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Abstract Models can be used to ease and manage the development, evolution,
and runtime adaptation of a software system. When models are adapted, the re-
sulting models must be rigorously tested. Apart from adding new test cases, it is
also important to perform regression testing to ensure that the evolution or adap-
tation did not break existing functionality. Since regression testing is performed
with limited resources and under time constraints, regression test selection (RTS)
techniques are needed to reduce the cost of regression testing. Applying model-
level RTS for model-based evolution and adaptation is more convenient than using
code-level RTS because the test selection process happens at the same level of ab-
straction as that of evolution and adaptation.

In earlier work, we proposed a model-based RTS approach called MaRTS to
be used with a fine-grained model-based adaptation framework that targets ap-
plications implemented in Java. MaRTS uses UML models consisting of class and
activity diagrams. It classifies test cases as obsolete, reusable, or retestable based
on changes made to UML class and activity diagrams of the system being adapted.
However, MaRTS did not take into account the changes made to the inheritance
hierarchy in the class diagram and the impact of these changes on the selection of
test cases. This paper extends MaRTS to support such changes, and demonstrates
that the extended approach performs as well as or better than code-based RTS
approaches in safely selecting regression test cases. While MaRTS can generally be
used during any model-driven development or model-based evolution activity, we
have developed it in the context of runtime adaptation. We evaluated the extended
MaRTS on a set of applications, and compared the results with code-based RTS
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approaches that also support changes to the inheritance hierarchy. The results
showed that the extended MaRTS selected all the test cases relevant to the inher-
itance hierarchy changes, and that the fault detection ability of the selected test
cases was never lower than that of the baseline test cases. The extended MaRTS
achieved comparable results to a graph-walk code-based RTS approach (DejaVu),
and showed a higher reduction in the number of selected test cases when compared
with a static analysis code-based RTS approach (ChEOPSJ).

Keywords executable UML models · inheritance hierarchy · model-based
adaptation · model-based regression test selection · model validation · runtime
adaptation · UML activity diagram · UML class diagram

1 Introduction

France and Rumpe [17] describe two broad types of models used in software devel-
opment: development models and runtime models. Development models provide
abstractions above the code level. Examples of development models are require-
ment, design, and implementation models [17]. Model-Driven Development is con-
cerned with creating such models to describe a software system and systematically
transforming these models to concrete implementations. These models are also
used to ease software maintenance and evolution. Empirical studies showed that
using and updating UML documentation during the maintenance and evolution
of a software system increased the functional correctness and design quality of the
evolved system [12].

Runtime models present aspects of an executing system at a high level of
abstraction, and are used to manage the complexity and to ease the planning
process of runtime adaptation [17]. Examples of software systems that require
runtime adaptation are transportation management systems and online gaming
systems, which need to be adapted at runtime without stopping their execution
for safety and business reasons.

Since changes made to a system for evolution or runtime adaptation purposes
can also break existing functionality, regression testing must be performed to en-
sure that the relevant existing test cases still pass [20]. Regression testing is one
of the most expensive activities performed during the lifecycle of a software sys-
tem [21, 30]. During both evolution and runtime adaptation, there may be severe
restrictions on the time and resources available to perform regression testing. Re-
gression test selection (RTS) [20] is an approach to improve regression testing
efficiency by selecting a subset of the original test set to verify that the affected
functionality of a system is still correct [4, 20]. RTS classifies existing test cases
as obsolete, retestable, and reusable. Obsolete test cases are invalid because they
cannot be executed on the modified version of the system, or the test inputs do
not conform to the modified functionality of the system. Obsolete test cases need
to be modified or deleted. Retestable test cases exercise the modified parts of the
system, and need to be re-executed. Reusable test cases only exercise unmodified
parts of the system, and they do not need to be re-executed [25].

We chose to work in the area of model-based RTS because it has several ad-
vantages over code-based RTS. First, researchers have reported that the use of
model-based RTS approaches will have crucial importance in the future because
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for large scale systems, model-based RTS can scale up better than code-based
RTS [37]. Second, the effort required for regression testing can be estimated at an
early phase before propagating the changes to the software system [4, 38]. Third,
managing traceability at the design level can be more practical than doing it at
the code level because it enables the specification of dependencies at a higher
level of abstraction [4,38]. Fourth, Harrold [20] suggests that working closer to the
architectural level may be more efficient than at the source code level.

Model-based RTS approaches can be more convenient for approaches that al-
ready apply model-driven development, model-based evolution, and model-based
runtime adaptations of software systems. The reason is that both the evolu-
tion/adaptation and test selection processes can be performed at the same level
of abstraction, i.e., based on model-level changes. However, existing model-based
RTS approaches suffer from the following drawbacks. First, they cannot detect
all types of changes from UML class, sequence, and statechart diagrams used in
these approaches [4, 14, 38]. Briand et al. [4] provided an example for such un-
supported changes, which is a modification to an operation implementation that
does not affect the operation’s signature and contract. Second, they do not sup-
port the identification of changes to inherited and overridden operations along the
inheritance hierarchy [4, 14,38], which can affect test cases.

As a consequence of these limitations, existing model-based RTS approaches
are unsafe and less precise compared to code-based RTS approaches that support
fine-grained changes and consider changes that impact the inheritance hierarchy.
Fine-grained changes are those that can be made at a low level of abstraction, such
as changes at the statement level inside a method implementation. A safe RTS
approach must select all the test cases that exercise added, deleted, and modified
code. A precise RTS approach only selects those test cases that are relevant to the
code modifications.

In prior work [2], we proposed a model-based RTS approach called MaRTS to
be used at runtime for regression testing of unanticipated fine-grained adaptations
performed at the model level. MaRTS uses UML design class and activity diagrams
to represent fine-grained behaviors of a software system and its test cases. MaRTS
classifies the test cases as obsolete, reusable, or retestable based on fine-grained
changes made to the UML class and activity diagrams while adapting the system.
Unlike other existing model-based RTS approaches [4,9,14,38], MaRTS can identify
fine-grained changes to an operation implementation at the block and statement
levels.

However, MaRTS [2] does not take into account the changes made to the in-
heritance hierarchy in the class diagram. Even a simple change, such as deleting
a generalization relation between two classes, or adding or removing an overrid-
ing method, can impact many classes along the inheritance hierarchy by affecting
the inherited and overridden methods. Thus, test cases that traverse the affected
classes and methods must be selected for safe regression testing. Due to this limita-
tion, MaRTS incorrectly classified 120 test cases for a chess program that we used
in a case study as obsolete, while these test cases are still retestable and should
have been selected for regression testing, as explained later in the paper. Such a
limitation is common to all the model-based approaches, such as [4, 9, 14,38].

The goal of this paper is to extend MaRTS to support the impact of changes
made to the inheritance hierarchy. This will enable MaRTS to get results compa-
rable to those obtained by using code-based RTS approaches that are fine-grained
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and support these types of changes (e.g., Harrold et al. [21]). In order to achieve
this goal, MaRTS must be extended to identify (1) changes performed to UML
classes and their relations, (2) fine-grained changes performed to method imple-
mentations represented as UML activity diagrams, and (3) the impact of both
types of changes on the inheritance hierarchy, such as identifying which opera-
tions are inherited and overridden in each class.

The extended MaRTS is based on (1) static analysis of the UML class diagram
to identify the changes in the inheritance hierarchy, (2) dynamic analysis of the test
case execution at the model level to determine the coverage information for each
test case, and (3) fine-grained model comparison to identify changes performed to
UML class and activity diagrams during the adaptation process. We exploit the
Rational Software Architect (RSA) simulation toolkit 9.01 to execute test cases at
the model level.

MaRTS can be used within the contexts of model-based evolution and runtime
adaptation even though it was originally developed in the context of runtime adap-
tation. Most existing model-based adaptation approaches are coarse-grained and
focus on using models at runtime to support self-adaptation in autonomous sys-
tems [10, 15, 18, 19, 26, 34]. Adaptations in these approaches are performed at the
component level, and are limited to adding/removing/reconnecting components
of the software system. On the other hand, fine-grained model-based adaptation
uses UML diagrams that provide fine-grained views of a system to support unan-
ticipated adaptations. For example, the Fine Grained Adaptation (FiGA) frame-
work [6,7] uses diagrams to support the planning of unanticipated and fine-grained
adaptations on running Java software systems. These adaptations involve humans
making model changes that can be fine-grained, such as those at the level of classes
and methods. We developed MaRTS within the context of FiGA.

The extended MaRTS was evaluated on four applications, and compared with
two code-based RTS approaches that support changes to the inheritance hierar-
chy. MaRTS achieved results comparable to the results achieved by DejaVu, and
outperformed ChEOPSJ.

2 Background

In this section, we provide background information on the FiGA framework. Then,
we summarize MaRTS and explain its limitation related to the impact of the
inheritance hierarchy changes that we address in this paper.

2.1 FiGA Framework

The Fine-Grained Adaptation (FiGA) framework [6,7] allows a developer to adapt
a running program on a standard JVM without stopping it. The developer mod-
ifies UML models and propagates the model changes to the source code. The
program updating process is kept separate from the running program instance
until the changes are ready to be compiled and loaded into the Java virtual ma-
chine, so as not to compromise the service provided by the program. The FiGA

1 http://www-03.ibm.com/software/products/en/ratisoftarchsimutool
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framework uses Reverse R[5] to extract UML class and activity diagrams from
source code and JavAdaptor [27, 28] to update a running Java program without
stopping it. Reverse Rextracts UML activity diagrams from an annotated running
Java program. Reverse Ruses a set of @Java annotations [8] designed to describe
the diagrams and introduced during the code development. When the program is
executed, these annotations drive the process of extracting activity diagrams from
the running Java program.

Fig. 1: Partial Chess Class Diagram Before Refactoring.

FiGA supports UML class and activity diagrams. The supported elements in
the UML class diagram are classes, interfaces, and operations and attributes de-
clared in the classes and interfaces, generalization and realization relations, and
associations between classes. Fig. 1 shows a partial class diagram for a chess pro-
gram, which is used as a running example in Section 2.3. Even though Reverse R
supports the generation of associations, MaRTS does not use them. Instead it uses
the attributes in the classes.
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Fig. 2: UML Activity Diagram for the ChessBoard.move() Method.

public boolean move(String fromPosition, String toPosition) {
ChessPiece cp = getPiece(fromPosition);
ArrayList<String> legalMovesList = cp.legalMoves();
boolean result = false;
if (legalMovesList.contains(toPosition)) {

result = placePiece(cp, toPosition);
}
return result;

}

Listing 1: The ChessBoard.move() Method.

In FiGA, each method of a class is represented as an activity diagram where:
(1) each activity diagram has a single initial node and a single final node, and
(2) there is no flow termination except for the final node. The UML activity dia-
gram elements that are supported in FiGA are action nodes, call behavior nodes,
decision and merge nodes, and initial and final nodes. An activity diagram gener-
ated using FiGA is detailed, where each action node in the activity diagram has
a code snippet associated with it, and Java statements are contained inside the
code snippet. Such activity diagrams are executable, i.e., when the model execu-
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Fig. 3: Overview of the FiGA Framework with the Model-based Validation
Component.

tion flow reaches an action node, then the code snippet associated with the action
node is executed. Fig. 2 shows an example for a UML activity diagram represent-
ing ChessBoard.move(String, String) method, and shows an example for a code
snippet associated with the action node labeled as Get ChessPiece object. List-
ing 1 shows the implementation of ChessBoard.move(String, String). FiGA maps
a code-level method call statement to a call statement to the activity diagram
representing the called method, where the call statement to the activity diagram
is added to a code snippet of an action node. For example, the code snippet
shown in Fig. 2 contains a call statement to the activity diagram representing the
ChessBoard.getPiece(String) method, where ModelCall is a class that we imple-
mented to pass parameters between activity diagrams. When the model execution
flow reaches that statement in the code snippet, then the activity diagram repre-
senting the ChessBoard.getPiece(String) method is called and the input parameter
fromPosition is passed to it.

Fig. 3 shows the steps of the FiGA framework. The model-based validation
component (bordered in red in Fig. 3) is not part of the FiGA framework. This
component is proposed in our works [1, 2] and used within FiGA. The process to
adapt a running program within FiGA is performed through a repetitive loop of
four steps 1, 2, 4, and 5 (i.e., without taking into account step (3a) and step (3b)).
Each step (except step 5) has a program code part indicated by (step (n)) and a test
code part indicated by (step (n)’). The process starts by generating UML class and
activity diagrams from the source code and JUnit test suites through Reverse R[5]
(step (1) and step (1)’). Then, developers manually modify the models to support
the needed adaptation (step (2) and step (2)’). Finally, a code patch is generated for
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the code and the test suites from the modified models (step (4) and step (4)’), and
the changes are deployed to the running application through JavAdaptor [27, 28]
(step (5)). Details about the whole process can be found in [6, 7].

2.2 MaRTS

We proposed a model-based validation approach [1] based on executing the models
representing the test cases with the models representing the program methods to
validate the adaptation at the model level. This approach is used within the FiGA
framework to support the validation of runtime adaptations performed at the
model level. In particular, we added and used step (3b) shown in Fig. 3 within
FiGA. In step (3b), The adapted models are validated through model execution [1].
The RSA simulation toolkit 9.0 was used to execute the UML activity diagrams
in FiGA.

We addressed the problem of regression test selection at the model level on top
of the FiGA framework [2]. We extended the model-based validation component [1]
shown in Fig. 3 to include step (3a) that classifies regression test cases at the
model level. The process to classify test cases at the model level, that we refer to
as MaRTS, consists of the following steps [2]:

1. For each UML activity diagram representing a test case, tc, two traceability
matrices are calculated: activity-level and flow-level. The former records which
activity diagrams representing program methods are traversed by exercising tc;
the latter records which transition-flows of the activity diagrams are traversed
by exercising tc. A transition flow is an edge that starts an activity node after
the previous one is finished.

2. Model changes are identified during the adaptation process using the RSA
model comparison tool2. The class diagram changes that can be identified by
the RSA model comparison tool are:
– Addition, deletion, and modification of class attributes and operations.
– Addition, deletion, and modification of classes and relations between classes.

The activity diagram changes that can be identified by the RSA model com-
parison tool are:
– Addition and deletion of action nodes, call behavior action nodes, decision

and merge nodes, and start and end nodes.
– Modification of action nodes based on changes to code stored in a code

snippet associated with an action node.
– Addition and deletion of transition flows.
– Modification of a boolean expression associated with a transition flow.
– Addition, deletion, and modification of attributes of an activity diagram.
– Addition, deletion, and modification of an activity diagram.

3. The test cases are classified as obsolete, retestable, and reusable, according to
whether or not they traverse modified activity diagrams or transition-flows of
activity diagrams. Our RTS approach can identify only one type of obsolete
test cases, those that contain a direct call to a deleted method.

A safe RTS technique must select all modification-traversing test cases for re-
gression testing [29]. A test case is considered to be modification-traversing for a

2 https://www.ibm.com/developerworks/rational/library/05/712_comp2/index.html
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program P if it executes changed code in P , or if it formerly executed code that
had been deleted in P [37]. A safe RTS approach is not considered to be safe
from all possible faults because some program changes might cause side effects
on other unmodified parts of the program. An RTS approach is considered safe
in the sense that, if there exists a modification-traversing test case, then it will
definitely be selected for regression testing [37]. Rothermel and Harrold [29] iden-
tified inclusiveness to evaluate the safety of regression test selection approaches.
Inclusiveness measures the extent to which an RTS approach selects modification-
traversing test cases for regression testing. The precision of an RTS approach
measures to what extent an RTS approach omits non-modification-traversing test
cases [29]. A non-modification-traversing test case is also a non-fault-revealing test
case [29]. A precise RTS technique only selects those test cases that are relevant
to a modification.

2.3 Lack of Support for the Inheritance Hierarchy Changes

MaRTS does not consider the impact of changes to the inheritance hierarchy when
classifying the test cases. We illustrate this limitation using a chess program as
an example. This program is a classroom project that only supports the basic
functionality to create a chessboard and move chess pieces, and it does not use
artificial intelligence to play with humans. Fig. 1 shows a partial class diagram for
the chess program. For example, the classes Bishop, King, and Rook implement the
ChessPiece interface.

class Test {
public void testMovePawn(){

ChessBoard board = new ChessBoard();
board.initialize();
board.move("c2", "c4");

....
}
public void testGetColumn() {

ChessBoard board = new ChessBoard();
board.initialize();
ChessPiece piece=board.getPiece("d7");
assertEquals(piece.getColumn(), 3);

}

}

Listing 2: Chess Program Test Cases.

Listing 2 shows a test class that contains the test cases testMovePawn and
testGetColumn. The testMovePawn test method creates a ChessBoard object and
initializes the board with instances of Pawn, Knight, King, Queen, Rook, and Bishop.
The test case then calls board.move("c2", "c4") to move an object on the board if
the move is legal. As shown in Listing 1, ChessBoard.move(String, String) calls the
getPiece(fromPosition) method that returns the chesspiece at the board position
defined by the argument. ChessPiece is the static type of cp, but its dynamic type
can be any class that implements the ChessPiece interface.
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Currently, each of the methods getRow(), getColumn(), setRow(), setColumn(),
getColor(), getPosition(), setPosition(), and onePossibleMove() that are de-
clared in the ChessPiece interface have a copy of the same implementation in
all the implementing classes. Let us consider refactoring the chess program so
that the code duplication is minimized. The interface is converted to an ab-
stract class ChessPiece. The classes Pawn, Knight, King, Queen, Rook, and Bishop

now extend ChessPiece instead of implementing it. According to Fowler’s refac-
toring catalog [16], the redundant methods are pulled up from the subclasses to
the ChessPiece class. The realization relation is replaced with a generalization
relation. We adapted the class and activity diagrams to apply this refactoring.
Six generalization relations were added from the subclasses to the superclass
ChessPiece, and six realization relations were deleted. The existing 48 operations
along with the 48 activity diagrams representing them were deleted from the sub-
classes, and eight operations were added to the ChessPiece class. The newly added
eight operations were inherited by all of the subclasses. Fig. 4 shows a portion of
the refactored classes for the chess program.

Fig. 4: Partial Class Diagram After Refactoring.

MaRTS misses the fact that Pawn class inherits ChessPiece.getColumn(), and
that the testGetColumn test case calls ChessPiece.getColumn() instead of Pawn.ge-

tColumn(). The approach classifies the testGetColumn test case as obsolete because
it contains a direct call to the deleted Pawn.getColumn() method. However, the
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testGetColumn test case should be classified as retestable because in the modified
program version, it calls the inherited ChessPiece.getColumn() method instead of
the deleted method. We used the EvoSuite test generation tool3 to generate JUnit
test cases for each class of the chess program. A total of 130 test cases were
generated. Based on the changes made to the class and activity diagrams, MaRTS
classified 10 test cases as retestable and 120 test cases as obsolete. The 120 test
cases were classified as obsolete because they contain direct calls to the deleted
activity diagrams representing the deleted operations. However, these test cases
are actually retestable because the subclasses inherit the eight new operations
added to the ChessPiece class, and the test cases call the inherited operations in
the modified program.

3 MaRTS with Support to Changes to the Inheritance Hierarchy

The extended MaRTS consists of five steps:

1. Extract the operations-table from the original class diagram (Section 3.1).
2. Calculate the traceability matrix (Section 3.2).
3. Identify model changes (Section 3.3).
4. Extract the operations-table from the adapted class diagram (Section 3.4).
5. Classify test cases (Section 3.5).

Steps 1 and 4 were specifically introduced to support the analysis of the in-
heritance hierarchy. Steps 2 and 5 modify the corresponding steps from the pre-
vious MaRTS approach [2]. In step 2, the activity-level traceability matrix now
also stores the receiver type for each activity diagram call. Step 5 now takes into
account the impact of class diagram changes on the inheritance hierarchy while
classifying test cases. Step 3 is unchanged. All these steps are automated.

3.1 Extraction of the Operations-Table from the Original Class Diagram

This step is performed before adapting the models. An operations-table is extracted
from the class diagram. This table stores for each class the operations that can be
invoked on an object of that class type. For example, Table 1 shows part of the
operations-table with the entries for the Pawn and Knight classes from Fig. 1.

The first column of Table 1 shows the class names. For each operation that can
be called on an instance of a class listed in column 1, columns 2, 3, 4, and 5 store
the operation’s declaring class, name, formal parameter types, and return type
respectively. Columns 3, 4, and 5 constitute the signature of the operation. For
each class in the first column of the table, the name of its superclass is also stored.
This is not shown in Table 1 because the Pawn and Knight classes only implicitly
inherit from Object.

The information stored in the operations-table can be used to determine which
operations are inherited or overridden in each class. This information is used along
with other inputs to classify test cases as explained later in Section 3.5.

3 http://www.evosuite.org/
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Table 1: Operations-table for the Pawn and Knight Classes Shown in Fig. 1

Classes Operations
Declaring Class Operation Name Parameters types Return Type

Pawn

Pawn onePossibleMove int,int String

Pawn toString None String

Pawn getColor None Color

Pawn getColumn None int

Pawn getPosition None String

Pawn getRow None int

Pawn setColumn int void

Pawn setPosition String void

Pawn setRow int void

Pawn legalMoves None ArrayList<String>

Knight

Knight onePossibleMove int,int String

Knight toString None String

Knight getColor None Color

Knight getColumn None int

Knight getPosition None String

Knight getRow None int

Knight setColumn int void

Knight setPosition String void

Knight setRow int void

Knight legalMoves None ArrayList<String>

3.2 Traceability Matrix Calculation

This step is performed before adapting the models. The activity diagrams rep-
resenting the test cases are executed with the activity diagrams representing the
program methods to record the coverage of test cases at the model level. The RSA
simulation toolkit 9.0 is used to execute the models.

During model execution, four types of information are collected for each test
case: (1) which activity diagrams are executed by the test case, (2) which activity
diagrams are directly called, (3) what is the receiver object type for each executed
activity diagram, and (4) which flows in each activity diagram are executed. This
information is used to obtain the traceability matrix at the transition flow level,
henceforth called the flow-level traceability matrix. This matrix can also be used
to obtain the activity-level traceability matrix by omitting information about the
traversed transition flows.

Table 2 shows a portion of a flow-level traceability matrix. For the sake of sim-
plicity, we omitted the information related to the receiver types and which activity
diagrams are directly called by each test case. We show the traversed transition
flows as a source-destination node pair. The testGetColumn test case traverses the
flows of the ChessBoard_initialize and Pawn_getColumn activity diagrams, where
in the third column of the table, x denotes that the transition flow in that row was
traversed by the test case.
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Table 2: Portion of a Flow-level Traceability Matrix

Activity diagrams Transition flows testGetColumn

ChessBoard_initialize (Start node → Receive args) x

(Receive args → Initialize chess pieces) x

(Initialize chess pieces → End node) x

Pawn_getColumn (Start node → Receive args) x

(Receive args → Return column field) x

(Return column field → End node) x

Table 3: Operations-table for the Modified Pawn and Knight Classes

Classes Operations
Declaring Class Operation Name Parameters types Return Type

Pawn
extends
ChessPiece

ChessPiece onePossibleMove int,int String

Pawn toString None String

ChessPiece getColor None Color

ChessPiece getColumn None int

ChessPiece getPosition None String

ChessPiece getRow None int

ChessPiece setColumn int void

ChessPiece setPosition String void

ChessPiece setRow int void

Pawn legalMoves None ArrayList<String>

Knight
extends
ChessPiece

ChessPiece onePossibleMove int,int String

Knight toString None String

ChessPiece getColor None Color

ChessPiece getColumn None int

ChessPiece getPosition None String

ChessPiece getRow None int

ChessPiece setColumn int void

ChessPiece setPosition String void

ChessPiece setRow int void

Knight legalMoves None ArrayList<String>

3.3 Model Change Identification

The UML diagrams generated by Reverse Rare compliant with the RSA modeling
tool, which MaRTS uses to identify the model changes that occur when developers
modify the class and activity diagrams. This tool identifies the changed model
elements and how they are changed. The list of differences is saved in a text file
and used as input to classify the test cases.

3.4 Extraction of the Operations-Table from the Adapted Class Diagram

During the adaptation process of the class diagram, the operations declared and
inherited in each class might change, which results in a change in the operations-
table. Thus, once the developers have fully adapted the class and the activity
diagrams, an operations-table is extracted from the adapted class diagram.
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Table 3 shows the operations-table for the Pawn and Knight classes after the
chess program is refactored as explained in Section 2. Now the Pawn and Knight

classes extend the ChessPiece class.

Algorithm 1: classifyTestCases(T , OT , OT ′, TMf , TMa, MD, AM)
Input:

T : Set of initial test cases.
OT : Operations-table extracted from the original class diagram.
OT ′: Operations-table extracted from the adapted class diagram.
TMf : Flow-level traceability matrix.
TMa: Activity-level traceability matrix.
MD: Model differences generated by RSA.
AM : Set of all activity diagrams representing the original system.

Output:
Tr: Set of retestable test cases.
To: Set of obsolete test cases.
Tu: Set of reusable test cases.

1 Tr=To=∅
2 Tu=T
3 for each operation op ∈ OT do

/* Each operation op has the following attributes in the operation table: <c,
dc, sig, rt>, where c is a class in OT that has op (i.e., op is inherited or
declared in c), dc is the declaring class of the operation (dc can be c or
any ancestor of c), sig is the signature, and rt is the return type of the
operation. */

4 if OT ′ contains an operation op′ where op′.c = op.c AND op′.sig = op.sig
AND op′.rt = op.rt then

5 if op′.dc 6= op.dc then
6 findRetestableTests(TMa, Tr, To, Tu, c, op);
7 end
8 else
9 findObsoleteTests(TMa, Tr, To, Tu, c, op);

10 findRetestableTests(TMa, Tr, To, Tu, c, op);

11 end
12 end
13 for each change ch in MD do
14 if ch involves deletion/modification of a transition flow tflow in an

activity diagram act then
15 findRetestableTestsTrans(TMf , Tr, To, Tu, tflow, act);
16 end
17 if ch involves deletion/modification of a node n in an activity diagram

act then
18 findRetestableTestsNodes(TMf , Tr, To, Tu, n, act);
19 end
20 if ch involves deletion/modification of a constructor c in a class then
21 findRetestableTestsConstructors(TMa, Tr, To, Tu, c);
22 end
23 if ch involves deletion/modification of a field f in a class then
24 findRetestableTestsFields(TMa, Tr, To, Tu, AM, f);
25 end
26 end
27 return Tr, To, Tu;
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Algorithm 2: findRetestableTests(TMa, Tr, To, Tu, C, OP)
Input:

TMa: Activity-level traceability matrix.
Tr: Set of retestable test cases.
To: Set of obsolete test cases.
Tu: Set of reusable test cases.
C : A class name.
OP : An operation.

Output:
Tr: Set of retestable test cases.
To: Set of obsolete test cases.
Tu: Set of reusable test cases.

1 for each test case tc ∈ TMa do
/* The traceability matrix TMa provides information about (1) the set Tc that

contains the activity diagrams traversed by tc along with their receiver
types, and (2) the set Td that contains the activity diagrams that are
directly called by tc along with their receiver types */

2 if tc ∈ Tu then
3 if tc.Tc.contains(OP) such that OP is called on a receiver of type rc then
4 if rc = C then
5 remove tc from Tu;
6 add tc to Tr;
7 end
8 end
9 end

10 end

3.5 Test Case Classification

The goal of the whole process is to classify the test cases as obsolete, retestable
or reusable. Algorithm 1 adopts a greedy approach to accomplish the task. At
first, all the test cases are considered to be reusable, i.e., they belong to the set
of reusable test cases. The algorithm skims the set of those test cases affected
by the model changes. Then it compares the operations-tables extracted from the
class model before and after the change to determine which operations have been
changed—including if they have been moved along the inheritance hierarchy. The
activity-level traceability matrix is used to determine which test case is affected
by those changes. The following skimming rules are applied by Algorithm 1 (lines
3-12):

1. When an operation op
(a) initially inherited by a class C is now overridden by C or one of its ances-

tors, or
(b) initially declared by a class C is now moved to one of the ancestors of C,

or
(c) initially declared or inherited by a class C is now neither declared nor

inherited by C
Action: move any test case that traverses op on a receiver of type C from
the set of reusable test cases to the set of retestable ones. Algorithm 1 calls
Algorithm 2 (findRetestableTests) in line 6 to perform this action.

2. When an operation op
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(a) initially declared or inherited by a class C is now neither declared nor
inherited by C

Action: move any test case that directly calls op on a receiver of type C is
moved from the set of reusable test cases to the set of obsolete ones.
Once Algorithm 1 completes iterating over all the modified operations, the test

cases that are still in the set of reusable test cases are classified by using model
differencing. The activity- and flow-level traceability matrices are used to detect
which of these test cases are traversing (i) a deleted or modified transition flow,
(ii) a transition flow ending in a deleted or modified node, (iii) a deleted or modified
constructor and (iv) a usage of a field that has been deleted or modified. They are
all moved to the set of the retestable test cases (lines 14-27 in Algorithm 1 deal
with these cases).

Let us show how the testGetColumn() test case from Fig. 1 is classified by
Algorithm 1 after the system is adapted as described in Sect. 2. Tables 1 and 3
show the operations-table before and after the adaptation respectively. In Table 1,
the Pawn class contains Pawn.getColumn() that was moved to the ChessPiece class
during the adaptation process. This is evident from Table 3 where the entry for
getColumn() in Pawn reports ChessPiece as the declaring class. According to the sec-
ond case of the first rule reported above, the testGetColumn() test case is classified
as retestable.

4 Experimental Setup

In this section we describe the goals and setup of the experiment whose results
are illustrated and discussed in Section 5 to evaluate MaRTS. The goals of the
evaluation were to (1) demonstrate that MaRTS4 is at least as inclusive and pre-
cise as some code-based RTS approaches that support changes to the inheritance
hierarchy, and (2) evaluate the fault detection ability of the reduced test set with
the fault detection ability of the full test set.

Inclusiveness measures the extent to which a regression test selection technique
selects modification-traversing test cases for regression testing. Suppose a test suite
contains T test cases, such that N test cases among T are modification-traversing
for P and P ′, where P ′ is a modified version of a program P , and suppose that
the RTS approach selects M of these N test cases for regression testing, then the
inclusiveness of the RTS approach with respect to P , P ′, and T is M/N [29]. If the
inclusiveness of an RTS approach is 100% for all programs, then it is considered
to be safe.

Precision measures the extent to which a regression test selection approach
omits test cases that are non-modification-traversing from the retestable set. Sup-
pose a test suite contains T test cases, and N test cases among T are non-
modification-traversing for P and P ′. If the RTS approach omits M of these N
test cases, then the precision of the RTS approach with respect to P , P ′, and T
is M/N [29].

The empirical study in this paper is driven by the following Research Questions
(RQ):

4 From this point on, the name MaRTS indicates the version that supports changes to the
inheritance hierarchy.
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Table 4: Original Programs

Software System Version Num. classes Num. interfaces Num. extends relations Num. implements relations Num. methods LOC

JUNG 1.3.0 13 12 12 11 146 3655

Chess 0 7 1 0 6 65 1074

Siena 1.8 9 0 0 0 95 1605

XML-security 2 173 6 131 30 1172 16800

RQ1: Does MaRTS have less inclusiveness and precision compared to the inclu-
siveness and precision of the code-based RTS approaches that consider changes
to the inheritance hierarchy?

RQ2: What is the difference between the fault detection ability of the reduced test
set achieved by MaRTS and the fault detection ability of the full test set?

We compared the results from running MaRTS and two code-based RTS ap-
proaches DejaVu5 and ChEOPSJ6 on four subject programs. DejaVu is an imple-
mentation of the approach proposed by Harrold et al. [21] while ChEOPSJ is an
implementation of the approach proposed by Soetens et al. [33]. Both tools sup-
port RTS for Java programs. We selected DejaVu because it is considered to be
the state-of-the-art approach for code-based RTS in terms of safety and precision,
and because it detects fine-grained changes at the statement level. We selected
ChEOPSJ because it detects fine-grained changes to method invocations. Both
detect changes to the inheritance hierarchy.

We did not compare MaRTS with the existing model-based RTS approaches
because they lack tool support (or tools are unavailable), and they do not consider
the impact of changes to the inheritance hierarchy at the model level. Therefore, it
is more relevant to demonstrate that MaRTS provides results comparable to those
provided by the code-based approaches.

4.1 Subject Programs

We used four subject programs: (1) graph package of the Java Universal Network/-
Graph Framework (JUNG)7, (2) Siena8, (3) XML-security9, and (4) chess program
used as a motivating example in this paper. These programs were implemented
using Java 6 and 7. They use classes, interfaces, extends relations between classes,
extends relations between interfaces, and implements relations between classes and
interfaces. These subjects do not use generic types, and do not use multithreaded
programming. We used EvoSuite [3] in its default setting to generate JUnit test
cases for each subject program. The reason for using EvoSuite is that it targets
both the coverage and mutation score, i.e., generating test cases with high coverage
and mutation score.

Multiple versions of the JUNG graph package are available. We selected ver-
sions 1.3.0 and 1.4.0 because the adaptation from version 1.3.0 to 1.4.0 involves
changes to the inheritance hierarchy. Table 4 summarizes the data about version

5 http://sofya.unl.edu/doc/manual/user/apps-dejavu.html
6 http://win.ua.ac.be/~qsoeten/other/cheopsj/
7 http://jung.sourceforge.net/download.html
8 http://sir.unl.edu/portal/bios/siena.php
9 http://sir.unl.edu/portal/bios/xml-security.php
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1.3.0. We used EvoSuite to generate JUnit test cases for each class in version 1.3.0.
A total of 188 test cases were generated in 60 seconds that exercised 81% of the
statements in version 1.3.0. We extracted class and activity diagrams from version
1.3.0 and its generated test cases.

Siena is an Internet-scale event notification middleware implemented in Java.
Siena is logically divided into a set of six components consisting of nine classes.
We obtained the source code for versions 1.8, 1.12, and 1.14, where each version
consists of nine classes. Table 4 summarizes the data about version 1.8. We used
EvoSuite to generate JUnit test cases for each class of version 1.8. The tool gener-
ated 107 JUnit test cases that exercise 89% of the statements. We extracted class
and activity diagrams from version 1.8 and its generated test cases.

XML-security is a component library implementing XML signature and en-
cryption standards. We selected versions v2 and v3 because the adaptation from
version v2 to v3 involves a large set of changes to classes, interfaces, realization
and generalization relations, and operations. Table 4 summarizes the data about
version v2. XML-security v2 comes with a JUnit test suite that consists of 94 test
cases, which exercise 31% of the statements in v2. We used EvoSuite to generate
JUnit test cases for all the classes in v2. The generated test cases did not improve
the coverage of the existing test suite. Therefore, we excluded the generated test
cases from this study, and only considered the existing test cases that come with
the application. We did not manually create new test cases to improve the cover-
age because we are not domain experts in XML-security. We extracted class and
activity diagrams from version v2 and its test cases.

The chess program was presented in Section 2.3. We used EvoSuite to generate
JUnit test cases for each class of the chess program. The tool generated 130 JU-
nit test cases that exercise 96% of the statements. We created class and activity
diagrams for the original version of the chess program and its test cases.

4.2 Adaptations at the Model Level

For each subject program, we manually adapted the class and activity diagrams
from one version to the following version in a systematic way. First, the code dif-
ferences between the two versions were identified. Second, these code differences
were applied at the model level. If an extends relation is added/deleted between
two classes at the code level, then a generalization relation is added/deleted be-
tween the two classes the model level. If an implements relation is added/deleted
between a class and an interface at the code level, then a realization relation is
added/deleted between the class and the interface the model level. If a class/in-
terface is added/deleted at the code level, then a corresponding class/interface
is added/deleted at the model level. If a class attribute is added/deleted at the
code level, then the attribute is added/deleted in the corresponding class at the
model level. If a method is added/deleted at the code level, then a corresponding
operation is added/deleted at the model level. If new statements are added to a
method implementation at the code level, then the activity diagram representing
the method is modified by adding these new statements to the code snippet of
the corresponding action node in the activity diagram. The deletion of statements
from a method is treated in the same way.
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Table 5: Adaptations Performed on Models

Software system Evolution Changes
classes & interfaces generalizations realizations operations

JUNG 1.3.0 → 1.4.0 5 7 2 79
Siena 1.8 → 1.12 0 0 0 9
Siena 1.8 → 1.14 0 0 0 11
Chess 0 → 1 1 6 6 56
XML-security 2 → 3 52 37 2 311

JUNG. Table 5 summarizes the data about the adaptation from version 1.3.0
to 1.4.0. The adaptation involved changes to the inheritance hierarchy. Four gen-
eralization relations were modified in version 1.4.0. For example, class SparseVertex
that extended AbstractSparseVertex in version 1.3.0 was modified to extend Simple-

SparseVertex in version 1.4.0. Similarly, class UndirectedSparseGraph that extended
AbstractSparseGraph was modified to extend SparseGraph in version 1.4.0. Three
new generalization relations were added during the adaptation process. For exam-
ple, a new class SparseGraph was added. A new generalization relation was added
from this new class to the existing class AbstractSparseGraph. Additionally, opera-
tions were moved between classes along the inheritance hierarchy, i.e., operations
deleted from a subclass and added to its super class. For example, 19 operations
were moved from SparseVertex class to its superclass SimpleSparseVertex, and 7
operations were moved from AbstractSparseGraph class to its super class. These 19
and 7 operations are still inherited by the SparseVertex and AbstractSparseGraph

classes, respectively. All these operations were counted among the 79 modified
operations shown in Table 5.

Siena. We adapted the models of Siena from version 1.8 to 1.12, and from
version 1.8 to 1.14. Version 1.8 is the first version for both the adaptations. The
reason for considering these adaptations is that moving to any other version does
not result in reducing the number of selected test cases. Table 5 summarizes the
data for the adaptations. These two adaptations do not involve changes to the in-
heritance hierarchy, such as adding or deleting generalization relations. They only
involve method-level changes. The added/deleted/modified operations in these
adaptations are not inherited/overridden along the inheritance hierarchy.

Chess. Table 5 summarizes the data about the adaptation. Forty eight op-
erations were deleted from the subclasses that extend the ChessPiece class, and 8
operations were added to the ChessPiece class. This adaptation involves changes
to the inheritance hierarchy. Six generalization relations were added from the sub-
classes to the superclass ChessPiece, and six realization relations were deleted. The
8 newly added operations are inherited by all of the subclasses.

XML-security. We adapted the class and activity diagrams of XML-security
from version 2 to 3. This adaptation involved these changes: 44 classes deleted, 2
classes added, 2 interfaces deleted, 5 interfaces added, 35 generalization relations
deleted, 2 generalization relations added, 2 realization relations added, and 287
operations deleted, and 24 operations added.

After the model-level adaptation process was completed, we applied MaRTS
to classify test cases. We also applied DejaVu and ChEOPSJ at the code level for
each subject.
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Table 6: Number of Test Cases Selected by the RTS Approaches

Software system Evolution Num.Test Cases Retestable Test Cases
DejaVu ChEOPSJ MaRTS

JUNG 1.3.0 → 1.4.0 188 188 178 188
Siena 1.8 → 1.12 107 26 54 26
Siena 1.8 → 1.14 107 36 59 36
Chess 0 → 1 130 130 126 130
XML-security 2 → 3 94 94 N/A 84

5 Evaluation and Discussion

In this section we answer the two previously listed research questions, discuss our
findings, and identify threats to validity. We also provide a theoretical analysis of
the time complexity of MaRTS.

5.1 Evaluation of Inclusiveness and Precision

Table 6 shows the results of running the three RTS approaches. We have prepared
a link10 for a zip archive that contains the code for the current implementation of
MaRTS, code subjects used in the study, test cases generated by EvoSuite, models
of the subjects and the test cases, the model difference files generated by RSA,
the traceability matrix for each subject, and the fault detection ability data.

JUNG. MaRTS classified all the 188 test cases as retestable. The reason is
that most of these test cases traverse the 19 operations that were moved along the
inheritance hierarchy. The rest of these test cases traverse modified constructors
and/or the modified activity diagrams representing the operations AbstractSparce-
Graph.addVertex() and AbstractSparceGraph.addEdge(). MaRTS did not classify
any test case as obsolete because the adaptation did not involve deleting operations
that are directly called from test cases. DejaVu also classified all the test cases as
retestable for the same reason. ChEOPSJ selected 178 test cases out of 188. It
missed ten test cases that traverse modified code. The reason for missing these
test cases is that below the method level, ChEOPSJ only records changes on
method invocations, but not on local variables and other types of statements.
ChEOPSJ does not support identifying changes to constructors [33]. MaRTS was
able to select these ten test cases as retestable because it can identify any change
to a method implementation in the activity diagram representing the method.
For example, if any statement inside an action node is modified, then the model
differencing tool identifies that action node as modified. MaRTS can also identify
changes performed to a constructor through model differencing when a constructor
is modified in the class model.

Siena. MaRTS selected 26 out of 107 test cases when moving from version
1.8 to 1.12, and selected 36 out of 107 test cases when moving from version 1.8 to
1.14, i.e., by considering all performed changes to move from version 1.8 to 1.12
then to 1.14. The reason for this reduction in the number of selected test cases is
that these adaptations are inside the method implementations and do not include

10 http://www.cs.colostate.edu/~malref82/RTSExperiments.zip
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Table 7: Number of False Positives (FP) and False Negatives (FN) for the
Studied RTS Approaches

Software system Evolution DejaVu ChEOPSJ MaRTS

Num.FP Num.FN Num.FP Num.FN Num.FP Num.FN
JUNG 1.3.0 → 1.4.0 0 0 0 10 0 0
Siena 1.8 → 1.12 0 0 30 2 0 0
Siena 1.8 → 1.14 0 0 28 4 0 0
Chess 0 → 1 0 0 0 4 0 0
XML-security 2 → 3 0 0 N/A N/A 0 0

changes to the inheritance hierarchy. The modified methods are traversed by few
test cases in the available test set. DejaVu achieved similar results as MaRTS, i.e.,
both DejaVu and MaRTS classified the same set of test cases as retestable.

ChEOPSJ showed different results. For the adaptation from version 1.8 to
1.12, ChEOPSJ classified 54 test cases out of 107 as retestable. ChEOPSJ missed
two modification-traversing test cases that were selected by MaRTS and DejaVu.
ChEOPSJ also classified more test cases as retestable compared to MaRTS and
DejaVu even though these extra test cases were not traversing modified code.
The reason is that ChEOPSJ is based on static analysis of dependencies between
modified code and test cases. For each change, ChEOPSJ first identifies the method
where the change occurred. Second, it identifies all the methods that directly or
indirectly invoke the method where the change occurred by following the chain of
invocation dependencies between methods. It selects every test case that contains
an invocation to any of the identified methods because of the potential for the test
case to execute the modified methods.

For the adaptation from version 1.8 to 1.14 (i.e., considering all changes from
1.8 to 1.14), ChEOPSJ selected 59 out of 107 test cases. It missed five modification-
traversing test cases that were selected by MaRTS and DejaVu. These five test
cases traverse the method AttributeValue.booleanValue(), for which statements
were modified inside the method body. One possible reason is that ChEOPSJ does
not identify all types of changes that can be performed inside a method body.

Chess. For the chess program, MaRTS classified all of the 130 test cases as
retestable because every test case traverses at least one operation that was moved
between classes or an activity diagram/constructor that accesses modified fields.
MaRTS did not classify any test case as obsolete although there were 48 deleted
operations from the subclasses of the ChessPiece class, and many test cases contain
direct calls to the deleted operations. The reason is that these subclasses inherit
operations from the ChessPiece class with the same signatures as the deleted ones,
and thus, the test cases that contain direct calls to the deleted operations will call
the inherited ones in the adapted version of the models.

DejaVu classified all of the 130 test cases as retestable while ChEOPSJ clas-
sified 126 out of 130 as retestable. ChEOPSJ missed four test cases because they
traverse operations that access modified instance fields. ChEOPSJ cannot iden-
tify such changes. In MaRTS, changes to instance fields can be identified through
model differences, and activity diagrams accessing these fields are identified by
parsing the file containing the models.

XML-security. MaRTS classified 84 out of 94 test cases as retestable, and
10 test cases as obsolete. The reason is that all of the 94 test cases traverse deleted
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operations and/or modified bodies of operations. We found that the 10 obsolete
test cases contain direct calls to deleted methods. The test classes containing these
10 test cases are KeyWrapTest.java and BlockEncryptionTest.java. We found that
these test classes do not compile with the XML-security v3. These test classes only
contain the 10 test cases classified as obsolete by MaRTS, where these obsolete test
cases either need to be modified or deleted. DejaVu selected all of the 94 test cases
for regression testing, where all the test cases traverse modified and/or deleted
code. DejaVu does not address identifying obsolete test cases.

We did not get results for ChEOPSJ when we run it on the XML-security
subject because of a bug in this tool. It did not detect code changes that it is
supposed to detect, and did not produce results. Table 6 and Table 7 do not show
results for ChEOPSJ with respect to the XML-security subject.

Checking functionality after adaptation. For each adapted subject pro-
gram, we executed the retestable test cases and they passed.

Inclusiveness results. DejaVu is a safe tool and classifies all modification-
traversing test cases as retestable, and therefore, its inclusiveness was 100% for
all the subject programs. Because MaRTS selected the same set of test cases that
were selected by DejaVu for all the subject programs, its inclusiveness was also
100%. ChEOPSJ missed modification-traversing test cases, and its inclusiveness
was 94% for JUNG, 96% for Chess, 92% for Siena version 1.12, and 88% for version
1.14.

Precision results. The precision was 100% for MaRTS and DejaVu because
both approaches did not classify any test case that is non modification-traversing
as retestable for all the subject programs. The precision of ChEOPSJ was 100%
for JUNG and Chess, 62% for Siena version 1.12, and 60% for version 1.14. Table 7
shows the number of false positives and false negatives for each of the studied RTS
approaches.

Thus, the answer to RQ1 is that the inclusiveness and precision for MaRTS
were never less than the inclusiveness and precision of DejaVu and ChEOPSJ.

5.2 Evaluation of the Fault Detection Ability

The MaRTS results showed a reduction in the number of selected test cases only
for the Siena program for the adaptation from version 1.8 to 1.12, and from 1.8 to
1.14. Therefore, we evaluated the fault detection ability of the reduced test sets
obtained by MaRTS for these two adaptations. We used mutation testing in this
experiment to compare the fault detection ability of the reduced test sets with the
fault detection ability of the full test sets. There are no tools (to the best of our
knowledge) that support systematic generation of mutations at the model level.
Therefore, we used a code-level mutation testing tool on the two versions of the
Siena program (1.12 and 1.14).

The experiment consists of three steps. In the first step, all the 107 test cases
in the baseline test suite were executed on the code for version 1.8; all the test
cases passed. This check is needed to ensure that the baseline test cases do not
expose faults in the original version.
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Table 8: Mutation results for the Siena program

Program Mutants Full Test Set Reduced Test Set

size score size score

Siena 1.12 134 107 29.8% 26 29.8%
Siena 1.14 136 107 30.9% 36 30.9%

In the second step, PIT11 was used to apply first-order method-level muta-
tion operators to versions 1.12 and 1.14. The applied mutation operators12 were
(1) Conditionals Boundary Mutator, (2) Increments Mutator, (3) Invert Nega-
tives Mutator, (4) Math Mutator, (5) Negate Conditionals Mutator, and (6) Void
Method Calls Mutator. We configured PIT to only mutate the modified methods
to adapt from version 1.8 to 1.12 and to 1.14.

In the third step, for each version, we ran PIT with both the full and reduced
test sets. PIT generates a mutation report that shows (1) information about all the
applied mutations, such as the location of a mutated statement and the change
made to that statement, and (2) which mutations survived or were killed by the
full and reduced test sets.

Table 8 shows the mutation testing results. Both the full and reduced test sets
killed exactly the same set of mutants in both the versions (40 out of 134 mutants
in version 1.12 and 42 out of 136 mutants in version 1.14). The fault detection
ability of the reduced test set was never lower than that of the full test set. The
reason is that any test case that traverses an adapted method was in the reduced
test set, i.e., classified as retestable, and we used PIT to mutate only the adapted
methods. The remaining mutants were not killed by either the full or the reduced
test set.

Thus, the answer to RQ2 is that the fault detection ability of the reduced test
set achieved by MaRTS was equal to the fault detection ability of the full test set.

5.3 Discussion

MaRTS achieved results comparable to those achieved by DejaVu, but it outper-
formed ChEOPSJ in terms of inclusiveness and precision. The inclusiveness of
MaRTS was 100%. Inclusiveness is important for ensuring the correctness of the
changes performed to a system because the modification-traversing test cases can
reveal faults in the system. Moreover, MaRTS can also identify one type of obsolete
test cases as in the case of XML-security study. The code-based RTS approaches
compared in this paper do not address the identification of any type of obsolete
test cases.

The fault detection ability experiment showed that the reduced test sets ob-
tained by MaRTS had the same fault detection ability as that of the full test
sets. The reason is that MaRTS classified all modification-traversing test cases
as retestable. We only considered mutating the adapted methods, assuming that
developers insert new faults only to these methods during the adaptation process.

11 http://pitest.org
12 http://pitest.org/quickstart/mutators/
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In general, MaRTS can support both functional and unit test cases. In our
work, three subject programs (JUNG, Siena, and Chess) use unit test cases. The
XML-security program uses functional test cases.

The key ideas of MaRTS are applicable to object-oriented programming lan-
guages in general even though currently MaRTS only supports Java because of the
underlying toolset. RSA supports executing UML models with Java, and Reverse R
supports reverse engineering models from annotated Java code.

MaRTS can be extended to other object-oriented programming languages if the
underlying tools are extended to support them, or replaced with analogous tools
for the desired programming language. The current version of MaRTS does not
support multiple inheritance because it was designed to analyze the inheritance hi-
erarchy in Java. We can overcome this limitation by extending the operations-table
to store information for multiple inheritance, and modify the test classification al-
gorithm accordingly.

MaRTS does not support the following features of Java due to limitations in
the underlying tools: multithreaded programming, generic types, and new features
introduced in Java 8 and 9, such as default methods in interfaces, functional inter-
faces, and lambda expressions. The lack of support for these features can result in
missing modification-traversing test cases when MaRTS is applied to Java projects
that use these features. To integrate the unsupported features such as functional
interfaces and default methods in Java interfaces in MaRTS, we need to extend the
operations-table. We also need to extend the classification algorithm to identify
the impact of changes to these features and classify test cases accordingly. The
integration of such Java features in future versions of MaRTS is feasible assum-
ing that the underlying tools support the reverse engineering of the features and
executing them at the model level.

MaRTS may produce incorrect results when Java reflection and multithreading
are applied. These limitations also apply to all the existing code-based RTS ap-
proaches because dynamically collected dependencies for test cases may not cover
all possible paths that can be traversed by the test cases [21,29].

MaRTS does not store interface operations when populating the operations-
table. This information is not needed for RTS because a change to an interface
operation is realized by a change to the class that implements it, and changes
to class operations are captured in the operations-tables. Interfaces can still be
used as types in the operations-table, i.e., return types and parameter types of
operations.

MaRTS does not use associations and compositions in the UML class diagram
due to a limitation in RSA. This tool always transforms an association with mul-
tiplicity more than one to a vector, while the actual data type can be different,
e.g., ArrayList. Instead of using associations and compositions, MaRTS uses class
attributes, where the constraints for compositions are specified in the constructors.

MaRTS supports exception handling. RSA can execute activity diagrams that
contain action nodes for exception handling code. If a throw statement that is
associated with an action node is executed, then the execution flow is transferred
to an action node that contains the corresponding exception handler, i.e., catch
block, and the exception handler is executed. The activity diagram flows that are
incoming to the action nodes containing the throw statement and the exception
handler are recorded in the traceability matrix.
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An activity diagram extracted by Reverse Rcontains one final node because
Reverse Rrequires a method body to only have one return statement. To make the
code compatible with Reverse R, we transform the implementation of each method
that has multiple return statements to only have one return statement.

MaRTS can scale up to large programs because all of its steps are auto-
mated, and can be utilized by model-driven development approaches and mod-
els@run.time approaches that perform evolution and adaptation at the model level.

5.4 Threats to Validity

We identify several threats to validity of the results of our case study.
External validity. It is difficult to generalize from a study of only four

subject programs. However, we selected program versions that incorporate various
types of modifications, such as changes to classes, methods, inheritance hierarchy,
and class attributes.

Internal validity. The unknown factors that might affect the outcome of
the analyses are possible errors in our algorithm implementation, and that the
test cases were generated only using one test case generation tool. To control the
first factor, we tested the implementation of MaRTS on different change scenarios.
We also compared the results achieved by MaRTS for the case studies with those
of DejaVu, which is known to be safe and precise.

We used EvoSuite to generate JUnit test cases for the subject programs. The
results could potentially change if other test generation tools were used or test sets
with different coverage numbers were used (i.e., to what extent do the test cases
exercise modified code). We plan to evaluate the proposed approach on additional
test suites generated by other test case generation tools.

A major threat is that the same person selected the subject programs, gen-
erated the test cases, reverse engineered the models, performed the model-level
adaptations, and executed the RTS tools. There is a potential for getting different
results if different people worked on these steps. The test generation process and
RTS approaches were automated, and thus, having other people perform those
steps would not make a difference if they used the same tool configurations. The
adaptations are, however manual, which can lead to different modifications. How-
ever, since we started from a particular version of code and finished at a well-
defined version of code, the differences are not likely to be significant.

Construct validity. We used the reduction in the number of selected test
cases, safety, and precision in our study. However, there are other metrics that can
be used to evaluate an RTS approach, such as its efficiency in terms of reducing
regression testing time. We plan to evaluate the efficiency of MaRTS in the future.

5.5 Time Complexity for the Extended MaRTS

Even though we did not empirically compare the running times using our approach,
we performed a theoretical analysis of its time complexity. Algorithm 1 has two
main loops. The first loop (lines 3-12) iterates through all the operations in the
original operations-table. Let us suppose that N is the number of classes in the
program. In the worst case, they are all part of a single inheritance hierarchy,
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i.e., there is a linear chain of N classes. Let c be a constant representing the
number of operations in the topmost class in the hierarchy; in the worst case this
is also the largest number of methods in any class of the application. Suppose that
each class adds c new methods to those inherited from its parent. In the worst
case, the number of methods available for invoking is c for the top-most class,
(c + c) for the second class, (c + c + c) for the third class, and so on. The total
number of operations, and thus, the number of entries in the operations-table is
(N ∗ (N + 1)/2)c, which is O(N2).

The original and adapted operation tables are implemented as HashMaps, so
the cost of retrieving elements is a constant that does not affect the worst case
time complexity.

For each test case in the traceability matrix, the traversed activity diagrams
and edges by the test case are stored as HashSets, and the cost of retrieving from
a HashSet is constant k. Therefore, the cost of a single call to the findRetest-

ableTests() algorithm is T ∗ k, where T is the total number of baseline test cases,
and k is a constant representing the cost to retrieve an item from a HashSet.
Thus, the worst case time complexity to call findRetestableTests() for all the
operations in the operations-table is O(T ∗N2) because the number of entries in
the operations-table is O(N2). The same worst case time complexity applies to
the findRetestableTests() algorithm.

The second loop of Algorithm 1 (lines 13-25) iterates through the class and
activity diagram differences. In the worst case, (1) every statement is represented
as a separate action node, in the activity diagram, (2) all original nodes are mod-
ified/deleted, (3) all transition flows between all nodes are modified/deleted, (4)
all constructors are modified/deleted, and (5) all fields in the class diagram are
modified/deleted.

Let nanodes be the number of action nodes in the original program, nflows

the number of transition flows between the action nodes, ncons the number of
constructors in the class diagram, and nfields the number of fields in the class
diagram.

The cost to call the other algorithms from Algorithm 1 is as follows:

Algorithm name Complexity
findRetestableTestsTrans() O(T ∗ nflows)
findRetestableTestsNodes() O(T ∗ nanodes)
findRetestableTestsConstructors() O(T ∗ ncons)
findRetestableTestsFields() O(T ∗ nfields ∗ nanodes)

In the algorithm findRetestableTestsTrans(), the loop that iterates through all
the test cases in the traceability matrix will execute T times for each entry relevant
to the transition flow (of which there are O(nflows)). For each test case, the
traversed transition flows are stored in a HashSet. The algorithm that determines
whether the HashSet contains the transition flow or not takes constant time. The
complexity of the other algorithms can be explained in a similar manner.

The total worst case time complexity for Algorithm 1 is thus, O(T ∗ N2)) +
(T ∗ (nflows+nanodes+ncons+(nfields ∗nanodes)))), which can be approximated
to O(T ∗N2 + T ∗ (nfields ∗ nanodes)) because the number of flows, action nodes,
and constructors is likely to be much smaller than the product (nfields ∗nanodes),
and therefore neglectable.
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Note that since we use Rational Software Architect (RSA) to adapt the models,
the model differencing task is done by the tool. This cost is not being considered
in our analysis.

Harrold et al.’s [21] DejaVu approach uses the algorithm proposed by Rother-
mel and Harrold [30]. This algorithm iterates through the control flow graphs
of the original and modified versions of a program, and selects test cases that
traverse modified edges. The worst case time complexity for this algorithm is
O(2 ∗ n + T ∗ n2) [30], where T is the number of baseline test cases and n is the
total number of program statements.

The largest term in the time complexity of our algorithm is T ∗nfields∗nanodes,
and in the worst case, nanodes is the same as the number of program statements,
n. Thus, this term becomes comparable to the largest term in the time complexity
of Rothermel and Harrold’s algorithm (T ∗ n2) when the total number of fields,
nfields in a program is equal to the total number of statements, n, in the program.
However, in practice, nfields is much smaller than n.

6 Related Work

The regression test selection problem has been studied for over three decades.
Engström et al. [13] presented a systematic literature review of existing code-
based RTS approaches, focusing on the approaches that have been empirically
evaluated. They categorize the approaches into three major groups: firewall-based
group, graph-walk-based group, and dependency-based group. The last group can
be considered to be a subgroup of the firewall-based group because firewall-based
RTS is based on relationships and dependencies between software parts, such as
classes.

Below we summarize the existing code-based approaches that consider the
impact of inheritance hierarchy changes on RTS. We also summarize the existing
model-based RTS approaches and compare them with MaRTS. To the best of our
knowledge, existing model-based RTS approaches do not consider the impact of
inheritance hierarchy changes.

6.1 Code-based Approaches

Firewall approaches [22, 24, 35] are based on the concept of defining the entities
of the system that need to be retested, i.e., drawing a conceptual firewall around
these entities. These approaches select all the test cases that exercise at least
one entity from the firewall. Kung et al. [24] and Hsia et al. [22] applied RTS
at the class level for C++ programs. Their approach is based on the idea that
in addition to retesting the changed classes, it is also necessary to retest classes
that are directly or indirectly dependent on the changed classes. Their approach
constructs an object relation diagram (ORD) that describes static relationships
between classes, which are association, aggregation, and inheritance. The approach
also instruments the original program to record the classes exercised by each test
case. When a class, C, is modified, the ORD is used to find a set of all classes
that have relationships with C. All the test cases traversing any of these classes
are selected for regression testing. White and Abdullah [35] proposed a similar
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approach that selects all the test cases exercising at least one class from a firewall
of a modified class.

These firewall approaches can be imprecise because they may select many test
cases that do not need to be re-executed on the modified program version. If some
classes along the inheritance hierarchy are modified, then it is not necessarily the
case that all the other classes along the same inheritance hierarchy are impacted.
Test cases traversing these classes do not always execute modified or affected parts
of the code. MaRTS is more precise than these firewall approaches because it can
identify which operations along the inheritance hierarchy are affected by class
model changes, and only those test cases traversing the affected operations called
on specific receiver types are selected.

Skoglund and Runeson [31] found in empirical studies that the class-level fire-
wall RTS is not a precise technique, i.e., it can select test cases that are non
modification-traversing. They proposed an improved approach over the class-level
firewall approach by removing the class firewall and using a change-based RTS
technique that selects only those test cases that exercise the changed classes. The
change-based RTS is a subset of the class-level firewall approach, where construct-
ing the ORD and calculating the class firewall are excluded. The selection is, thus,
limited to those test cases that traverse changed classes. In contrast, the selec-
tion process in MaRTS is limited to those test cases that traverse modified and
impacted methods.

Soetens et al. [32] proposed a change-based RTS approach based on the FAMIX
model. Changes made to Java software are identified as change objects in the
FAMIX model. Changes that can be identified in the model are additions, re-
movals, and modifications of packages, classes, methods, attributes, and method
invocation statements. Dependencies between software entities are defined in the
model, and these dependencies are exploited for test selection. Each identified
change is mapped to its set of relevant test cases based on the change dependence
hierarchy defined in the model. The model in this approach assumes that there is
a one-to-one relationship between a method invocation statement and the callee
method. In contrast to MaRTS, this approach does not support the impact of
changes along the inheritance hierarchy.

Soetens et al. [33] extended their approach to support dynamic binding when
applying test selection. They extended their FAMIX model so that a method
invocation has relationships with all the methods that this invocation can refer to
based on the method name. This technique to specify such relationships is static
and is based on method names. For example, if a change is made to a method
named m, then all the methods in the program that carry the same name m are
identified. Then the model is used to map each of the identified methods to its set of
relevant test cases. This approach has another limitation in that it cannot classify
test cases that traverse changed constructors [33]. ChEOPSJ is an implementation
for the RTS approach proposed by Soetens et al. [33]. In contrast, MaRTS takes
into account the receiver type of a method invocation and the method signature
(not only the method name as in [33]) to classify test cases, which makes MaRTS
more precise than ChEOPSJ.

Rothermel and Harrold [30] proposed a safe graph-walk approach for RTS for
procedural programs. The algorithm uses control flow graphs (CFG) to represent
each procedure in a program P and its modified version P ′. Each node in a CFG
represents a simple or conditional statement, and each edge represents the flow
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of control between statements. Entities affected by modifications are selected by
traversing in parallel the CFGs of P and P ′, and when the target entities of
identically labeled CFG edges in P and P ′ differ, then those edges are added to
the set of affected entities.

Harrold et al. [21] extended the CFG approach for Java software using the Java
Inter-class Graph (JIG) as a representation that handles interprocedural interac-
tions through calls to methods. Each method call statement is represented as a call
node in the JIG. A call edge connects each call node to the entry node of the called
method. If the call is virtual, the call node is connected to the entry node of each
method that can be bound to the call. For example, each edge from a call node to
the entry node of a method C.m is labeled with the type of the receiver that causes
C.m to be bound to the call. The class hierarchy analysis technique [11] is used
to resolve all possible virtual call bindings. This representation supports the iden-
tification of which method calls are affected by comparing the JIGs constructed
from the original and modified programs. DejaVu is an implementation for the
RTS approach proposed by Harrold et al. [21] for Java programming language.
The difference between MaRTS and DejaVu is that instead of using CFGs with
call edges labeled with receiver types, MaRTS uses a different technique based on
static analysis to the UML class diagrams to identify for each class the operations
that can be invoked on an object of the class type. Our evaluation showed that
DejaVu and MaRTS achieved comparable results.

6.2 Model-based Approaches

Chen et al. [9] use UML activity diagrams for specification-based RTS. In their
work, an activity diagram represents the requirements and specifications of a sys-
tem. Their approach is used to apply black-box RTS. In contrast, MaRTS uses
activity diagrams to represent detailed program behaviors. MaRTS also uses class
diagrams to represent the static structure of software, and applies impact analysis
to identify the activity diagrams impacted by class changes.

Korel et al. [23] use control and data dependencies in an extended finite state
machine to identify the impact of model changes and perform RTS. This approach
does not use UML class diagrams.

Farooq et al. [14] use UML class and state machine models for RTS. This
approach identifies changes in the class and the state diagrams, and uses the im-
pacted and changed elements of the state diagrams to apply RTS. This approach
does not support the identification of the addition and deletion of the general-
ization relations, and does not support the identification of operations that are
overridden and inherited along the inheritance hierarchy.

Briand et al. [4] presented an RTS approach based on UML use case models,
class models, and sequence models. Their approach is applied at the design level, in
which test cases are selected according to design change information. This approach
can identify the addition and deletion of generalization relations between classes.
However, it does not identify which operations are inherited and overridden along
the inheritance hierarchy. For example, suppose that in the original class diagram,
a class C inherits an operation op, and in the adapted class diagram, C overrides
op. Then, any test case traversing op on a receiver of type C is affected and
needs to be selected because the changes to inherited and overridden operations
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can indirectly affect test cases, which then need to be selected for safe regression
testing. Briand et al.’s approach can miss such test cases because it does not detect
that op is no longer inherited. The extended MaRTS approach can identify the
changes to the inherited and overridden operations along the inheritance hierarchy,
and therefore, identifies the affected test cases and select them.

Zech et al. [38] present a generic model-based RTS platform, which is based
on the model versioning tool, MoVE. The approach consists of the three phases:
change identification, impact analysis, and test case selection. These phases are
controlled by OCL queries. Similar to Briand et al. [4], this approach does support
the identification of inherited and overridden operations along the inheritance
hierarchy.

Yenigün et at. [36] considered the existing definitions of data dependencies
between transitions in an extended finite state machine (EFSM), which represents
the requirements of a system under test. They proposed new definitions and rules
for identifying data dependencies in EFSM; these rules consider the generation and
removal of data dependencies caused by multiple modifications. The new rules can
be utilized for impact analysis in model-based RTS approaches that use EFSM.

To the best of our knowledge, MaRTS is the first RTS approach that provides
a framework for using UML class and activity diagrams, where the models are ex-
ecutable. MaRTS improves over the other model-based approaches by considering
the impact of inheritance hierarchy changes on the test classification process.

7 Conclusions and Future Work

In this work, we presented an extension to MaRTS—model-based approach for
regression test selection—that adds support for changes relevant to the inheritance
hierarchy and its impact on the selection of test cases.

MaRTS was evaluated on four applications and compared with two code-based
RTS approaches, DejaVu and ChEOPSJ, that consider the impact of changes on
the inheritance hierarchy for Java software. DejaVu is a safe graph-walk based
RTS approach and ChEOPSJ is based on static analysis. For each of the four
subject programs, MaRTS was able to (1) identify which operations are inherited
and overloaded in each class based on the changes made to the class diagram, and
(2) accordingly select all the relevant test cases. MaRTS and DejaVu selected all
the modification-traversing test cases. MaRTS identified obsolete test cases for one
of the subject programs. DejaVu and ChEOPSJ did not address the identification
of obsolete test cases. MaRTS and DejaVu outperformed ChEOPSJ in terms of
inclusiveness and precision, e.g., ChEOPSJ omitted some modification-traversing
test cases. Thus, MaRTS should be useful to developers using model-based tech-
niques for evolving or adapting software.

We also demonstrated through a mutation testing experiment that the reduced
test sets obtained by MaRTS achieved the same fault detection ability that was
achieved by the full test sets.

We plan to evaluate the inclusiveness and precision of MaRTS on additional
subject programs. We will also evaluate the fault detection ability of the reduced
test sets obtained by the approach, and the efficiency of the approach in terms of
the reduction in regression testing time. We will develop a formal proof for safety
and precision of MaRTS in the future.
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