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David Harel once said during a talk, “Bridges are made to
stand and software is there to do.” This is a very appropriate
analogy, because it shows that software is about behavior.
As a consequence, many software modeling techniques sup-
ported by languages also allow the description of behavior.
However, behavior usually is embedded in some structure.
In object-oriented systems, this is typically the object, where
a system is composed of many object instances, with the
class as the describing artifact that defines the blueprint. In
many forms of complex or distributed systems, the notion of
“component” or “assembly” is also used in various forms to
describe structure.

At the programming level, there are usually only two
forms of structural definitions. On one hand, we have a
fully dynamic version, such as classes and the possibility to
instantiate and link these classes in the form of objects. Fur-
thermore, an object can be “rewired” dynamically with other
objects building dynamic structures at run time. On the other
hand, there is also a completely static definition, where all
structural and connection aspects of components are defined
at design time. This static structure is then replicated exactly
as is and never changed at run time. For example, this has
been the case in automotive, avionics and other safety critical
systems. The strict static structure has advantages, because it
allows us to better assess and analyze the behavior attached
to the structure. It also has disadvantages, because it hampers
reuse, dynamic updates, configurability, and other advan-
tages that software engineers desire.

Due to static versus dynamic structure of the system,
we also (should) use very different modeling languages for
those structures. For example, UML class diagrams model
principal structures that allow various forms of dynamic
instantiation. Correspondingly, UML object diagrams allow
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the description of specific “instantiated” situations. On the
other side, there are, e.g., SysML internal block diagrams
(IBDs) that describe static structures (with some extensions).
It can also be observed that often modeling languages for
static structures do not have an elaborated type system,
because each component exists only once. A distinction
between class (as type and blueprint) and instantiable object
is not possible. (Ok, SysML IBD do borrow a type system
from the UML class diagrams.)

Software architects might need something in between:
they need to be able to model a controlled form of dynam-
ics that allows them to understand the system, but also does
not bind them to a specific static structure. This is defi-
nitely a challenge when designing a goodmodeling language
for architectures that captures both. The need for a balance
between the relationship of dynamic adaptation and fixed
static structures in software and systems design leads us to
the following interesting questions:

(1) What are the allowed forms of changes? Particularly: is
the set of possible “configurations” finite or infinite?

(2) Can new kinds of components be added to an already
existing system?

(3) When can a change happen?

(a) while the system is running (e.g., dynamic class
loaders)

(b) in stand-by mode (e.g., software update in some
modern electric cars)

(c) when configuring a system (e.g., individual for
each car during assembly)

(d) when designing a product (e.g., developer choosing
from a product line)

The latter two are not very “dynamic,” but interesting
quality and modeling aspects surprisingly often need to be
handled the same way.

(4) Who is deciding the change?

(a) the component internally
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(b) user or developer
(c) the adverse environment
(d) a supervising, orchestrating component

There are several techniques that offer benefit when
describing controlled dynamics, but to our knowledge, none
covers a broad range of the above questions. The existing
techniques are more focused at the programming and calcu-
lus level, rather than focused within the context of modeling
languages. The current mechanisms to support controlled
dynamics can be classified into the following forms:

(1) Change of structure is defined by explicit, imperative
operators. Typically, the structure starts from a minimal
configuration (e.g., empty object-system, core feature
set) with explicit mechanisms to instantiate and con-
nect structural elements; capabilities to reconnect or
delete/kill structural elements are also provided. Often,
these operators are rather basicmechanisms (“assembler
like”), but they can also be aggregated into larger and
moremeaningful forms that are consistency-preserving,
such as semantically valid transformations or delta-
operations.

(2) The other alternative is mainly to use a general
constraint-like diagram, such as UML class diagrams
that describe the set of possible structures, using cardi-
nalities and other structural constraints. Class diagrams
define type-like elements (e.g., classes, associations)
that can be instantiated dynamically. They provide flex-
ible description techniques, but a rather limited power
of control. Of course, we can add OCL as a more fine-
grained logic language that allows the set of possible
configurations in class diagrams to be constrained.

As noted, behavioral descriptions are usually attached
to the existing structure: the structural description is the
“master.” However, it is also possible to use the behav-
ioral description, especially state machines, to describe the
dynamic structure in a controlled way: the behavior descrip-
tion becomes the master. If so, this is done in two ways: (1)
in descriptive form by attaching a specific configuration to
each state, or (2) in a more imperative form by attaching a
structure transformation to each transition. We observe as an
aside: The use of behavioral modeling languages in combi-
nation with structural modeling languages makes it evident
that such a language combination must be dependent on the
form of use and not(!) a fixed combination. Most tools do not
cover these needs.

It seems that the complexity of the systems in our world
could be described and modeled better if we had a flexible

combination of modeling techniques to (1) describe a static
core structure, (2) allowing the instantiation of additional
structural elements in a controlled way, and (3) also defin-
ing, respectively, constraining the possible sets of structures
using behavioral or logic languages. We definitely need a
deeper understanding of the techniques and tools that could
better assist software and systems engineers in describing
dynamically changing structures. This could lead to addi-
tional opportunities and benefits that can be realized from
either new combinations of modeling languages or appro-
priately defined new DSLs. It will be beneficial to see more
investigation into these techniques in the future.
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