∧ (w(eab) = w(eac)⇒ id(eab)> id(eac))

∧ (w(eab) = w(ecb)⇒ id(eab)> id(ecb))

GG [80] w2(eab)> w2(eac)+w2(ecb)

RNG [39] w(eab)> max(w(eac),w(ecb))

kTC [69]

w(eab)≥max(w(eac),w(ecb))

∧ w(eab)≥ k ·min(w(eac),w(ecb))

∧ (w(eab) = w(eac)⇒ id(eab)> id(eac))

∧ (w(eab) = w(ecb)⇒ id(eab)> id(ecb))

l*-kTC [71]

φ kTC(eab,eac,ecb)

∧min(hops(na),hops(nb),hops(nc))≥ 0(
hops(na) = hops(nb)⇒ true

∧hops(na)> hops(nb)⇒
hops(nc)+1

max(1,hops(na))
< a

∧hops(na)< hops(nb)⇒
hops(nc)+1

max(1,hops(nb))
< a
)

Yao graph [84]

w(eab)> w(eac) ∧
∃x ∈ {1,2, . . . ,ncone} :( 360◦

ncone
· (x−1)≤ α(eab)<

360◦

ncone
· x

∧ 360◦

ncone
· (x−1)≤ α(eac)<

360◦

ncone
· x
)

e-kTC [this paper]
L̂1(eab)< min(L̂1(eac), L̂1(ecb))

L̂1(eab)≤ k ·max(L̂1(eac), L̂1(ecb))

3.1 Graph Constraint Concepts

A pattern is a graph consisting of node and link variables together with a set of attribute
constraints. A node (link) variable serves as a placeholder for a node (link) in a topology.
An attribute constraint is a predicate over attributes of node and link variables. A match m
of a pattern p in a topology G injectively maps the node and link variables of p to the nodes
and links of G, respectively, such that all attribute constraints are fulfilled. Additionally, a
match must preserve the end nodes of link variables, i.e., map the incident node variables of
each link variable to the incident nodes of the corresponding link.

A graph constraint Cx consists of a premise pattern px and a conclusion cx that consists
of zero or more conclusion patterns cx,y. The premise is a subgraph of each conclusion
pattern, and the attribute constraints of each conclusion pattern jointly imply the attribute
constraints of the premise. A graph constraint with no (at least one) conclusion patterns is
called negative (positive) graph constraint. A graph constraint Cx is fulfilled on a topology
G (alternatively: a topology G fulfills a graph constraint Cx) if every match of its premise
px can be extended to a match of at least one conclusion pattern cx,y. This implies that a
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Fig. 10: Abstract algorithm-specific graph constraints for triangle-based TC algorithms

topology fulfills a negative graph constraint Cx if it does not contain any matches of px.
Note that this requirement is sufficient but not necessary for positive graph constraints. A
graph constraint Cx is fulfilled at a match m of a pattern p in a topology G if every match
of px that maps all node (link) variables that appear also in p to the same nodes (links) in G
can be extended to a match of at least one conclusion pattern cx,y. A match m′ of a pattern p′

in G extends a match m of a pattern p if every node (link) variable that appears in p′ and in
p is bound to the same node (link), respectively.

No-unclassified-links constraint Cu The no-unclassified-links constraint Cu is equivalent to
the complete-classification property φCC, which must be fulfilled by every TC algorithm
(Equation (1)). Its premise pno-u matches any unclassified link eab, and its conclusion is
empty because it is a negative constraint. This means that Cu can only be fulfilled on a
topology if this topology does not contain any unclassified links.

Algorithm-specific graph constraints Figure 10 shows two graph constraints that describe
the algorithm-specific properties of a triangle-based TC algorithm. The inactive-link con-
straint Ci (Figure 10a) states that each inactive link eab must be part of a triangle together
with classified links eac and ecb for which φ (eab,eac,ecb) is true. Symmetrically, the active-
link constraint Ca (Figure 10b) states that each active link eab may not be part of a triangle
together with classified links eac and ecb for which φ (eab,eac,ecb) is true.
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3.2 Consistency of Topologies

In the following, we categorize topologies according to which of the specified graph con-
straints they fulfill. We distinguish between the following three levels of consistency:

– A topology is strongly consistent if it fulfills the no-unclassified-links constraint Cu, the
inactive-link constraint Ci, and the active-link constraint Ca. A valid output topology of
a TC algorithm must be strongly consistent.

– A topology is weakly consistent if it fulfills the inactive-link constraint Ci and the active-
link constraint Ca. For instance, an entirely unclassified topology is weakly consistent
because it contains matches of the premises of neither Ci nor Ca.

– A topology is inconsistent if it is neither weakly nor strongly consistent, i.e., if it fails to
fulfill at least one of the algorithm-specific constraints Ci and Ca.

In the following, we require that the topology is weakly consistent before and strongly con-
sistent after invoking a TC algorithm, i.e., weak consistency is the precondition and strong
consistency is the postcondition of every TC algorithm.

3.3 Connectivity of Topologies

Next, we show that the specified graph constraints already allow us to prove the impor-
tant property that the output topology of a TC algorithm must be A-connected (see also
Section 2.4.1). A-connectivity is a hard constraint that may be violated by context events
because context events may unclassify links. For such situations, we need a second, softer
constraint for defining connectivity in the presence of context events. A topology is A-U-
connected if the subgraph consisting of its active and unclassified links is connected. Ac-
cording to this definition, A-connectivity implies A-U-connectivity. The idea behind A-U-
connectivity is that unclassified links should be treated as if they were active. The context
event handlers of a TC algorithm must ensure that the topology remains A-U-connected.
The following Theorems 1 and 2 show that the output topology of the considered TC algo-
rithms is A-connected if the input topology is A-U-connected and weakly consistent. This
property must be proved w.r.t. the TC algorithm A because weak or strong consistency is
always evaluated in the context of the current TC algorithm A.

Theorem 1 For each considered TC algorithm A, a strongly consistent and A-U-connected
topology is also A-connected.

Sketch of Proof. Let A be the TC algorithm whose active-link constraint Ca and inactive-
link constraint Ci are fulfilled. From strong consistency follows that the topology fulfills the
no-unclassified-links constraint Cu. Therefore, it suffices to show the following claim: The
end nodes of each link are connected by a path of active links in the output topology. This
trivially holds for the end nodes of active links. By induction, we show that the claim also
holds for all inactive links.

Let ei1 ≺A ei2 ≺A . . . ≺A eik be a strict ordering of the inactive links in the topology
such that in each match m of the conclusion ci of the inactive-link constraint Ci, the link
corresponding to eab is larger (w.r.t. ≺A) than the links corresponding to eac and ecb, i.e.,
m(eac) ≺A m(eab)∧m(ecb) ≺A m(eab). Corresponding definitions of ≺A for all considered
algorithms in this paper are shown in Table 2.

Induction start: The minimal inactive link w.r.t. φ A, ei1 , is part of a triangle with two
active links that connect the end nodes of link ei1 because the inactive-link constraint Ci is
fulfilled. Thus, the claim holds for link ei1 .
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Table 2: Algorithm-specific link order ≺A for the considered algorithms

Algorithm A Link Order ≺A

Maxpower TC, XTC [81], GG [62, 80],
RNG [39], kTC [69], l-kTC [71], Yao
graph [84]

eab ≺A ecd⇔ w(eab)< w(ecd)

∨
(

w(eab) = w(ecd)∧ id(eab)< id(ecd)
)

e-kTC (Section 2.4.10)
eab ≺A ecd⇔ L̂1(eab)< L̂1(ecd)

∨
(

L̂1(eab) = L̂1(ecd)∧ id(eab)< id(ecd)
)

Induction step: We now consider an inactive link ei`+1 with 1 ≤ ` ≤ k−1, which is part
of a triangle with two classified links, e1 and e2. We assume that only e1 is inactive.4 Link
e1 appears before ei`+1 in ≺A, i.e., there is some s ≤ ` such that e1 := eis . Since the claim
has been proved for all inactive links that appear before ei`+1 in ≺A, there is a path of active
links between the end nodes of eis . A path of active links between the end nodes of link e`+1
can be constructed by joining the two paths between the end nodes of e1 and e2. ut

Theorem 2 The output topology of each considered TC algorithm A is A-connected if the
input topology is A-U-connected and weakly consistent.

Sketch of Proof. By definition, a TC algorithm turns a weakly consistent input topology into
a strongly consistent output topology. According to Theorem 1, a strongly consistent and
A-U-connected topology is A-connected. Therefore, the claim follows. ut

4 Specifying Topology Control with Programmed Graph Transformation

In this section, we specify TC operations and context events using graph transformation
(GT) rules and TC algorithms using programmed graph transformation [23], which carries
out basic topology modifications by applying graph transformation rules whose execution
order is defined by an explicit control flow.

Programmed Graph Transformation Concepts A graph transformation (GT) rule [22, 63]
consists of a left-hand side (LHS) pattern, a right-hand side (RHS) pattern, and application
conditions (ACs). A positive (negative) application condition (PAC (NAC)) is a positive
(negative) graph constraint. To enable meaningful attribute assignments, a predicate in the
attribute constraints of the RHS pattern can only be an equation with an attribute of a single
node or link variable on its left side. A GT rule is applicable to a topology G if a match of the
LHS pattern exists in the topology that fulfills all application conditions. The application of
a GT rule at a match of its LHS pattern to a topology G produces a topology G′ as follows.

(i) All nodes (links) of the topology that map to a node (link) variable of the LHS pattern
and have a corresponding node (link) variable in the RHS pattern are preserved.

(ii) All nodes (links) of the topology that are assigned to a node (link) variable of the LHS
pattern and lack a corresponding node (link) variable in the RHS pattern are removed,

(iii) For each node (link) variable in the RHS that is missing in the LHS, a corresponding
node (link) is added to the topology.

4 If both links are active, the claim follows trivially. If both links are inactive, the argument applies for
each link individually.
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Fig. 11: TC rules

(iv) Node (link) attributes are assigned in such a manner that the attribute constraints of the
RHS pattern are fulfilled (operator =).

Specifying control flow using programmed GT Control flow is specified in our approach
with Story-Driven Modeling [23], an activity-diagram-based notation in which each activity
node contains a graph transformation rule. A regular activity node (denoted by a single
framed, rounded rectangle) with one unlabeled outgoing edge applies the contained GT rule
once to one arbitrary match. A regular activity node with an outgoing [Success] and [Failure]

edge applies the contained GT rule and follows the [Success] edge if the rule is applicable
at an arbitrary match, and it follows the [Failure] edge if the rule is inapplicable. A foreach
activity node (denoted by a double-framed rounded rectangle) applies the contained GT rule
to all matches and traverses along the optional outgoing edge labeled with [Success] for each
match. When all the matches have been completely processed, the control flow continues
along the [Failure] outgoing edge. RHS node and link variables are bound by a successful
rule application and can be reused in subsequent activity nodes.

Topology control rules Three of the five TC rules, shown in Figure 11, represent link state
modifications inside the GT specification of a TC algorithm: the activation rule Ra, the in-
activation rule Ri, and the unclassification rule Ru. The remaining two TC rules are the
unclassified-link-identification rule Rfind-u and the classified-link-identification rule Rfind-ai,
which serve to identify (but not to modify) unclassified and classified links and whose LHS
and RHS are identical.

Context event rules Four of the nine context event rules, as shown in Figure 12, specify
structural modifications of a topology: the node addition rule R+n, the node removal rule R-n,
the link addition rule R+e, and the link removal rule R-e. The remaining five context event
rules specify attribute value modifications: the weight modification rule Rmod-w, the hop
count modification rule Rmod-h, the energy modification rule Rmod-E, the latitude modification
rule Rmod-lat, and the longitude modification rule Rmod-long.

Specification of the Maxpower TC algorithm Figure 13 shows a specification of the Max-
power TC algorithm (see Section 2.4.4), which serves as starting point for the subsequent de-
velopment steps. Link variable e12 is bound by the unclassified-link-identification rule Rfind-u
and reused in the activity nodes containing the activation rule Ra and the inactivation rule Ri.
Note that Ri is only shown here for completeness, even though it is unreachable because Ra
is always applicable.



Constructing Families of Incremental Topology Control Algorithms Using GT 23

1

R+n()

R-n(n1 : Node)

p-n,in

NAC-n,in

p-n,out

NAC-n,out

R-e(e12 : Link)

R+e(n1 : Node, n2 : Node, wnew : Real)

NAC+e,existing

1 2
e12

w(e12) = wnew

Rmod-w(e12 : Link, wnew : Real)

Conclusion
∅

RHS

Conclusion
∅

Conclusion
∅

1 2

LHS

1 2
e12

p+e,existing

1 2
e12

w(e12) = wnew

RHS

1 2
e12

LHS

1 2

RHS

1 2
e12

LHS

LHS RHS

1LHS RHS

1 2
e121 2

e12

Rmod-h(n1 : Node, hnew : Integer)

1 h(n1) = hnew

RHS

1

LHS

Rmod-E(n1 : Node, Enew : Real)

1 E(n1) = Enew

RHS

1

LHS

Rmod-lat(n1 : Node, latnew : Real)

1 lat(n1) = latnew

RHS

1

LHS

Rmod-long(n1 : Node, longnew : Real)

1 long(n1) = longnew

RHS

1

LHS

Fig. 12: Context event rules

[Failure]

MaxpowerTC ()

[Success]

[Failure]

[Success]

Rfind-u()

LHS = RHS

1 2
e12

[Success]
[Failure]

Ra (e12 : Link)

LHS

1 2
e12

1 2
e12

Ri (e12 : Link)

RHS

LHS

1 2
e12 1 2

e12

RHS

Fig. 13: Specification of the Maxpower TC algorithm

5 Refining the Graph Transformation Rules to Preserve the Graph Constraints

The fourth step of our design methodology combines the TC and context event rules with
the graph constraints to produce a refined version of the TC algorithm, which preserves all
graph constraints. This step is split into three substeps, as shown in Figure 14.

– In Section 5.1, we enrich the TC and context event rules step-by-step with additional
application conditions that are derived from the graph constraints to ensure that the
refined rules preserve all graph constraints. After this step, the TC algorithm preserves
weak consistency.

– In Section 5.2, we systematically transform the additional application conditions of the
context event rules into equivalent GT-based handler operations. These handler opera-
tions ensure that the topology is constantly weakly consistent. This step is necessary be-
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Fig. 14: Overview of refinement step (Section 5)

cause the applicability of context event rules may not be restricted because they present
uncontrollable effects of the environment. The derivation of context event handlers is
one of the main contributions of this paper.

– In Section 5.3, we refine the structure of the TC algorithm to enforce its termination.
Shared application conditions of the refined activation rule Ra and inactivation rule Ri
may lead to a non-termination of the TC algorithm. We systematically transform the
shared application conditions into handler operations that ensure the termination of the
TC algorithm. Finally, we prove that the resulting algorithm terminates.

5.1 Refinement of TC and Context Event Rules

During this first refinement step, we (i) analyze which of the specified TC and context
event rules preserve or violate the inactive-link constraint Ci and the active-link constraint
Ca, which constitute weak consistency, and (ii) apply a well-known static analysis tech-
nique [33] that produces additional application conditions that prevent the GT rules from
violating weak consistency.

5.1.1 Analysis of Consistency Preservation

The examples shown in Figure 15 illustrate situations in which applying one of the GT
rules violates weak consistency. Every example is shown in the form of a weakly consistent
initial topology, a rule application, and a constraint-violating final topology. These findings
can be generalized to the results in Table 3. Figure 15 provides examples for each entry in
the table that corresponds to a constraint-violating GT rule (denoted by a cross mark, ×). In
the following, we discuss why the remaining GT rules are guaranteed to preserve the graph
constraints, as indicated by the nine check marks (X) in the table.
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Fig. 15: Sample constraint violations caused by applying GT rules for kTC with k = 2

Table 3: Overview of constraint preservation (X: constraint-preserving, ×: constraint-
violating, *: depends on TC algorithm, †: assuming unclassification of incident unclassified
links)

Rule Ci Ca Remarks

Ra X × Figures 15a and 15b
Ri × × Figure 15c
Ru × X Figure 15d
Rfind-u, Rfind-ai X X No modification

R+n, R-n X X Added/removed node is isolated
R+e X X Added link is unclassified
R-e × X Figure 15e
Rmod-w ×∗ X Figure 15f, nalogous to Ru
Rmod-lat, Rmod-long ×∗ X∗† Analogous to Ru
Rmod-E, Rmod-h ×∗ X∗† Analogous to Ru
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– The activation rule Ra preserves the inactive-link constraint Ci because applying Ra nei-
ther creates a new match of the premise of Ci nor destroys a match of the conclusion ci
of Ci.

– The unclassification rule Ru preserves the active-link constraint Ca because unclassifying
a link may never result in a new match of the premise pa of Ca.

– The unclassified-link-identification rule Rfind-u and the classified-link-identification rule Rfind-ai
do not modify the topology and, therefore, preserve both constraints.

– The node addition rule R+n (node removal rule R-n) only adds (removes) an isolated node
to (from) the topology, which may neither produce a new match of pa or pi nor destroy
a match of ci.

– The link addition rule R+e preserves Ci and Ca because the added link is unclassified.
– The link removal rule R-e preserves the active-link constraint Ca because removing a

link cannot establish a new match of its premise pa.

The situation is more difficult for the attribute modification rules. We may assume that the
sensor node is configured to suppress context events that modify attributes irrelevant for the
current TC algorithm. Therefore, the following explanations only hold if the considered TC
algorithm depends on the particular attribute. Independent of the considered TC algorithm,
the weight modification rule Rmod-w preserves the active-link constraint Ca but does not
preserve the inactive-link constraint Ci because this rule unclassifies the modified link and,
thereby, behaves similar to the unclassification rule Ru. For instance, whenever the hop count
of a node na is modified (by applying the hop count modification rule Rmod-h), we may need
to evaluate for each incoming and outgoing link of na whether its state needs to be updated. A
conservative resolution strategy is to unclassify all incident links of a node whenever one of
its attribute values changes. Under this assumption, the hop count modification rule Rmod-h,
energy modification rule Rmod-E, the latitude modification rule Rmod-lat, and the longitude
modification rule Rmod-long behave equivalently to a sequence of applications of the unclas-
sification rule Ru.

5.1.2 Refinement of Graph Transformation Rules

In this section, we show how the identified constraint-violating GT rules can be refined to
preserve the graph constraints. In total, we have identified twelve problematic pairs of GT
rules and graph constraints, where a GT rule may violate a particular graph constraint. These
pairs serve as input for the constructive refinement algorithm that has first been presented
by Heckel and Wagner [33] for purely structural graph constraints and later extended by
Deckwerth and Varró [16] to support attribute constraints. The fundamental idea of trans-
lating global constraints into so-called weakest preconditions of an algorithm dates back to
Dijkstra [19]. Figure 16 shows an overview of the refinement of a GT rule Rx and a graph
constraint Cx.

(1) The (global) graph constraint Cy is combined with RHSx, which results in a set of graph
constraints that act as additional postconditions of Rx. If the set of postconditions is
empty, then Rx already preserves Cy. This is the case for all pairs of GT rules and graph
constraints that are labeled with a check mark (X) in Table 3. Postconditions are similar
to application conditions of a GT rule Rx, but they are checked after applying Rx. If a
postcondition is violated, the application of Rx has to be rolled back by the GT engine.
Avoiding this rollback is the purpose of the following transformation (2).

(2) The postconditions are transformed into an equivalent set of application conditions by
applying Rx in reverse order to the postconditions. These application conditions block
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Fig. 16: Refinement procedure for one GT rule Rx and one graph constraint Cy

any application of Rx that would violate its corresponding postcondition. If applying Rx
to a particular postcondition in reverse order is impossible, then Rx never violates this
postcondition.

The following explanations are deliberately simplified and shown for the following rule-
constraint pairs: (Ra,Ca),(Ri,Ci). A detailed, formal description of the following steps can
be found in [33, 42]. The presented steps are analogous for all other pairs of GT rules and
graph constraints.

First, we define a concept that is crucial for the refinement algorithm: A gluing g`,r of
two patterns p` and pr is a pattern that represents a possible way of overlapping p` and pr.
We label node variables in gluings with uppercase letters and the original node variable(s) in
p` and pr. For instance, the node variable A[x,y] of a gluing originates from node variables
x of p` and y of pr. In a valid gluing, (i) every node (link) variable has one or two original
node (link) variables in p` and/or pr, (ii) at least one node variable in g`,r has original node
variables in both p` and pr, (iii) the link variable mappings are compatible, i.e., if na and nb
are the original node variables of nA and nB, then eab is the original link variable of eAB, and
(iv) the attribute constraints of g`,r are the conjunction of the attribute constraints of p` and
pr.

5.1.3 Refinement of Activation Rule Ra Based on the Active-Link Constraint Ca

We begin with the refinement of the activation rule Ra based on the negative active-link
constraint Ca. The refinement step can be performed faster for negative graph constraints
because its empty conclusion maps to empty conclusions of the postcondition and the ap-
plication conditions. We obtain the set of postconditions by calculating all twelve gluings
g′a,a,z,1 ≤ z ≤ 12 of the RHS of the activation rule Ra and the premise pa of the active-link
constraint Ca (Figure 17). Each gluing represents a possible violation of Ca. We observe that
the nine gluings g′a,a,z for z ∈ {3,4,5,6,7,9,10,11,12} represent constraint violations that
are not caused by activating eAB. This means that any constraint violation corresponding
to these gluings already existed before applying the activation rule Ra, which contradicts
the assumption that weak consistency is fulfilled prior to invoking any GT rule. Therefore,
we neglect the aforementioned gluings and only consider the remaining three gluings g′a,a,1,
g′a,a,2, and g′a,a,8 for the transformation from postconditions to application conditions. In
step (2), we obtain three NACs, by changing the link-state attribute condition of eAB from
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Fig. 17: All twelve possible gluings of RHSa and pa

s(eAB) = Active to s(eAB) = Unclassified. The resulting application conditions NACa,a,1,
NACa,a,2, and NACa,a,8 are shown in Figure 18. Finally, we rename the node variables in the
generated application conditions back to the original node variables of the activation rule Ra,
as shown in Figure 21b.

Note that NACa,a,1 prevents the constraint violation shown in Figure 15a, and NACa,a,2
prevents the constraint violation shown in Figure 15b. Similarly, NACa,a,8 would prevent a
constraint violation if e32 (and not e13) were unclassified in Figure 15b.

5.1.4 Refinement of Inactivation Rule Ri Based on the Inactive-Link Constraint Ci

In this second example, we focus on the transformation of the constraint conclusion. The
basic idea is that the gluings, which result from combining RHSx with the py, serve as a
basis for deriving the conclusion of the postcondition. We obtain the conclusion pattern
c′x,y,z,1 of the postcondition PCx,y,z by first adding images of all elements in the conclusion
of Cy that are not covered by the gluing of RHSx and py. In the original presentation of
the constructive approach [33] contains an additional step: The conclusion pattern c′x,y,z,1
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Fig. 19: Derivation of the postconditions PCi,i,1, PCi,i,2, and PCi,i,3 for Ri based on Ci

serves as the basis to generate additional conclusion patterns c′x,y,z,r,r > 1 by merging the
freshly added node variables with the existing node variables. In our example, this step is
not necessary because merging node variables results in loops or parallel links, which never
occurs in the considered class of topologies.

As a concrete example, we refine the inactivation rule Ri based on the positive inactive-
link constraint Ci. Figure 19 shows the three possible gluings g′i,i,z,z ∈ {1,2,3} of RHSi the
premise pi of the inactive-link constraint Ci and the corresponding conclusions c′i,i,1,1, c′i,i,2,1
and c′i,i,3,1. For PCi,i,2 and PCi,i,3, we may stop the refinement procedure here because the
possible constraint violations represented by PCi,i,2 and PCi,i,3 are not caused by the inac-
tivation of eAB. The remaining postcondition PCi,i,1 results in a new positive application
condition PACi,i,1. Figure 21c shows the resulting application condition of Ra with appro-
priately renamed variables.
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Fig. 20: Unclassification rule Ru after refinement

5.1.5 Refinement of the Remaining Combinations of GT Rules and Constraints

We only sketch the required remaining rule refinements instead of describing them in detail.
Examples of additional rule refinement steps can be found in [42].

(i) The refinement of (Ri,Ca) results in two additional negative application conditions
NACi,a,2 and NACi,a,8 of the inactivation rule Ri, as shown in Figure 21c, which are
identical to the negative application conditions NACa,a,2 and NACa,a,8 of the activation
rule Ra. The refined inactivation rule Ri is no longer applicable to the left topology in
Figure 15c due to NACi,a,2.

(ii) The refinement of (Ru,Ci) results in four additional positive application conditions
PACu,i,2, PACu,i,4, PACu,i,5, and PACu,i,6 (Figure 20). These application conditions re-
quire that a link e12 may only be unclassified if it is not part of the last match of the
conclusion ci for any incident link e13, e31, e23, or e32 of its end nodes n1 and n2. The
refined unclassification rule Ru is now no longer applicable to the topology in Figure 15d
due to PACu,i,2.

(iii) The refinements of (R-e,Ci), (Rmod-w,Ci), (Rmod-lat,Ci), (Rmod-long,Ci), (Rmod-E,Ci), and
(Rmod-h,Ci) result in positive application conditions that are similar to the application
conditions of the refined unclassification rule Ru and are not shown here for conciseness.

The specification of the TC algorithm after the rule refinement step is shown in Figure 21a.
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Fig. 21: Overview of TC algorithm after rule refinement

5.2 Deriving Context Event Handlers

The first refinement step resulted in additional application conditions for TC and context
event rules. The refined rules Ru, R-e, Rmod-w, Rmod-lat, Rmod-long, Rmod-E, and Rmod-h are now
applicable in fewer situations than before. For the context event rules, this is problematic
because context event rules represent unrestrictable modifications of the topology caused by
the environment. For the unclassification rule Ru, this is problematic because its purpose is to
deliberately unclassify links, which should always be possible. Therefore, we have to restore
the original applicability of these GT rules without sacrificing their constraint-preserving be-
havior. We propose to transform each added application condition into a handler operation,
which repairs any constraint violation that results from applying the original context event
rule. We will next describe the general idea of deriving handler operations and then illus-
trate the algorithm for the unclassification rule Ru. The derivation of handler operations of
the remaining GT rules is analogous.

Figure 22 shows the structure of a generic context event handler operation handle-Rx
for the GT rule Rx. The fundamental idea is to (i) first apply the original GT rule Rx (i.e.,
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Identify violation of ACx,1

handle-Rx(…)

Identify violation of ACx,2
…Invoke Rx

(without ACx,1, ACx,2, …)

Resolve violation of ACx,1 Resolve violation of ACx,2

[Success] [Success]

For each removed application condition ACx,y

[Failure]

Fig. 22: Structure of the handler operation handle-Rx for GT rule Rx

handle-Ru (e12 : Link)

handle-Ru(e13)

[Failure]

Rfind-violation-PAC-u,i,2(e12 : Link)

cu,i,2

13
e13

4
e14e43

φ(e13, e14, e43)

NACu,i,2

2
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LHS=RHS

1 2
e123

e13

…

[Success]

Ru(e12 : Link)

LHS

RHS

1 2
e12

1 2
e12 pu,i,2

1 2
e123

e13

Fig. 23: Handler operation handle-Ru for the unclassification rule Ru

without the additional application conditions ACx,1, ACx,2, . . . ), and (ii) then to identify and
resolve violations of ACx,1, ACx,2, . . . The control flow of the handler operation ensures that
it may only terminate if all violations have been resolved. The most important requirement
is that the violation resolution strategy shall not produce new constraint violations. In our
scenario, we propose to resolve any constraint violation by means of unclassifying links.
This approach is valid because a topology consisting exclusively of unclassified links fulfills
the inactive-link constraint Ci and the active-link constraint Ca. Therefore, a naı̈ve violation
resolution strategy could simply unclassify all links in the topology.

We now derive the concrete handler operation handle-Ru for the unclassification rule Ru.
During the refinement step, four application conditions have been added to Ru, which are
now translated into four identify-and-resolve loops. The invocation of the original, unrefined
unclassification rule Ru and the violation resolution for PACu,i,2 are shown in Figure 23. The
violation identification rule Rfind-violation-PAC-u,i,2 identifies any link e13 that is not part of
a triangle together with classified links e14 and e43 so that the predicate φ (e13,e14,e43) is
fulfilled. We unclassify any such link e12 by invoking handle-Ru recursively. The violation-
identifying and violation-resolving story nodes that correspond to PACu,i,4, PACu,i,5, and
PACu,i,6 are analogous and omitted here for conciseness.
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Fig. 24: Example of non-terminating execution of kTC with k = 2 and possible solution

5.3 Enforcing Termination

The refined activation rule Ra and inactivation rule Ri share two pairs of identical NACs. This
means that whenever NACa,a,2 prevents the application of the activation rule Ra, NACi,a,2
also prevents the application of the inactivation rule Ri. The same holds for NACa,a,8 and
NACi,a,8. In Figure 24, the top row of topology modifications shows a situation where a
particular processing order of the unclassified links causes non-termination of the algorithm.
In this case, kTC is executed with k = 2, and e32 and e12 are activated prior to processing e13.
Now, e13 can be neither activated nor inactivated due to the negative application conditions
NACa,a,2 and NACi,a,2, respectively. This causes an infinite execution of the algorithm.

The situation can be solved by reverting link classifications. In this example, a possible
solution can be derived from the only possible strongly consistent output topology: The link
e13 and e32 are active, and e12 is inactive. This means that e12 should be unclassified again
and e13 should be activated. The two rule applications have to happen atomically, i.e., the
activation of e13 must follow immediately after the unclassification of e12. This order can
easily be implemented using programmed GT. Finally, e12 becomes inactive.

In fact, the solution for the example can be generalized, again using handler opera-
tions. We systematically transform the shared negative application conditions of the ac-
tivation rule Ra and the inactivation rule Ri into an appropriate NAC-handling operation
handle-NACaa2,ia2,aa8,ia8, which destroys all matches of the premises of the aforemen-
tioned four NACs (Figure 25). Contrary to the context event handler operations, we decided
to place the NAC-handling operation in front of Ra and Ri because, otherwise, we would
have to add invocations of the NAC-handling operation in both [Success]-branches.

Inside the NAC-handling operation, the first loop identifies all matches of the premise of
NACa,a,2 and NACi,a,2 and unclassifies the link e13, which is the largest link in the triangle
w.r.t. ≺A. Similarly, the second loop identifies all matches of the premises of NACa,a,8 and
NACi,a,8 and unclassifies e32. Finally, we drop NACa,a,2 and NACa,a,8 from Ra and NACi,a,2
and NACi,a,8 from Ri.

Proving termination Prior to introducing the NAC-handling operation, the number of itera-
tions of the main loop of the TC algorithm was limited by the initial number of unclassified
links. Now, additional links may become unclassified in each iteration, which requires us to
prove that the current TC algorithm terminates.
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Fig. 25: Final specification of the TC algorithm

Theorem 3 The TC algorithm A with NAC-handling operation (Figure 25) terminates for
any input topology.

Proof. Let E be the link set of the processed topology. Let A be the considered TC algorithm,
represented by the predicate φ A. We consider the sequence of all link states sx(e1), . . . ,sx(em)
with m := |E| after the x-th execution of the unclassified-link-identification rule Rfind-u,
where the links are ordered according to ≺A. We compare two sequences of link states, sx
and sx′ , as follows: sx @ sx′ if and only if (i) some link ey is unclassified in sx and classified
in sx′ , and (ii) the states of all links ey′ with ey′ ≺A ey are identical in sx and sx′ :

sx @ sx′ :⇔∃y ∈ N,y≤ m : sx(ey) = Unclassified∧ sx′(ey) ∈ {Active,Inactive}
∧ ∀y′ ∈ N,y′ < y : sx(ey′) = sx′(ey′)

Any sequence of active and inactive links is an upper bound for @.
We now show that sx−1 @ sx for x > 1. Let ey be the link that is bound by applying the

unclassified-link-identification rule Rfind-u. The NAC-handling operation unclassifies links
ey′ with ey′ ≺A ey and thus y′ < y. The activation rule Ra or the inactivation rule Ri activate
or inactivate ey, respectively.

Therefore, sx−1 @ sx because (i) the first y−1 elements of sx−1 and sx are identical, and
(ii) sx−1(ey) = Unclassified and sx(ey) ∈ {Active,Inactive}. The termination follows
because, for a finite topology, any ordered sequence s1 @ s2 @ . . . has finite length.

ut
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In this section, we dropped two of three application conditions of both the activation
rule Ra and inactivation rule Ri. The remaining application conditions are NACa,a,1 for Ra
and PACi,i,1 for Ri. NACa,a,1 and PACi,i,1 are complementary in the sense that PACi,i,1 is
fulfilled if and only if NACa,a,1 is not fulfilled for a link e12. This means that we may also
drop PACi,i,1 from Ri without risking to compromise weak consistency. Removing PACi,i,1 is
sensible because the resulting inactivation rule Ri is more efficient to evaluate and, arguably,
easier to understand.

6 Evaluation

In this section, we present a comparative simulation-based evaluation study that serves as a
proof-of-concept for our integration of the GT tool EMOFLON [47] and the network simu-
lator SIMONSTRATOR [61]. In Section 6.1, we explain the research questions of this eval-
uation. In Section 6.2, we describe the technical setup and the configuration parameters.
In Section 6.3, we describe the cost and utility metrics to answer the research questions.
In Section 6.4, we present the measurement results, discuss them, and answer the research
questions. In Section 6.5, we discuss threats to the validity of our findings.

6.1 Research Questions

Our goal is to investigate the benefits of the proposed approach for specifying families of
TC algorithms by composing their corresponding predicates. For the sake of conciseness,
we investigate the TC algorithms kTC and e-kTC and the effect of combining each of the
algorithms with the minimum-weight predicate φmin-weight.

RQ1—Performance of e-kTC The first research question addresses the performance of e-kTC
compared to kTC. As described in Section 2.4.10, the major objective of e-kTC is to extend
the lifetime of the topology, which is achieved by establishing a fairer distribution of the per-
node energy consumption. Our first research question is: Does e-kTC improve the network
lifetime compared to kTC?

RQ2—Benefit of Minimum-Weight Predicate The second research question addresses the
performance of applying the minimum-weight predicate φmin-weight. A motivation for in-
troducing φmin-weight in Section 2.4.11 was to reduce the cost of a TC algorithm in terms
of memory and runtime while preserving the quality of the output topology. Our second
research question is: How does wthres influence the network lifetime and the resource con-
sumption of kTC and e-kTC?

6.2 Evaluation Setup

Following best practices for simulation studies [35, 46], we rigorously document the evalu-
ation setup to foster reproducibility of our results. The technical platforms of this evaluation
are the GT tool EMOFLON [47] and the network evaluation platform SIMONSTRATOR [61]
with its contained network simulator PEERFACTSIM.KOM [73], as shown in Figure 26 and
as described in detail in the following. A SHARE virtual machine [29] is available for ex-
ploring our tool integration.5

5 See https://github.com/Echtzeitsysteme/CorrectByConstructionTCFamilies-SoSyM17

https://github.com/Echtzeitsysteme/CorrectByConstructionTCFamilies-SoSyM17
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Fig. 26: Overview of the evaluation setup

GT tool All TC algorithms have been specified using a visual syntax of story diagrams
in EMOFLON [47]. The specification is used to generate EMF-compliant Java code, which
builds on an Ecore-based [72] topology metamodel. Whenever the topology model is mod-
ified by a context event in the simulator, the corresponding handler operation is triggered.
The TC algorithm periodically updates the topology model via link state modifications.

Network simulator PEERFACTSIM.KOM [73] is a time-discrete network simulator that al-
lows to simulate protocols on the underlay (i.e., the physical and link layer [87]) as well as
on the overlay (i.e., network, transport and application layer [87]).

Node configuration The nodes are initially placed uniformly at random onto the simula-
tion area. Each node moves according to the Gauss-Markov movement model [12]. As link
weight, we use the Euclidean distance of its end nodes. A calibration curve estimates the re-
quired transmission power of each link based on its weight. To create the calibration curve,
we used a topology consisting of a sender and a receiver node and set up a simple data
transmission application that transfers data from the sender to the receiver at a rate of 1 MB

s .

Underlay We implemented a generic topology control framework inside the simulator. This
framework presents a logical link layer topology to overlay applications, which consists of
all active links in the real link layer topology. The real link layer topology is updated by
the movement model and the energy model, which describes the battery depletion of each
node. In this evaluation, TC is invoked periodically every 10 min of simulated time. The set
of context events is collected during this period and handled before invoking TC. A TC run
consists of the context event handling and subsequent TC invocation. The parameter k of
kTC and e-kTC is set to 1.41. This is a typical value [45, 69, 70, 71] because it is the largest
value for k that allows to prove certain advanced properties (such as θ -separation [69]). The
expected lifetime L̂(eab) of each link eab is calculated by dividing the energy level E(na) of
na by the expected transmission power P̂(eab) of eab.

Overlay On the overlay, we run a messaging application, which emulates sporadic message
exchange between random pairs of nodes. Every 30 s, each node sends a message of size
1 kB to another node that is selected randomly. We apply a routing algorithm that builds
routing paths based on global knowledge.
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Table 4: Parameters of the evaluation

Parameter Value

Simulator

Network simulator SIMONSTRATOR/PEERFACTSIM.KOM 2.4 [61, 73]
Graph transformation tool EMOFLON 2.16.0 [47]
Runs per configuration 5
Seeds 1. . . 5
Simulation type Terminating (after 25 h of simulated time)
Measurements per run 150
Code availability As SHARE [29] virtual machinea

World size Variable (see Table 5)

Node Configuration

Node count 100
Transmission radius 130 m
Movement model Gauss-Markov movement [12] (α = 0.2, v = 0.005 m

s )
Placement model (initial) Uniform at random
Battery level (initial) Uniform at random betw. 30 % and 100 % of 130 J

Underlay

Link count (initial) Variable (see Table 5)
Link layer IEEE 802.11 Ad-Hoc
TC algorithm kTC, e-kTC
w(eab) Euclidean distance between na and nb

L̂1(eab) Based on calibration curve
k parameter of kTC 1.41
Interval of TC runs 10 min
TC runs per simulation run 150

Overlay

Application Messaging application
Communication pattern Many-to-many
Message size 1 kB
Messaging interval 30 s

a See https://github.com/Echtzeitsysteme/CorrectByConstructionTCFamilies-SoSyM17

Summary of parameters Table 4 summarizes the parameters of the simulation setting that
are fixed for all configurations. We run each simulation in terminating mode, i.e., we abort
the simulation after 25 h, regardless of the remaining number of alive nodes. This means
that, in each simulation run, TC is performed 25h

10min = 150 times. All experiments were
performed on a 64-bit machine with an Intel i7-2600 CPU (2 cores, 3.7 GHz) and 8 GB of
RAM running Windows 7 Professional.

To obtain a set of representative (topology) configurations, we vary the side length of
the quadratic simulation area. In total, we investigate 2 different evaluation configurations,
summarized in Table 5, which correspond to world sizes a ∈ {750m,500m}. Each config-
uration is simulated 5 times to obtain representative results. In the table, the configurations
are ordered from the sparsest (n100w750) to the densest topology (n100w500). The node
(out-)degree dout is an indicator of the density of the topology: A high node degree indicates
that a topology is dense, while a low node degree indicates a sparse topology.

https://github.com/Echtzeitsysteme/CorrectByConstructionTCFamilies-SoSyM17


38 Roland Kluge et al.

Table 5: Varying parameters in the two topology configurations (n: initial node count, m:
initial link count in real link layer, a: side length of quadratic simulation area, dout: average
out-degree, values of m, h, and dout are averaged over 5 repetitions )

ID n a [m] m dout

n100w750 100 750 812 7.7
n100w500 100 500 1 651 16.0

6.3 Metrics

The major goal of this evaluation is to assess cost and utility metrics of the output topology
of a TC algorithm. With Gwthres , we denote the output topology of the currently active TC
algorithm, whose input topology is obtained by removing all links with a weight smaller
than wthres from the physical topology.

As utility metric, we consider the network lifetime (see also Section 2.4.10). We record
for each simulation run the remaining 1-lifetime L1, the remaining 50 %-lifetime L50%,
and remaining 100 %-lifetime L100%. These values mark the starting point, the approximate
middle, and the end of the degradation of the network.

As cost metric, we assess the required memory in terms of the size of the maintained
input topology, and the required runtime in terms of the required CPU execution time as
well as the number of link state modifications for performing the TC algorithm. The size
S(Gwthres) of the topology Gwthres is the sum of its node and edge counts. The execution time
T (Gwthres) is the real time (in contrast to the simulated time) that it takes to perform a TC
run on Gwthres . The link state modification count N(Gwthres) is determined analogously by
counting the link state modifications during a TC run on Gwthres .

We compare results along two dimensions: Either we consider a fixed configuration
(i.e., n100w500 or n100w750) and compare the performance of the TC algorithms, or we fix
the world size, node count, TC algorithm and k-value and evaluate the influence of varying
wthres. For each dimension, we introduce relative metrics δM for each absolute metric M.
When comparing a TC algorithm A with the baseline Maxpower TC algorithm, δM is defined
as follows:

δL1(A) =
L1(A)

L1(Maxpower TC)
, δL50 %(A) =

L50%(A)
L50%(Maxpower TC)

,

δL100 %(A) =
L100%(A)

L100%(Maxpower TC)
, δSize(A) =

S(A)
S(Maxpower TC)

,

δT (A) =
T (A)

T (Maxpower TC)
, δN(A) =

N(A)
N(Maxpower TC)

.
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When evaluating the influence of varying wthres, δM is defined as follows:

δL1(Gwthres) =
L1(Gwthres)

L1(G0)
, δL50 %(Gwthres) =

L50%(Gwthres)

L50%(G0)
,

δL100 %(Gwthres) =
L100%(Gwthres)

L100%(G0)
, δSize(Gwthres) =

S(Gwthres)

S(G0)
,

δT (Gwthres) =
T (Gwthres)

T (G0)
, δN(Gwthres) =

N(Gwthres)

N(G0)
.

Setting wthres to 0 is equivalent to disabling the minimum-weight optimization.

6.4 Results and Discussion

The plots in Figures 27 and 28 show the development of the number of alive nodes for
the dense topology (Figure 27) and the sparse topology (Figure 28) for different minimum-
weight thresholds wthres ∈ {0,20,40,60,80}. In each plot, the simulation runs of Maxpower
TC, kTC, and e-kTC are shown.

While the plots provide a rather qualitative view of the performance of the TC algo-
rithms, Tables 6 and 7 allow for a fine-grained analysis of the cost and utility metrics, as
introduced in Section 6.3. We provide mean values of all 150 TC runs per simulation for the
topology size (S), the execution time (T ), and the link state modification count (N).

Network lifetime We observe that kTC almost always performs worst and e-kTC performs
best of all three TC algorithms w.r.t. the number of alive nodes. More precisely, for a fixed
value of wthres, the lifetime of Gwthres for kTC is always shorter than for e-kTC (see also
Tables 6 and 7). Also, the remaining lifetime of kTC increases with increasing wthres. For
instance, all network lifetime values of the sparse topology are maximal when applying kTC
with wthres = 80m (L1 = 556 min compared to L1 = 532 min, 5 % improvement, Figure 28).
A similar, yet not as strong, effect can be observed for e-kTC. For instance, in the sparse
topology, L100% for wthres = 20m is about 1 % larger than L100% for wthres = 0m. In the
remaining cases, the network lifetime for e-kTC is maximal for wthres = 0m.

Resource consumption We now focus on resulting topology size, real execution time, and
required link state modification count. These cost metrics evaluate the resource consumption
of a TC algorithm. In contrast to the network lifetime, all of the cost metrics strictly decrease
with wthres and reach their minimum for wthres = 80m.

For the dense topology (n100w500, Figure 27), the size of the stored topology was re-
duced by up to 22 % (for kTC) and 33 % (for e-kTC). The savings in execution time are
even more drastic: 80 % for kTC and 73 % for e-kTC. Finally, the savings w.r.t. link state
modification count amount up to 72 % for kTC and 57 % for e-kTC.

For the sparser topology (n100w750, Figure 28), the savings w.r.t. topology size are
comparable (20 % for kTC and 26 % for e-kTC). The savings w.r.t. execution time (62 %
for kTC and 40 % for e-kTC) and link state modification count (59 % for kTC and 52 % for
e-kTC) are smaller.
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(a) wthres = 0.0m
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(b) wthres = 20.0m
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(c) wthres = 40.0m
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(d) wthres = 60.0m
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Fig. 27: Alive nodes over simulation time (World size: 500 m, node count: 100, k: 1.41)
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(b) wthres = 20.0m
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(c) wthres = 40.0m
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(d) wthres = 60.0m
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Fig. 28: Alive nodes over simulation time (World size: 750 m, node count: 100, k: 1.41)
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Table 6: Algorithm performance for different weight thresholds wthres (World size: 500 m,
node count: 100, k: 1.41). Lifetime values (L1, L50%, L100%) are in simulated minutes. Ex-
ecution time T is in CPU milliseconds. δM: relative metrix M. The best values for each
combination of algorithm, wthres, and metric M are highlighted in bold font.

Algo. wthres [m] L1 [min] δL1 L50% [min] δL50% L100% [min] δL100%

Maxp. 0 564.0 1.00 700.0 1.00 854.0 1.00

kTC 0 544.0 1.00 664.0 1.00 862.0 1.00
kTC 20 544.0 1.00 664.0 1.00 864.0 1.00
kTC 40 570.0 1.05 684.0 1.03 868.0 1.01
kTC 60 580.0 1.07 698.0 1.05 862.0 1.00
kTC 80 564.0 1.04 702.0 1.06 860.0 1.00

e-kTC 0 624.0 1.00 776.0 1.00 906.0 1.00
e-kTC 20 624.0 1.00 770.0 0.99 902.0 1.00
e-kTC 40 616.0 0.99 752.0 0.97 906.0 1.00
e-kTC 60 600.0 0.96 726.0 0.94 882.0 0.97
e-kTC 80 590.0 0.95 712.0 0.92 864.0 0.95

Algo. wthres [m] S δSize T [ms] δT N δN

Maxp. 0 822.3 1.00 19.8 1.00 18.1 1.00

kTC 0 774.7 1.00 253.4 1.00 1340.3 1.00
kTC 20 775.0 1.00 227.6 0.90 1252.2 0.93
kTC 40 768.7 0.99 147.8 0.58 0998.7 0.75
kTC 60 712.7 0.92 083.1 0.33 0728.0 0.54
kTC 80 603.2 0.78 049.9 0.20 0504.7 0.38

e-kTC 0 927.4 1.00 240.7 1.00 1303.1 1.00
e-kTC 20 912.9 0.98 211.6 0.88 1218.0 0.93
e-kTC 40 853.5 0.92 151.8 0.63 1031.2 0.79
e-kTC 60 747.3 0.81 115.8 0.48 0791.2 0.61
e-kTC 80 622.2 0.67 064.0 0.27 0555.2 0.43

Trade-off between cost and utility Surprisingly, the lifetime when applying kTC was gener-
ally very good for wthres = 80m. Therefore, we do not have to trade network lifetime against
resource consumption in this situation. Instead, we can optimize resource consumption and
network lifetime at the same time by choosing high values of wthres. This observation un-
derpins the intuition behind the minimum-weight predicate that considering short links does
probably not help increasing the performance of the network. Our results even show that
performing kTC also on short links may be harmful to the network lifetime. A possible
explanation is that short links are probably helpful when used for direct message transfer
(compared to a multi-hop forwarding of the same message). Despite this positive result, we
have to remark that kTC is often not able to beat the baseline, i.e., Maxpower TC, w.r.t.
network lifetime.

In contrast, e-kTC shows a rather monotonic behavior: In most cases, the network life-
time decreases with increasing wthres. Here, we trade the reduced resource consumption
against the shorter network lifetime. In the most extreme case (wthres = 80m), the lifetime
drops to values between 92 % and 95 % (for the dense topology) and between 96 % and
99 % (for the sparse topology) of its maximum value. Choosing the best trade-off between
network lifetime and resource consumption for e-kTC is certainly a task that depends on the
available resources of the selected (simulated) target platform.
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Table 7: Algorithm performance for different weight thresholds wthres (world size: 750 m,
node count: 100, k: 1.41). Lifetime values (L1, L50%, L100%) are in simulated minutes. Ex-
ecution time T is in CPU milliseconds. δM: relative M compared to same algorithm with
wthres = 0. The best values for each combination of algorithm, wthres, and metric M are high-
lighted in bold font.

Algo. wthres [m] L1 [min] δL1 L50% [min] δL50% L100% [min] δL100%

Maxp. 0 552.0 1.00 668.0 1.00 884.0 1.00

kTC 0 532.0 1.00 646.0 1.00 906.0 1.00
kTC 20 532.0 1.00 650.0 1.01 942.0 1.04
kTC 40 546.0 1.03 656.0 1.02 892.0 0.98
kTC 60 554.0 1.04 670.0 1.04 894.0 0.99
kTC 80 556.0 1.05 670.0 1.04 956.0 1.06

e-kTC 0 592.0 1.00 710.0 1.00 958.0 1.00
e-kTC 20 592.0 1.00 702.0 0.99 966.0 1.01
e-kTC 40 590.0 1.00 696.0 0.98 902.0 0.94
e-kTC 60 584.0 0.99 688.0 0.97 958.0 1.00
e-kTC 80 574.0 0.97 684.0 0.96 944.0 0.99

Algo. wthres [m] S δSize T [ms] δT N δN

Maxp. 0 412.9 1.00 8.7 1.00 9.0 1.00

kTC 0 401.5 1.00 36.5 1.00 604.9 1.00
kTC 20 399.9 1.00 34.3 0.94 567.2 0.94
kTC 40 390.8 0.97 27.7 0.76 473.4 0.78
kTC 60 366.4 0.91 22.0 0.60 361.3 0.60
kTC 80 319.7 0.80 17.6 0.48 245.3 0.41

e-kTC 0 443.6 1.00 32.8 1.00 563.0 1.00
e-kTC 20 435.9 0.98 31.5 0.96 532.9 0.95
e-kTC 40 418.7 0.94 30.7 0.93 470.1 0.83
e-kTC 60 383.8 0.87 25.8 0.79 383.2 0.68
e-kTC 80 329.1 0.74 19.8 0.60 271.7 0.48

Table 8 summarizes the best performance values of Maxpower TC, kTC, and e-kTC in
Tables 6 and 7. In this table, δM denotes the relative value of metric M compared to the
baseline Maxpower TC algorithm. e-kTC achieves network lifetime improvements between
6.0 % and 10.9 % for the dense topology (n100w500) and between 6.3 % and 9.3 % for the
sparse topology (n100w750). At the same time, kTC only achieves improvements between
0.3 % and 1.6 % for the dense topology (n100w500) and between 0.3 % and 8.1 % for the
sparse topology (n100w750). The execution times of kTC and e-kTC grow by a factor of two
to three compared to the execution time of Maxpower TC, and the number of required link
state modifications even increases by a factor of 25 to 30. This is not at all surprising because
the logic behind Maxpower TC is simple compared to the rules of kTC and e-kTC. Espe-
cially handling context events results in additional required link state modifications. When
comparing kTC with e-kTC w.r.t. cost metrics, kTC outperforms e-kTC. Its best execution
time is 22.0 % (for n100w500) and 11.1 % (for n100w750) lower than the best execution
time of e-kTC. Similarly, kTC outperforms e-kTC by 9.1 % (for n100w500) and 9.7 % (for
n100w750) w.r.t. the best achieved link state modification count. However, the configuration
that achieves the best execution time and link state modification count for e-kTC perform
worse than the best-performing configuration of kTC w.r.t. network lifetime. Therefore, an
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Table 8: Performance of kTC and e-kTC compared to Maxpower TC

Config. Algo. L1 [min] δL1 L50% [min] δL50% L100% [min] δL100%

n100w500 Maxp. 564.0 – 700.0 – 854.0
n100w500 kTC 580.0 +2.8 % 702.0 +0.3 % 868.0 +1.6 %
n100w500 e-kTC 624.0 +10.6 % 776.0 +10.9 % 906.0 +6.0 %

n100w750 Maxp. 552.0 – 668.0 – 884.0
n100w750 kTC 556.0 +0.7 % 670.0 +0.3 % 956.0 +8.1 %
n100w750 e-kTC 592.0 +7.2 % 710.0 +6.3 % 966.0 +9.3 %

Config. Algo. S δSize T [ms] δT N δN

n100w500 Maxp. 822.3 – 19.8 – 018.1
n100w500 kTC 603.2 −26.6 % 49.9 +152 % 504.7 +2688 %
n100w500 e-kTC 622.2 −24.3 % 64.0 +223 % 555.2 +2967 %

n100w750 Maxp. 412.9 – 08.7 – 009.0
n100w750 kTC 319.7 −22.6 % 17.6 +102 % 245.3 +2626 %
n100w750 e-kTC 329.1 −20.3 % 19.8 +128 % 271.7 +2919 %

immediate comparison of kTC and e-kTC is not salient. Instead, a trade-off between cost
and utility is necessary also here.

Answer to RQ1 Our answer to the first research question is positive: e-kTC is able to beat
kTC with respect to network lifetime: For the dense and the sparse topology, the best con-
figurations of e-kTC w.r.t. L1, L50%, and L100% outperform kTC in terms of execution time
and link state modification count, but not in terms of topology size. Additionally, kTC is in
general only able to beat the baseline Maxpower TC algorithm for large wthres between 40 m
and 80 m, while e-kTC generally performs better than Maxpower TC.

Answer to RQ2 Our answer to the second research question is that varying wthres influences
the lifetime to a certain extent (positively for kTC, negatively for e-kTC), while the savings
w.r.t. resource consumption are considerable. A key observation is that the network life-
time for kTC tends to increase with increasing wthres, while the network lifetime for e-kTC
correlates negatively with wthres

6.5 Threats to Validity

We first consider threats to external validity, i.e., the ability to generalize our findings in
this evaluation to WSN topologies and TC algorithms in general. To mitigate this threat, we
analyze different types of topologies: sparse and dense topologies. Our results (Section 6.4)
are relatively homogeneous for all considered topologies (e.g., the relative performance of
the algorithms). This increases our confidence in the validity of these findings. To strengthen
our confidence, we plan to carry out additional experiments, e.g., with different movement
models, placement models and node density to obtain additional representative data as future
work. Managing the fast-growing number of possible configurations is a major challenge.

Another degree of freedom is the choice of k for kTC and e-kTC. The selection of
k = 1.41 may be the unfortunate reason for the suboptimal performance of kTC. To mitigate
this concern, we performed additional simulation runs with k ∈ {1.0,1.2,1.3,2.0} and for
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a larger configuration with a world size of 2000 m and 1 000 sensor nodes, which are not
discussed here for conciseness. The results of these preliminary experiments are comparable
to the results discussed earlier. kTC generally tends to perform worse than e-kTC w.r.t.
network lifetime, and the performance of kTC correlates positively with wthres.

The limitation to only one overlay application, i.e., the random-pair communication
application, is another threat to external validity. While this application reflects only one
particular communication pattern, i.e., the many-to-many pattern, this pattern is relatively
widespread in the communication systems domain. We plan to conduct experiments that
cover communication patterns such as many-to-one, which is typical in data collection sce-
narios, or one-to-many, which is applied for data dissemination.

The last considered threat to external validity is that we model topologies as simple
graphs (see Section 2.1). Modeling other types of topologies apart from WSN topologies
will probably require to support loops and parallel links. To support parallel links and loops,
we would drop the structural constraints Cno-loops and Cno-par-links. This implies that the re-
finement step (see Section 5) may result in additional application conditions because less
gluings may be dropped. Therefore, our approach is not limited to simple graphs.

A major threat to internal validity is the reproducibility of our results. To address this
threat, we ran all experiments corresponding to each configuration (i.e., a fixed combination
of world size, node count, algorithm, k-parameter, and minimum-weight threshold) at least
5 times with different random seeds and used the average values of these runs. We could
further increase our confidence in the internal validity of our evaluation by increasing the
number of random seeds and by performing an in-depth analysis of the variance within the
data of each configuration.

7 Related Work

In this section, we survey related work of this paper with a focus on the development of
correct algorithms, model-based software development and software product lines.

7.1 Correctness of Algorithms

One motivation of our work is the pertinent missing traceability between specification and
implementation in the communication systems domain (see S1 in Section 1). The authors
of [49] propose a calculus for WSN protocols that is the basis for a service-oriented middle-
ware called MufFIN [78]. The idea behind their approach was to prove required properties
based on a specification of a WSN protocol in terms of the calculus. Then, an equivalent
byte code representation for the MufFin middleware should be generated. Unfortunately, it
appears that the approach has not yet been fully implemented to showcase its applicabil-
ity. In [51], the authors present a domain-specific language for WSN protocols. While their
approach is not limited to TC algorithms, this generality makes it hard to constructively en-
sure required properties, which is a key objective of our work. In [20], the ARESA project
is presented, an alliance of industrial and academic institutions that aims to tackle WSN
research challenges jointly. One of the key objectives is formal analysis of WSN protocols.
In contrast to this paper, the authors lay a focus on verifying properties based on a formal
specification of WSN protocols. In contrast, our approach is to construct TC algorithms, i.e.,
specialized WSN protocols, that are correct by construction. In [57], the authors identify the
automatic synthesis of implementations as a central research area because the verification of
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protocols with large state space is still intractable today. Finally, a detailed anecdotal exam-
ple of missing traceability between specification and implementation can be found in [42,
Sec. 1]. There, we analyze the presentation of the CTCA algorithm [15] and highlight the
existing gaps. This does not mean that the evaluated implementation is incorrect. The key
message of this example is rather that it is at least difficult for the reader of [15] to under-
stand the relation between the game-theoretic specification and the extensive pseudo code
implementation, let alone the unpublished source code of the simulation study.

One of the key properties of the specified TC algorithms presented in this paper is that
they are guaranteed to be correct by construction. In general, at least three major approaches
exist for asserting or checking the correctness of software: First, correct-by-construction
approaches integrate the properties during the construction of the software, which is the
fundamental idea of this paper. Second, verification-based approaches examine an existing
piece of software with respect to the required properties. Third, testing exercises the algo-
rithm by executing a set of representative test cases, each consisting of input data and the
expected result and, for each test case, comparing the actual result with the expected result.
In [31], the authors highlight that combining these approaches is useful in realistic projects.
Correct-by-construction approaches have been extensively studied in the context of hard-
ware design and software development processes (e.g., [6, 7, 56]). However, to the best of
our knowledge, no work (apart from ours [42, 43]) exists on constructing TC algorithms us-
ing the correct-by-construction paradigm. One technique for verifying correctness properties
of software is model checking [60]. Many model checking approaches are only suitable for
verifying properties for models of a finite size. Graph abstractions [5] are a formalism that
alleviates this problem by introducing symbolic representations of whole classes of models.
The benefit of the correct-by-construction approach, as applied in this paper, is that it en-
sures correctness for models of arbitrary size because each refined GT rule is guaranteed to
preserve the specified correctness properties. In comparison to correct-by-construction and
verification-based approaches, the goal of testing is to derive a finite number of representa-
tive test cases that cover a part of the space of possible input values of a piece of software
that is as large as possible [52].

In the following, we survey formal frameworks for specifying consistency properties
in the context of graph-based models. Graphical consistency constraints (for short graph
constraints), as introduced in [33] and as used throughout this paper, express the requirement
that particular combinations of nodes and edges should be present in or absent from a graph.
This formalism has been generalized later to HLR categories in [22] and extended to cope
with attributes in [16]. While graph constraints provide the benefit that they can be used
to constructively refine GT rules, their expressiveness is relatively limited. For instance,
global constraints such as connectivity cannot be expressed using graph constraints. For
this reason, we proved the connectivity of weakly consistent topologies in this paper rather
than integrating this property constructively during the development of the TC algorithms.
In [30, 59], Habel and Radke present HR∗ constraints, a new type of graph constraints that
allow to express path-related properties, which may in principle also serve as input for the
constructive approach. Future work should target the question in how far HR∗ constraints
are applicable in our application scenario.

In [32], the authors distinguish four situations in which a model transformation con-
siders consistency conditions, including the preservation and enforcement of consistency
constraints. The algorithm in this paper preserves the active-link constraint, and it enforces
and preserves the inactive-link constraint.
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7.2 Model-based Development of Communication Systems

Model-based techniques have shown to be suitable to describe [77] and construct [36] adap-
tive (communication) systems. Formal analysis of supposed properties of complex topology
adaptation algorithms has already revealed special cases in which the implemented algo-
rithms violate crucial topology constraints [86]. In [40], model checking is applied to detect
bugs in the TC algorithm LMST, leading to an improved implementation thereof. This paper,
in contrast, applies a constructive methodology [33] for GT to develop correct algorithms
in the first place. In [45], variants of the TC algorithm kTC [69] are developed using GT,
integrating the GT tool eMoflon6 with a network simulator. While [45] focuses on the rapid
prototyping of TC algorithms using programmed GT, this paper aims at devising a generic
methodology to develop TC algorithms that fulfill a set of specified constraints by construc-
tion.

In the recent years, a number of model-based tools have been proposed for developing
TC algorithms. The Agilla project7 [24] provides a middleware platform that allows to use
the same implementation for evaluating TC algorithms in a simulation and in a testbed envi-
ronment. Agilla builds upon fUML, a subset of UML with formally defined semantics [50].
In [9], the authors present an extension of Agilla that is able to collect information w.r.t. the
energy consumption of WSN nodes. The ScatterClipse project8 [2] follows a similar goal
and supports the TC algorithm developer with visualization and testing facilities. In con-
trast to this paper, Agilla and Scatterclipse focus on easing the development workflow of TC
algorithms. To the best of our knowledge, integrating consistency properties constructively
into this design process has not been targeted, yet.

7.3 Tackling Variability: Software Product Lines and Self-Adaptive Systems

One of the major contributions of this paper is to model commonalities and differences of
TC algorithms (see S2 in Section 1). We begin with a short discussion of related work that
identifies variability as a research challenge in the communication systems domain. In [4],
the authors present an evaluation of five TC algorithms in the WISELIB algorithm library
for WSNs. The authors focus on design decisions related to implementing reusable TC al-
gorithms in WISELIB. In this paper, however, we focus on highlighting and formalizing the
commonalities and variabilities of TC algorithms already at specification time.

Managing the commonalities and variability of (software) systems is a central topic in
the software product lines (SPL) community. In the following, we provide a short introduc-
tion to SPLs. An SPL describes the possible configuration options of a software system,
e.g., using feature models [38], whose syntax resembles the diagram shown in Figure 8.
While feature models are typically used to model the possible configuration options of a
system (often called the problem space), metamodeling is a technique for describing ab-
stract representations of concrete systems, the solution space [48, 54]. In recent years, the
expressiveness of feature models has been enhanced by introducing multiplicities, which
further reduces the gap between problem space and solution space [58, 67, 82]. While tra-
ditional SPLs typically describe the configuration space of a software system at or before

6 www.emoflon.org
7 http://mobilab.wustl.edu/projects/agilla/
8 http://www.mi.fu-berlin.de/inf/groups/ag-tech/projects/Z_Finished_Projects/

ScatterClipse/index.html

www.emoflon.org
http://mobilab.wustl.edu/projects/agilla/
http://www.mi.fu-berlin.de/inf/groups/ag-tech/projects/Z_Finished_Projects/ScatterClipse/index.html
http://www.mi.fu-berlin.de/inf/groups/ag-tech/projects/Z_Finished_Projects/ScatterClipse/index.html
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its deployment, a dynamic software product line (DSPL) models the possible reconfigura-
tion at runtime [68]. For this purpose, the concept of binding times has been introduced to
distinguish between features of a system that are bound, e.g., statically at compile time or
dynamically at runtime [11].

Until today, there are only few contributions that connect SPLs with GT. For instance, in
[75], the authors propose to model families of GT rules by merging multiple related GT rules
into one GT rule whose variables are annotated with presence conditions, which specify for
each annotated variable in which variant of the GT rule it is present. Based on this approach,
the authors present tool support for automatically deriving variability-based GT rules from
a set of traditional GT rules [74] and for editing the derived variability-aware rules [76]. In
future work, this approach should be investigated w.r.t. its applicability to the WSN domain.

Several works apply SPL concepts to model adaptive communication systems. In [8], the
authors specify the reconfiguration space of a flood warning WSN using SPL. In contrast to
this paper, their focus lies on modeling the different communication interfaces (e.g., WiFi or
Bluetooth) of a sensor node and the conditions under which the respective interfaces should
be activated. In [53], the authors specify a product family of devices that act as environment
monitoring and guidance system in a museum at the same time. In contrast to this paper,
their focus lies not on TC but on modeling variability w.r.t. the following four dimensions:
communication scope (i.e., unicast vs. anycast communication), measured metrics (e.g., hu-
midity or temperature), actuation (e.g., visual or acoustic), and localization technology (e.g.,
RFID-based localization). In [18], the possible configuration dimensions of wireless sensor-
actor network (WSAN) nodes are outlined using feature models. The authors propose a
middleware that allows to instantiate the possible configurations in a memory- and energy-
efficient way on WSAN nodes. One of the considered components reflects the topology of
the WSAN nodes. In contrast to this paper, the authors of [18] focus on surveying the typi-
cal complexity of the WSN domain; especially, they treat the two considered TC algorithms
(flat tree vs. hierarchical tree) as a black box. In [27] (an extension of [18]), an SPL engi-
neering process is presented that allows to configure resource-efficient middleware systems
for WSAN nodes with dedicated tasks based on a user-selected configuration (e.g., to build
vehicular area networks [17] or intelligent living spaces [26]). The mapping between config-
uration space and the larger low-level solution space is performed via model transformation
and code generation engine (e.g., for Java2 ME). Finally, [55] presents a variability-aware
reference architecture that builds on [27].

In fact, DSPLs are also applied to model self-adaptive systems, i.e., systems that mon-
itor their environment, analyze the monitored data, plan appropriate measures and execute
them to adapt to changing contextual environments. In [65], a framework for precalculat-
ing possible or probable configurations for resource-constraint devices is proposed. Such
techniques are also useful in the WSN domain because the resources of WSN nodes are
typically highly limited. In [64], an extension to traditional feature models is proposed that
integrates a dedicated submodel for the context of the modeled system. In the context of
WSN nodes, context feature models could be used to model the varying environmental con-
ditions to which a sensor node may react by switching to a more appropriate TC algorithm
(e.g., Maxpower TC in context with increased node dynamics). While traditional WSNs
were typically configured at deployment time using a fixed TC algorithm (if any) and a
fixed parameter set, self-adaptive WSNs can be suitable, e.g., for environmental monitoring
to detect wildfires or floods. For instance, in [3], the authors present a framework that may
be used, e.g., for reconfiguring parameters of WSN nodes in a wildfire detection network. In
their case study, the framework is able to predict critical situations (e.g., imminent wildfires)
and react appropriately by increasing the sampling rate. Use cases such as flood or wildfire
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detection show that switching between TC algorithms is a sensible use case and should be
one of our future lines of research.

8 Conclusion

In this paper, we proposed a model-driven methodology for designing families of TC algo-
rithms using GT and graph constraints. The motivation of our research is that the state-of-
the-art development of TC algorithms for WSNs exposes two major shortcomings: (i) While
it is common to prove formal properties of the designed algorithms and to evaluate them ex-
tensively using simulators (and less frequently using hardware testbeds), it is often hard or
even impossible to verify that the formal specification and the simulator (or testbed) imple-
mentation indeed represent the same algorithm (S1). (ii) Little effort is made to construc-
tively reuse common substructures (e.g., structural constraints or tie breakers) that appear in
many TC algorithms (S2).

In [43], we focused on S1 by proposing a systematic approach for developing individual
correct-by-construction TC algorithms. In this approach, valid topologies are characterized
using graph constraints [33], TC algorithms are specified using programmed GT [23], and an
existing constructive approach [33] is applied to enrich GT rules with application conditions
derived from the graph constraints. We illustrated the applicability of the proposed approach
by re-engineering the TC algorithm kTC [69].

In this paper, we complement our work on S1 and tackle S2 by generalizing the re-
sults in [43] as follows: (i) We separate the (graph) constraints into common and algorithm-
specific parts. We show the applicability of this step by specifying six existing TC algorithms
as well as e-kTC, a novel variant of kTC. (ii) We adjust and extend the steps of the construc-
tive approach proposed in [43] to be also applicable to families of TC algorithms. Finally,
we present tool support that allows to immediately evaluate the TC algorithms, specified
using the GT tool EMOFLON, in the SIMONSTRATOR network simulation environment.

Thanks to the proposed approach, it is now possible to rapidly specify and evaluate
new TC algorithms. First, after specifying an appropriate algorithm-specific predicate, all
proves of formal properties carry over to the new TC algorithm. Second, the tool integration
between EMOFLON and SIMONSTRATOR mirrors the hierarchical, compositional structure
of common and algorithm-specific predicates. This means that only the algorithm-specific
predicate of a new TC algorithm needs to be implemented in EMOFLON—all other compo-
nents may be reused immediately.

Outlook As future work, we aim at extending the proposed systematic approach to support
the entire typical development workflow of TC algorithms, consisting of specification, sim-
ulation and testbed evaluation (Figure 29). In [42, 43], we have focused on the step-by-step
specification and simulation-based evaluation of TC algorithms, which is shortly recapitu-
lated here to lead over to the planned future work. For simplicity, we focus on the develop-
ment of a single TC algorithm, even though the steps carry over to families of TC algorithms
as well. In Step 1, we model relevant entities, relations, and attributes of the considered class
of topologies (e.g., node energy level and link weight). In Step 2, we formalize the important
properties of the considered TC algorithms in terms of first-order logic predicates. Proper-
ties that can be checked based on local knowledge are additionally transformed into graph
constraints. For instance, the requirement that the topology is completely classified upon
termination of the TC algorithm is translated into the no-unclassified-links constraint Cu.
Properties that can only be checked globally are proved manually (e.g., A-connectivity of
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Step 1: Domain (Meta-)Modeling
Identify relevant entities, relations, attributes

Step 2: Derive Constraints
- Formalization of important properties
- Derive graph constraints from local properties
- Prove (some or all) global properties

*Step 9: Evaluate in Hardware Testbed
Practical evaluation from small-scale experiments based on eMoflon + Contiki OS

Step 3: Derive Operations
- Derive context event GT rules from metamodel
- Define TC algorithm using GT rules and 

programmed GT

Step 4: Refine TC Algorithm and Context Event Rules
- Derive constraint-preserving TC and context event rules
- Derive handler operations for unrestrictable GT rules
- Refine control flow to ensure termination

*Step 6: Model Local Knowledge

Step 5: Evaluate in Simulator
Select promising algorithm variants in large-scale experiments based on eMoflon + Simonstrator

*Step 7: Analyze Concurrency

*Step 8: Generate C code for hardware testbed
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Fig. 29: Overview of systematic approach (* marks future work; I / S : Step in imple-
mentation/specification phase)

the output topology). In Step 3, we derive possible TC actions and context events from the
metamodel and formalize them using TC and context event GT rules, respectively. For in-
stance, link-weight modifications are represented by the weight modification rule Rmod-w.
Additionally, we use programmed GT—in this case Story-Driven Modeling [23]—to spec-
ify the control flow of the TC algorithm. In Step 4, we combine the graph constraints from
the second step and the GT rules from the third step to obtain refined GT rules that preserve
all graph constraints. For all unrestrictable GT rules, we transform the generated applica-
tion conditions into handler operations. At the end of the forth step, we analyze whether the
generated application conditions of the TC rules may lead to a non-termination of the TC
algorithm and refine its control flow to ensure termination. In Step 5, the TC algorithm is
evaluated in a network simulator. For this paper, we decided to use an integration-based ap-
proach because the source code of the simulator is available. We could have generated code
for the simulator as well, but this is typically a larger effort compared to a tool integration.
To support the full development process of TC algorithms, we will address the following
research questions in our future work.

– Step 6: How to model information about local knowledge? Currently, several of the
patterns require knowledge about the 3-hop neighborhood of a node, which may not be
available on real sensor nodes (due to memory limitations).

– Step 7: How can we analyze concurrency issues due to the parallel execution of the TC
rules on real hardware? Inside the simulator, TC is executed sequentially, while, on real
hardware nodes, the TC algorithm is executed concurrently on each node. We will have
to analyze the GT-based specification for race conditions and other concurrency issues
and resolve them, e.g., by implementing conflict resolution strategies.
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– Step 8: How can we generate efficient code for the hardware testbed? We plan to add a
second set of code generation templates to the GT tool EMOFLON to be able to generate
embedded C code. Since testbed devices are typically highly resource-constraint, we
will focus on optimizing the runtime and the memory footprint (of the generated code
and at runtime) in this step.

We plan to use the SIMONSTRATOR [61] platform to evaluate the localized, parallel GT-
based specification, which results from answering the first two questions, and we plan to use
the Contiki operating system [21] as target platform for generating embedded C code (Step
9).
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18. Delicato, F.C., Fuentes, L., Gámez, N., Pires, P.F.: Variabilities of wireless and actuators

sensor network middleware for ambient assisted living. In: Distributed Computing,
Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living
(IWANN 2009 Workshops), LNCS, vol. 5518, pp. 851–858. Springer (2009). URL
https://dx.doi.org/10.1007/978-3-642-02481-8_129 (cited on pp. 3, 48).

19. Dijkstra, E.W.: A discipline of programming, vol. 1. Prentice Hall (1976) (cited on
p. 26).

20. Dohler, M., Barthel, D., Maraninchi, F., Mounier, L., Aubert, S., Dugas, C., Buhrig,
A., Paugnat, F., Renaudin, M., Duda, A., Heusse, M., Valois, F.: The ARESA Project:
Facilitating Research, Development and Commercialization of WSNs. In: Proc .of the
IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communica-
tions and Networks (SECON 2007), pp. 590–599 (2007). URL https://dx.doi.org/

10.1109/SAHCN.2007.4292871 (cited on pp. 3, 45).
21. Dunkels, A., Gronvall, B., Voigt, T.: Contiki – A Lightweight and Flexible Operating

System for Tiny Networked Sensors. In: Proc. of the Intl. Conf. on Local Computer

https://dx.doi.org/10.1007/978-3-319-21151-0_1
https://dx.doi.org/10.1007/978-3-319-21151-0_1
https://dx.doi.org/10.1145/2556624.2556627
https://dx.doi.org/10.1145/2556624.2556627
https://dx.doi.org/10.1002/wcm.72
https://dx.doi.org/10.1109/ICDCSW.2004.1284108
https://dx.doi.org/10.1109/LCOMM.2005.11010
https://dx.doi.org/10.1109/LCOMM.2005.11010
https://dx.doi.org/10.1109/INFCOM.2012.6195667
https://dx.doi.org/10.14279/tuj.eceasst.67.945
https://dx.doi.org/10.1007/978-3-642-04383-3_31
https://dx.doi.org/10.1007/978-3-642-04383-3_31
https://dx.doi.org/10.1007/978-3-642-02481-8_129
https://dx.doi.org/10.1109/SAHCN.2007.4292871
https://dx.doi.org/10.1109/SAHCN.2007.4292871


Constructing Families of Incremental Topology Control Algorithms Using GT 53

Networks (LCN 2004), pp. 455–462 (2004). URL https://dx.doi.org/10.1109/

LCN.2004.38 (cited on pp. 2, 51).
22. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Trans-

formation. Springer (2006). URL https://dx.doi.org/10.1007/3-540-31188-2

(cited on pp. 21, 46).
23. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A New Graph Rewrite

Language based on the Unified Modeling Language. In: Proc. of the Intl. Workshop on
Theory and Application of Graph Transformation (TAGT 1998), pp. 296–309. Springer
(1998). URL https://dx.doi.org/10.1007/978-3-540-46464-8_21 (cited on
pp. 21, 22, 49, 50).

24. Fok, C.L., Roman, G.C., Lu, C.: Agilla: A Mobile Agent Middleware for Self-adaptive
Wireless Sensor Networks. ACM Trans. of Autonomous Adaptive Systems 4(3), 16:1–
16:26 (2009). URL https://dx.doi.org/10.1145/1552297.1552299 (cited on
p. 47).

25. Friis, H.T.: A note on a simple transmission formula. Proc. of the Institute of Radio En-
gineers 34(5), 254–256 (1946). URL https://dx.doi.org/10.1109/JRPROC.1946.

234568 (cited on pp. 9, 14).
26. Fuentes, L., Gamez, N., Sanchez, P.: Variability in ambient intelligence a family of

middleware solution. Ubiquitous Developments in Ambient Computing and Intelli-
gence: Human-Centered Applications pp. 71–83 (2011). URL https://dx.doi.org/

10.4018/978-1-60960-549-0.ch006 (cited on pp. 3, 48).
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