
Journal on Software and Systems Modeling

Incorporating Measurement Uncertainty into OCL/UML
Primitive Datatypes

Manuel F. Bertoa · Loli Burgueño · Nathalie Moreno · Antonio Vallecillo

Received: date / Accepted: date

Abstract The correct representation of the relevant
properties of a system is an essential requirement for the
effective use and wide adoption of model-based prac-
tices in industry. Uncertainty is one of the inherent
properties of any measurement or estimation that is ob-
tained in any physical setting; as such, it must be con-
sidered when modeling software systems that deal with
real data. Although a few modeling languages enable
the representation of measurement uncertainty, these
aspects are not normally incorporated into their type
systems. Therefore, operating with uncertain values and
propagating their uncertainty become cumbersome pro-
cesses, which hinder their realization in real environ-
ments. This paper proposes an extension of OCL/UML
primitive datatypes that enables the representation of
the uncertainty that comes from physical measurements
or user estimates into the models, together with an al-
gebra of operations that are defined for the values of
these types.

Keywords Measurement Uncertainty · OCL · UML ·
Primitive Datatypes

Manuel F. Bertoa
Universidad de Málaga, Spain
E-mail: bertoa@lcc.uma.es

Loli Burgueño
Open University of Catalonia, IN3, Spain
Institut LIST, CEA, Université Paris-Saclay, France
E-mail: lburguenoc@uoc.edu

Nathalie Moreno
Universidad de Málaga, Spain
E-mail: moreno@lcc.uma.es

Antonio Vallecillo
Universidad de Málaga, Spain
E-mail: av@lcc.uma.es

1 Introduction

The emergence of cyber-physical systems (CPSs) [9]
and the internet of things (IoT) [29], which are exam-
ples of systems that must interact with the physical
world, and the current industrial practices, such as the
Industry 4.0 [50], have made evident the need to faith-
fully represent extra-functional properties in models of
systems and their elements. This is an essential require-
ment for leveraging some of the potential benefits of
model-based software engineering (MBSE) [59,8,16] in
industrial settings—particularly if MBSE is indeed go-
ing to become widely adopted in practice.

It has been claimed that the expressiveness of a
model is as important as the formality of its expres-
sion [47]. This expressiveness is determined by the suit-
ability of the language for describing the concepts of
the problem domain or for implementing the design.
Although in software engineering a variety of modeling
languages are tailored to various problems, they may
not be well suited for capturing key aspects of the real
world [9,43,60] and, in particular, for managing data
uncertainty in a natural manner. One relevant issue is
related to the uncertainty of the attribute values of the
modeled elements, especially when dealing with physi-
cal quantities such as lengths, times, weights, or other
measurable elements.

Data uncertainty can originate from various sources,
including variability of input variables, numerical errors
or approximations of parameters, observation errors,
measurement errors and lack of knowledge of the true
behavior of the system or its underlying physics [34].
On other occasions, estimates are needed because the
exact values cannot be obtained since the associated
properties are not directly measurable, or accessible or
values are too costly to measure or are simply unknown.

This is a pre-print of an article published in Software and Systems Modeling (SoSyM). The final authenticated version is
available online at: https://doi.org/10.1007/s10270-019-00741-0 and the specific citation should be:
Bertoa, M.F., Burgueño, L., Moreno, N., Vallecillo, A. "Incorporating measurement uncertainty into OCL/UML primitive
datatypes." Softw Syst Model (2019). https://doi.org/10.1007/s10270-019-00741-0

2 M. Bertoa, L. Burgueño, N. Moreno, and A. Vallecillo

Until recently, most software modeling notations have
permitted only exact values to be used for representing
system properties, which has limited their precision for
modeling and analyzing any realistic system. UML [54],
and its constraint language, namely, OCL [52] are the
main examples of this. They support primitive datatypes
Real, Integer, Boolean and String, in addition to enu-
merations, and UnlimitedNatural, which is used to rep-
resent the unbounded set of non-negative integers (with
“*” representing “∞”) to express the cardinalities of
model elements.

Currently, several modeling languages, such as MAR-
TE [53] and SysML [55], which are both extensions of
UML, support the representation of measurement un-
certainty for describing various system properties. Typ-
ically, stereotypes that are added to class attributes of
type Real are used to represent the tolerance or preci-
sion of their values. Various business process modelling
notations (e.g., [37]) also consider measurement uncer-
tainty, for example, when modeling the arrival times
of clients, the availability of resources or the duration
of tasks. These works use probabilistic mass functions
to model the values of the corresponding attributes in-
stead of fixed values. However, these aspects are not
incorporated into their type systems; therefore, oper-
ating with uncertain values or propagating uncertainty
are typically cumbersome processes and very difficult
to implement at the model level.

In a previous paper [63], we presented an extension
of the OCL/UML primitive datatype Real for deal-
ing with measurement uncertainty of numerical values,
by incorporating their associated uncertainty [34,35].
However, we soon realized that this was insufficient: un-
certainty may also affect the other OCL/UML primitive
datatypes since it is not just a matter of propagating
the uncertainty through the arithmetical operations but
also of dealing with the uncertainty when, for example,
we compare two uncertain numbers, which would re-
quire the definition of uncertain Booleans—values that
are true or false with a specified probability (level of
confidence). Similarly, integers should be endowed with
uncertainty, e.g., when they are used to represent times-
tamps expressed in milliseconds in systems with im-
precise clocks. This also extends to collections (e.g., a
forAll statement on a set of uncertain values) and to
the remaining primitive datatypes.

In [5], we proposed the extension of some OCL/UML
types (Real, Integer, Boolean and UnlimitedNatural)
with measurement uncertainty, and partially to OCL
collections which involved them. However, it did not
cover all OCL primitive datatypes (Strings and enu-
merations were not included), the extension did not
consider the 4-valued OCL logic, and neither the cor-

rectness nor the algebraic properties of these extensions
were studied. No tool support was provided for these
extensions either.

In this paper, we incorporate measurement uncer-
tainty into all primitive OCL datatypes, complete the
extension of the OCL collections and the Boolean val-
ues, check the algebraic properties of all the extended
types and their operations to ensure that they satisfy
the same properties as the basic type operations, and
provide a prototypical implementation of all new types
in a UML tool with full support for OCL, thereby of-
fering a proof of concept for our proposal. We have
also evaluated our proposal according to different di-
mensions, including correctness, performance, reusabil-
ity and interoperability.

All the supplementary materials and software arte-
facts related to this proposal are available from our Git
repository [1] and website [6]. They include: the com-
plete OCL specifications of the new datatypes and op-
erations; their implementation in SOIL [13] (an OCL
extension that enables the execution of OCL specifica-
tions for simulation purposes); the complete proofs of
the algebraic properties of the extended operations; the
two implementations in Java that we provide for the
new datatypes, the choice of which depends on whether
we assume values are independent and normally dis-
tributed (and therefore, a closed-form expression can
be used for the calculation of the propagated uncer-
tainty) or not (Monte-Carlo simulations are used if the
variables follow arbitrary distributions or they are not
independent); the source models of the examples and
case studies shown in this paper; and the new version
of the USE tool extended with the uncertain datatypes.

This paper is structured as follows: Section 2 in-
troduces the related concepts to measurement uncer-
tainty that will be used throughout the paper. Then,
Section 3 describes our proposal, the algebra of opera-
tions on uncertain values and the implementations that
we have developed for these operations. Tool support is
described in Section 4. Section 5 presents various usage
scenarios and applications of the proposal that we have
used to evaluate its expressiveness and suitability. The
evaluation of the proposal is discussed in Section 6. Fi-
nally, Section 7 compares our work to similar proposals
and Section 8 presents the conclusions of the paper and
an outlook on future work.

2 Background

Uncertainty is a quality or state that involves imperfect
and/or unknown information. It applies to predictions
of future events, estimates, physical measurements, or
unknown properties of a system [34].

Incorporating Measurement Uncertainty into OCL/UML Primitive Datatypes 3

Various types of uncertainties may be considered
when modeling a system [51,67,56]. For example, aleato-
ry uncertainty refers to the inherent variation asso-
ciated with the physical system under consideration,
or its environment. In contrast, epistemic uncertainty
refers to the potential inaccuracy in any phase of the
modeling process that is due to the lack of knowledge [51].
In this paper, we are concerned with measurement un-
certainty, which is a particular kind of aleatory uncer-
tainty that refers to the inability to know with pre-
cision the value of a physical quantity. Depending on
the type of quantity, we can express its measurement
uncertainty in various ways. For quantities whose val-
ues are of numeric types (Real, Integer or Unlimited
Naturals), measurement uncertainty can be expressed
using, e.g., ranges or distribution probabilities describ-
ing the possible variations of the values. In our pro-
posal, we will follow the ISO recommendations for rep-
resenting measurement uncertainty [34,36], in which
uncertainty is expressed in terms of the standard de-
viation of the measurements, for example, 13.5± 0.001

or 111.7 ± 1.5. This is the approach widely adopted
in most engineering disciplines. For a Boolean value,
a real number that is between 0 and 1 represents the
confidence (i.e., the degree of belief) that we have on
that value. Thus, possible uncertain Boolean values are
(true, 0.99) or (false, 0.75). For Strings, which are se-
quences of characters, a Real number that is between
0 and 1 can also be used to represent the confidence
we have on the values of a string: ("Hello", 0.90). This
is useful, for instance, when strings are obtained from
unreliable or difficult-to-recognize sources such as hand-
written manuscripts or images from low-precision cam-
eras (see Section 3.6). Finally, for enumerations, vari-
ables should be able to store more than one literal, as-
signing a probability to each one. For example, if the
literals of an enumeration type TemperatureLevel are
Low, Medium and High, a possible value of that type is
{(Low, 0.05), (Medium, 0.75), (High, 0.20)}.

2.1 Motivating example

To illustrate our approach, let us consider a system that
represents a battle between robots and other unidenti-
fied objects in a planar surface. The elements of such a
system are described by the metamodel that is shown
in Figure 1. The robots are tasked with ensuring that
no ‘unidentified object’ gets close to the area they pro-
tect. The position of each object is specified by a pair
of coordinates, namely, x and y, and the object moves
in the direction that is dictated by its angle attribute

Fig. 1: A Robot Battle System.

(expressed in radians) with a specified speed (in m/s).1

The size of each moving object is determined by its di-
ameter (attribute width, also in meters). Movements
are performed via the operation move, which updates
the coordinates of the object based on its current angle
and speed, and the number of elapsed seconds since the
last movement. Times are expressed using the POSIX
time convention, i.e., by the number of seconds since
January 1, 1970 [32].

If a robot detects that an unidentified object is mov-
ing at a speed that exceeds 0.3 m/s and gets close to its
position, the robot recognizes it as a threat and marks
it as such. The mark is represented by an object of
class Mark, whose coordinates coincide with the posi-
tion of the marking robot, and whose attributes angle
and hitsTarget are calculated as shown in Listing 1.
context Mark::angle : Real derive:

((target.position.y-robot.position.y) /
(target.position.x-robot.position.x)).atan()

context Mark:: hitsTarget : Boolean derive:
let d:Real = robot.position.distance(

target.position) in
(robot.position.x - target.position.x +

d*self.angle.cos()).abs() <= target.width
and (robot.position.y - target.position.y +

d*self.angle.sin()).abs() <= target.width

Listing 1: Derived attributes of class Mark.

Operation shootAtMarkedThreats() shoots at all
objects that have been marked by the robot as threats
of a high level (closer to it than 10 m). Every time the
robot or a marked object moves, the attributes of the
associated Mark object also change.

These specifications miss however an essential as-
pect of the system: the uncertainty associated to some
of its elements, and how it is propagated through the
system operations. For example, positioning systems
are not fully accurate, and therefore we should allow for
some imprecision in the attributes of the Coordinate

1 This is inspired by how various simple robots operate, in
particular, Ozobot robots (https://ozobot.com).

https://ozobot.com

4 M. Bertoa, L. Burgueño, N. Moreno, and A. Vallecillo

objects. Similarly, measurement devices should include
some uncertainty when estimating the width, angle
and speed of any moving object. Clocks may not be
fully accurate, so some tolerance in their measurements
should also be considered. We could also obtain impre-
cise readings of the id’s of the unidentified objects, due
to insufficient precision of the reading instruments, or
just lack of visibility.

The imprecision of these values should also be prop-
agated through the operations. For example, when com-
puting the attributes of Mark objects, their hitsTarget
attribute should have an associated probability now
that its operands incorporate imprecision—representing
the fact that we may miss the target—, and then op-
eration shootAtMarkedThreats() may only shoot at
objects that have been marked by the robot with a
probability of hitting them that exceeds 0.9. Without
incorporating these uncertainties in the attributes and
in the operations, the system specifications would be
very unrealistic and naïve, and hence of little value as
a faithful representation of the system and its behavior.

Our goal is to address these concerns by capturing
these uncertainties in the attributes of the system that
represent physical values subject to imprecision, and
properly propagating this uncertainty through the op-
erations. To achieve this, we will use the new primitive
datatypes UReal, UBoolean, UInteger and UString,
which will simply replace the types of those attributes
of the model that are subject to uncertainty. The advan-
tage of this approach is that the existing OCL expres-
sions in the model will not need to be modified, since
the operations of the extended types will naturally take
care of the propagation of uncertainty.

The following subsection briefly describe the various
types of measurement uncertainties that we consider in
this paper and their characteristics, as well as how the
newly defined primitive datatypes represent them.

2.2 Measurement uncertainty of numeric values

Measurement uncertainty is the special kind of uncer-
tainty that normally affects model elements that rep-
resent properties of physical elements. It is defined by
the ISO VIM [34] as “a parameter, associated with the
result of a measurement, that characterizes the disper-
sion of the values that could reasonably be attributed
to the measurand.”

The ISO Guide to the Expression of Uncertainty
in Measurement (GUM) [34] defines measurement un-
certainty for Real numbers representing values of at-
tributes of physical entities, and states that they cannot
be complete without an expression of their uncertainty.
This uncertainty is specified as a confidence interval,

which can be expressed in terms of the standard un-
certainty—i.e., the standard deviation of the measure-
ments of the value. Therefore, a real number x becomes
a pair (x, u), which is also noted x± u, that represents
a random variable X whose average is x and standard
deviation is u. For example, if X follows a normal dis-
tribution N(x, u), 68.3% of the values of X will be in
the interval [x− u, x+ u].

The GUM framework also identifies two ways of
evaluating the uncertainty of a measurement, the choice
of which depends on whether the knowledge about the
quantity X is inferred from repeated measured val-
ues (“Type A evaluation of uncertainty”) or scientific
judgment or other information concerning the possible
values of the quantity (“Type B evaluation of uncer-
tainty”).

In Type A evaluations of measurement uncertainty,
it is assumed that the distribution that best describes
an input quantity X given repeated measured values of
it (which were obtained independently) is a Gaussian
distribution. Thus, in Type A evaluation of uncertainty,
if X = {x1, . . . , xn} is the set of measured values, then
the estimated value x is taken as the mean of these
values and the associated uncertainty u as their exper-
imental standard deviation.

In Type B evaluation, uncertainty can also be char-
acterized by standard deviations, which are evaluated
from assumed probability distributions based on ex-
perience or other information. For example, if we as-
sume that the values of X follow a normal distribution
N(x, σ), then we set u = σ. If we can only assume
a uniform or rectangular distribution of the possible
values of X, then x is taken as the midpoint of the
interval, x = (a + b)/2 and its associated variance as
u2 = (b− a)2/12; hence, u = (b− a)/(2

√
3) [34].

2.3 Propagation of measurement uncertainty

In addition to the measurement or estimation of indi-
vidual attributes, we typically need to combine them
to produce an aggregated measure or calculate derived
attributes. For example, to compute the area of a rect-
angle, we need to consider its height and width and
combine them via multiplication. The individual uncer-
tainties of the input quantities must also be combined
to yield the uncertainty of the result. The GUM refers
to this as the law of propagation of uncertainty, or un-
certainty analysis.

Uncertainty analysis is challenging since combining
the probability distributions of individual uncertainties
is not a trivial task. The most common case is when
the individual uncertainties follow normal or rectan-
gular distributions; either analytical solutions exist or

Incorporating Measurement Uncertainty into OCL/UML Primitive Datatypes 5

they can be approximated based on a first-order Taylor
series approximation of the combination function [34].
However, there are cases in which two quantities to be
combined differ substantially; therefore, analytical so-
lutions for the aggregated uncertainty cannot be eas-
ily computed. This is also the case when the lineariza-
tion of the model provides an inadequate representa-
tion or the probability density function for the resulting
quantity significantly differs from a Gaussian distribu-
tion or a scaled and shifted t-distribution (e.g., due to
marked asymmetry). In these cases, the GUM recom-
mends simulation via the Monte Carlo method, which
is described in [35]. This approach is based on repeated
random sampling from the probability density function
of the input quantities {x1, . . . , xn} that must be aggre-
gated and the combination of the samples to produce
the samples of the derived quantity X. From these, the
expected value x of X and its uncertainty u, are cal-
culated as in Type A evaluation of uncertainty—i.e., x
as the mean of the samples and u as its standard de-
viation. Operations on quantities that are specified in
this way are performed on the samples since their dis-
tributions are unknown or their combinations do not
admit analytical solutions. The number of samples de-
pends on the shape and complexity of the probability
density function; typically, 106 samples are expected to
deliver a 95% coverage interval for the output quantity
such that this length is correct to one or two significant
digits (cf. [35]).

2.4 Uncertainty as confidence

Uncertainty can also apply to Boolean values. For ex-
ample, in order to implement equality and comparison
of numerical values with uncertainty, the traditional
values of true and false returned by Boolean oper-
ators are insufficient. In this case, each operator must
return a number that is between 0 and 1 instead, which
represents the probability that one uncertain value is
equal, less or greater than another [5]. This leads to
the definition of uncertain Booleans, which are Boolean
values that are accompanied by the level of confidence
that we assign to them, namely, pairs (b, c) in which b is
true or false and c is a Real number that is between
0 and 1. This is a proper supertype of Boolean and its
associated operations (see Section 3.2).

A property of this representation is that (b, c) =

(¬b, 1− c) for every boolean value b. Then, in the inter-
nal representation of uncertain booleans we will always
use the canonical form of the value by taking b = true
and c to be the corresponding confidence. Using this
canonical form, a true value with 95% confidence is

represented as (true, 0.95) and a false value with 95%
confidence as (true, 0.05).

This approach should not be confused with fuzzy
logic. Although both probability theory and fuzzy logic
deal with states of uncertainty, fuzzy set theory uses
the concept of fuzzy set membership and assumes an
element may belong to different sets at the same time.
In contrast, probability theory states the chance that an
element belongs to each set, assuming it only belongs to
one (see [40] for a discussion on the differences between
probability theory and fuzzy logic). Uncertainty theory
is an alternative approach to deal with belief degrees.
However, it changes the way in which product measures
are defined in probability theory [48].

2.5 Uncertainty in Strings

In special situations, it is also important to consider un-
certainty in values of type String. As discussed above,
measurement uncertainty is typically due to unreliable
sources, symbol recognition problems, or errors in the
reading instruments. For example, uncertainty in Strings
can be due to mistakes in various characters when ap-
plying an Optical Character Recognition (OCR) reader
to a handwritten manuscript or when texts in signs are
viewed under poor visibility conditions (e.g., at night
or with fog).

Measurement uncertainty will be assigned to values
of type String via a Real value in the range [0, 1] that
expresses the confidence that we have in the correctness
of the characters that compose that String. Such a con-
fidence is defined using the Levenshtein distance [45],
which estimates the number of character changes (addi-
tions, deletions and changes) between the current value
of the String and its real value, and also takes into ac-
count the number of characters in the String. For ex-
ample, if we are unsure of one character in the String
“Hell0”, we will associate to it a confidence of 1/5 =

0.8. Likewise, if we know that a String that represents
a sentence of 500 characters has a confidence of 0.999,
we should allow for two characters of the String to be
mistaken, misplaced or missing. Operations on uncer-
tain Strings should take into account this uncertainty
and propagate it accordingly (see Section 3.6).

2.6 Uncertainty in Enumeration literals

Enumeration types allow modelers to define a bounded
set of values (called literals) that can be taken by vari-
ables of such types. They are commonly used to repre-
sent nominal types, which differentiate between items
or subjects based only on their names or categories and
other qualitative classifications to which they belong.

6 M. Bertoa, L. Burgueño, N. Moreno, and A. Vallecillo

For example, we can use enumeration types to repre-
sent the days of the week (Monday-Sunday); in gram-
mar, the parts of speech (noun, verb, preposition, arti-
cle, pronoun, etc.); or in software engineering, the type
of faults (specification faults, design faults, and code
faults). Equality between the literals of their values and
listing them are the only operations that generically ap-
ply to the variables of a nominal type.

Measurement uncertainty can also be associated with
the variables of enumeration types because at times we
cannot be sure of the literal that we must assign to
them. For instance, on some occasions, it is not clear
whether a software bug is due to a faulty specification,
an incorrect design, or an error in the code. In this case,
the solution is to associate a probability to each literal,
instead of a single value. Then, the values of variables of
an uncertain enumeration type with n literals {l1, ..., ln}
are composed of sets of pairs {(l1, c1), ..., (ln, cn)} where
{c1, ..., cn} are numbers that are in the range [0, 1] and
represent the probabilities that the variable takes each
literal, with

∑n
i=1 ci = 1. Then, instead of assigning

a value Spec, Design or Code to a variable of enu-
meration type SWFaultType, we can assign the tuple
{(Spec, 0.1), (Design, 0.3), (Code, 0.6)}. The operations
of these uncertain enumeration types will be discussed
later in Section 3.7.

2.7 Uncertainty in OCL Collections

There are two main dimensions in which measurement
uncertainty can be considered in OCL collections (Sets,
Bags, OrderedSets and Sequences). First, we can have
basic OCL collections of uncertain elements; e.g., a Set
of uncertain Reals. This implies the extension of the op-
erations on collections to account for the new types of
elements. For example, the operation that sums the val-
ues of a collection of UReal numbers should be able to
return a UReal value. Moreover, the operations on col-
lections that return a Boolean value (forAll, exists)
or that select an element based on a Boolean predicate
(select, count) need to be extended to be able to deal
with uncertain Booleans.

As a second kind of extension, we can also consider
uncertainty in the contents of the collection itself, i.e.,
when we are not certain of the elements that comprise
it. To illustrate this with an example, the reader can
think of a Set whose elements are the events produced
by a sensor, and there is a possibility that some events
are mistakenly inserted, lost, or modified, due to un-
reliable sources or network connections. Then, there is
some degree of uncertainty about the presence of the
elements that compose the collection, which may even
affect its size. To represent this second kind of uncer-

tainty, we use the same strategy that we applied for
extending Strings with uncertainty: by means of asso-
ciating a Real value in the range [0, 1] to the collection,
which represents the confidence that we have on its con-
tents. Once again, we use the Levenshtein distance to
specify the number of changes, additions, or deletions
that are considered possible in the collection.

To differentiate the two previously mentioned kinds
of uncertainty in collections, let us use the term un-
certain collection (UCollection) to refer to the second
case (i.e., when we are uncertain about the contents
of the collection), and collections with uncertain ele-
ments to refer to the first one (i.e., when we are uncer-
tain about the values of the elements of the collections).
Note that both kinds of uncertainty can be combined
since it is possible to define uncertain collections with
uncertain elements, for instance, an uncertain Set of
uncertain Reals. These two kinds of extensions are de-
scribed later in Section 3.8.

2.8 Algebraic properties of operations under
uncertainty

To study the algebraic properties of the extended op-
erations that we have defined for the OCL and UML
datatypes, we must take into account that relations in
this context are no longer evaluated by a Boolean value
(i.e., the relation holds or not) but by a real number
that is between 0 and 1 and expresses the probability
that the relationship holds. For example, A < B is now
evaluated as (true, c), with c ∈ [0, 1]. In this context,
what does it mean for the < operation to be transitive?

In the following, we will use the extended UBoolean
version of the “=” operator, which corresponds to the
equals operation and that we will denote by .

= to dis-
tinguish it from its Boolean version, whereby two uncer-
tain Booleans A = (true, ca) and B = (true, cb) satisfy
A
.
= B if their confidences, when expressed in canonical

form, match, i.e., ca = cb. With this, to check the com-
mutativity of an operation ? that returns an UBoolean
value, we must prove that A?B .

= B?A. This extended
definition is backward-compatible: if an extended oper-
ation is commutative for all UBoolean values, it will
be commutative for Booleans, too, since Booleans are
particular instances of UBooleans (i.e., Booleans are
UBooleans with c = 1 or c = 0).

3 Extension of OCL and UML Datatypes

Our main objective in this paper is to extend the OCL
and UML languages by declaring new types that ex-
press the types of measurement uncertainties that were

Incorporating Measurement Uncertainty into OCL/UML Primitive Datatypes 7

+specification : String

TemplateParameterType

OrderedSetType

UnlimitedNatural

SequenceType

CollectionType

MessageType

PrimitiveType

StringIntegerRealBoolean

SetTypeBagType

Operation

Signal

TupleType

DataType

InvalidType VoidType AnyTypeClass

Classifier
+elementType

1

referredOperation0..1

referredSignal0..1

Fig. 2: OCL Types, from [52].

described in the previous section. The benefits are two-
fold: First, uncertainty can be expressed in software
models; therefore, our approach enables the user to
define and manipulate uncertainty in a high-level and
platform-independent way. This includes model simu-
lation and analysis using the uncertain types and the
propagation of uncertainty through these types’ oper-
ations. Second, information at the model level can be
transferred to standard algorithms and tools so that
they can also manage uncertainty by dealing with com-
plex types in their computations.

We propose the extension of the OCL datatypes,
which are illustrated in Figure 2, with measurement un-
certainty information. This includes all primitive types
(Real, Integer, Boolean, String, and UnlimitedNatu-
ral), collections (Set, Bag, OrderedSet, and Sequence)
and enumeration types. Other OCL types, such as Class,
Tuple and TemplateParameter, are user-defined and
composed of heterogeneous types that will convey such
information; hence, there is no need to extend them at
this level. Similarly, types oclInvalid, oclAny, oclVoid,
and Message are of different nature and do not need to
transmit measurement uncertainty information. They
could however be subject to other types of uncertain-
ties, such as belief or occurrence uncertainty [11], but
their treatment requires different notations and specific
techniques, and falls outside the scope of this paper.

3.1 Extension strategy

To extend the OCL/UML primitive datatypes, we ap-
ply type embedding [7], which is one kind of subtyp-
ing [46]. Embedding, subtyping and inheritance are dif-
ferent concepts [17]. In broad terms, when we apply
inheritance among classes, we say that objects of the
subclass inherit the internal structure and code of the
superclass and, in addition, can have new features (at-
tributes, methods, relationships, etc.). In contrast, sub-

typing refers to the part of the objects’ behavior that
can be observed from the outside [4], namely, the op-
erations that are applied on them. In algebraic terms,
subtyping leads to a conceptual hierarchy that is based
on behavioral specification. We say that type A is a
subtype of type B (denoted as A <: B) if all elements
of A belong to B and operations of B, when applied to
elements of A, behave the same as those of A [3], i.e.,
they respect behavioral subtyping [46]. If A <: B, then
we say that B is a supertype of A. For instance, Integer
is a subtype of Real because every Integer number can
be viewed as a Real number whose decimal part is zero.
Moreover, operations that are defined on the type Real,
when applied to numbers of the type Integer, behave
as those operations of type Integer.

There are some occasions where the subtyping re-
lation between the types cannot be directly applied.
For example, type Boolean can be viewed as a sub-
type of the type Integer, but this would imply defin-
ing its values as {0, 1} instead of {false, true}. This
is interesting because it would also result in many use-
ful mathematical properties that are not available with
the latter definition. Type embedding permits such an
inclusion, by defining the corresponding (injection) iso-
morphism {false, true} ↔ {0, 1} and then using sub-
typing. For example, Real numbers R can be embed-
ded into Complex ones C by using the isomorphism
R↔ R× {0} <: C. We will denote such an embedding
by R ↪→ C. Similarly, OCL datatype Real can be em-
bedded into the extended datatype UReal by consider-
ing that each Real number has an associated measure-
ment uncertainty of 0, i.e., each Real number x corre-
sponds to the UReal number x±0. With respect to the
behavior of the operations, the fact that↔ is an isomor-
phism and that <: is a subtyping relation, ensures that
the behavior of the operations of the embedded type is
respected when lifted to the embedding supertype.

With this, for extending a primitive OCL datatype
<T>, we will define an embedding supertype U<T> that
incorporates information about the uncertainty in the
values of <T> and defines the operations for the ex-
tended type, which are also applicable to the base type.
This uncertainty information will vary depending on
whether the values of the base type are numbers (types
Real, Integer and UnlimitedNatural), Boolean val-
ues, Strings or Enumeration literals.

In the first case, the measurement uncertainty infor-
mation will be expressed as specified in the ISO Guide
to Uncertainty in Measurement (GUM) [34]. Thus, num-
bers of the extended types will be pairs (x, u), where u is
the associated uncertainty (cf. Sections 3.3 to 3.5). Op-
erations will respect the subtyping relationship, thereby
ensuring safe-substitutability. In the case of Booleans

8 M. Bertoa, L. Burgueño, N. Moreno, and A. Vallecillo

Table 1: New OCL datatypes and their operations.
Type Operations

UReal
+,−,∗,/, abs(), neg(), power(), sqrt(), sin(), cos(), tan(), asin(), acos(), atan(),
inv(), floor(), round(), <, ≤, >, ≥, =, <>, equals(), distinct(), min(), max(),
toString(), toInteger(), toReal(), toUInteger()

UInteger +, −, ∗, div, /, abs(), neg(), power(), sqrt(), inv(), mod(), <, ≤, >, ≥, =, <>,
equals(), distinct(), min(), max(), toString(), toInteger(), toUReal(), toUInteger()

UUnlimitedNatural +, ∗, div, /, mod, <, ≤, >, ≥, =, <>, equals(), distinct(), min(), max(),
toString(), toInteger(), toUReal(), toUInteger()

UBoolean not, and, or, xor, implies, equivalent, =, <>, equals(), distinct(), equalsC(),
toString(), toBoolean(), toBooleanC()

UString
uSize(), uConcat(), uSubstring(), at(), uAt(), equals(), uEquals(), lt(), le(), gt(), ge(),
indexOf(), uCharacters(), toString(), uEqualsIgnoreCase(), uToUpperCase(), uToLowerCase(),
toBoolean(), uToBoolean(), toInteger(), toReal()

UEnum equals(), uEquals(), literals()

and Strings, the uncertainty will be specified as a Real
number that is between 0 and 1 and represents the as-
signed confidence (cf. Sections 3.2 and 3.6). Values of
enumeration types will assign a probability (confidence)
to each literal (Section 3.7).

Table 1 lists the newly defined types and their oper-
ations. In addition, the subtyping (<:) and embedding
(↪→) relationships among the numeric datatypes —both
standard and extended—are as follows:

UnlimitedNatural\{*} <: Integer <: Real

↪→ ↪→ ↪→

UUnlimitedNatural\{*} <: UInteger <: UReal

Furthermore, we have that Boolean↪→UBoolean and
String↪→UString, which complete these relationships.
To extend collections, we will specify them using the
corresponding extended operations of their element ty-
pes. The next sections describe these extensions in more
detail. For simplicity, and without loss of generality, in
the following we will omit the isomorphism, and di-
rectly talk about subtypes and supertypes to refer to
embedded subtypes and embedding supertypes.

3.2 Extending type Boolean

Type UBoolean is the embedding supertype of type
Boolean that adds uncertainty to its values. Thus, a
UBoolean value is a pair (b, c), where b is a Boolean
value and c is a Real number that is in the range [0, 1]

and represents the confidence in b. Since this represen-
tation admits a canonical form (see Section 2.4), true
and false are injected into the supertype as (true, 1)
and (true, 0), respectively.

The operations supported by type UBoolean extend
those of type Boolean, as defined by OCL [52]. We have
defined the basic operations (not, and and or) and sec-
ondary operations (implies, equivalent and xor) of
the traditional Boolean algebra by extending them with

uncertainty. Assuming that all values are independent,
Listing 2 specifies the UBoolean-type operations. They
also take into consideration the two special values null
and invalid, according to the 4-valued logic defined for
OCL [52], relying on how the primitive OCL operations
deal with these values.

We have preserved the semantics of the equals()
and distinct() operations: two UBoolean values are
the same if their confidences match when they are rep-
resented in their canonical form (both operations return
a Boolean value). We have also extended the equals()
operation to specify a confidence threshold for the equal-
ity of the two UBoolean values. Other comparison oper-
ations, namely equivalent() and xor(), compare two
UBoolean values and return another UBoolean value.

Finally, some conversion operations allow UBoolean
values to be converted into Boolean values, either ap-
proximately, if the confidence is greater than or equal
to 0.5, or by specifying a threshold for the confidence.

We have also specified an alternative implementa-
tion of these operations, in case no assumption can
be made about the independence of the variables in a
Boolean expression. It is based on the Monte-Carlo sim-
ulation method that was proposed in [35] for Type-A
measurement uncertainty in real numbers and has been
adapted to Boolean values. Basically, every UBoolean
value contains a sequence of Boolean values that repre-
sent the sample that is obtained when measuring that
value. Operations are performed on the samples and b
and c become derived values. An excerpt of such a spec-
ification, which includes only the first two operations,
is shown in Listing 3. An additional invariant, which is
at the end of the listing, requests that all samples be
of the same size. Similar specifications (and their cor-
responding implementations in Java) are also available
for the rest of the extended types.

Regarding the algebraic properties of the operations
for type UBoolean, since they can be equated to num-
bers that are in the range [0, 1] in the canonical form

Incorporating Measurement Uncertainty into OCL/UML Primitive Datatypes 9

not() : UBoolean
post: if self=null or self.oclIsInvalid () then result = self

else (result.b) and (result.c = if self.b then 1-self.c else self.c endif)
endif

and(b : UBoolean) : UBoolean
post: let C : Real = self.c*b.c in

if (self.b and b.b) = null then null else if (self.b and b.b) = invalid then invalid
else (result.b) and (result.c=if (self.b and b.b) then C else (1-C) endif)
endif endif

or(b : UBoolean) : UBoolean
post: let C : Real = (self.c + b.c - (self.c * b.c)) in

if (self.b or b.b) = null then null else if (self.b or b.b) = invalid then invalid
else (result.b) and (result.c=if (self.b or b.b) then C else (1-C) endif)
endif endif

implies(b : UBoolean) : UBoolean
post: let C : Real = ((1-self.c) + b.c - ((1-self.c)*b.c)) in

if (self.b implies b.b) = null then null else if (self.b implies b.b) = invalid then invalid
else (result.b) and (result.c=if (self.b implies b.b) then C else (1-C) endif)
endif endif

xor(b : UBoolean) : UBoolean
post: if (self.b implies b.b) and (b.b implies self.b) = null then null

else if (self.b implies b.b) and (b.b implies self.b) = invalid then invalid
else let selfc : Real = if self.b then self.c else 1-self.c endif in

let bc : Real = if b.b then b.c else 1-b.c endif in
(result.b) and (result.c=(selfc -bc).abs())
endif endif

equivalent(b : UBoolean) : UBoolean = self.xor(b).not()
equals(b : UBoolean) : Boolean =

((self.b=b.b) and (self.c=b.c)) or ((self.b=not b.b) and (self.c=1-b.c))
equalsC(b : UBoolean , C: Real) : Boolean =

(self.b=b.b) and ((self.c-b.c).abs() <=1-C) or (self.b=not b.b) and ((self.c-1+b.c).abs() <=1-C)
distinct(b : UBoolean) : Boolean = not (self.equals(b))
distinctC(b : UBoolean , C: Real) : Boolean = not (self.equals(b),C)
toBoolean () : Boolean = if (self.c >=0.5) then (self.b) else (not self.b) endif
toBooleanC(c:Real):Boolean = if (self.c>=c) then (self.b) else (not self.b) endif

Listing 2: Specification of UBoolean operations.

class UBoolean_A
-- canonical form: pairs (sample[],c), with:
-- sample []: the set of measured values obtained
-- for self
-- c: the confidence that self is true (derived)
attributes
sample : Sequence(Boolean)
c : Real derive: self.sample ->count(true)/

self.sample ->size()
operations
not() : UBoolean_A
post: (Sequence {1.. self.sample ->size}->

forAll(i|result.sample ->at(i) =
not self.sample ->at(i)))

and(b : UBoolean_A) : UBoolean_A
post: (Sequence {1.. self.sample ->size}->

forAll(i|result.sample ->at(i) =
(self.sample ->at(i) and b.sample ->at(i))))

... -- type invariant:
context UBoolean_A inv SameSampleSize:
UBoolean_A.allInstances ->forAll(u,v|

u.sample ->size=v.sample ->size)

Listing 3: UBoolean specifications using samples.

of the UBoolean values, and due to the way in which
we have defined the operations, it is easy to prove that
the following properties hold for every A and B of type
UBoolean (operator “ .=” corresponds to the operarion
equals of type UBoolean, see Sect. 2.8).

– not(not(A)) .
= A

– not(A or B) .
= not(A) and not(B) (ANDMorgan’s

Law)

– not(A and B) .
= not(A) or not(B) (OR Morgan’s

Law)
– Operation and is commutative, associative and its

identity element is (true, 1.0).
– Operation or is commutative, associative and its

identity element is (false, 1.0).

To show an example of how these properties have
been proved, we present here the proof of the first one,
i.e., not(not(A)) .=A. First, if A.oclIsUndefined (i.e.,
A = null or A.oclIsInvalid) then, by the specifica-
tion of the OCL not operation [52], not(A) .=A. There-
fore, not(not(A)) .=A and hence not(not(A) .

= A.
Second, suppose A is well defined, i.e., A = (true, a).
Then, not(A) .

= (true, 1 − a), by the specification of
the not operation. Applying this again, not(not(A))
.
= not(true,1− a) .

= (true, 1− (1− a)) .= (true, a) =
A. The rest of the properties can be proved similarly.

The “AND complement” property (A and not(A)
.
= (false, 1)) does not hold in this case. However, we
can always affirm that A and not(A) .=(false, c), with
c ≥ 0.75. To prove this, we assume that all values
are in normal form. Then, we have that A and not(A)
.
= (true,c) and (true,1−c) .

= (true, c*(1−c)) .
=

(false,1−c*(1−c)). However, 1− c∗ (1− c) is a func-
tion whose minimum is 0.75 (which is attained for c =
0.5). A similar result can be demonstrated for the “OR

10 M. Bertoa, L. Burgueño, N. Moreno, and A. Vallecillo

complement” property (A or not(A) .= true), for which
we can only affirm, in case of uncertain Booleans, that
A or not(A) .= (true, c), with c ≥ 0.75.

The secondary operations (xor, implies and equi-
valent) of type UBoolean work with Boolean values as
before and respect their properties, even when lifted to
UBoolean values. In particular:

– Operation implies is non-commutative and asso-
ciative, since (A implies B) .= (not A or B).

– Operation equivalent is commutative, associative,
and its identity element is (true, 1).

– Similarly, xor is commutative, associative, and its
identity element is (false, 1). However, (A xor A) .=
(false, c(2− c)).

To check whether equivalent is an equivalence re-
lation, we must prove that it is reflexive, symmetric and
transitive.

– It is reflexive since A equivalent A .
= (true, 1).

– Symmetry holds because the operation is commuta-
tive on Boolean values.

– Transitivity cannot be ensured: assuming a > b > c,
then (A equivalent B) and (B equivalent C)
.
= (true, (1 − b + c) + (a − b)(b − c)), while (A
equivalent C) .= (true, (1− b+ c). They coincide
in case of Boolean values, or if any of the two values
are equal. .

Analogous results are obtained for the relation de-
fined by operation xor.

3.3 Extending type Real

To represent real values with measurement uncertainty,
we use type UReal and the algebra of the operations
defined for the values of that type, see Table 1. The
values of UReal are pairs of Real numbers which are
denoted as X = (x, u). They determine the expected
value (x) and associated standard uncertainty (u) of
quantity X, as defined in Section 2. Real numbers x
are naturally injected into type UReal and correspond
to pairs (x, 0).

We have specified in OCL and implemented in Java
all the operations on the values of type UReal to en-
able modelers to use them to define derived attributes
and specify operations and invariants in OCL and UML
models. Furthermore, to validate our proposal, we have
extended a tool, namely, USE, by implementing the new
types as native ones—see Section 4.

As an example, Listing 4 presents the specifications
of two of the UReal operations:2

2 Operations on basic datatypes normally use infix notation
(e.g., x + y, a < b, P and Q). This is the notation that we

((a)) Representation of a =
2.0± 0.3 and b = 2.5± 0.25.

((b)) Representation of c =
1.0± 0.5 and d = 1.25± 0.75.

Fig. 3: Graphical representations of UReal values.

add(r : UReal) : UReal
post: result.x=self.x + r.x and

result.u=(self.u*self.u + r.u*r.u).sqrt()
mult(r : UReal) : UReal

post: result.x=(self.x*r.x) and
result.u=(r.u*r.u*self.x*self.x +

self.u*self.u*r.x*r.x).sqrt()

Listing 4: Specification of + and ∗ UReal operations.

For simplicity, in these expressions we assume that
the variables are independent and use a closed-form so-
lution to compute the aggregated measurement uncer-
tainty. As in the case of type UBoolean, an alternative
specification uses samples to implement a Type A eval-
uation of uncertainty, in case we cannot assume that
the variables are independent, or follow arbitrary dis-
tributions. An excerpt of this specification is shown in
Listing 5.
class UReal_A
attributes

x : Real derive: self.sample ->avg()
u : Real derive: self.sample ->stdDev ()
sample : Sequence(Real)

operations
add(r : UReal_A) : UReal_A

post: Sequence {1.. self.sample ->size}->
forAll(i|result.sample ->at(i)=

(self.sample ->at(i)+r.sample ->at(i)))
mult(r : UReal_A) : UReal_A

post: Sequence {1.. self.sample ->size}->
forAll(i|result.sample ->at(i)=

(self.sample ->at(i)*r.sample ->at(i)))

Listing 5: UReal operations using samples.

Comparison operations between uncertain reals (=,
6=, <, ≤, >, ≥) should now return UBoolean values.
To illustrate this need, consider the graphical represen-
tation of two pairs of uncertain reals that is shown in
Figure 3. Indeed, there is an overlap (represented by
the gray area): it constitutes the probability that the
two values are equal.

already support in our USE implementation for the newly de-
fined types (UReal, UBoolean, etc.). However, other languages
that we have used to implement these new types (e.g., Java)
do not support infix notation. Therefore, in the following we
will use either an infix or prefix notation (x.add(y), a.lt(b),
P.and(Q)) for the operations of these types, depending on the
context and the language used.

Incorporating Measurement Uncertainty into OCL/UML Primitive Datatypes 11

Then, given two UReal values x and y, we define
three real numbers, namely, (l, e, g), that represent, re-
spectively, the probability of x being less than, equal
to or greater than y. Expression l + e + g = 1 always
holds. For example, the triplet that we obtain for val-
ues a and b (Fig. 3(a)) is (0.893, 0.106, 1.11 · 10−16),
which specifies that a < b with probability 0.893, a = b

with probability 0.106, and a > b with a probability
1.11 · 10−16. Similarly, the triplet for c and d (Fig-
ure 3(b)) is (0.152, 0.754, 0.094). These 3 numbers cor-
respond to the three areas into which the curve that
represents the first of the values can be divided. This
is clearer in Figure 3(b), where the three areas of the
curve that represents UReal number d can be easily dis-
tinguished: the left and right areas with vertical stripes
represent the areas where c < d and c > d, respectively,
and the central area (in gray) represents the area where
both numbers coincide; it corresponds to the intersec-
tion of both curves.

All this has been specified in OCL using an aux-
iliary operation, namely, calculate(r:UReal), which
returns a tuple with the triplet. With it, the compari-
son operations between UReal numbers are specified as
shown in Listing 6.

To deal with dependent variables using closed-form
expressions, we have also specified and developed an
implementation of the operations that consider the co-
variance of the operands, according to the GUM [34].
For example, Listing 7 shows the OCL specification of
the add and mult operations of type UReal, considering
covariance.
add(r:UReal ,cov:Real):UReal

post: result.x=self.x + r.x and
result.u=(self.u*self.u + r.u*r.u -

2*cov).sqrt()
mult(r:UReal ,cov:Real):UReal

post: result.x=(self.x*r.x) and
result.u=(r.u*r.u*self.x*self.x +

self.u*self.u*r.x*r.x +
2*self.x*r.x*cov).sqrt()

Listing 7: UReal operations with covariance.

Table 1 listed the set of operations that are de-
fined for type UReal, including conversion operations
to other OCL datatypes (both standard and extended).
The properties of those operations, namely, the alge-
braic properties of type UReal for each operation, are
of interest. Using the specifications of these operations,
the following properties of the four basic arithmetic op-
erations can be proved:

– Operations + and * are commutative and associa-
tive and their identity elements are (0.0, 0.0) and
(1.0, 0.0), respectively.

– The distributive property of the + and * operations
only holds if the multiplicator is a UReal value. This

is because the uncertainty of the sum is accummu-
lated by the multiplication:
X1 ∗ (X2 +X3) = (x1, u1) ∗ ((x2, u2) + (x3, u3))

= (x1, u1) ∗ (x2 + x3,
√
u22 + u23)

= (x1x2 + x1x3,
√
u21(x2 + x3)2 + x21(u

2
2 + u23))

= (x1x2 + x1x3,√
u21x

2
2 + u21x

2
3 + 2u2

1x2x3 + x21u
2
2 + x21u

2
3)

6= (x1x2 + x1x3,
√
(x21u

2
2 + x22u

2
1) + (x21u

2
3 + x23u

2
1))

= (x1x2,
√
x21u

2
2 + x22u

2
1) + (x1x3,

√
x21u

2
3 + x23u

2
1)

= X1 ∗X2 +X1 ∗X3.

– Operations - and / exhibit the same properties as
their Real-type counterparts. However, when com-
bined with operations + and *, their behaviors change
because UReal values accumulate uncertainty in ev-
ery operation application. For instance, if X and
Y are of type UReal, then (X − Y) + (Y − X) 6=
(0.0, 0.0) unless the uncertainties in X and Y are
both 0. In this context, formulas that involve UReal
values should be algebraically simplified, if needed,
before the final results are computed.

The propagation of uncertainty through operations
also influences the behavior of inverse and reciprocal
operations:

– The reciprocal (or multiplicative inverse) of a UReal
number (x, u)—the UReal number (y, z) such that
(x, u) ∗ (y, z) = (1.0, 0.0)—exists if and only if x 6=
0.0 and u = 0.0, i.e., for non-null Real numbers, and
coincides with (1/x, 0.0). This is because the un-
certainty is always non-negative and can only grow
when propagated through operations.

– Similarly, the opposite (or additive inverse) of a
UReal number (x, u)—the UReal (y, z) such that
(x, u) + (y, z) = (0, 0)—exists if and only if x 6= 0

and u = 0, i.e., for non-null Real numbers, and co-
incides with (−x, 0.0).

The properties of the equality operations equals(),
distinct(), “=” (also called uEquals()), and “<>” (or
uDistinct()) that are defined on UReal values are as
follows:

– Operations equals() (that corresponds to .
=) and

distinct() return Boolean values with the result
of the comparison of the two UReal values as pairs of
numbers. That is is, (x, u) .= (y, z) iff x = y∧u = z.
Therefore, operation equals is reflexive, symmet-
ric and transitive, while operation distinct is anti-
reflexive, symmetric and not transitive—like their
Real counterparts.

– The behaviors of operations = (or uEquals) and <>
(uDistinct), which return UBoolean values, coin-
cide by construction with that of operations = and

12 M. Bertoa, L. Burgueño, N. Moreno, and A. Vallecillo

context UReal::lt(r :UReal) :UBoolean -- less than
post: (result.b) and (result.c =self.calculate(r).l)

context UReal::le(r :UReal) :UBoolean -- equal or less than
post: (result.b) and (result.c = let x:Tuple(l:Real ,e:Real ,g:Real)=self.calculate(r) in x.l + x.e)

context UReal::gt(r :UReal) :UBoolean -- greater than
post: (result.b) and (result.c=self.calculate(r).g)

context UReal::ge(r :UReal) :UBoolean -- greater or equal
post: (result.b) and (result.c=let x:Tuple(l:Real ,e:Real ,g:Real)=self.calculate(r) in x.g + x.e)

context UReal:: uEquals (r :UReal) :UBoolean
post: (result.b) and (result.c = self.calculate(r).e)

context UReal:: uDistinct(r :UReal) :UBoolean
post: (result.b) and (result.c = 1.0 - self.uEquals(r))

Listing 6: Specification of UReal comparison operations.

<> when applied to Real values, but their proper-
ties differ when used with UReal numbers. In partic-
ular, operation “=” (uEquals) is reflexive and sym-
metric, but not necessarily transitive.

To show that “=” is not necessarily transitive, con-
sider UReal numbers X = (3.0, 1.0), Y = (4.0, 1.0) and
Z = (5.0, 1.0). Then, (X = Y)

.
=(true,0.617), (Y =

Z)
.
=(true,0.617), and (X = Z)

.
=(true,0.317). Tran-

sitivity, in the context of UBoolean values, can be stated
as (X = Y) and (X = Z) implies (X = Z), which,
in this case, evaluates to (true,0.577), and does not
coincide with (true,1).

Finally, the behaviors of operations <, ≤, > and
≥, which return UBoolean values, coincide with the be-
havior of the Real operations of the same name when
they are applied to Real values; however, their behav-
iors may differ when used with UReal values, mainly be-
cause, in that case, we are assigning probabilities (num-
bers in the range [0, 1]) to these relationships. Opera-
tions ≤ and ≥ are reflexive; however, we cannot guar-
antee that they are antisymmetric or transitive unless
they are applied to Real numbers. Similar results are
obtained for operations < and >, since we are dealing
here with probabilities. This can be proved via the same
arguments that were used to prove the properties of the
equality operations on UReal values.

3.4 Extending type Integer

Datatype UInteger is the embedding supertype of OCL
datatype Integer that defines measurement uncertainty.
It is needed, e.g., when representing timestamps of events,
which are normally expressed in milliseconds and may
have uncertain values due to a lack of clock accuracy.

This extension is straightforward. Every UInteger
element is of the form (n, u), where n is an Integer
value and u a Real value that represents its measure-
ment uncertainty. The injection of any Integer value
n into type UInteger is naturally defined by (n, 0.0).
The behaviors of UInteger operations are defined by
lifting the operations to type UReal and projecting the

corresponding results, if necessary. This, together with
the subtyping relationship Integer <: Real in OCL,
ensures the proper embedding relationship between In-
teger and UInteger.

3.5 Extending type UnlimitedNatural

An OCL UnlimitedNatural is either a non-negative
Integer or a special unlimited value (*) that represents
the upper value of a multiplicity specification [52]. This
special value * cannot be used in any arithmetic oper-
ation with unlimited naturals; it can only be used with
comparison (including max and min) operations.

Excluding value *, unlimited naturals are non-nega-
tive integers, more precisely: UnlimitedNatural\{*} <:
Integer. Although subtraction is not defined in OCL
for unlimited naturals, it can be naturally defined as
a partial operation, and hence lifted to type Integer
(and, therefore, to Real).

The extension of UnlimitedNatural to UUnlimited-
Natural consists of adding a new component to every
unlimited natural value, with the expression of its un-
certainty. The uncertainty of special value * will be 0.

Operations on UUnlimitedNatural values that do
not involve special value * (internally represented by
“−1”) are defined by lifting them to type UInteger. For
illustration purposes, Listing 8 provides the OCL spec-
ifications of the comparison operations between UUnli-
mitedNatural values.

3.6 Extending type String

Type UString extends type String by associating un-
certainty to its values, by means of a real number that
is in the range [0, 1] and represents the confidence that
we have in the contents of the string. Therefore, values
of type UString are pairs (S, c), where S is the string
and c the associated confidence. Values of type String
are embedded into UString as (S, 1.0).

To calculate the confidence of a string S we will
use the Levenshtein distance [45], which is defined as

Incorporating Measurement Uncertainty into OCL/UML Primitive Datatypes 13

uEquals(r : UUnlimitedNatural) : UBoolean
post: result = if (self.x<>-1) and (r.x<>-1)

then self.toUInteger ().uEquals(r.toUInteger ())
else (self.x=-1) and (r.x=-1)
endif

lt(r : UUnlimitedNatural) : UBoolean
post: result = if (self.x<>-1) and (r.x<>-1) then

result=self.toUInteger ().lt(r.toUInteger ())
else (result.b = ((self.x<>-1)or(r.x=-1))) and

(result.c = 1.0)
endif

le(r : UUnlimitedNatural) : UBoolean
post: result=self.lt(r).or(self.equals(r))

gt(r : UUnlimitedNatural) : UBoolean
post: result = not self.le(r)

ge(r : UUnlimitedNatural) : UBoolean
post: result = not self.lt(r)

max(r : UUnlimitedNatural):UUnlimitedNatural
post: result = if (self.x=-1) then self

else if (r.x=-1) then r
else if r.lt(self).toBoolean ()

then self else r endif
endif

endif
min(r : UUnlimitedNatural):UUnlimitedNatural

post: result = if (self.x=-1) then r
else if (r.x=-1) then self

else if r.lt(self).toBoolean ()
then self else r endif

endif
endif

Listing 8: UUnlimitedNatural comparison operations.

context UString :: distToConf(dist:Real ,
len:Integer) : Real = (1.0- dist/len).max (0.0)

context UString :: confToDist () : Real =
self.S.size()*(1.0- self.c)

Listing 9: Calculation of UString confidence.

“the minimum number of changes (insertion, deletion,
or substitution of a single character) needed to trans-
form one string into another.” Then, if dist represents
the number of changes that we estimate that a string
S may have, and len is the size of the string, the oper-
ations shown in Listing 9 enable the calculation of the
corresponding confidence of the string and vice-versa:
given a confidence, the estimated distance of that string
with respect to its real value.

For example, if S = ’Hello world!’, a confidence
of 1 would mean that the string is completely accu-
rate; and a confidence of 0.92 (=1-(1/S.size)=11/12)
would mean that we could allow one change (i.e., a dele-
tion, addition or modification of one character).

Table 2 lists the newly defined operations for Type
UString, in addition to those defined for OCL type
String, which can also be applied to UString values.
The former operations simply act on the string value,
without changing its confidence. In contrast, the oper-
ations that are listed in Table 2 operate on both the
string value and the confidence.

Listing 10 presents the specifications of some of these
operations (the complete specifications of all operations

Table 2: Extended operations of type UString.
Operation Parameters Return Value
toString() - String
uSize() - UInteger
uConcat(), + s:UString UString
uSubstring() lower:Integer, UString

upper:Integer
toInteger() - Integer
toReal() - Real
toBoolean() - Boolean
uToUpperCase() - UString
uToLowerCase() - UString
indexOf() s:UString Integer
equals() s:UString Boolean
uEquals() s:UString UBoolean
uEqualsIgnoreCase() s:UString UBoolean
at() i:Integer String
uAt() i:Integer UString
uCharacters() - USequence(UString)
uToBoolean() - UBoolean
lt,gt,le,ge s:UString UBoolean

equals(us:UString):Boolean =
(self.S=us.S) and (self.c=us.c)

uSize () : UInteger
post: result.x = self.S.size() and

result.u = self.confToDist ()
uConcat(us:UString):UString
post: result.S = self.S.concat(us.S) and

result.c = self.distToConf(
self.confToDist () + us.confToDist (),
self.S.size() + us.S.size())

uSubstring(lower:Integer , upper:Integer) : UString
pre validLimits: (1<=lower) and (lower <=upper)
post: result.S = self.S.substring(lower , upper) and

result.c = self.c
uEquals (us:UString) : UBoolean
post: result.b and

result.c = if (self.S=us.S) then self.c*us.c
else 1.0-self.c*us.c endif

uAt(i:Integer) : UString
pre validArg: i>0 and i<=self.size()
post: result.S = self.substring(i,i) and

result.c = self.c
lt(us:UString) : UBoolean
post: result.b and

result.c = if (self.S<us.S) then self.c*us.c
else 1.0-self.c*us.c endif

Listing 10: Specification of UString operations.

are available from [1,6]). Using these specifications, it
is easy to prove that the extensions to type UString of
all operations that were originally defined in OCL for
type String respect the original behavior when they
are applied on values of type String.

The algebraic properties of the extended operations
all respect the properties of the String operations, ex-
cept when the combination of the operations specifies
concatenations that are followed by substring extrac-
tions of UString values with different uncertainties.
This is due to the way in which the uncertainty of the
composite string is calculated and propagated to the
substrings (see the OCL specifications of these two op-
erations in Listing 10).

14 M. Bertoa, L. Burgueño, N. Moreno, and A. Vallecillo

-- Same substrings uncertainties
C1= S1.uConcat(S2) = ('ABCFGHIJ ' ,0.8)
R1= C1.uSubstring (1,3) = ('ABC' ,0.8) = S1
R2= C1.uSubstring (4,8) = ('FGHIJ ' ,0.8) = S2
-- Different substrings uncertainties
C2= S1.uConcat(S3) = ('ABCFGHIJ ' ,0.675)
T1= C2.uSubstring (1,3) = ('ABC' ,0.675) <> S1
T2= C2.uSubstring (4,8) = ('FGHIJ ' ,0.675) <> S2

Listing 11: Combining concat and substring operations.

For example, consider the following three uncertain
strings: S1=(’ABC’,0.8), S2=(’FGHIJ’,0.8) and S3=
(’FGHIJ’,0.6). The operations that concatenate these
strings and extract the corresponding substrings pro-
duce different results if the uncertainties differ, as shown
in Listing 11.

The uncertainty associated to a String refers to the
confidence we have on it. Should we need to assign a
confidence to individual characters of a String, we can
consider the String as a sequence of characters (in OCL,
Strings of size 1), and associate a confidence to each one.

3.7 Extending Enumeration types

Enumerations are user-defined types. An enumeration
type is defined by a set of literals {l1, ..., ln}. An enu-
meration value is one of the literals defined for the type.

Type UEnum is the embedding supertype for type
Enum that adds uncertainty to each of its values. Then,
a value of an uncertain enumeration type will no longer
be a single literal, but a set of pairs {(l1, c1), ..., (ln, cn)}
where {c1, ..., cn} are numbers that are in the range
[0, 1] and that represent the probabilities that the vari-
able takes each literal as its value, and where

∑n
i=1 ci =

1. For convenience, pairs with a zero confidence can be
omitted from the set. Regular (non-uncertain) enumer-
ation values are injected into the extended type by a
set with only one pair, which is composed of the literal
with a confidence of 1.0.

The only operations that are defined for enumera-
tion types are equals() and literals(). We extend
them to UEnum types and add operations equals() and
uEquals().

Operation equals() returns a Boolean value that
checks if the two sets of pairs are the same. Opera-
tion uEquals() returns a UBoolean value whose confi-
dence is defined by

√
(
∑n

i=1(ai − bi)2)/2, where ai and
bi are the confidences of the literals of the two UEnum
values that are being compared. The last operation,
namely literals(), returns the set of literals of the
type; therefore, it coincides with the original operation
that was defined in OCL for enumeration types.

enum Color{White , Red , Blue , Green , Yellow , Black}

class UColor
attributes values:Sequence(Tuple(literal:Color ,

conf:Real))
operations
equals(ue:UColor):Boolean =

self.values ->asSet = ue.values ->asSet
conf(lit:Color):Real =

-- confidence of a literal
let L:Sequence(Color) =

self.values ->collect(literal) in
if L->includes(lit) then

self.values ->collect(conf)->at(L->indexOf(lit))
else 0.0 endif

literals ():Sequence(Color) =
self.values ->collect(literal)

uEquals(ue:UColor):UBoolean
post: result.b and

result.c = if self.equals(ue) then 1.0
else let L:Sequence(Color) =

self.literals ()->union(ue.literals ()) in
1.0-(L->iterate(l ; s : Real = 0.0 |

let x1 : Real = self.conf(l) in
let x2 : Real = ue.conf(l) in
s + (x2-x1)*(x2-x1))/4).sqrt()

-- type invariants
context UColor inv UColorUniqueLiterals:

self.values ->size() =
self.values ->collect(literal)->asSet ->size

context UColor inv UColorProbabilities:
self.values ->collect(conf)->sum()=1.0 and
self.values ->collect(conf)->

select(c | c<0.0 or c>1.0) ->isEmpty ()

Listing 12: Specification of UColor UEnum class.

Logically, to specify these kinds of types, we build
one class for every UEnum that we want to specify. For
example, for enumeration type Color, Listing 12 speci-
fies the corresponding UColor class and its operations.
The two class invariants at the end check that the val-
ues of uncertain enumerations have unique literals, and
their confidences are correct, namely, that they all are
in the range [0, 1] and their sum is 1.

The extended class is automatically generated from
the UEnum type. In our implementation of this type
in the USE environment, this is why a UEnum type
is defined in a similar way to an enum type: UEnum
name{l1, ..., ln}; e.g., UEnum Color{White, Red, Blue,
Green, Black}. Constants are expressed in a compact
form, e.g., UColor{(#Yellow,0.8),(#White,0.2)}.

3.8 Extending OCL collections

As mentioned in Section 2.7, two kinds of uncertainties
in OCL collections can be considered:

a) Collections with uncertain values. This first case cor-
responds to collections whose elements are uncertain
values. OCL defines an abstract datatype Collection,
with a set of operations common to all kinds of col-
lections, plus a set of operations which are specific to

Incorporating Measurement Uncertainty into OCL/UML Primitive Datatypes 15

Table 3: OCL collections and their operations.
Type Operations

Collection

select(), reject(), collect(), collectNested(),
forAll(), exists(), isUnique(), one(), any(),
closure(), iterate(), sortedBy(), =, <>, size(),
includes(), excludes(), includesAll(), isEmpty(),
excludesAll(), notEmpty(), max(), min(), sum(),
product(), selectByKind(), selectByType(),
asSet(), asBag(), asOrderedSet(), asSequence(),
flatten(), count()

Set union(), intersection(), -(), including(),
excluding(), symmetricDifference(),

OrderedSet append(), prepend(), insertAt(), subOrderedSet(),
at(), indexOf(), first(), last(), reverse()

Bag union(), intersection(), including(), excluding(),

Sequence union(), append(), prepend(), insertAt(),
subSequence(), at(), indexOf(), first(), last(),
reverse()

each subtype: Set, OrderedSet, Bag, Sequence. Ta-
ble 3 shows the operations supported by OCL collec-
tions. The extension consists in extending these oper-
ations to deal with uncertain values. As before, they
are evaluated in the higher type of the type hierar-
chy of the elements of the collection—note that this
hierarchy includes now the extended datatypes. For in-
stance, if a Sequence is composed of values of types
Real and UReal, the type of the collection would be
Set(UReal) and the corresponding operations will be
evaluated within this type; e.g., operation sum() will
return a UReal value. Similarly, logic predicates in col-
lection operations that return Boolean values (such as
forAll, exists or isUnique) might now be of type
UBoolean, and therefore the operations may also return
a UBoolean value—for example, when deciding whether
all the elements of a set of UReal values are greater than
a given number. However, we do not allow logic pred-
icates of type UBoolean to act as filters to select ele-
ments of the collections, since we need to clearly decide
whether an element belongs or not to the collection;
this is the case, for instance, of operations select, any,
or collect. Operation confidence(), which allows to
know the confidence of a UBoolean value, can be used
in these cases. Listing 13 shows some examples of ex-
ecutions of these operations in USE. A question mark
(‘?’) command in the USE shell is used to evaluate an
OCL expression. The result is shown in the following
line, preceded by the ‘->’ symbol.

Note that, due to the way in which UBoolean oper-
ations have been defined (see Section 3.2), these opera-
tions respect the behavior defined in the OCL standard
when they involve OCL null and invalid values.

b) Uncertain collections. This second case provides ex-
tensions to represent the lack of confidence about the
contents of the collections as we defined in Section 2.7.
To represent the degree of belief that we have on the
real presence/absence of the elements to a collection,
we have defined new collection types, namely USet,

use > ?Set {0.9 ,2.0 ,2}
-> Set{0.9, 2, 2.0} : Set(Real)
use > ?Set{0.9,2.0,2}-> forAll(u|u>1.0)
-> false : Boolean
use > ?Set{UReal (0.9 ,0.1), UReal (2.0 ,0.1), 2.0}
-> Set{UReal (0.9 ,0.1) ,2.0,UReal (2.0 ,0.1)}:Set(UReal)
use > ?Set{UReal (0.9 ,0.1), 2.0, UReal (2.0 ,0.1)}->

forAll(u|u>1.0)
-> UBoolean(true , 0.1586552596) : UBoolean
use > ?Set{UReal (0.9 ,0.1), 2.0, UReal (2.0 ,0.1)}->

select(u|u>1.0)
<input >:1:40: Argument expression of select must have

Boolean type , found UBoolean.
use > ?Set{UReal (0.9 ,0.1), 2.0, UReal (2.0 ,0.1)}->

select(u|(u>1.0).confidence () >0.95)
-> Set{2.0, UReal (2.0, 0.1)} : Set(UReal)

Listing 13: Examples of operations with Collections.

UBag, UOrderedSet and USequence, each one extend-
ing the corresponding OCL collection type. These ex-
tensions are implemented in a similar way to how we
extended type String, associating a Real value within
the range [0, 1] that represents the confidence. Thus,
values of type UCollection are pairs (S, c), where S
is a Collection and c the associated confidence. Ba-
sic collection types (i.e., collection without uncertainty)
are injected into the extended uncertain collection types
by associating them a confidence of 1.0.

To calculate the confidence of a collection S we fol-
low the same procedure that we applied in the case
of strings, using the Levenshtein distance [45]. In this
context, it provides the minimum number of changes
(insertion, deletion, or substitution of a single element)
needed to transform one collection into another. This
provides a measure of the possible changes in a collec-
tion, which is an aggregated measure of its uncertainty.
Of course, these changes need to be understood in the
context of each kind of collection; for example, adding a
repeated element to a USet does not represent a change
(nor changing the order of two of its elements), while,
for example, it makes a difference when the type of col-
lection is a USequence.

With this, if d is an Integer value that represents the
number of changes that we estimate that a collection
S may have, and l is the size of the collection, its con-
fidence c will be computed as c = max{1.0 − (d/l), 0}.
Therefore, if S = Set{0,1,2,3,4,5,6,7,8,9}, a con-
fidence of c = 1.0 would mean that S is completely ac-
curate; a confidence of c = 0.9 (=1-(1/S.size)=9/10)
would mean that the set S could allow one change in
its content, i.e., one of its actual elements could have
been mistakenly included, missed, or modified.

When the OCL collection operations are applied to
these new collection types, their behavior changes ac-
cordingly. Thus, the results of OCL operations that re-
turn UBoolean values (such as uSelect or uForAll),
when applied to an uncertain collection (S, c), are ob-

16 M. Bertoa, L. Burgueño, N. Moreno, and A. Vallecillo

tained by multiplying the result of the corresponding
operation on S, by the confidence c of the uncertain col-
lection. Operations that return base OCL types (e.g.,
Real or Integer) are extended so that they return un-
certain types. For example, operation size returns a
UInteger value when applied to a uncertain collection.
The uncertainty of the result is computed as we did
for uncertain strings. Finally, operations that return
uncertain values are extended taking into account the
confidence of the uncertain collection. Note that there
are some operations that cannot be extended, such as
sum(). In these cases, we need to restrict the calcula-
tions only to the known (certain) elements of the collec-
tion. For illustration purposes, Listing 14 presents the
specifications of some of these operations.
UCollection ::size() : UInteger
post: result.value() = self.S->size() and

result.uncertainty () = self.confToDist ()
USet::union(us:USet(T)) : USet(T)
post: result.S = self.S.union(us.S) and

result.c = self.distToConf(
self.confToDist () + us.confToDist (),
self.S->size() + us.S->size())

UCollection :: includes(e) : UBoolean
post: let r:UBoolean=self.S->exists(v|v.equals(e)))

in result.x = r.value () and
result.c = r.confidence ()*self.c

Listing 14: Operations on uncertain collections.

4 Tool Support

4.1 USE

The UML-based Specification Environment (USE) [27]
is a modeling tool that enables the specification and
validation of UML and OCL models. The tool is open-
source and distributed under a GNU General Public Li-
cense. To validate our proposal and to develop a proof-
of-concept for it, we extended USE by adding to it the
uncertain datatypes defined in this paper, as well as
their operations.

The USE tool provides an extension mechanism for
adding new operations to the standard OCL primi-
tive datatypes that it initially supports. Such new user-
defined operations can be added to the language by im-
plementing their behavior in the Ruby language, and in-
corporating the Ruby implementations in the file asso-
ciated to the corresponding type in a USE folder called
oclextensions. This was the approach we used, e.g.
in [62], to add random operations to OCL. Nevertheless,
this extension mechanism does not allow the creation of
new datatypes, which is exactly what we needed here.
Thus, our only choice was to directly modify the USE
source code.

Internally, the USE tool uses ANTLR to define the
grammars that it supports (USE, OCL, SOIL [13], Shell-

Fig. 4: USE internal architecture.

Commands, and Generator), and to create the Java lex-
ers and parsers for these languages. Thus, the first step
was to extend these grammars (that included the defi-
nitions of the OCL primitive datatypes Real, Integer,
etc.) with the new uncertain datatypes. Once the gram-
mars were extended and built, the new lexers and parsers
replaced the previous ones. This way, the uncertain
datatypes and their operations form part of the lan-
guage syntax and therefore they become readily avail-
able to any UML modeler as basic primitive datatypes
of the language.

The constants of the new datatypes can be specified
by the name of the type followed by the value. For ex-
ample, UReal(0.0,0.1), UInteger(15,0.5), UBool-
ean(true,0.9), or UString(’ABC’,0.98). Uncertain
enumeration values follow the same convention, with
the name of the type followed by the corresponding se-
quence of pairs: UColor({(#Red,0.9),(#Blue,0.1)}).
Operations on the extended types have been imple-
mented to allow the infix notation, thereby enabling
the modeler to use the natural notation in expressions
that involve the new datatypes. For instance, it is pos-
sible to write a+b or X or Y, instead of a.add(b) or
X.or(Y). Operations that involve operands of different
datatypes (e.g., Real and UReal), are always performed
in the appropriate supertype.

The next step was to develop the semantics of the
uncertain datatypes, i.e., the behavior of their construc-
tors and operations. Since USE is implemented in Java,
this library was implemented as a Java project, too.
We built the required Java interfaces (i.e., connectors)
for binding this library with the USE grammars. These
connectors were, again, Java classes linking the syntax
of the newly created datatypes with their behavior. For
illustration purposes, Fig. 4 shows, at a very high-level
of detail, the key components of the USE tool and of our
extensions. Solid lines represent original blocks in the
USE tool, while dashed lines represent the newly devel-
oped blocks. We tried to be as unobstrusive as possible,
but in the case of the grammars, we had no other choice
than modifying them. This is why the box Grammars
is partly solid and partly dashed.

Incorporating Measurement Uncertainty into OCL/UML Primitive Datatypes 17
Class diagram

Battlefield

UnidentifiedObject

id : UString

Robot

id : String

pointAt(o : UnidentifiedObject) : Mark

shootAtMarkedThreats()

Mark

/angle : UReal

/hitsTarget : UBoolean

MovingObject

width : UReal

angle : UReal

speed : UReal

move(seconds : UInteger)
Clock

now : UInteger

Coordinate

x : UReal

y : UReal

distance(other : Coordinate) : UReal

clock1

battlefield1

position1

mark0..1

target1

mark*

mark*
robot1

position1

object0..1

movingObjects*
battlefield1

Fig. 5: A Robot Battle System.

This extension of the USE tool (available from [1])
has been used to model and simulate all the examples
and case studies presented in this paper.

4.2 UML

In UML, a PrimitiveType defines a predefined data-
type and there is an independent package, named Pri-
mitiveTypes, which defines a set of reusable primi-
tive types that are commonly used in the definition of
metamodels [54]. UML does not define any substruc-
ture for such datatypes, but they do have an algebra
and operations, which are defined outside of UML—for
example, they can be mathematically expressed. The
UML package PrimitiveTypes contains the same five
primitive datatypes as OCL (Boolean, Real, Integer,
UnlimitedNatural and String), and is specified in a
separate XMI document [54, Annex E.3]. UML also per-
mits defining new primitive types, using profiles. Thus,
in addition to the extension of the USE tool, we have
created a UML package that contains our newly defined
datatypes. With it, modelers can incorporate them into
their models using the importing and exporting facili-
ties available in their modeling tools. The package was
developed in MagicDraw, follows the OMG standard
for UML 2.5 and is available in XMI format [1].

5 Applications

This section describes the set of case studies that we
have developed to assess our proposal. Each one demon-
strates a different aspect of it, illustrating the use and
applicability of our extended types, as well as its expres-
siveness. These examples will be used later in Section 6
when we discuss how we have evaluated our proposal.

Container

type : AppleType

Position

x : UReal

y : UReal

z : UReal

distance(p : Position) : UReal

Arm

needsCalibration : Boolean

missedApples : Integer

wastedApples : Integer

deterioration : UReal

tolerance : UReal

grasp(a : Apple) : Boolean

classify(a : Apple) : Container

moveTo(c : Container)

drop(a : Apple, c : Container) : Boolean

backToBase()

calibrate()

Tray

«enumeration»
AppleType

RedDelicious

PinkLady

GoldenDelicious

GrannySmith

Cooking

ProductionLine

start()

«enumeration»
Color

Red

Yellow

Green

Apple

size : UReal

weight : UReal

color : UColor

/type : AppleTypeapples*

tray

0..1

basePos1

baseArm0..1

currentPos1

arm0..1

tray1 arm1

apples*

container
0..1

pos1

container0..1

arms *

prodLine1

pos1

tray0..1

Fig. 6: The Mechanical Arm System.

5.1 The Robot Battle system revisited

In Section 2.1 we introduced the Robot Battle system
to motivate our proposal, and the need to faithfully
capture the uncertainty of some of the system elements.
Figure 5 shows the same model, but where some of the
previous types have been replaced by the newly defined
datatypes. In particular, the coordinates and properties
of moving objects are now declared to be subject to
measurement uncertainty; the clock can allow for some
tolerance; the identifier of unidentified objects can be
imprecise, and the derived values of the attributes the
marks, namely, angle and hitsTarget, can also incor-
porate uncertainty. As we already mentioned in Sec-
tion 2.1, there is no need to modify any of the OCL
expressions defined in the original model; they are sim-
ply evaluated in the context of the extended types, and
the uncertainty of the operands is automatically propa-
gated through the numerical and comparison operators.

An interesting value added of this proposal is that
we can also consider other system properties, and spec-
ify a more realistic system behavior. For example, we
could exclude marking unidentified objects whose iden-
tifiers had a very low confidence level, in order to avoid
shooting at our own drones in cases of low visibility and
false readings. Likewise, we could avoid shooting at tar-
gets when the confidence of hitting them were low, e.g.,
less than 50%, in order not to waste ammunition.

5.2 Mechanical arm for classifying apples

This exemplar system is based on an existing project in
the context of the Industry 4.0, of a mechanical arm for
classifying parts in a production line. It has been char-
acterized here differently for confidentiality reasons, al-
though its main features have been maintained. The
system models a production line that classifies apples

18 M. Bertoa, L. Burgueño, N. Moreno, and A. Vallecillo

Object diagram

c5:Container

type=#Cooking

c1:Container

type=#RedDelicious

pt:Position

x=UReal(0.0,0.1)
y=UReal(0.0,0.1)
z=UReal(1.0,0.1)

pl:ProductionLine

t:Tray

c2p:Position

x=UReal(1.0,0.1)
y=UReal(2.0,0.1)
z=UReal(2.0,0.1)

c3p:Position

x=UReal(1.0,0.1)
y=UReal(2.0,0.1)
z=UReal(2.0,0.1)

c4p:Position

x=UReal(1.0,0.1)
y=UReal(2.0,0.1)
z=UReal(2.0,0.1)

c4:Container

type=#GrannySmith

c2:Container

type=#PinkLady

cp:Position

x=UReal(0.0,0.0)
y=UReal(0.0,0.0)
z=UReal(0.0,0.0)

c1p:Position

x=UReal(2.0,0.1)
y=UReal(1.0,0.1)
z=UReal(2.0,0.1)

bp:Position

x=UReal(0.0,0.0)
y=UReal(0.0,0.0)
z=UReal(0.0,0.0)

c3:Container

type=#GoldenDelicious

c5p:Position

x=UReal(1.0,0.1)
y=UReal(1.0,0.1)
z=UReal(2.0,0.1)

a:Arm

needsCalibration=false
missedApples=0
wastedApples=0
deterioration=UReal(0.0,0.01)
tolerance=UReal(0.0,0.1)

apples

basePos

baseArm

currentPos

arm
arm

pos
container poscontainer

pos
container poscontainer

pos
container

arms
prodLine

pos
tray

a3:Apple

size=UReal(0.08,0.01)
weight=UReal(200.0,5.0)
color={(#Red,0.65),(#Yellow,0.3),(#Green,0.05)}
/type=Undefined

a2:Apple

size=UReal(0.09,0.01)
weight=UReal(200.0,5.0)
color={(#Red,0.05),(#Yellow,0.15),(#Green,0.8)}
/type=Undefined

a4:Apple

size=UReal(0.085,0.01)
weight=UReal(210.0,5.0)
color={(#Red,0.2),(#Yellow,0.1),(#Green,0.7)}
/type=Undefined

tray

tray

apples

a1:Apple

size=UReal(0.07,0.01)
weight=UReal(190.0,5.0)
color={(#Red,0.9),(#Yellow,0.1)}
/type=Undefined

apples

apples

Fig. 7: Initial object diagram, Mechanical Arm system.

into four categories, according to their color: RedDeli-
cious, PinkLady, GoldenDelicious and GrannySmith. If
an apple does not fit into any of these categories, it is
considered to be an apple for cooking.

The production line is composed of mechanical arms.
Each arm is associated with a tray with apples, and has
a sensor that measures color and returns the amounts
of red, yellow and green that are present in the apple
skin. Figure 6 shows the metamodel for this case study.
The arm has a base position where it waits to be sig-
naled that there is an apple in the tray. Then, it grabs
the apple from the tray and classifies it: if the color
contains more than 90% red, the apple is RedDelicious;
if it is 40% red or more, and less than 10% green, it
is PinkLady ; if it contains more than 80% yellow, it
is GoldenDelicious; if it is more than 70% green, it is
GrannySmith; otherwise, it is classified as for cooking.
Once the apple has been classified, the arm moves to the
corresponding container where the apples of that type
are stored, and drops the apple there. Then, it moves
back to its base position and waits for more apples to
arrive. Every time that the arm returns to its base, its
position is reset to the position of the base, which is
known precisely.

Attribute tolerance indicates the arm positional
accuracy. Normally, this parameter is not constant in
any mechanical device; it increases with use: every time
the arm moves—from its base position to the tray, from
the tray to a container, or from a container back to
its base position—the slack of its gears and mecha-

Object diagram

c5:Container
type=#Cooking

c1:Container
type=#RedDelicious

pt:Position
x=UReal(0.0,0.1)
y=UReal(0.0,0.1)
z=UReal(1.0,0.1)

pl:ProductionLine

t:Tray

c2p:Position
x=UReal(1.0,0.1)
y=UReal(2.0,0.1)
z=UReal(2.0,0.1)

c3p:Position
x=UReal(1.0,0.1)
y=UReal(2.0,0.1)
z=UReal(2.0,0.1)

c4p:Position
x=UReal(1.0,0.1)
y=UReal(2.0,0.1)
z=UReal(2.0,0.1)

c4:Container
type=#GrannySmith

c2:Container
type=#PinkLady

cp:Position
x=UReal(0.0,0.1039230484541326)
y=UReal(0.0,0.1039230484541326)
z=UReal(0.0,0.1039230484541326)

c1p:Position

x=UReal(2.0,0.1)
y=UReal(1.0,0.1)
z=UReal(2.0,0.1)

bp:Position
x=UReal(0.0,0.0)
y=UReal(0.0,0.0)
z=UReal(0.0,0.0)

c3:Container
type=#GoldenDelicious

c5p:Position
x=UReal(1.0,0.1)
y=UReal(1.0,0.1)
z=UReal(2.0,0.1)

a:Arm
needsCalibration=false
missedApples=0
wastedApples=0
deterioration=UReal(0.0,0.01)
tolerance=UReal(0.0,0.1039230484541326)

basePos
baseArm

tray
arm

container

poscontainer
poscontainer poscontainer pos

container

arms
prodLine

pos
tray

a3:Apple
size=UReal(0.08,0.01)
weight=UReal(200.0,5.0)
color={(#Red,0.65),(#Yellow,0.3),(#Green,0.05)}
/type=#PinkLady

a2:Apple
size=UReal(0.09,0.01)
weight=UReal(200.0,5.0)
color={(#Red,0.05),(#Yellow,0.15),(#Green,0.8)}
/type=#GrannySmith

a1:Apple
size=UReal(0.07,0.01)
weight=UReal(190.0,5.0)
color={(#Red,0.9),(#Yellow,0.1)}
/type=#RedDelicious

apples
container

a4:Apple
size=UReal(0.085,0.01)
weight=UReal(210.0,5.0)
color={(#Red,0.2),(#Yellow,0.1),(#Green,0.7)}
/type=#Cooking

container container

apples

applesapples

apples

currentPos
arm

poscontainer

Fig. 8: Mechanical Arm system after 4 classifications.

nisms slightly increases, thereby producing a progres-
sive degradation of the arm position accuracy. Attribute
deterioration records this value, which is typically
provided by the manufacturer. Although it is usually a
very small value, it can significantly accumulate through
repeated use. The deterioration value is added to the
arm’s tolerance with every movement. Due to this
accumulated lack of accuracy, the arm may miss an
apple when trying to fetch it. Similarly, it may miss
the container when dropping the classified apple. These
misses are captured by attributes missedApples and
wastedApples, respectively. The tolerance and deteri-
oration; and, hence, the numbers of missed and wasted
apples, depends on the quality of the arm.

Finally, the arm can be calibrated by the manufac-
turer when its positional accuracy becomes very low.
For instance, when the tolerance becomes 10 times higher
than the deterioration, its attribute needsCalibration
may become true, thereby, warning the workers in the
plant that the arm must be sent to the manufacturer
for recalibration.

Figure 7 shows an initial object diagram of a sys-
tem with four apples. Figure 8 shows the same system
after the apples have been classified. Propagation of
uncertainty has been automatically performed via the
datatype operations.

It is important to highlight that the type extensions
have been able to represent some interesting properties
of the system, that otherwise would have been transpar-
ent to the user—or that, if needed, would have required

Incorporating Measurement Uncertainty into OCL/UML Primitive Datatypes 19
Class diagram

Tunnel

length : Real

maxSpeed : Real

start()

createReport(p : Picture) : Report

findMatch(pic : Picture) : ReportFine

/numberPlate : String

penalty : Real

Camera

on : Boolean

takePicture() : Picture

Picture

timestamp : UReal

numberPlate : UString

Report

/samePlates : UBoolean

/speed : UReal

/fined : UBoolean

entryCamera1 entry1

1 entryPicture 1 entryReport

exitCamera1 exit1

0..1 exitPicture

picture*

camera1

1 report

fine0..1

reports*

tunnel1

0..1 exitReport

Fig. 9: The traffic control system.

Object diagram

c2:Camera

on=true

c1:Camera

on=true

Picture2:Picture

timestamp=UReal(159.0,4.0)
numberPlate=UString('1243ABC', 0.9)

Report1:Report

/samePlates=UBoolean(true, 0.810)
/speed=UReal(83.33333333333333,5.656854249492381)
/fined=UBoolean(true,0.7221551540355102)

t:Tunnel

length=500
maxSpeed=80

Picture1:Picture

timestamp=UReal(153.0,4.0)
numberPlate=UString('1243ABC', 0.9)

entryCamera
entry

entryReport
entryPicture

exitCamera
exit

exitReport
exitPicture

picture
camera picture

camera

reports

tunnel

Fig. 10: Object diagram of the traffic control system.

non-trivial modeling efforts, and would have probably
resulted in a more complex and cumbersome model.
For example, handling the accuracy of the positions of
the system elements, or the (imprecise) color assigned
to the apples, is not easy with the existing modeling
mechanisms available in UML and OCL. With our cur-
rent proposal, we can also simulate the system with
varying uncertainty values, being able to determine the
influence of the precision of the individual elements in
the overall performance and efficiency of the system;
for example, we can conduct simulations to compute
the the number of misses and the average time to re-
quire calibration, using similar techniques to the ones
described in [12] for simulating robot trajectories.

5.3 Traffic control system

This case study models a SPECS average speed camera
system for tunnels. For simplicity, we assume tunnels
are one-way—the generalization of the system to two-
way tunnels would be straightforward.

There is one camera at the entrance of each tunnel
and another at its exit. Each time the system detects

context Report :: samePlates:UBoolean derive:
entryPicture.numberPlate = exitPicture.numberPlate

context Report :: speed:UReal derive: tunnel.length /
(exitPicture.timestamp - entryPicture.timestamp)

context Report :: fined:UBoolean derive:
speed > tunnel.maxSpeed

Listing 15: Traffic Control System derived attributes.

a movement at the entrance, the corresponding cam-
era takes a picture and creates a report. The picture
is processed by an automatic number plate recognition
(ANPR) system and the text is stored as a UString
value, with the confidence associated to it. For every
picture, our system also stores, as a UReal value, the
timestamp of the moment at which it was taken. Sim-
ilarly, when a movement is detected at the end of the
tunnel, the exit camera takes a picture.

The traffic control system checks whether there is
an open report with the same number plate and a con-
fidence that exceeds 0.8. If so, the relationship between
this second picture and the report is established. The
report contains information about the confidence that
the two detected number plates are the same (i.e., they
belong to the same vehicle), the average speed that is
computed based on the timestamps and the length of
the tunnel, and whether the vehicle should be fined or
not (represented by a UBoolean value).

Traffic regulations state that a vehicle should be
fined if its average speed exceeds the maximum allowed
speed in the tunnel. Therefore, if the attribute fined in
the Report states with a confidence that exceeds 0.85
that the vehicle should be fined, a Fine object is cre-
ated, with a penalty of 500 if the speed exceeded the
limit by less than 30 km/h and 800 otherwise. Figure 9
shows the class diagram for the system.

Figure 10 shows an object diagram, in which the
entry camera took a picture of a plate with number
’1243ABC’, with a confidence of 0.9, entering the tun-
nel at time 153±4.0, and the exit camera took another
of number plate ’1243ABC’ with confidence 0.9 leaving
the tunnel at 159.0 ± 4.0.3 Our system detected that
these two plates correspond to the same vehicle with
a confidence of 0.810. Since the confidence exceeds 0.8,
our system assumes that both plates belong to the same
vehicle and, for them, a report was created that indi-
cates that the average speed was 83.33±5.66. The prob-
ability that this speed exceeds 80 km/h is 0.72 (72%).
Since this probability is lower than 0.85, the vehicle is
not fined; therefore, the Fine object is not created.

Listing 15 shows how the derived attributes of class
Report are calculated. Notice that, apart from the chan-

3 Although a confidence value of 0.9 is rather low, it may
occur due to restricted visibility on foggy days, for instance.

20 M. Bertoa, L. Burgueño, N. Moreno, and A. Vallecillo

+dataRate : UInteger

+name : String

+pressuremeter : Boolean

+rangingSystem : RangingSystemKind

+hardwareConfiguration : String [0..*]

+onBoardObstacleAvoidance : Boolean

+barometer : Boolean

+maxOperatingPressure : UReal

+radioFrequency : UInteger

+gps : Boolean
+gyro : Boolean

+accelerometer : Boolean
+magnetometer : Boolean

+maxPayload : UReal

+communicationRange : UReal

Robot

+max : UReal
+min : UReal

Interval

+lifetime : UReal
+payloadWeight : UReal

+maxAcceleration : UReal

MovementCapability

SODAR
LJDAR
RADAR
SONAR

RangingSystemKind

«enumeration»

+voltage : UReal
+capacity : UInteger

+rechargeTime : UReal

Battery

+description : String
+key : String

Parameter

+height : UReal
+weight : UReal

+length : UReal
+width : UReal

Size

+name : String
+id : String

Device

+value : String

Property
Action

+devices

0..*

+mvmntCapabilities

1..*

+operatingTemp

0..1

+yaw

0..1

+speed

0..10..1

+roll+pitch

0..1

+supportedActions

0..*

+parameters0..*

+properties0..*

+size 1 +batteries 0..*

Fig. 11: Excerpt of the Robot language, from [15].

ges in the basic datatypes, the OCL expressions have
not changed (i.e., they are exactly the same as they
were when dealing with certain values). The extended
types take care of calculating the uncertainty and of
propagating it though the operations.

Again, the explicit representation of uncertainty en-
ables the specification and analysis of some interest-
ing system properties that otherwise would require a
more complex modeling approach. In particular, we now
could compute the accuracy of the system depending on
the precision of the cameras, or decide changes in the
values of the thresholds, or even in the devices, if most
of the reports were produced with low confidence.

5.4 A Multi-Robot System for Civilian Missions

This case study describes the family of Domain Spe-
cific Languages (DLS) for mobile multi-robot systems
proposed by Ciccozzi et al. [15]. The family comprises
five languages for modeling: (a) robot missions, (b) the
contexts of these missions, (c) robot behavior, (d) robot
structure and capabilities, and (e) specific language ex-
tensions for modeling particular robot types, such as
drones. Overall, the family of languages contains 63
classes and 130 attributes, that together provide a mod-
eling framework that can be reused and extended to
model different kinds of robotic applications. In prac-
tice, they have been used to model critical missions
of autonomous multicopters and unmanned underwa-
ter vehicles [15].

To give the reader an idea of the type of language
family that we are describing here, Figure 11 shows an
excerpt of metamodel of one of these DSLs: the Robot

-wheelVelocityPIDMaxVal : UReal
-wheelVelocityPIDMaxSum : UReal
-suspensionCompresion : UReal
-suspensionDamping : UReal
-suspensionStiffness : UReal
-wheelFriction : UReal
-WheelSteeringPIDkp : UReal
-WheelVelocityPIDkd : UReal
-WheelSteeringPIDkd : UReal
-WheelVelocityDIDki : UReal
-WheelVelocityPIDkp : UReal
-typeOfWhell : String
-wheelConnectionHeight : UReal
-suspensionRestLength : UReal
-wheelWidth : UReal
-wheelRadius : UReal

SteerWheelSystem

ObjectTrackingSensorSystem

-nbRays : UInteger
-range_max : UReal
-range_min : UReal
-scan_time : UReal
-time_increment : UReal
-angle_max : UReal
-angle_min : UReal
-sigmaNoise : UReal
-noise : Boolean
-layerAngleStep : UReal
-layerAngleMin : UReal
-nblayers : UInteger

LidarSystem

-gear_ration : UReal
-maxAllowedVelocity : UReal
-maxAllowedSteering : UReal
-maxBreakingForce : UReal
-maxEngineForce : UReal
-vehicleTraction : String

EngineSystem

LocomotionSystem

-identifier : String
-frequency : UReal

SensorSystem ActuatorSystem

RoboticSystem

Fig. 12: Excerpt of the RobotML language.

language. The core of this metamodel is the Robot con-
cept, which permits modeling battery-operated mobile
robots by specifying their devices and movement ca-
pabilities. The attributes of the classes were originally
typed using the primitive UML datatypes: Real, String,
Integer and Boolean.

In our study, our aim is to identify those attributes
that actually represent physical quantities, and that
need to account for measurement uncertainty. For this,
we studied the attributes of all classes, deciding which
ones should be typed with the extended datatypes. For
example, Figure 11 shows the Robot language meta-
model after the types of the attributes representing
quantities were replaced by their corresponding uncer-
tain types. MagicDraw UML was used in this case for
modeling the system, employing the UML library with
the extended uncertain datatypes that we have devel-
oped to support measurement uncertainty in UML [1].

5.5 The RobotML modeling language for robotic
systems

RobotML [38] is a dedicated language for designing in-
dustrial robotic applications, developed as a Papyrus
project that uses UML profiles as the metamodeling
language. In other words, RobotML is a domain-specific
language based on UML. It enables both simulation
and deployment to multi-target platforms. Overall, the
RobotML language contains 80 classes and 75 attributes.

Figure 12 depicts a small excerpt of the RobotML
language metamodel. The RoboticSystem is divided
into different subtypes of systems, including, e.g., Sen-
sorSystems and ActuatorSystems. These system types

Incorporating Measurement Uncertainty into OCL/UML Primitive Datatypes 21

are further refined into more concrete types of sensors
and actuators. The figure shows the attributes of the
metaclasses already typed using our extended datatypes.
As a matter of fact, we realized that more than half of
the attributes defined in RobotML metaclasses repre-
sent features and properties of physical or mechanical
elements, which can be subject to measurement uncer-
tainty. Hence the need and relevance of our proposal,
particularly in the realm of systems that deal with phys-
ical elements and devices.

6 Evaluation

The evaluation we have conducted to assess our pro-
posal studies its correctness, performance, reusability
and interoperability [33] following the evaluation pro-
cess defined in [44], which in turn is inspired in Adzic’s
adaptation of Moslow pyramid of human needs to soft-
ware quality [2]. In the following, we introduce the cri-
teria that we have used to evaluate of our proposal, in
terms of the corresponding quality characteristics, and
the tests we have conducted to evaluate each criterion.
We finish by identifying some of the current limitations
of our proposal, including a discussion on other quality
aspects such as expressiveness or effectiveness.

First, we followed the ISO Quality Model [33] to
identify the quality characteristics to use as evaluation
criteria for our proposal. From the ones defined by ISO,
the following subset was selected because they were the
most appropriate ones in our context:

Correctness: The degree to which a product provides
the correct results with the needed degree of preci-
sion (ISO/IEC 25010 Functional Correctness [33]).

Performance: The degree to which the response and
processing times and throughput rates of a product,
when performing its functions, meet requirements
(ISO/IEC 25010 Time Behavior [33]).

Reusability: Degree to which an asset can be used
in more than one system, or in building other as-
sets [33].

Interoperability: The degree to which two or more
systems, products or components can exchange in-
formation and use the information that has been
exchanged [33].

6.1 Evaluating Correctness

Correcteness represents the extent to which the prod-
uct complies with its specification and produces correct
results [33]. It is specifically concerned with properties

that involve the relations between the subprogram’s in-
puts and outputs, as opposed to other properties such
as running time or memory consumption.

Firstly, we carried out an internal evaluation of the
Java and SOIL implementations that we have devel-
oped. A suite of unit tests was defined for executing all
their operations using different input values, checking
that the results obtained in each case were the expected
ones.

The external validity was evaluated by comparing
the results of our implementations with the ones re-
turned by two of the existing external mathematical
libraries for dealing with measurement uncertainty in
programming languages, namely, OpenTurns [49] and
the Python’s uncertainties package [42]. With these tests,
we checked that the operations defined on uncertain
types produce correct results, and propagate the un-
certainty properly.

We also evaluated our implementations using ‘pre-
cise’ values (i.e., those from the standard OCL and
UML datatypes), checking that they produced the same
results as the original SOIL and Java implementations,
hence respecting the safe substitutability principle [46].

Finally, we endowed our SOIL implementation with
the pre and postconditions of the extended operations,
as defined in Section 3, so they could be automatically
checked in any operation execution. Since the Java and
SOIL specifications produce the same results, we indi-
rectly checked that the Java implementations we have
developed are also correct.

6.2 Evaluating Performance

To evaluate the overhead introduced by the incorpora-
tion of measurement uncertainty in the values of model
attributes, we carried out a series of tests for the differ-
ent operations defined for each type, comparing them
with the primitive types in Java. Each test consisted
of the repeated execution of the different operations of
each type, in order to measure their execution time. Op-
erations were carried out both on the extended types
(with uncertainty) and on the basic datatypes, to com-
pare their performance. Each operation was executed
106 times to scale out the resulting figures, and each
test was repeated 5 times, calculating the median. The
tests were conducted on a computer with an Intel Core
i7-3770 @ 3.40 GHz (8 CPUs) processor, 8 GB of RAM,
and Windows 10 Pro.

Table 4 shows a summary of the overhead intro-
duced by the use of uncertainty. The performance of the
operations of types UInteger and UUnlimitedNatural
is the same as those of type UReal, and therefore they
have been omitted from the table.

22 M. Bertoa, L. Burgueño, N. Moreno, and A. Vallecillo

Table 4: Performance overhead of operations when in-
corporating uncertainty.

Type Operations Overhead Time w/o Time with
Uncertainty Uncertainty

UReal Arithmetic (+, −, /, ...) ×10 ∼10−7ms ∼10−6ms
UReal Exponential (power, sqrt) ×100 ∼10−7ms ∼10−5ms
UReal Comparison (=, <, ≤, ...) ×300-700 ∼10−7ms ∼10−4ms
UBoolean Logical ops. (and, or, ...) ×5 ∼10−7ms ∼10−6ms
UString Basic (size) ×10 ∼10−7ms ∼10−6ms
UString Concat (+, substring, ...) ×2 ∼10−5ms ∼10−5ms
UString Search (index, at, ...) ×15 ∼10−5ms ∼10−4ms
UString Comparison (=, ...) ×1 ∼10−5ms ∼10−5ms

Notice how the propagation of uncertainty has an
associated cost, particularly in the case of the compar-
ison operations between numeric values. This is due to
the need to calculate the intersection areas of the two
Normal curves with the distribution of the possible vari-
ation of the numbers to compare, in order to compute
the ratio of equality.

Of course, we cannot (and do not want to) compete
with the existing software libraries for some program-
ming languages, such as the aforementioned OpenTurns
or the Python library. Should a user need to perform
intensive computations with uncertain values, it would
be probably better to do it from a lower level of ab-
straction. In any case, the performance figures that we
have obtained seem to be acceptable enough for dealing
with them in OCL and UML models.

6.3 Evaluating Reusability

Reusability is defined by ISO as the degree to which
an asset can be used in more than one system, or in
building other assets [33]. To assess the reusability of
our proposal, we evaluated how much effort is needed to
apply our approach to already existing software models.

In the first place, if our modeling tool incorporates
our extended type system, the only effort comes from
the identification of the attributes that need to be equip-
ped with measurement uncertainty, and the change of
their types. There is no need to modify any OCL ex-
pression or constraint, given that the extended types
are part of the OCL type system.

In case our modeling tool does not support our ex-
tended OCL type system, the new types (and their op-
erations) should be defined in a library and added to the
model so that they could be used by the model classes.
For this purpose, we developed a UML library in Magic-
Draw with the new datatypes, as described in Section 4,
together with the OCL specifications and the Java im-
plementation. These artefacts were precisely defined to
facilitate the reusability of our proposal in other mod-
eling tools. For example, both the RobotML language
for the design of robotic applications (Section 5.4) and
the the Robot DSL family of languages (Section 5.5)

have been easily extended with uncertainty using our
UML library, by simply importing it.

Finally, we also wanted to assess how difficult it
would be for a tool vendor to implement these extended
types in its OCL/UML tool. Of course, it will greatly
depend on the tool internal architecture, how extensible
it is, and the strategy used to implement the extended
types and the subtyping relations among them. In par-
ticular, the extension strategy described in Section 3.1
can be implemented in different ways, depending on
how the OCL primitive types are already implemented
in the tool. If the existing tool defines the primitive
types using classes and inheritance among them to im-
plement subtyping (i.e., type Real inherits from type
Integer to implement the subtyping relation Integer
<: Real), the most natural and less intrusive manner
to implement the new types is by extending the ex-
isting inheritance tree, using the family polymorphism
strategy defined for type groups [10,21], more recently
explored in the context of MDE in [30]. Alternatively,
if the OCL primitive types are not implemented by
the tool as classes but as datatypes (since according
to UML the run-time instances of primitive types are
just values [54, §10.2.3.2]), the new types can be defined
as datatypes too, and embedded into the existing type
hierarchy using the strategy described in Section 3.1.

To evaluate this aspect, we measured the effort re-
quired to extend the USE tool with the newly defined
primitive datatypes, as described in Section 4. USE im-
plements the OCL primitive types as datatypes, so the
new ones we have introduced have been implemented
in the same way. Roughly, the extension was developed
by one person in two months, including the design, im-
plementation and testing of the new tool.

6.4 Interoperability

To evaluate the interoperability of our proposal, we
checked how the proposed extensions could be adjusted
for data export with interchange data standards. As
mentioned in Section 4, the UML model that we de-
veloped with the extended datatypes is available in the
XMI 2.5 format, following the persistence requirements
and format stated by UML to represent primitive data-
types [54, Annex E.3]. With this, any modeling tool can
import and use our library of extended types with no
major problems.

6.5 Further issues

In addition to the potential benefits of our proposal,
this section discusses some issues that we have found
during its evaluation.

Incorporating Measurement Uncertainty into OCL/UML Primitive Datatypes 23

Table 5: Applicability measures.

Case study Classes Attributes U. Attributes
Robot Battle 7 10 9 (90%)

Mechanical Arm 6 13 8 (62%)

Traffic Control 5 10 5 (50%)

RobotDSL (complete) 63 130 73 (56%)

Behavior 26 24 11 (46%)
Context 7 11 9 (82%)
Drone 9 48 31 (65%)
Mission 13 11 5 (45%)
Robot 8 32 17 (53%)

RobotML 80 75 40 (53%)

Total 161 234 135 (58%)

Effectiveness. Effectiveness is defined in the ISO Qual-
ity Model [33] as the accuracy and completeness with
which users achieve specified goals. In this respect, we
wanted to estimate how extensively current software
modeling languages designed for modeling cyber-physical
systems make use of attributes that are affected by mea-
surement uncertainty. For this, we computed the per-
centage of all attributes of our case studies that had to
consider measurement uncertainty, and thus required
the use of datatypes endowed with this information.
Table 5 shows the results for all the case studies pre-
sented in this paper. Columns 2 and 3 list the num-
ber of classes and attributes of the metamodels of each
case study. Column 4 counts the number of attributes
that represent physical quantities and thus require the
use of measurement uncertainty. For the modeling lan-
guages that we have considered in our study, we obtain
an application rate of 58% on average, which means
that more than half of the languages attributes actu-
ally represent quantities, and may significant benefit
from capturing uncertainty information. Attributes not
referring to quantities are mainly used in these models
to introduce identifiers, names and configuration infor-
mation such as the availability of measurement devices.
Although we do not claim that these results can be gen-
eralized to all models of physical systems, they provide
an indication of the potential effectiveness of our pro-
posal.

Domain expert implication. Related to the use of our
new types, it is important to highlight that, when in-
corporating measurement uncertainty information into
a model, sometimes it is difficult to identify the at-
tributes that need to be subject to uncertainty. For
this, the judgment of the domain expert is essential,
and the communication with them is needed to clarify
which attributes should be endowed with this kind of
information.

Expressiveness. There are different ways of represent-
ing measurement uncertainty, especially for the uncer-
tainty associated to numeric values. They include ranges,
probability distributions of the values, or the standard
deviation of the variability of the measured attribute.
From all the available alternatives, we decided to adopt
the ISO VIM recommended representation and man-
agement of measurement uncertainty, as defined in the
GUM, which is also the notation used in most engi-
neering disciplines. Ranges and other kinds of possi-
ble expressions of the measurements deviations can be
reduced to this representation, as discussed earlier in
this paper (Section 2.2). Similarly, Bayesian Probabil-
ity [25], Fuzzy logic [68] or uncertainty theory [48] can
be used to assign confidence to Boolean values and to
Strings. All these theories have advantages and limi-
tations (see, e.g., [19,40,48]) but, as previously men-
tioned, we decided to use Bayesian Probability, which
is the one that, in our opinion, is the most well known
and easily understood by software engineers.

Uncertainty in other UML datatypes. We have incorpo-
rated measurement uncertainty to the OCL and UML
primitive datatypes. What happens with the represen-
tation of uncertainty in other datatypes present in UML
models, such as date, time, float, double or char? Note,
however, that none of these types are defined in the
OCL standard, whose type system covers just the prim-
itive datatypes used in this work, but in other UML
libraries. In this proposal, we decided to focus only in
the basic datatypes (the ones defined in the OCL stan-
dard) leaving the extension of other datatypes outside
the scope of this work. In any case, the same exten-
sion approach that we used here could be employed to
extend other datatypes.

Precision and rounding. At this level of abstraction we
have not considered precision and rounding, but de-
pending on the particular application, further studies

24 M. Bertoa, L. Burgueño, N. Moreno, and A. Vallecillo

may be required. In particular, technical aspects such
as precision of floating point numbers [28] may have to
be investigated. In this respect, requirements from par-
ticular domains or applications have to be elicited in
more detail.

Dependent variables. In this work we have made some
assumptions regarding the independence of the attribu-
tes when operating with their associated uncertainty
using the closed-form solution. If such an independence
cannot be ensured, we provide two ways to deal with
dependent (i.e., correlated) variables. First, if we know
their covariances, both our specifications and imple-
mentations support close-form expressions of the op-
erations with uncertainty in case of dependent vari-
ables. However, the values of such covariances are rarely
known by users. An alternative solution consists of us-
ing the implementation of the operations based on sam-
ples (i.e., Type A evaluation of uncertainty). This is
also the approach proposed by ISO, which is very gen-
eral and powerful. However, it may have a significant
impact on the performance of the evaluation of the op-
erations, given that they have to be applied to the sam-
ples, hence introducing an overhead proportional to the
sample size.

7 Related Work

As model-based software engineering is being used to
specify IoT and cyber-physical systems, the need to
represent and manipulate physical values in software
models is becoming evident. In particular, units, real-
time properties and the measurement uncertainty of the
properties of such systems have been identified as es-
sential aspects that must be modeled [60]. Since timing
values are uncertain by nature (they are very often es-
timates or measured via monitoring instruments), the
real-time community is used to representing probabil-
ity distributions and intervals for timing properties and
their influence is clear in the MARTE Profile [53] and
the SysML [55] notation. However, neither MARTE nor
SysML support operations for performing calculations
with imprecise values; their models mainly remain at
the descriptive level.

Similarly, in [66], the authors propose a conceptual
model, which is called Uncertum, that is supported by a
UML profile (the UML Uncertainty Profile; UUP) and
enables the inclusion of uncertainty into test models.
Uncertum is based on the U-Model [67], and extends
it for testing purposes. UUP is a very complete profile
that covers many types of uncertainties, in particular,
measurement uncertainty. Their focus, namely, testing,
differs slightly from ours and they only must repre-
sent uncertainty, but do not perform operations with it.

Other works on business process models (e.g., [37]) also
consider uncertainty when modeling the arrival times
of clients, the availability of resources or the durations
of tasks. These works use probabilistic mass functions
to model the values of the corresponding attributes. We
have preferred to use the approach that was defined by
the GUM [34,35]. Apart from being the method that
has been widely adopted by other engineering disci-
plines, it has the main benefit of permitting operations
on variables that do not follow any particular prob-
abilistic distribution. This occurs, for instance, when
defining derived attributes that are obtained via the
combination of several quantities that follow diverse,
or even unknown, distributions.

The work in [65] defines an XML-based modeling
language for measurement uncertainty evaluation that
is based on the GUM and a simulation framework for
it. This work can be, in principle, considered closely re-
lated to our proposal; however, it not being integrated
with the type system of any mainstream modeling lan-
guage (such as OCL or UML), and its low-level syn-
tax (based on plain XML) hinders its usability. Simi-
larly, the work in [31] defines a datatype that incorpo-
rates measurement uncertainty and provides libraries
for performing computations with its values. The inte-
gration of these works with OCL/UML models is not
straightforward; therefore, their adoption and use by
UML modelers might be limited. To the best of our
knowledge, these works are more closely related to ex-
isting mathematical libraries and tools for operating
with uncertain values, than to our present work.

Representing and reasoning about confidence can
be done using different theories. In this work we have
used Probability theory, although other authors have
proposed other approaches including Possibility theory
(based on on fuzzy logic), Plausibility (a measure in
the Dempster-Shafer theory of evidence [61]) or Uncer-
tainty theory [48]. The comparison among these theo-
ries falls out of the scope of this paper. Our decision was
based again on simplicity: probability theory is well-
known and understood by most domain experts, who
could more easily use it to represent confidence in their
model elements. In contrast, the complexity of the other
approaches could hinder their correct application and,
therefore, could risk their potential benefits.

Other works consider model uncertainty, but focus
on different aspects from the ones that we have de-
scribed here, for instance, on the uncertainty on the
models themselves and on the best models to use ac-
cording to the system properties that one wants to cap-
ture [47]. Other works deal with the uncertainty of the
design decisions, of the modeling process, or of the do-
main that is being modeled [20,22,24,26,58,23]. We de-

Incorporating Measurement Uncertainty into OCL/UML Primitive Datatypes 25

part from them since we are concerned with the uncer-
tainty of the values of the quantities that are being
measured, which is a different problem.

Our work is also related to those approaches that
propose extensions to OCL to incorporate new features,
or to add required operations, such as aggregation func-
tions [14,57], temporal logic [18], aspects [39], or ran-
domness [62]. These approaches suggest the addition of
new operations, but not extensions to the OCL primi-
tive datatypes. Other group of works proposes changes
and extensions to the underlying type system of OCL,
e.g., [41]. This is not our case because we do not pro-
pose to modify the OCL type system, but to incorporate
some new datatypes to it.

Finally, several mathematical libraries and tools ex-
ist for propagating measurement uncertainty and oper-
ating with uncertain values, such as the aforementioned
OpenTurns [49] and the Python’s uncertainties pack-
age [42] (see [64] for a comprehensive list). Their cur-
rent integration with software models is however lim-
ited, since they sit at a lower level of abstraction than
software models, as we have already discussed.

8 Conclusions and Future Work

Cyber-physical and IoT systems are promising appli-
cations for MBSE methods; however, several challenges
may hinder realizing their potential needs. One of them
is being able to faithfully represent and operate with
measurement uncertainty in the attributes of high-level
and platform-independent models.

In this paper, we have focused on representing and
managing measurement uncertainty in OCL and UML
software models. We have extended the OCL and UML
primitive datatypes and their related operations with
uncertainty information. OCL and Java libraries have
been developed for implementing the type and its oper-
ations in MDE settings, and in particular the USE tool
already implements the primitive datatypes described
here.

This work opens several interesting lines of research
that we would like to explore next. First, we would like
to provide mappings from our high-level OCL/UML
specifications to other specification and simulation lan-
guages and tools, in particular, Modelica and Simulink.
The objective is to achieve a stepwise refinement hetero-
geneous specification and simulation process, whereby
high-level platform-independent (and, hence, lighter-
weight) specifications in OCL/UML can be progres-
sively refined into more concrete, complete (and more
complex) platform-specific specifications that use spe-
cialized analysis and simulation languages and tools,
such as MATLAB/Simulink. Additionally, we would like

to further validate our proposal with more case stud-
ies, and to test more thoroughly our Java libraries and
the USE implementation, which still is a prototype. An-
other line of future work is the specification and analysis
of different strategies for the propagation of the uncer-
tainty, which would lead to parameterized operations.
For instance, addition and subtraction operations could
have different propagation of the uncertainty according
to different (optimistic or pessimistic) heuristics. The
analysis of such alternative behaviors, the comparison
with the one proposed in this paper (which comes from
the ISO VIM), and the study of the properties of these
new operations represent interesting lines of future re-
search. Modelers who have used our approach find it
easy to use and sufficiently expressive for their pur-
poses; however, further empirical evaluations of its us-
ability and applicability are planned. Finally, the study
of further kinds of uncertainties that our models or their
elements may be subject to (such as belief or occurrence
uncertainty [11]) are also of interest, and constitute fu-
ture lines for extensions to the work presented in this
paper, which is focused on measurement uncertainty.

Acknowledgements This work was partially funded by the
Spanish Research rojects TIN2014-52034-R, TIN2016-75944-
R and PGC2018-094905-B-I00. We are really thankful to the
reviewers of this paper, for their insighful comments and sug-
gestions.

References

1. Atenea research group Git repository (2018). https:
//github.com/atenearesearchgroup/uncertainty. Ac-
cessed: May 20, 2019

2. Adzic, G.: Redefining software quality
(2012). https://gojko.net/2012/05/08/
redefining-software-quality/. Accessed: May 2019

3. America, P.: Inheritance and subtyping in a parallel
object-oriented language. In: Proc. of ECOOP’87, pp.
234–242. Springer (1987)

4. America, P.: A behavioural approach to subtyping in
object-oriented programming languages. pp. 173–190.
John Wiley and Sons (1991)

5. Bertoa, M.F., Moreno, N., Barquero, G., Burgueño, L.,
Troya, J., Vallecillo, A.: Expressing measurement uncer-
tainty in OCL/UML datatypes. In: Proc. of ECMFA’18,
LNCS, vol. 10890, pp. 46–62. Springer (2018)

6. Bertoa, M.F., Moreno, N., Barquero, G., Burgueño,
L., Troya, J., Vallecillo, A.: Uncertain OCL Datatypes
(2018). URL http://atenea.lcc.uma.es/projects/
UncertainOCLTypes.html. Accessed: May 20, 2019

7. Boute, R.T.: A heretical view on type embedding. SIG-
PLAN Not. 25(1), 25–28 (1990)

8. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven
Software Engineering in Practice. Morgan & Claypool
Publishers (2012)

9. Broy, M.: Challenges in modeling Cyber-Physical Sys-
tems. In: Proc. of ISPN’13, pp. 5–6. IEEE (2013)

https://github.com/atenearesearchgroup/uncertainty
https://github.com/atenearesearchgroup/uncertainty
https://gojko.net/2012/05/08/redefining-software-quality/
https://gojko.net/2012/05/08/redefining-software-quality/
http://atenea.lcc.uma.es/projects/UncertainOCLTypes.html
http://atenea.lcc.uma.es/projects/UncertainOCLTypes.html

26 M. Bertoa, L. Burgueño, N. Moreno, and A. Vallecillo

10. Bruce, K.B., Vanderwaart, J.: Semantics-driven lan-
guage design: Statically type-safe virtual types in object-
oriented languages. Electr. Notes Theor. Comput. Sci.
20, 50–75 (1999). DOI 10.1016/S1571-0661(04)80066-5

11. Burgueño, L., Bertoa, M.F., Moreno, N., Vallecillo, A.:
Expressing confidence in models and in model transfor-
mation elements. In: Proc. of MODELS’18, pp. 57–66.
ACM (2018). DOI 10.1145/3239372.3239394

12. Burgueño, L., Mayerhofer, T., Wimmer, M., Vallecillo,
A.: Using physical quantities in robot software mod-
els. In: Proc. of the 1st International Workshop on
Robotics Software Engineering (RoSE’18), pp. 23–28.
ACM (2018). DOI 10.1145/3196558.3196562

13. Büttner, F., Gogolla, M.: On OCL-based imperative lan-
guages. Sci. Comput. Program. 92, 162–178 (2014)

14. Cabot, J., Mazón, J., Pardillo, J., Trujillo, J.: Specifying
aggregation functions in multidimensional models with
OCL. In: Proc. of ER’10, LNCS, vol. 6412, pp. 419–432.
Springer (2010)

15. Ciccozzi, F., Ruscio, D.D., Malavolta, I., Pelliccione, P.:
Adopting MDE for specifying and executing civilian mis-
sions of mobile multi-robot systems. IEEE Access 4,
6451–6466 (2016)

16. Ciccozzi, F., Seceleanu, T., Corcoran, D., Scholle, D.:
UML-based development of embedded real-time software
on multi-core in practice: Lessons learned and future per-
spectives. IEEE Access 4, 6528–6540 (2016)

17. Clerici, S., Orejas, F.: GSBL: An algebraic specification
language based on inheritance. In: S. Gjessing, K. Ny-
gaard (eds.) Proc. of ECOOP’88, pp. 78–92. Springer
(1988)

18. Dou, W., Bianculli, D., Briand, L.C.: OCLR: A more
expressive, pattern-based temporal extension of OCL.
In: Proc. of ECMFA’14, LNCS, vol. 8569, pp. 51–66.
Springer (2014)

19. Dubois, D., Prade, H.: Fuzzy sets and probability: Mis-
understandings, bridges and gaps. In: Proc. of the IEEE
Conf. on Fuzzy Systems, pp. 1059–1068. IEEE (1993).
DOI 10.1109/FUZZY.1993.327367

20. Eramo, R., Pierantonio, A., Rosa, G.: Managing uncer-
tainty in bidirectional model transformations. In: Proc.
of SLE’15, pp. 49–58. ACM (2015)

21. Ernst, E.: Family polymorphism. In: Proc. of ECOOP’01,
LNCS, vol. 2072, pp. 303–326. Springer (2001). DOI
10.1007/3-540-45337-7_17

22. Esfahani, N., Malek, S.: Uncertainty in self-adaptive soft-
ware systems. In: Software Engineering for Self-Adaptive
Systems II, no. 7475 in LNCS, pp. 214–238. Springer
(2013)

23. Famelis, M., Rubin, J., Czarnecki, K., Salay, R., Chechik,
M.: Software product lines with design choices: Reasoning
about variability and design uncertainty. In: Proc. of
MODELS’17, pp. 93–100 (2017)

24. Famelis, M., Salay, R., Chechik, M.: Partial models: To-
wards modeling and reasoning with uncertainty. In: Proc.
of ICSE’12, pp. 573–583. IEEE Press (2012)

25. de Finetti, B.: Theory of Probability: A critical intro-
ductory treatment. John Wiley & Sons (2017). DOI
10.1002/9781119286387

26. Garlan, D.: Software Engineering in an Uncertain World.
In: Proc. of the FoSER Workshop at FSE/SDP 2010, pp.
125–128. ACM (2010)

27. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-
based specification environment for validating UML and
OCL. Sci. Comp. Prog. 69, 27–34 (2007)

28. Goldberg, D.: What every computer scientist should
know about floating-point arithmetic. ACM Comput.
Surv. 23(1), 5–48 (1991)

29. Greengard, S.: The Internet of Things. MIT Press (2015)
30. Guy, C., Combemale, B., Derrien, S., Steel, J.R.H.,

Jézéquel, J.M.: On model subtyping. In: Proc. of
ECMFA’12, LNCS, vol. 7349, pp. 400–415. Springer
(2012)

31. Hall, B.D.: Component interfaces that support measure-
ment uncertainty. Computer Standards & Interfaces
28(3), 306–310 (2006)

32. IEEE Std 1003.1-2008: The Open Group Base Specifica-
tions. Issue 7, Sect. 4.16, Seconds Since the Epoch (2016)

33. ISO/IEC 25010:2011: Systems and software engineering
– Systems and software Quality Requirements and Eval-
uation (SQuaRE) – System and software quality models.
ISO/IEC (2011)

34. JCGM 100:2008: Evaluation of measurement data –
Guide to the expression of uncertainty in measure-
ment (GUM). Joint Committee for Guides in Metrol-
ogy (2008). URL http://www.bipm.org/utils/common/
documents/jcgm/JCGM_100_2008_E.pdf

35. JCGM 101:2008: Evaluation of measurement data – Sup-
plement 1 to the “Guide to the expression of uncertainty
in measurement" – Propagation of distributions using a
Monte Carlo method. Joint Committee for Guides in
Metrology (2008). URL http://www.bipm.org/utils/
common/documents/jcgm/JCGM_101_2008_E.pdf

36. JCGM 200:2012: International Vocabulary of Metrology
– Basic and general concepts and associated terms (VIM),
3rd edition. Joint Committee for Guides in Metrol-
ogy (2012). URL http://www.bipm.org/utils/common/
documents/jcgm/JCGM_200_2012.pdf

37. Jiménez-Ramírez, A., Weber, B., Barba, I., del Valle, C.:
Generating optimized configurable business process mod-
els in scenarios subject to uncertainty. Information &
Software Technology 57, 571–594 (2015)

38. Kchir, S., Dhouib, S., Tatibouet, J., Gradoussoff, B.,
Simoes, M.D.S.: Robotml for industrial robots: Design
and simulation of manipulation scenarios. In: Proc. of
ETFA’16, pp. 1–8 (2016)

39. Khan, M.U., Arshad, N., Iqbal, M.Z., Umar, H.: As-
pectOCL: Extending OCL for crosscutting constraints.
In: Proc. of ECMFA’15, LNCS, vol. 9153, pp. 92–107.
Springer (2015)

40. Kosko, B.: Fuzziness vs. Probability. International Jour-
nal of General Systems 17(2–3), 211–240 (1990)

41. Kyas, M.: An extended type system for OCL sup-
porting templates and transformations. In: Proc. of
FMOODS’05, LNCS, vol. 3535, pp. 83–98. Springer
(2005)

42. Lebigot, E.O.: Uncertainties: a Python package for cal-
culations with uncertainties (2017). URL https://
pythonhosted.org/uncertainties/. Accessed: May 2019

43. Lee, E.A.: Cyber Physical Systems: Design Challenges.
In: Proc. of ISORC’08, pp. 363–369. IEEE (2008)

44. Letier, E., Stefan, D., Barr, E.T.: Uncertainty, risk, and
information value in software requirements and architec-
ture. In: Proc. of ICSE’14, pp. 883–894. ACM (2014)

45. Levenshtein, V.: Binary Codes Capable of Correcting
Deletions, Insertions and Reversals. Soviet Physics Dok-
lady 10, 707 (1966)

46. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyp-
ing. ACM Trans. Program. Lang. Syst. 16(6), 1811–1841
(1994)

47. Littlewood, B., Neil, M., Ostrolenk, G.: The role of mod-
els in managing the uncertainty of software-intensive sys-
tems. Reliability Engineering & System Safety 50(1), 87
– 95 (1995)

48. Liu, B.: Uncertainty Theory, 5 edn. Springer (2018)

http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf
https://pythonhosted.org/uncertainties/
https://pythonhosted.org/uncertainties/

Incorporating Measurement Uncertainty into OCL/UML Primitive Datatypes 27

49. Michaël Baudin Anne Dutfoy, B.I.A.L.P.: Openturns: An
industrial software for uncertainty quantification in sim-
ulation (2015). URL http://www.openturns.org/

50. Mosterman, P.J., Zander, J.: Industry 4.0 as a cyber-
physical system study. Software and System Modeling
15(1), 17–29 (2016)

51. Oberkampf, W.L., DeLand, S.M., Rutherford, B.M.,
Diegert, K.V., Alvin, K.F.: Error and uncertainty in mod-
eling and simulation. Reliability Engineering & System
Safety 75(3), 333–357 (2002)

52. Object Management Group: Object Constraint Language
(OCL) Specification. Version 2.2 (2010). OMGDocument
formal/2010-02-01

53. Object Management Group: UML Profile for MARTE:
Modeling and Analysis of Real-Time Embedded Systems.
Version 1.1 (2011). OMG Document formal/2011-06-02

54. Object Management Group: Unified Modeling Language
(UML) Specification. Version 2.5 (2015). OMG document
formal/2015-03-01

55. Object Management Group: OMG Systems Modeling
Language (SysML), version 1.4 (2016). OMG Document
formal/2016-01-05

56. Object Management Group: Structured Metrics Meta-
model (SMM) Specification. Version 1.2 (2018). OMG
Document formal/18-05-01

57. Pardillo, J., Mazón, J.N., Trujillo, J.: Extending OCL for
OLAP querying on conceptual multidimensional models
of data warehouses. Information Sciences 180(5), 584–
601 (2010)

58. Salay, R., Chechik, M., Horkoff, J., Sandro, A.: Managing
requirements uncertainty with partial models. Require-
ments Eng. 18(2), 107–128 (2013)

59. Selic, B.: The Pragmatics of Model-driven Development.
IEEE Software 20(5), 19–25 (2003)

60. Selic, B.: Beyond Mere Logic – A Vision of Model-
ing Languages for the 21st Century. In: Proc. of
MODELSWARD 2015 and PECCS 2015, pp. IS–5.
SciTePress (2015). URL http://cescit2015.um.si/
Presentations/KN_Selic.pdf

61. Shafer, G.: A Mathematical Theory of Evidence. Prince-
ton University Press (1976)

62. Vallecillo, A., Gogolla, M.: Adding random operations
to OCL. In: Proc. of MoDeVVa’17, no. 2019 in CEUR
Workshop Proc., pp. 324–328 (2017)

63. Vallecillo, A., Morcillo, C., Orue, P.: Expressing mea-
surement uncertainty in software models. In: Proc. of
QUATIC’16, pp. 1–10 (2016)

64. Wikipedia: List of uncertainty propagation software (Ac-
cessed: May 20, 2019). URL https://en.wikipedia.org/
wiki/List_of_uncertainty_propagation_software

65. Wolf, M.: A modeling language for measurement uncer-
tainty evaluation. Ph.D. thesis, ETH Zurich (2009)

66. Zhang, M., Ali, S., Yue, T., Norgren, R., Okariz, O.:
Uncertainty-wise cyber-physical system test modeling.
Software and System Modeling 18(2), 1379–1418 (2019).
DOI 10.1007/s10270-017-0609-6

67. Zhang, M., Selic, B., Ali, S., Yue, T., Okariz, O., Norgren,
R.: Understanding uncertainty in cyber-physical systems:
A conceptual model. In: Proc. of ECMFA’16, LNCS, vol.
9764, pp. 247–264. Springer (2016)

68. Zimmermann, H.J.: Fuzzy Set Theory – and Its Applica-
tions, 4 edn. Springer Science+Business Media (2001)

http://www.openturns.org/
http://cescit2015.um.si/Presentations/KN_Selic.pdf
http://cescit2015.um.si/Presentations/KN_Selic.pdf
https://en.wikipedia.org/wiki/List_of_uncertainty_propagation_software
https://en.wikipedia.org/wiki/List_of_uncertainty_propagation_software

	Introduction
	Background
	Extension of OCL and UML Datatypes
	Tool Support
	Applications
	Evaluation
	Related Work
	Conclusions and Future Work

