
Software and Systems Modeling (2021) 20:725–766
https://doi.org/10.1007/s10270-020-00824-3

REGULAR PAPER

Implementing QVT-R via semantic interpretation in UML-RSDS

K. Lano1,2 · S. Kolahdouz-Rahimi1,2

Received: 13 January 2020 / Revised: 20 July 2020 / Accepted: 11 August 2020 / Published online: 24 September 2020
© The Author(s) 2020

Abstract
The QVT-Relations (QVT-R) model transformation language is an OMG standard notation for model transformation spec-
ification. It is highly declarative and supports (in principle) bidirectional (bx) transformation specification. However, there
are many unclear or unsatisfactory aspects to its semantics, which is not precisely defined in the standard. UML-RSDS is an
executable subset of UML and OCL. It has a precise mathematical semantics and criteria for ensuring correctness of applica-
tions (including model transformations) by construction. There is extensive tool support for verification and for production
of 3GL code in multiple languages (Java, C#, C++, C, Swift and Python). In this paper, we define a translation from QVT-R
into UML-RSDS, which provides a logically oriented semantics for QVT-R, aligned with the RelToCore mapping semantics
in the QVT standard. The translation includes variation points to enable specialised semantics to be selected in particular
transformation cases. The translation provides a basis for verification and static analysis of QVT-R specifications and also
enables the production of efficient code implementations of QVT-R specifications. We evaluate the approach by applying it
to solve benchmark examples of bx.

Keywords Model transformations · QVT-Relations · UML-RSDS · Model transformation semantics · Model transformation
tools

1 Introduction

Model transformations (MT) are used in model-driven engi-
neering (MDE) to map data of a source model src to a target
model trg, where the models conform to particular source
and target metamodels/languages SL and T L . Transforma-
tion specifications (e.g. in QVT-R, ATL or UML-RSDS)
typically consist of a collection of transformation rules, each
of which is concerned with mapping source elements of one
or more SL classes to target elements of one or more T L
classes.

A unidirectional transformation τ can only be executed
in one direction (from SL models to T L models, or from
T L models to SL models) whilst a bidirectional transforma-
tion (or bx) has both forward τ→ and reverse τ← mappings,

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s10270-020-00824-3) contains
supplementary material, which is available to authorized users.

B K. Lano
kevin.lano@kcl.ac.uk

1 King’s College London, London, UK

2 University of Isfahan, Isfahan, Iran

derived from the same transformation specification τ . The
reverse mapping operates on models trg of T L to produce
models src of SL . Bidirectional transformations are not nec-
essarily bijective as functions.

Two execution modes can be distinguished for either for-
ward or reverse transformation directions:

• Batch-mode execution, where an empty trg (or src)
model is populated from a src (or trg) model in one
complete execution.

• Incremental-mode execution,where incremental changes
to a src (or trg) model are propagated to changes to
an already populated trg (or src) model. Changes can
be: creation/deletion of elements; reassignment of 1-
multiplicity features; addition/removal of elements from
other features. In this paper, we address source-to-target
incremental change propagation in the sense of [10].

Apart from models, incremental-mode execution could also
make use of persistent traces, which record src − trg
correspondences established by previous executions of the
transformation.

The QVT-Relations (QVT-R) language is an OMG stan-
dard for model transformation specification. The latest cur-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-020-00824-3&domain=pdf
https://doi.org/10.1007/s10270-020-00824-3

726 K. Lano, S. Kolahdouz-Rahimi

Fig. 1 Analysis and implementation of QVT-R via UML-RSDS

rent release is version 1.3, defined in [30]. The language was
intended to support the declarative specification of model
transformations, avoiding imperative constructs, and sup-
porting change propagation from one model to another, and
bi- (or multi-) directional interpretation of transformations.

Although QVT-R has been widely used in research, there
remain several limitations with the language which prevent
wider industrial adoption:

• Incompleteness in the semantics makes it difficult to ver-
ify transformations, or to systematically design bx [36].

• Unclear semantics for update-in-place transformations
makes it difficult to define and use such transformations.
The combination of bx and update-in-place execution has
not been developed [41].

• Tool support is incomplete, with the only mature tool,
Medini QVT [11], no longer actively maintained. The
tool uses a restricted version of QVT-R, with a variant
semantics which has not been formalised.

In this paper, we aim to address these defects by providing
a translation from QVT-R into the UML-RSDS formalism
[18], which is a subset of UML with a formal semantics
and extensive tool support. UML-RSDS directly supports
transformation analysis and update-in-place execution of
transformations, and efficient execution via code generation
in 3GLs. The translation has itself been formalised in UML-
RSDS. UML-RSDS is implemented in the Eclipse Agile
UML tools (https://projects.eclipse.org/projects/modeling.
agileuml). A guide to using the QVT2UMLRSDS transla-
tor is at [26].

The overall process which we use to analyse and imple-
ment QVT-R transformations is illustrated in Fig. 1. All of
the steps are automated, although there may be user choices
to bemade in the synthesis of designs. The present paper con-
cerns the semantic derivation and analysis steps; the design
synthesis and code generation steps have been previously
described [18,19,22].

Section 2 gives an overview of QVT-R. Section 3 high-
lights some of the issues which remain unresolved regarding
the language semantics and implementation. Section 4 gives
an overview ofUML-RSDS. Section 5 defines the translation

from QVT-R to UML-RSDS for separate-models transfor-
mations. Section 6 describes semantic analysis techniques
for the translated transformations. Section 7 considers the
use of design patterns in QVT-R and UML-RSDS. Section 8
gives an evaluation of the approach by applying it to a num-
ber of bx benchmarks from [36]. Section 9 compares our
approach to other related work.

In the appendix, “Appendix A” defines the mapping from
QVT-R to UML-RSDS for update-in-place transformations.
“Appendix B” defines the logical interpretation of QVT-R
domains. “AppendixC”gives the definitions of read andwrite
frames of predicates, and of their procedural interpretations.
“Appendix D” gives the interpretation of relation overriding
and transformation extension. “Appendix E” (in supplemen-
tary material) gives the detailed evaluation results on 10 case
studies.

2 QVT-R

QVT-R is one of the three MT languages defined in the
QVT standard [30], the others being QVT Core (QVT-C)
andQVTOperational (QVT-O).QVT-R is intended to enable
transformation developers to write high-level and declarative
transformation specifications, including bidirectional (bx)
and multidirectional transformations, supporting both batch
and incremental-mode execution. QVT-O is a unidirectional
language oriented towards an imperative style, whilst QVT-
C is mainly used as a low-level target language into which
QVT-R or other transformation languages can be translated.

2.1 QVT-R transformation structure

Figure 2 shows the subset of theQVT-Rmetamodelwhichwe
address in this paper. Black-box operations are not included,
nor are collection templates in target domains or the ‘oppo-
site’ navigation mechanism. The computational part of a
QVT-R specification (a relational transformation) consists
of a set of rule definitions (termed relations) and a set of
query operation definitions. The rules and queries have dis-
tinct names:

rule→isUnique(name)
helpers→isUnique(name)
rule.name→intersection(helpers.name) = Set{}

Rules may be top level, in which case they are executed
on all matching source elements for which they are enabled,
or non-top level, when they can only execute if explicitly
invoked from a rule.

For example, considering the UML2C specification of a
UML to ANSI C code generator [3] (Fig. 3 shows simplified
extracts of the metamodels of this system), a simple rule that

123

https://projects.eclipse.org/projects/modeling.agileuml
https://projects.eclipse.org/projects/modeling.agileuml

Implementing QVT-R via semantic interpretation in UML-RSDS 727

Fig. 2 Subset of QVT-R supported by QVT2UMLRSDS

maps a UML model instance to a C program instance (and
vice versa) could be written as a top relation

top relation Model2Program
{ enforce domain design u : UMLModel

{ name = n };
enforce domain C p : CProgram { name = n };

}

A QVT-R rule has a sequence of domains (Rule::domain
in Fig. 2). Each domain of a relation represents a source
or target element of a specific type, e.g. u:UMLModel,
from the typedModel of the domain, in this case the design
model. This element is represented by the root variable of
the domain (RelationDomain::rootVariable in Fig. 2). The
remainder of the domain is a template pattern (Relation-
Domain::pattern.templateExpression) which matches and
constrains the data of the root element. Templates consist of
specialised forms of expression that specify individual source
or target elements, ObjectT emplateExps, or collections of
source elements, CollectionT emplateExps. Non-top rela-
tions may also have primitive domains, which only have a
root variable, and an empty template expression. Primitive
domains are used to pass in non-object parameter values. The
sequence domain.rootV ariable of domain root variables is
the (input) parameters of the non-top relation.

In Model2Program, the domain template expression for
u introduces an auxiliary local variable n of the relation
and assigns this the value of u.name. Such local variables
(included in Pattern :: bindsT o) can also be explicitly
declared in the relation:
top relation Model2Program
{ n : String;
enforce domain design u : UMLModel

{ name = n };
enforce domain C p : CProgram { name = n };

}

In this paper, we will only use implicit declarations for
such local variables.

2.2 QVT-R relation semantics

Thedata of an enforcedomain (a domainwith isEn f orceable
= true) can bemodified by application of the relation, whilst
data of a checkonly or primitive domain can only be queried.
Transformations have a directionality—they may be exe-
cuted in the direction of any one of their parameters (typed
models), in which case all their rules are also executed in
this direction. This means that relation domains with this
(target) model can have their data modified (in the case of
en f orce domains) using data read from domains with other

123

728 K. Lano, S. Kolahdouz-Rahimi

Fig. 3 Simplified UML design and C metamodels

models. Elements within the target model can also be created
or deleted.

Thus, for the Model2Program relation, if it is executed
in the direction of an initially empty C model, the relation
creates p as a CProgram instance and sets p.name = n,
where n = u.name, the name of the UMLModel instance.
If executed in the design direction, the relationwould instead
create u : UMLModel instances from p : CProgram
instances and copy p.name’s value to u.name.

An important mechanism in QVT-R is check-before-
enforce semantics: if the constraints of a relation already
hold for some target elements, relative to specific source ele-
ments, then the relation execution binds some such target
elements to the target domain variables, instead of creating
new elements. Thus, executing Model2Program in the C
direction, with a non-empty C model, the creation of a new
CProgram only occurs if there is not already a CProgram
instance satisfying the required property name = u.name,
likewise for execution in the design (UML) direction.

A more complex relation defines the mapping of UML
class types to C pointer types together with a C struct type:

top relation Class2CPointerType
{ enforce domain design e : Entity

{ typeId = t, name = n };
enforce domain C p : CPointerType

{ ctypeId = t, pointsTo = c : CStruct
{ name = n, ctypeId = n } };

}

The t ypeId and ctypeId features are unique identifiers for
the UML and C type occurrences (i.e. keys in terms of
QVT-R, Sect. 2.4). Executed in the C direction, for each

e : Enti t y, both a CPointerT ype instance and a linked
CStruct instance are potentially created. In general, any
number of linked elements may be defined in a domain tem-
plate.Wedescribe this situation as (vertical) enti t y spli t ting
[20], and it is common in refinement transformations.

The QVT-R template expressions describe the data of
model elements. They can also be interpreted as standard
OCL expressions. For example, the above domains have the
OCL interpretations

e : Enti t y and t = e.t ypeId and n = e.name

and

p : CPointerT ype and p.ctypeId = t and c : CStruct and
p.pointsT o = c and c.name = n and c.ctypeId = n

Domains may have additional condition expressions
(T emplateExp :: where in Fig. 2), which are conjoined
with the logical interpretation of the template expression.
For example, we could write:

top relation Class2CPointerTypeV2
{ enforce domain design e : Entity

{ typeId = t, name = n }
{ e.isAbstract = false };

enforce domain C p : CPointerType
{ ctypeId = t, pointsTo = c : CStruct

{ name = n, ctypeId = n } };
}

123

Implementing QVT-R via semantic interpretation in UML-RSDS 729

In the C direction, this additional condition restricts the
mapping to concrete UML classes. In the design direction,
the condition assigns e.is Abstract = f alse for the target
e : Enti t y.

2.3 QVT-R relation dependencies

Top relations may have dependencies on other relations, in
cases where a relation R can only be applied to an element x
if another relation P has been previously applied to a linked
element y. Such dependencies are specified in awhen {P(y)}
clause of R (Relation :: when in Fig. 2). For example, con-
sider the mapping of UML properties to C struct members,
omitting the mapping of property types:

top relation Property2CMember
{ enforce domain design p : Property

{ owner = e : Entity {}, name = n,
isUnique = k };

enforce domain C m : CMember
{ memberOf = s : CStruct {}, name = n,

isKey = k };
when { Class2CStruct(e,s) }

}

The s : CStruct must already have been created for e =
p.owner , before Property2CMember can be applied to
create m : CMember for p. The relation Class2CStruct
is:

top relation Class2CStruct
{ enforce domain design e : Entity

{ name = n };
enforce domain C c : CStruct

{ name = n, ctypeId = n };
}

Using this relation,Class2CPointerT ype canbe respec-
ified as:

top relation Class2CPointerTypeV3
{ enforce domain design e : Entity

{ typeId = t };
enforce domain C p : CPointerType

{ ctypeId = t, pointsTo = c :
CStruct { } };

when
{ Class2CStruct(e,c) }

}

Rules may inherit from other rules (Rule :: overrides in
Fig. 2): an abstract rule

abstract top relation S2T
{ enforce domain src s : S { ... };
enforce domain trg t : T { ... };

}

can be overridden by an abstract or concrete relation
with more specific source/target types S1/T 1 and/or source
domain condition and/or when condition:

top relation S12T overrides S2T
{ enforce domain src s : S1 { ... } { P };
enforce domain trg t : T1 { ... };

}

The semantics of overrides is not specified in [30];
we provide a semantics in Sect. 5.2 and “Appendix D”.
We add the restriction that concrete rules should have con-
crete domain types S1 or T 1 in their direction of execution
(because elements of these classes may need to be instanti-
ated by the rule execution).

2.4 Specialised control of transformation behaviour

So far we have only used 1-multiplicity attribute features
(such as name : String) or 1-multiplicity reference features
(such as owner : Enti t y) in domain templates. Semantic
problems begin to appear when optional features are used
in domains, i.e. features f with multiplicity 0..n or ∗. For
example, the following top relation could seem to be a valid
alternative way of mapping classes to structs and attributes
to members in a single rule:

top relation Class2CStructV2
{ enforce domain design e : Entity

{ name = n, ownedAttribute = p :
Property { name = n1, isUnique = k } };

enforce domain C c : CStruct
{ name = n, ctypeId = n, members = m :
CMember { name = n1, isKey = k } };

}

However, there are two problems with this:

1. If e.owned Attribute is empty, then no p : Property
can match the e template, and the relation will not be
applied to e. In other words, classes without owned prop-
erties will not be mapped to C at all.

2. Even for classes with properties, the logic of the rule
is that for every pair (e, p) of a class e and an owned
property p, there should exist a pair (c,m) of a struct and
a member. In the absence of key declarations, there is no
obligation that the same c is chosen for different p within
one class e.

123

730 K. Lano, S. Kolahdouz-Rahimi

Notice that check-before-enforce does not avoid problem 2:
the C domain will be executed to create c and m in any case
where there is not already both a CStruct and a CMember
with the required logical properties relative to e and p.

One technique that QVT-R provides to address the sec-
ond problem are keys: a transformation can specify that
certain features or feature combinations uniquely identify
elements of certain classes. Multiple elements with the same
key feature values/combinations are not permitted, and tar-
get elements are looked up by key and updated when they
already exist, instead of being created. In the above example,
key specifications

key Entity { name };
key CStruct { ctypeId };

would resolve the secondproblem, because the same (unique)
c : CStruct with c.ctypeId = e.name would be chosen for
each p : e.owned Attribute from the source domain.

Compound keys can be specified as, e.g.

key CMember { memberOf, name };

Another means to restrict execution choices is to use non-
top relations, which are relations which can be invoked in
the where clauses of relations (Rule :: where in Fig. 2). For
example,

relation NonTopProperty2CMember
{ enforce domain design e : Entity

{ ownedAttribute = p : Property
{ name = n, isUnique = k } };

enforce domain C c : CStruct
{ members = m : CMember { name = n,

isKey = k } };
}

is a non-top relation with input parameters e : Enti t y, c :
CStruct corresponding to its domain root variables. These
parameters must be bound to specific elements when a call
is made to the relation, e.g. as:

top relation Class2CStructV3
{ enforce domain design e : Entity

{ name = n };
enforce domain C c : CStruct

{ name = n, ctypeId = n };
where { NonTopProperty2CMember(e,c) }

}

The effect of NonTopProperty2CMember is that for each
pair (e, c) of related class e and C struct c, for all properties
p of e, a corresponding C member m is added to c. This
resolves problems (1) and (2) above.

Problems (1) and (2) arise because matching of domain
patterns in QVT-R is performed in an element-by-element
manner, i.e. there is an implicit quantifier e.owned

Attribute→ f or All(p|...)over theClass2CStructV 2 rela-
tion. This is in contrast to languages such as ATL or
UML-RSDS, where assignments can be used to set the val-
ues of collection-valued features of target elements in a single
step, based on the collection values of source element fea-
tures.

where clauses can also contain assignments to fea-
tures of elements, e.g. a non-standard way of writing
Model2Program could be:

top relation Model2ProgramV2
{ enforce domain design u : UMLModel { };
enforce domain C p : CProgram { };
where
{ p.name = u.name;

u.name = p.name
}

}

In the C direction, only the first assignment is effective
as an update, because u and its features are not writable
(“object creation, modification, and deletion can only take
place in the target model for the current execution”, Page 15
of [30]). Instead, it is treated as a condition which should be
established by the relation. In the design direction, only the
second assignment is effective as an update.

Finally, it is possible to define auxiliary query operations
(RelationalT rans f ormation :: helpers in Fig. 2), e.g.
query combineNames(cn : String, an :

String) : String
{ cn + "_" + an }

These operations can then be called in domains or in the
when or where clauses of relations:

top relation Property2CMemberV2
{ checkonly domain design p : Property

{ owner = e : Entity { name = en },
name = n, isUnique = k };

enforce domain C m : CMember
{ memberOf = s : CStruct {},
name = combineNames(en,n), isKey = k };

when { Class2CStruct(e,s) }
}

2.5 Overall QVT-R transformation semantics

The logical semantics of a QVT-R transformation is that at
termination, all the concrete top relations will be established
between the source and target models—i.e. the target model
will have been modified wrt the source model in order that
all these relations hold. The execution semantics of a QVT-R
transformation is that each concrete top relation is applied to
all source elements for which it is enabled, until the relation
is established for all such elements. In addition, target ele-
ments which are not “required to exist” by the concrete top

123

Implementing QVT-R via semantic interpretation in UML-RSDS 731

relations should be removed. This is a somewhat ambiguous
requirement [2], which we make precise in Sect. 5.

The QVT-R semantics can be characterised as being state
based: only the states of the source and target models are
relevant for relation application. In particular, no execution
trace is persisted from one execution to another—however,
an internal trace is available, whereby one relation can test
if another has been established in the same execution of the
transformation, via the when clause, as described above.

3 Issues in QVT-R semantics

Although QVT-R was devised with the intent of being a
declarative language with a clear semantic interpretation
[15], there have been a continuing series of problems over its
semantics.

These problems can be grouped into the following main
categories:

• Incompleteness and inconsistencies in the standard [31].
For example, issue QVT14-55 identifies incomplete-
ness in the check-before-enforce mechanism, and issue
QVT14-57 identifies gaps and problems in the RelTo-
Core mapping in the standard, which (partially) defines
the semantics of QVT-R via a translation to QVT-C.

• The state-based semantics and check-before-enforce
mechanism are insufficient in some cases to support effi-
cient or precise incremental updates of a target model in
response to source model changes [37]. The mechanism
can also have unintended effects in batch mode, e.g. per-
forming n to 1 merging of elements which should not be
identified.

• Different transformation problems require different crite-
ria for rule application conditions and for target element
matching/creation/update. The standard does not provide
any capability for such flexibility, leading to contrived
and complex specifications when a variant semantics is
needed [7,36,37].

At the heart of these problems is the dichotomy between
the aim that QVT-R should be a purely declarative language,
defining the effect of a transformation independently of any
algorithm/design, and the practical needs of specifiers to
define modular, efficient and comprehensible specifications.
Thus, the resolved issue QVT13-48 points out that interme-
diate states during a transformation execution must actually
be considered.

The ATL language addresses the declarative/imperative
dilemma by prohibiting read access to the target model.
QVT-R uses when clauses with relation tests to provide
read access to target elements—but there is no guarantee in
QVT-R that the data of these accessed elements may not sub-

sequently change in value and hence invalidate the relation
that accessed the elements.

In UML-RSDS, we resolve the dilemma by expressing
rules as logical predicates. The rules also have a procedu-
ral interpretation, and the sequential composition of these
procedures establishes the logical conjunction of the rules
interpreted as predicates (Sect. 4). Target data can be read in
rules, but only at points where it has reached its final state.
We will apply this same idea in our QVT-R semantics and
impose conditions ((a) to (e) of Sect. 5.4) to enable QVT-R
specifications to be interpreted in a declarative manner.

In contrast to the QVT standard, the implementation of
QVT-R in the Medini QVT tool [11] is oriented towards the
efficient execution of QVT-R for practical use. Medini QVT
has become a de facto standard for QVT-R developers, as
it has been the most widely used QVT-R tool for several
years. The tool adopts a variant semantics (based on persis-
tent traces), but also has limitations for incremental updates
and a lack of flexibility in its semantics [38].

3.1 Incompleteness and inconsistencies in the QVT
standard

The semantics of QVT-R is defined in different ways in [30]:
Section 7.10 gives a semiformal description, supported by a
more formal definition in Section B.2. Section 10 defines a
mapping, RelT oCore, fromQVT-R toQVT-C.Eachof these
descriptions is incomplete, and RelT oCore is inconsistent
withSectionB.2 [2]. It is not clear how the semantics operates
for update-in-place execution (Issue QVT14-47).

Detailed criteria for transformation correctness and ver-
ification are omitted from [30]. For example, an update by
a relation R may be inconsistent because a different or the
same application of R—instead of an application of a dif-
ferent relation—has already assigned a conflicting value to a
feature of a selected target element. As discussed in Sect. 2,
relations with source domain constraints r = r x : R{} on
optional r references can fail to be applied to elements whose
r value is empty/undefined (IssueQVT14-67).Multiple addi-
tions of elements to∗-multiplicity features are not necessarily
inconsistent (Issue QVT14-46), nor are multiple removals of
elements from optional features, but mixtures of additions
and removals, and other combinations of updates, can pro-
duce inconsistent behaviours.

As shownabove, apparently correct rules can lead to subtle
flaws, dependent upon the execution semantics of the rules.
Three differentmechanisms (check-before-enforce, keys and
non-top relations) are available in standard QVT-R to sup-
port target element resolution and reduce non-determinism
in relation execution, but these mechanisms also lead to
semantic problems. Check-before-enforce is a coarse-grain
mechanism, applying at the level of entire target domains.
In situations where there are multiple target object template

123

732 K. Lano, S. Kolahdouz-Rahimi

expressions, it would be preferable to have an alternative
mechanism which tests individual target templates and only
executes their actions if their predicate does not already hold
for some target element (in which case such an element could
be looked up and bound to the template root variable for use
in subsequent target templates of the relation, or in the rela-
tion where clause).

The check-before-enforce mechanism is intended to sup-
port change propagation based only on the states of source
and target models, but the lack of precise information
about source–target correspondences may result in non-
deterministic and imprecise change propagation. A change
in the value of a source feature may result in deletion and
re-creation of a target element, instead of a feature change
of the target [37]. In some cases, check-before-enforce is
the incorrect semantics for a transformation, for example, in
cases where there are no keys, but nonetheless a 1–1mapping
of source elements to target elements is required, as in the
Families to Persons case [37]. A more subtle case is where
intermediate objects in a chain of linked objects should not
be overwritten (Sect. 6).

Implicit deletion of elements (Section 7.10.2 of [30]) is
unclear and ambiguous. It is expressedwith respect to a single
relation: that target elements t are deleted if they are not
“required to exist” by a valid binding of source elements s
in an application of the relation. However, t could also be
“required to exist” by other relations, which would mean it
should not be deleted. This implicit delete mechanism does
not seem adequate to propagate removal of elements from
collection-valued features. For example, if source class A
and target class A1 have *-multiplicity features r and rr :

top relation A2A1
{ enforce domain src a : A {};
enforce domain trg a1 : A1 {};

}

top relation B2B1
{ enforce domain src b : B {};
enforce domain trg b1 : B1 {};

}

top relation R
{ enforce domain src a : A

{ r = bx : B {} };
enforce domain trg a1 : A1

{ rr = b1x : B1 {} };
when { A2A1(a,a1) and B2B1(bx,b1x) }

}

Removal of some bx from a.r does not necessarily lead to
removal of any correspondingb1x (i.e.where B2B1(bx, b1x)
holds) from a1.rr , because b1x is still “required to exist” by

B2B1. Only deletion of bx is propagated to deletion of b1x
and its removal from a1.rr .

The order in which different parts of a QVT-R rela-
tion are executed is not fully defined in [30]. The source
domains andwhen clause are considered together, the source
domains declare variables representing inputmodel elements
and features of these elements, and the source domains
and when clause (possibly also involving target variables
in relation tests) define constraints on these variables.
For Property2CMember , p is bound to some Property
instance, e is bound to p.owner , and n is bound to the value
of p.name and k to the value of p.isUnique. The when
clause further binds or constrains variables which occur in it,
e.g. in Property2CMember , the callClass2CStruct(e, s)
restricts target variable s to be anyCStruct already matched
to e by Class2CStruct . On the target side of the relation,
a binding of the remaining target variables is constructed
(if possible) which satisfies the target domains and the
where clause. In Property2CMember , this means find-
ing/creating an instance m of CMember which satisfies
m.memberO f = s, m.name = n and m.isKey = k.
However, the standard does not specify the relative order
of execution of the where clause and target domains, nor
of different target domains. There is a requirement that all
arguments of a where-call of a relation must be fully bound
at the point of call; however, this does not ensure that all data
needed by the call are available [36].

This lack of a definite execution order appears to have no
benefit for efficiency or abstraction and complicates the defi-
nition of QVT-R specifications, particularly bx specifications
[36]. Finally, the definition of rule inheritance (relation over-
riding) and of transformation extension is left unspecified in
[30].

3.2 Issues with the RelToCore semantics

The RelToCore translation (Sect. 10 in [30]) defines an
explicit semantics for QVT-R by translating QVT-R spec-
ifications into QVT-C. This translation is defined as a large
and complex QVT-R transformation, which has many qual-
ity flaws [23]. The translation is also incomplete: various
functions (getVarsO f Exp) and rules (RExpToMExp,
TopLevel RelationT oMappingFor En f orcement) are not
given full definitions, and there is no treatment of collection
templates (QVT-R issue QVT14-28) or relation overriding
(issue QVT14-57). The translation of where-invoked rela-
tions requires a separate Core mapping for each pair of an
invoker and invoked relation [7].

3.3 Issues with Medini QVT

Medini QVT [11] has been the most successful QVT-R
tool to date; however, it differs from the QVT-R stan-

123

Implementing QVT-R via semantic interpretation in UML-RSDS 733

dard in that it does not support check-before-enforce and
instead uses persistent traces to support change propagation.
Apart from these differences, Medini QVT also has several
omissions and errors: domain conditions are not supported,
leading to additional complexity in bx specifications (cf.
the dag2ast/ast2dag case of [36]); there is no transformation
extension or relation overriding, leading to code duplication;
sets cannot be passed as parameters to non-top relations (cf.
the bag22bag1 case of [36]). Container references are not
writable, so that relations must be defined relative to con-
tainer objects, resulting in multiple (> 2) levels of element
structure in domains (cf. the ecore2sql3 case of [36]). This
also complicates traceability, requiring theuseofmarker rela-
tions [6]. A number of OCL operators are not supported or
are incorrectly supported. As in the standard, the execution
order of where clauses is not determined by their textual
order. However, the tool does enforce that top relations can-
not be invoked in where clauses, which is still an open issue
in the standard (issue 14-59). TheMedini QVT change prop-
agation strategy is fixed and cannot be varied. The strategy
propagates attribute value changes, but movement of an ele-
ment from one association end to another may result in target
element deletion and creation.

The approach is inherently operational, and verifica-
tion facilities and correctness criteria are missing, although
Medini QVT provides debugging facilities.

4 UML-RSDS

UML-RSDS is a specification language based on a subset
of UML class diagrams, use cases, activities and OCL 2.4.
Applications, including transformations and subtransforma-
tions, are specified as use cases τ which have preconditions
Preτ and a sequence of postcondition constraints Postτ
expressed in an OCL subset. Use cases can also have activ-
ities (behaviours) in a subset of UML activity language,
expressed as pseudocode statements (“Appendix C”).

The UML-RSDS OCL subset excludes Ocl Any, and the
invalid value, and uses classical logic instead of the 3-
valued logic of the OCL standard. It uses the notation “&”
for and, �⇒ for implies, and x : s as an alternative
for s→includes(x)1. The null value cannot be explicitly
referred to but can be tested using the ocl I sUnde f ined()

operator.

4.1 UML-RSDS specification structure

A UML-RSDS specification consists of a class diagram
together with one or more use cases, which may be linked

1 Using symbols for operators can help to make formulae more read-
able.

by �extend� or �include� dependencies. For transfor-
mations, classes may be distinguished as belonging to the
source or target metamodels. A use case is itself a UML
classifier and may have local attributes and operations. It
is also a behaviour (specification) and may have parame-
ters, preconditions, postconditions, invariants and an activity.
Postconditions provide a declarative specification of the use
case behaviour, and are expressed as rules or constraints with
the schematic form

E ::
Pre �⇒ Post

where E is a source class and Pre and Post are boolean-
valued expressions with context E , with Post possessing a
procedural interpretation stat(Post) or statLC (Post) as a
UML activity2. The context class E is optional. As in UML
operation postconditions, prestate forms v@pre of variables
and expressions v can be used, to refer to the read-only state
of v at initiation of the execution of the constraint on an E
instance.

For example, the Model2Program rule would be
expressed as an OCL constraint:

UMLModel::
CProgram->exists(p | p.name = name)

In general, UML-RSDS rules are more concise and simpler
in form than corresponding QVT-R rules.

Query operations may be defined locally to a use case, as
inQVT-R transformations, and in addition, update operations
can be defined, which may or may not return values. Query
and update operations may also be defined for class diagram
classes. All these types of operation can be called fromUML-
RSDS rules, but update operations should only be invoked
in rule succedents.

Specifications can be internally composed sequentially by
defining an activity of a composite use caseucwhich includes
use cases uc1, . . . , ucn . The activity of uc is defined as the
sequential composition of the activities of the uci .

4.2 UML-RSDS rule semantics

Constraints are logically interpreted as universally quantified
first-order logic formulae, e.g.:

∀m : UMLModel · ∃p : CProgram · p.name = m.name

The mathematical interpretation of UML-RSDS OCL is
given in [21].

OCL predicates such as p.name = name and E→exists
(e|P) are also given an operational interpretation as UML

2 We say that such Post are effective for update.

123

734 K. Lano, S. Kolahdouz-Rahimi

activities, such as assignments and object lookup/creation
actions (object creation of e : E implicitly updates the
class extent collection E .all I nstances() of E instances).
For each predicate P , an operational interpretation stat(P)

defines an activity (written as a procedural statement) which
attempts to establish P by reading a set rd(P) of features and
class extents, and changing a set wr(P) of writable features
and class extents [18,21]. This is the conventional behaviour
semantics of P . An alternative “least-change” semantics is
given by an activity statLC (P) [25]. This tries to minimise
changes towr(P) data and tomaximise reuse of existing ele-
ments. Definitions of rd, wr , stat and statLC are given in
“Appendix C”. For example, the UMLModel rule has read
frame {UMLModel,UMLModel::name} and write frame
{CProgram,CProgram::name}. The “design synthesis”
step of Fig. 1 involves the derivation of the stat(Postτ)
or statLC (Postτ) activities for each use case τ (a �bx�
stereotype on a use case uc indicates that statLC should be
used for uc).

The QVT-R check-before-enforce mechanism for such a
rule could be expressed as

E ::
Pre & not(Post@pre) �⇒ Post

In other words, execution of the succedent is only attempted
if it is not already true in the initial state of the rule execu-
tion. However, instead of using this global check over the
entire postcondition, we can use the statLC (Post) activity,
which uses local checks to avoid un-necessary updates. For
example, statLC (x : y.r) for *-multiplicity r first tests if
y.r→includes(x) and only adds x to y.r if the test is false
(for 0..1 multiplicity r , only if y.r is empty).

In UML-RSDS, Class2CPointerT ype could be written
as:

Entity::
CPointerType->exists(p | p.ctypeId

= typeId &
CStruct->exists(c | c.ctypeId
= name & c.name = name

& p.pointsTo = c))

UML-RSDS specifications usually make use of iden-
tity attributes (unique keys) to look up previously created
elements. This acts as a persistent trace mechanism. For
example, t ypeId and ctypeId are identity attributes, so
CT ype instances can be looked up by their ctypeId
values: CT ype[val] denotes the unique CT ype instance
t with t .ctypeId = val, if any such instance exists.
In the CStruct→exists quantifier above, if the element
CStruct[name] already exists, then it is bound to c and the
statements stat(c.name = name) and stat(p.pointsT o =
c) are executed.

Using this mechanism, the equivalent of the Property
2CMember rule is:

Property::
CMember->exists(m | m.memberOf

= CPointerType[owner.typeId].pointsTo &
m.name = name & m.isKey = isUnique)

where it is assumed that the CPointerT ype instance
with ctypeId = owner .t ypeId already exists. In UML-
RSDS, setting one end of a bidirectional association such as
members/memberO f implicitly also updates the other end
(here, adding m to the members of the selected CStruct).
Likewise, removing an element from one association end
implicitly updates the other end. Deletion of an element
implicitly removes it from all association ends and class
extents in which it resides. Deletion of an aggregation owner
element deletes all the aggregation part elements (cascaded
deletion). These implicit updateswill also apply for theQVT-
R semantics representation in UML-RSDS.

The lookup mechanism E[val] also applies to collections
of key values: CT ype[vals] for collection vals is the col-
lection of instances of CT ype with ctypeId value in vals.

An alternative way of writing the above Property to
CMember constraint is:

Property::
p = CPointerType[owner.typeId] =>

CMember->exists(m |
m.memberOf = p.pointsTo & m.name

= name & m.isKey = isUnique)

Here, p is an auxiliary variable, similar to anOCL let variable
or QVT-R local variable. It is implicitly ∀-quantified over the
entire constraint.

There are two versions of the general existential quantifier.
→existsLC is used to provide local “least-change” seman-
tics in a conventional execution semantics context.

1. E→exists(x |P)—in the case that E has a key : String
identity attribute, the stat or statLC design of this quanti-
fier expression uses any key specification x .key = value
present in P to lookup x (or create x and set its key if there
is no existing x with the key value) and then attempts to
establish the remainder Q of P for x using stat(Q) or
statLC (Q). If E has no identity attribute key, then with
stat semantics a new x is always created and P is estab-
lished for this x using stat(P).

2. E→existsLC(x |P)—in the case that E has a key :
String identity attribute, the stat or statLC design of this
quantifier expression uses any key specification x .key =
value present in P to lookup x (or create x and set its
key if there is no existing x with the key value) and
then attempts to establish the remainder Q of P for x
using statLC (Q). Otherwise, successive conjuncts of P

123

Implementing QVT-R via semantic interpretation in UML-RSDS 735

are considered, with the aim to find an instance x : E
which satisfies as many of these conjuncts as possible.
An attempt is then made to establish the remaining con-
juncts for such an x using statLC . A new instance x : E
is created if the first (or only) conjunct of P cannot be
satisfied by any E instance.

Used as queries, exists and existsLC are equivalent, and
test that E→select(x |P) is non-empty.

4.3 UML-RSDS transformation semantics

UML-RSDS transformation constraints are unidirectional
as rules, e.g. reading UMLModel instances and creat-
ing/updating CProgram instances. However, in some cases
the rules of a transformation τ can be syntactically inverted
to operate in the reverse direction, e.g. the inverse of the
UMLModel rule is:

CProgram::
UMLModel->exists(u | u.name = name)

This syntactic inversion is based on the semantic concept of
a rule invariant. The conjunction of the inverted rules forms
a transformation invariant I nvτ of τ [25].

Unlike QVT-R, there is no rule inheritance mechanism
in UML-RSDS. Rules are explicitly ordered in the trans-
formation postcondition and are executed in this order on
all applicable source elements. There is also no concept of
designated read-only source models in UML-RSDS rules:
individual rules may read and write any source or target
data. However, to ensure logical consistency within a use
case τ , the postconditions are explicitly ordered as r1, . . . , rn
in such a way that a rule ri which writes data read by a
rule r j must precede r j : i < j . For example, the rule for
Enti t y above must precede the rule for Property, because
the Enti t y rule writes CPointerT ype, which is read by
the Property rule. This condition is termed syntactic non-
interference. The activity synthesised for such a τ by design
synthesis is stat(r1); . . . ; stat(rn).

The suffix @pre can be added to entity type names or
feature names at points where they are read, to distinguish
the read access from updates to these elements. v@pre is
termed a pre-state expression. This enables a bounded-loop
implementation of a constraint E :: P to be used, rather
than a fixed-point implementation (which would repeatedly
apply stat(P) to all instances of E until P becomes true for
all instances).

Unlike QVT-R, UML-RSDS has an operator to explicitly
delete model elements:

x→isDeleted()

removes x from the model. Cascaded deletions and other
implicit effects also take place, as described above. The
operator can also be applied to sets of instances. This
mechanism is often more convenient for specifying transfor-
mations involving element deletion, compared to the QVT-R
technique of “deletion by selective copying” (copying the
elements that are not to be deleted) [12].

For each form of statement S, there is a definition of its
weakest preconditionwith respect to somepredicate P: [S]P .
This is the most general condition under which every execu-
tion of S establishes P [17,21]. If the Postτ constraints of a
use case τ are ordered so that no constraint ri can be invali-
dated by later rules r j :

ri �⇒ [stat(r j)]ri

for i < j , then the semantic effect of the UML-RSDS
use case τ for batch-mode execution establishes the logical
conjunction r1 & . . . & rn of the use case postcondition
constraints [18,21]. This is a direct semantics compared to
the complexities of QVT-R semantics and facilitates verifi-
cation using classical logic theorem provers. Transformation
invariants I nvτ are particularly useful in reasoning about
transformation correctness, using proof by induction over
transformation steps [21].

Identity attributes provide a persistent trace mechanism,
which enables the definition of incremental-mode execution
of UML-RSDS transformations, as an extension of the stan-
dard batch-mode execution [25].

Table 1 summarises the differences between UML-RSDS
and QVT-R. The facilities missing from QVT-R and present
inUML-RSDScould potentially be added toQVT-Rand sup-
ported by semantic translation. Facilities present in QVT-R
andmissing inUML-RSDSneed to be translated into suitable
representations in UML-RSDS.

5 Translation fromQVT-R to UML-RSDS

In this section, we present the rationale for our approach
to the semantics of QVT-R (Sect. 5.1) and define a detailed
translational semantics for QVT-R separate-models transfor-
mations usingUML-RSDS (Sect. 5.2). Section 5.3 illustrates
the semantics on an example. In Sect. 5.4, we discuss prop-
erties of the semantics, in Sect. 5.5 consider how it supports
incremental model changes, and in Sect. 5.6 consider varia-
tions and extensions of the semantics.

The general principle of the translation from QVT-R to
UML-RSDS is to represent QVT-R top relations as UML-
RSDS rules (OCL constraints), non-top relations as update
operations, and queries as query operations (Table 2).

123

736 K. Lano, S. Kolahdouz-Rahimi

Table 1 Differences between
QVT-R and UML-RSDS

QVT-R facility UML-RSDS facility

Check-before-enforce Local check-before-enforce using statLC

Single and compound keys for elements Single keys

Query operations Query and update operations, including

cached query operations

when clause (lookup of Element lookup by key, including

individual target elements) lookup of multiple target elements

Unspecified rule execution ordering Explicit rule execution ordering

Tool-dependent Internal transformation decomposition

transformation composition via use case activities

Rule inheritance and rule invocation No rule–rule relations

Transformation extension Transformation import

Table 2 Mapping from QVT-R to UML-RSDS

QVT-R language element UML-RSDS language element

Relational transformation Use case representing the transformation

Top relation Use case postcondition constraint

Non-top relation Update operation of use case

Local variables Auxiliary variables of constraint/operation

Query Query operation of use case

Key Identity attribute

Domain Property representing root variable,

Properties for other domain variables,

expressions for template expression

assignments and where condition

when clause Expressions including trace tests

where clause Expressions including update operation

invocations

5.1 Rationale for the semantics

As identified in Sect. 3, there are significant problems with
the semantic basis of the QVT-R standard, particularly due to
the check-before-enforcemechanism, state-based semantics,
and the lack of variability and verifiability.

We carried out an analysis of 27 published QVT-R
specifications, to identify how the main language features
are used in practice. We took tutorial examples from the
Medini QVT site projects.ikv.de/qvt and from the QVT-D
project repository of examples originatingmainly fromMod-
elMorf: git.eclipse.org/c/mmt/org.eclipse.qvtd.git. We also
took cases from Github repositories and from published
papers [12,28,36–38]. Table 3 lists cases with their size in
LOC, together with the kind of element mapping which is
performed by the transformation, and any design patterns
[20,25] or specification approach adopted. Table 4 gives a
summary of the case approaches.

It can be seen that the most common strategy for mapping
source to target elements is to enforce a 1–1 correspondence
using QVT-R keys. Another common approach is to map
individual source elements to a group of target elements
in different classes: this vertical entity splitting is typical
of refinement cases such as the ecore2sql versions [36].
Otherwise, update-in-place cases usually involve modifica-
tions to elements in-place, sometimes with element creations
and deletions. Keys can also be used to merge multiple
source elements with the same key value into a single target
element—this is used in abstraction cases such as ast2dag
[36]. The check-before-enforcemechanism is less frequently
used to achieve such merging.

Overall, we conclude that key-based element matching
and merging must be supported by any proposed QVT-R
semantics and implementation. In the absence of key val-
ues, different approaches for target element resolution may
be needed, such as 1–1 mapping in the Families2Persons
case [37], or n − 1 merging of duplicate source objects (the
HSM to NHSM cases). Thus, whilst check-before-enforce
should be supported by a QVT-R semantics/implementation,
it should not bemandatory. Theuse of persistent traces should
be available as an alternative change propagationmechanism,
because this enables more precise change propagation than
check-before-enforce, but improved capabilities for using
persistent traces should be provided, compared to the sup-
port in Medini QVT.

For separate-models transformations, we will consider
four possibilities for a target element resolution strategy, to
identify target elements t which establish required constraints
P(sv, tv) on source and target variables sv, tv, with respect
to a binding sv �→ s of source elements s to sv:

Key based: Use a key property k to locate target elements
t with t .k value as required by P . Update other features
of t as required to establish P(sv, tv) with the binding
tv �→ t .

123

Implementing QVT-R via semantic interpretation in UML-RSDS 737

Table 3 Element mappings and
pattern usage in QVT-R cases

Transformation Size Element mappings Patterns/techniques

AbstractToConcrete 47 Update-in-place

hsm2nhsm (recursion) 48 n − 1, 1–1 using keys Flattening

ClassModelToClassModel 85 1–1 using keys Recursive descent,

Map objects before links

HSM2FlatSM 85 n − 1 using custom Flattening

strategy

1–1 using keys

UmlToRel 98 1–1 using keys

SeqToStm 104 1–1 using keys

pn2pnw 115 1–1 using keys (vertical) Entity splitting/merging,

Map objects before links

set2oset 121 1–1 using keys

SeqToStmc 149 1 − n (vertical) Entity splitting

bag12bag2/bag22bag1 157 n − 1 using keys

ER2WebML/WebML2ER 190 1–1 using keys Map objects before links

Ecore2copyQVT 193 1 − n (vertical) Entity splitting

cdrat 202 update-in-place Deletion by selective copy

UmlToRdbms 238 1–1 using keys

DNF_bbox 263 update-in-place Guard against duplicate applications

gantt2cpm 378 1 − n (horizontal, vertical) Entity splitting

DNF 396 Update-in-place Guard against duplicate applications

families2personsconfig 435 1–1 using custom (horizontal) Entity

Strategy Splitting

dag2ast 439 1 − n using recursion

ast2dag 439 n − 1 using keys Marker relation,

Map objects before links

f2p/p2f 462 1–1 using procedural

Coding

Bpmn2UseCase 532 1 − n (vertical) Entity splitting

Communication2class 1029 1–1 or n − 1 Explicit checks to avoid

Using keys duplicate target elements

ecore2sql1, 1120 1–1 using keys, 1 − n Guard against duplicate applications,

ecore2sql2, 956 Marker relation,

ecore2sql3 960 (vertical) Entity splitting

RelToCore 2038 1–1 using keys, (vertical) Entity splitting

1 − n

Table 4 Summary of element mappings in QVT-R cases

Element mapping approach # cases Percentage

1–1 using keys 14 52%

1−n vertical entity splitting 8 29%

update-in-place 4 15%

n − 1 using keys 3 11%

n − 1 check-before-enforce 2 7%

n − 1 custom 2 7%

1–1 custom/procedural 2 7%

1 − n recursion 1 4%

Mandatory creation: In the absence of target key proper-
ties, always create new target instances t and update these
to establish P with the binding tv �→ t .

Check-before-enforce: In the absence of target key prop-
erties, search for elements t which already satisfy all
constraints of P wrt the binding sv �→ s, and bind t
to tv. If such t cannot be found, create new elements as
for the previous case.

Least-change check-before-enforce: In the absence of tar-
get key properties, find target elements t which are
maximal partial or total matches for the constraints of P

123

738 K. Lano, S. Kolahdouz-Rahimi

(and t satisfies at least one constraint of P), and update
the t if necessary so that they satisfy P . Again, if no such
t can be found, create new target elements and update as
required.

As regards efficiency, key-based and mandatory creation
are the least costly strategies, in principle, whilst the other
strategies require inspection of all target elements of par-
ticular classes. As regards correctness, both key based and
least-change can result in direct conflicts between different
rules: t . f = v could be set for reused element t and feature f
in order to satisfy P , conflicting with a previously set value
t . f = w established to satisfy another constraint Q. How-
ever, both mandatory creation and check-before-enforce can
also result in conflicts, in cases where a 1-multiplicity refer-
ence r has been set so that t .r = r x and w : r x . f to satisfy
a requirement w : t .r . f of Q, but v : t .r . f is required by P ,
for v �= w. The creation of a new r x1 and setting t .r = r x1,
v : r x1. f will invalidate Q. In these cases, r x should be
reused using least-change.

Our default semantics for target resolution is presented in
Sect. 5.2, using key-based andmandatory creation. These are
also the defaultmechanisms inMediniQVTandUML-RSDS
(the stat interpretation of constraints, and →exists quan-
tifier in UML-RSDS). Least-change can be defined using
the statLC interpretation and the →existsLC operator of
UML-RSDS, and check-before-enforce using a generalised
let operator. These are presented in Sect. 5.6.

In order to ensure transformation correctness, we restrict
transformations τ by five conditions (a) to (e):

• (a) “No secretly created objects”: Target data are write-
only, and relations R can only refer to model elements e
of source or target models which are explicitly declared
in R as object variables (as the rootVariable of a
RelationDomain, or bindsT o of a T emplateExp).

• (b) “No inter-relation conflicts”: Different top relations
do not have conflicting effects.

• (c) “No intra-relation conflicts”: No relation has inter-
nal conflicts in its effects (i.e. conflicts between different
applications or within one application of the relation).

• (d) “No secretly deleted objects”: If τ refers to a target
element t , then any target element x from which deletion
could propagate to t must also be referenced by τ .

• (e) “Call graph is surjective and non-cyclic”: There are no
unused non-top relations and no cycles in relation calling
dependencies.

(a) and (d) ensure that target elements created or updated
by τ are always recorded in some trace tuple and cannot
be deleted except via the trace-based semantics. (b) and (c)
prevent internal semantic conflicts within τ . (e) simplifies the

semantic analysis. Although this prevents recursion between
relations, recursion is permitted between query operations.

Formal definitions of these conditions are given in
Sect. 5.4.

5.2 Translation for separate-models QVT-R
transformations

A separate-models QVT-R transformation τ is semantically
represented as a UML-RSDS use case τ ′. τ has rules which
each have at least two domains, and these domains cannot
all have the same typed model. The root variable names of
distinct domains should be distinct. There should be at least
one target domain and at least one source domain per relation.
Weassume that τ satisfies the semantic correctness properties
of (a) to (e) of Sect. 5.4.

Key declarations key E {p} of τ are interpreted as assert-
ing that p is an identity attribute of E : E→isUnique(p). In
UML-RSDS, a single key can be used to look up elements,
using the →exists quantifier as described in Sect. 4. In the
case of two or more features forming a compound key, the
translation is from key E {p1, . . . , pn} to the constraint

E→ f or All(e1|
E→ f or All(e2|e1.p1 = e2.p1 & ... & e1.

pn = e2.pn �⇒ e1 = e2))

The query functions of τ.helpers are represented as query
operations of the use case τ ′.

In our separate-models semantics, we give formal inter-
pretations Presτ (m), Conτ (m) and Cleanupτ (m) as UML-
RSDS transformation use cases for the update, creation and
deletion phases of a relational transformation τ executed
in the direction of typed model m. These transformations
are invoked in the order Presτ (m);Conτ (m);Cleanupτ (m)

from the UML-RSDS transformation τ ′ that represents the
complete transformation τ .

As in the QVT-R to QVT-Core mapping of [30], we use
trace classes R$trace to record that relations R on source
domains s (domains with model m′, m′ �= m) and target
domains t (with model m) have been successfully applied to
particular model elements (Fig. 4). Traces enable relations to
inspect the targetmodel indirectly,without direct reference to
target language classes or features. However, the information
in traces therefore needs to be kept up-to-date with the actual
source–target relationships: incremental changes to source
or target models may invalidate existing source-target rela-
tionships, or result in the establishment of new relationships.

For each relation R, we define a trace class R$trace,
which has properties x : E for each domain root variable
x : E of each domain d of R and for each object template root
variable (T emplateExp :: bindsT o in Fig. 2) x : E occur-
ring in a domain d of R (rule 1 of the RelT oCore mapping,

123

Implementing QVT-R via semantic interpretation in UML-RSDS 739

Fig. 4 Trace class definition

page 192 of [30]). Traces are independent of the execution
direction of a transformation—this means that traces pro-
duced by an execution of the transformation in one direction
can be used by a subsequent execution in a different direc-
tion. We refer to the root variable x of a domain d, together
with the object template root variables within the domain, as
the object variables of the domain, ovarsd .

For relation R executed in direction m, let sdom be the
sequence of source domains, i.e. the domains with model
m′ �= m, including primitive domains. These are treated as
checkonly domains for execution in directionm. tdom is the
sequence of target domains, domains with model m. These
are considered to be en f orce domains in execution direction
m.

The source object variables svarsR of R are the object
variables

⋃
d:sdom ovarsd of its source (non-target) domains

sdom, and the target object variables tvarsR are the object
variables

⋃
d:tdom ovarsd of its target domains tdom. For

separate-models transformations, svarsR and tvarsR are
disjoint. The object variables of relation R are denoted by
ovarsR ; these are svarsR∪tvarsR . Thus, R$trace has prop-
erties corresponding to ovarsR . The set of all (free) variables
declared in the domains of R is denotedavarsR . This consists
of the object variables and all other variables which occur as
the re f erred Property of PropertyT emplateI tems in R,
but does not include bound variables of quantifier or iterator
expressions within R.

whenvarsR is the set of variables occurring free in the
when clause of R (Relation :: when.bindsT o). These can
include elements of tvarsR used as parameters of relation
calls (tests). sourcevarsR is the collection of allavarsR vari-
ables occurring in the source domains, and svarsR is a subset
of sourcevarsR (the other variables of sourcevarsR typi-
cally represent features of the svarsR elements).whenvarsR
and sourcevarsR are subsets of avarsR . The input variables
invarsR of a top relation R are the object variables occurring
in the source domains or thewhen clause. These are read and
not written by R. For a non-top relation, all the domain root
variables are also included in invarsR . The output variables

Table 5 Variables associated with relations

Notation Meaning

sdom The source domains d ∈ R.domain,
including primitive domains

tdom The target domains d of R.domain

ovarsd Object variables of domain d,

including the root variable

svarsR
⋃

d∈sdom ovarsd

tvarsR
⋃

d∈tdom ovarsd

ovarsR svarsR ∪ tvarsR

sourcevarsR All variables bound in any sdom

Includes svarsR
targetvarsR All variables bound in any tdom

Includes tvarsR
avarsR All variables of any sdom or tdom

sourcevarsR ⊆ avarsR

whenvarsR Variables free in when clause of R

whenvarsR ⊆ avarsR

invarsR Input elements of R. For top relations:

svarsR ∪ (whenvarsR ∩ ovarsR)

For non-top relations:

svarsR ∪ (whenvarsR ∩ ovarsR) ∪
R.domain.rootV ariable

outvarsR Output elements of R:

ovarsR − invarsR

These are the object variables possibly
instantiated

by a successful application of R

of R are the other object variables ovarsR − invarsR of R;
these are potentially written by R.

Table 5 summarises the notations used in the subsequent
semantic definitions.

Table 6 summarises some of the key terminology used in
the semantic definition.

Elements elems of the source and target models are linked
to one trace element tr : R$trace if R has been successfully
applied to the source elements of elems to update or create
the target elements of elems. These traces are tested when
R(a1, ..., an) occurs as a rule call in awhen clause (for either
top or non-top relations R). The ai corresponds in order to
the domain root variables vi (R.domain.rootV ariable) of
R, which are a subcollection of ovarsR .

A positive call R(a1, ..., an) in a when clause is logically
interpreted as tr : R$trace & a1 = tr .v1 & . . . & an =
tr .vn where tr is a new variable. If ai is a variable, the call
binds the value of tr .vi to ai . By using traces in this way
we simulate logically this aspect of the Relations-to-Core
semantics in [30]. A negative call not(R(a1, ..., an)) is inter-
preted asnot(R$trace→exists(tr |tr .v1 = a1 & ...& tr .vn =

123

740 K. Lano, S. Kolahdouz-Rahimi

Table 6 Semantic terminology

Term Meaning

Target element resolution The process of inspecting the tar-
get model to identify if there are
elements t which satisfy required
constraints relative to source ele-
ments s, and binding the t to target
object variables outvarsR if the t
exist, or selecting or creating target
elements to update andbind to target
variables to establish the constraints

Elements referenced by a
rule application of rela-
tion R

Source or target elements x bound
to some v ∈ ovarsR for a success-
ful application of R. Equivalently, x
occurs in some R$trace tuple

Elements referenced by
a transformation execu-
tion

Elements referenced by any rule
application in the transformation
execution

Application condition of
relation R

Condition on svarsR determining if
R can be applied to particular source
model elements

Effective for update in
direction m

An expression e that has a defined
stat(e), and with wr(e) a non-
empty subset of the variables
(targetvarsR) from en f orce
domains with model m

an)). In this case, the ai must already be bound prior to
the call. However, negative calls cause semantic problems
(Sect. 5.4).

The trace instances also provide a means to prevent re-
application of a relation to the same source elements if it
has already succeeded on them: relation R is only applied
to source elements a1, . . . , ak if there is not already a trace
tr ∈ R$trace linked to these elements (the same approach is
used in the translation of [8] fromQVT-R to CPN). However,
membership of R$trace is not necessarily equivalent to the
validity of R on the linked elements, because of changes
to source or target elements subsequent to the trace being
created. Our semantics is designed to ensure that R$trace-
linked elements do satisfy the logical interpretation of R at
any points where they may be tested.

For the enforce semantics of a concrete top-level relation
R, we define three logical constraints in UML-RSDS:

• Preservation constraints PresR(m) expresses the effect
of R when applied to tuples elems of source and tar-
get elements which are linked to one R$trace element,
but which nonetheless may not satisfy the logical proper-
ties of R’s target domains—due to incremental changes
of source or target model data. The effect of PresR(m)

is to modify target model data linked to the trace, to
re-establish the R target domain properties for elems rel-

ative to the source data. Traces which cannot be repaired
are deleted.

• Construction constraints ConR(m) expresses the effect
of R when applied to source elements/tuples selems
which are not in any R$trace, and therefore have not
yet had R applied to them. ConR(m) establishes the log-
ical properties of R’s target domains by looking up and
updating target elements or by creating new target ele-
ments. It also creates a new trace instance for the selems
and their matched target elements.

• Cleanup constraintsCleanupE (m)manages the deletion
of target instances e : E that are not linked to any source
instance via any valid trace R$trace for any relation R
that may create E instances.

The constraints are grouped into three phases Presτ (m),
Conτ (m) and Cleanupτ (m) executed in this order. Within
each phase, the constraints for individual top relations R are
executed in the order they occur in the QVT-R specification.
Within each relation execution, the source domains andwhen
clause are tested together, and if these are satisfiable, then the
target domains are executed, followed by the where clause.
Execution order within target domains and thewhere clause
follows textual ordering (left to right and top to bottom).

In the semantic representation, this is expressed by
defining PresR(m) and ConR(m) via an OCL formula
θR(m, vars) of the form

cpreds(sdom, vars) & whenp �⇒
epreds(tdom, vars ∪ whenvarsR∪

sourcevarsR) & wherep

which asserts that if thewhen clause and source domains are
valid for the values of input variables vars, then the effect of
the target domains andwhere clauses is carried out, on vars
together with the variables bound in the source domains and
when clause. θR(m, vars) is implicitly ∀-quantified over the
variables of avarsR − vars.

The LHS of θR(m, vars) is the basis of determining the
application conditions of R, whilst the RHS can be adapted
to give different semantics for target element resolution.

whenp is the logical interpretation of the when clause:
the conjunction of the clause predicates, with relation calls
treated as tests on the relation trace.

wherep is the logical interpretation of the where clause,
the ordered conjunction of its predicate expressions, with
non-top relation calls r(vars) treated as calls of the opera-
tion corresponding to r , defined below. Only where clause
predicates effective for update in them direction are included
in wherep.

cpreds(sdom, bound) is the logical interpretation of the
non-target domains sdom, given a set of currently boundvari-

123

Implementing QVT-R via semantic interpretation in UML-RSDS 741

ables bound, and epreds(tdom, bound) is the interpretation
of the target domains tdom, i.e. domains d with model m.
The scope of any exists or existsLC quantifiers introduced
for target object variables in the epreds formulae is extended
over the remainder of the succedent, includingwherep (as in
[30], Annex B). We define cpreds and epreds in “Appendix
B”.

We write θR(m) for θR(m, ovarsR). A predicate guardR
(m) is formed as the antecedent ϕR(m) of θR(m), with all
variables apart from the ovarsR variables ∃-quantified. That
is, as an OCL formula it is

T1→exists(v1|...Tk→exists(vk |ϕR(m))...)

where the vi are the variables in avarsR − ovarsR .
However, we eliminate ∃ quantifiers where possible by
rewriting T→exists(v|v = e & P) to P[e/v]. For exam-
ple, guardModel2Program(C) is u : UMLModel. The
application condition sguardR(m) of R in direction m is
guardR(m) with target elements tvarsR quantified out, so
that it is a predicate on svarsR only.

The checkonly semantics of R in the direction ofm asserts
that at termination of τ , for every tuple of svarsR elements
that satisfy sguardR(m), there is an extended tuple of ele-
ments for ovarsR which satisfies θR(m) (Section 7.10.1 of
[30]).

Regarding the overrides clause in relations, we remove
this by considering that all overridden relations are abstract
and not executable—they are present in order to express
commonalities between more specialised relations. Before
applying the semantics,wemerge the definition of an overrid-
den relation into its concrete overriding relations (“Appendix
D”). The overridden relation does not need a trace set. A
when test on an overridden abstract relation R(pars) is
replaced by a disjunction R1(pars) or ... or Rn(pars) test-
ing the concrete relations Ri that override R. This then
becomes a test on their trace relations in the semantics. A
where call of a non-top abstract R(pars) is semantically
expressed as a conditional

i f guardR1[pars/ovarsR1] then OpR1(pars)
else ...

else i f guardRn [pars/ovarsRn] then OpRn (pars)
endi f ... endi f

The OpRi are the operations representing the merged con-
crete relations Ri overriding R. In a similar way, we can
expand out a transformation composed using the extends
mechanism (“Appendix C”). Thus, in the following we will
only consider concrete relations and transformations without
extends.

5.2.1 Preservation constraints

The first execution phase Presτ (m) of τ ′ applies for
incremental-mode execution only, using a persistent trace.
For each relation R, PresR(m) is an OCL constraint that
defines R’s feature change propagation actions for elements
that have already been matched (i.e. by a previous execution
of τ); it is defined schematically as

R$trace@pre ::
i f guardR(m) then θR(m)

else sel f →isDeleted()

endi f

If the guard holds, then the effect of R is re-applied on the
target elements linked to the trace element, to re-establish the
logical property θR(m). Otherwise, the trace-linked elements
cannot be updated to re-establish the property (because only
target data can be updated), and the trace element is deleted.

Provided that target classes and features are not referred
to in the when clause or source domains, and that target
data are only written and not read in R, and that R itself
is not invoked directly or indirectly in the when or where
clause (the conditions (a) and (e) ofSect. 5.4), then PresR(m)

has disjoint read and write frames. In addition, elements of
R$trace are only deleted, not created. This means that a
polynomial-time complexity bounded-loop implementation
of PresR is sufficient, and we enforce this design choice by
using the @pre annotation on R$trace.

The PresR(m) constraints for both top and non-top R
form the postconditions of the use case Presτ (m). If the
when clause of R calls S, then PresS(m) must precede
PresR(m) in Presτ (m), because PresS(m)writes S$trace,
which PresR(m) reads. This ordering constraint is included
in the correctness condition (e) of Sect. 5.4. That is, the
PresR(m) constraints are ordered in Presτ (m) according
to the � relation of Sect. 5.4.

Presτ (m)propagates element feature changes fromsource
models to m. For example, PresModel2Program(C) is

Model2Program$trace@pre::
if u : UMLModel
then (n = u.name => p.name = n)
else self->isDeleted()
endif

This constraint propagates namechanges fromUMLModel
instances to CPrograms. In addition, if the u element has
been deleted (i.e. the trace reference u is null), then the i f
condition is f alse and the trace is deleted.

123

742 K. Lano, S. Kolahdouz-Rahimi

5.2.2 Construction constraints

The second phase Conτ (m) of τ ′ deals with the creation
of new target elements and traces. It applies both for batch
and incremental-mode execution. It consists of constraints
ConR(m) for each top relation R. ConR(m) only applies
if the source elements held in the svarsR variables are not
already linked to some R$trace instance:

::
cpreds(sdom, {}) & whenp &
not(R$trace@pre→exists(tr |&sv∈svarsR tr .

sv = sv)) �⇒
epreds(tdom, whenvarsR∪

sourcevarsR) & wherepx

wherepx is wherep right conjoined with the addi-
tional creation R$trace→exists(tr |&sv∈svarsR tr .sv = sv
& &tv∈tvarsR tr .tv = tv) of a new trace instance.

Weuse R$trace@pre in the antecedent because otherwise
R$trace would be read and written by the constraint. How-
ever, a bounded-loop implementation is sufficient because the
succedent can only reduce and not increase the collection of
element tuples which satisfy the antecedent. Thus, as with
PresR , we use the prestate expression to enforce a bounded-
loop implementation. Any exists or existsLC quantifiers
introduced by epreds(...) in the succedent apply over all of
the succedent following their introduction, by definition of
epreds. Assuming the conditions (a), (e) as for PresR(m),
the write and read frames of ConR(m) are disjoint.

The ConR(m) constraints for concrete top relations R are
placed in Conτ (m) in < order as defined in Sect. 5.4. These
constraints use the default target element resolution approach
(key based with mandatory creation in the absence of keys)
to satisfy R in cases where the target elements do not already
exist, and propagate element creation from source models to
m.

For example, ConModel2Program(C) is:

::
u : UMLModel & n = u.name &
not(Model2Program$trace@pre->exists

(tr | tr.u = u)) =>
CProgram->exists(p | p.name = n &

Model2Program$trace->exists
(tr | tr.u = u & tr.p = p))

5.2.3 Cleanup constraints

The third phase Cleanupτ (m) of τ ′ consists of constraints
CleanupE (m) for each target entity E of m. CleanupE (m)

is defined as:

E ::
not(R1$trace→exists(r1x |r1x .e1 = sel f))

& ... &
not(Rk$trace→exists(rkx |rkx .em = sel f))

�⇒ sel f →isDeleted()

where the Ri , i = 1 to k, are all the relations (top or
non-top) in which the entity E occurs as the type of some tar-
get object variable ei : E in outvarsRi . All CleanupE (m)

constraints for entity types of m are placed in a final τ ′
phase, Cleanupτ (m). The constraint CleanupE (m) reads
and writes E , so it needs a fixed-point implementation: the
constraint is re-applied until there are no E elements satisfy-
ing its antecedent.

For example, if the UML2C transformation contains
only one relation which can create CProgram instances,
Model2Program, then CleanupCProgram(C) is:

CProgram::
not(Model2Program$trace->exists

(tr | tr.p = self)) => self->
isDeleted()

The Cleanupτ (m) constraints propagate element deletion
from the source models to m, because if any element linked
to a trace instance is deleted, so is the trace (the links from
the trace to the elements are mandatory, as shown in Fig. 4).

A generally stronger version of the CleanupE (m) con-
straint is:

E ::
not(R1$trace→exists(r1x |r1x .e1 = sel f & r1x .

guardR1(m))) & ... &
not(Rk$trace→exists(rkx |rkx .em = sel f & rkx .

guardRk(m))) �⇒ sel f →isDeleted()

r x .P is P with variables u of ovarsR in P replaced by
r x .u. This version of the cleanup constraint deletes any
target element which does not occur in any Ri trace that
satisfies guardRi (m). However, assuming the correctness
conditions (a) to (e), all trace elements will satisfy their rela-
tion guard at termination ofConτ (m), so the simpler version
of Cleanupτ (m) is sufficient in this case.

5.2.4 Non-top relations

Non-top relations R are interpreted as operations with post-
conditions defined in a similar manner to ConR(m). For a
non-top-level relation R, a constraint ConOpR(m) is used
to form the postcondition of an update operation Rm which
has as parameters the root variables of the (relation and prim-
itive) domains of R.ConOpR(m) is defined as forConR(m),

123

Implementing QVT-R via semantic interpretation in UML-RSDS 743

using cpreds and epreds but including the root variables of
the relation domains in the bound variable sets:

cpreds(sdom, domain.rootV ariable) & whenp &
not(R$trace@pre→exists(tr |&sv∈svarsR tr .sv

= sv & &tv∈tvars′R tr .tv = tv)) �⇒
epreds(tdom, whenvarsR ∪ domain.

rootVariable ∪ sourcevarsR) & wherepx

tvars′
R is tvarsR ∩ domain.rootV ariable. Target objects

can be created using non-root object templates in target
domains.

For example, the non-top relation NonTopProperty2C
Member has the interpretation in theC direction as an update
operation

NonTopProperty2CMember_C(e : Entity, c :
CStruct)

post:
p : e.ownedAttribute & n = p.name

& k = p.isUnique &
not(NonTopProperty2CMember$trace@pre->

exists(tr |
tr.e = e & tr.p = p & tr.c = c))=>

CMember->exists(m | m :
c.members &
m.name = n & m.isKey = k &
NonTopProperty2CMember$trace->

exists(tr |
tr.e = e & tr.p = p & tr.

c = c & tr.m = m))

These operations are added as static owned operations of
the use caseConτ (m) representing the transformation phase.

For Presτ (m), a different version of the operation Rm is
defined, with postcondition PresOpR(m):

tr : R$trace & v1 = tr .v1 & ... & vn = tr .vn �⇒
i f guardR(m)

then θR(m)

else tr→isDeleted()

endi f

The v1, . . . , vn are ovarsR . The operation Rm is added as
a static owned operation of Presτ (m).

This version of NonTopProperty2CMemberC has the
form:

NonTopProperty2CMember_C(e : Entity,
c : CStruct)

post:
tr : NonTopProperty2CMember$trace

& e = tr.e & p = tr.p &
c = tr.c & m = tr.m =>

if p : e.ownedAttribute
then (n = p.name & k = p.isUnique =>

Fig. 5 Trace data dependencies of ConR , PresR

m : c.members & m.
name = n & m.isKey = k)

else tr->isDeleted()
endif

5.2.5 Overall transformation semantics

For each execution direction of a separate-models transfor-
mation τ , the three phases described above are executed in
the order Presτ (m); Conτ (m); Cleanupτ (m). The seman-
tics generalises in a natural manner to consider execution
directed at multiple target models, extending [30].

Figure 5 shows the data dependencies ofConR and PresR
wrt trace entities, for the default semantics. where∗ is the
recursive closure of relation calling though where clauses,
likewise forwhen∗. An arrow d → R means that R can read
data d, and an arrow R → d means that R can write d.

This shows that in order to avoid cycles in data dependen-
cies between the constraints within transformations Conτ

and Presτ , quite strict constraints must be placed on how
relations depend on each other viawhen andwhere clauses.
These conditions are encoded in condition (e) of the follow-
ing section.

CleanupE reads and writes E , and reads R$trace for
any relation R with an outvarsR variable of type E . It may
also write target classes F which are affected by deletion
propagation from E . To ensure that trace classes linked to F
are not also written, we assert the condition (d) that target
elements referenced by τ (occurring in some trace tuple)
cannot be affected by cascaded deletion from target elements
that are not referenced by τ (not occurring in any trace tuple).

5.3 Example of the semantics

As an illustration of the semantics, we show the translation
of a simple version of the Families to Persons case of [1] to
UML-RSDS. Figure 6 shows the metamodels; the transfor-
mation consists of a single rule:

123

744 K. Lano, S. Kolahdouz-Rahimi

Fig. 6 Simple Families to Persons metamodels

transformation tau(source: MM1,
target: MM2)
{

top relation FamilyMember2Male
{ checkonly domain source fm :

FamilyMember
{ membername = n };
enforce domain target m : Male
{ name = fm.memberOf.familyname

+ ", " + n };
when
{ fm.memberOf.father->includes(fm)
or
fm.memberOf.sons->includes(fm)

}
}

}

The semantic translation of this transformation is:
**** UML-RSDS of QVT-R is:
Use Case, name: tau$Pres

FamilyMember2Male$trace@pre::
not(fm : FamilyMember & fm.memberOf.father->
includes(fm)) &

not(fm : FamilyMember & fm.memberOf.sons->
includes(fm)) =>

self->isDeleted()

FamilyMember2Male$trace::
n = fm.membername & fm.memberOf.father->

includes(fm) =>
m.name = fm.memberOf.familyname + ", " + n

FamilyMember2Male$trace::
n = fm.membername & fm.memberOf.sons->

includes(fm) =>
m.name = fm.memberOf.familyname + ", " + n

Use Case, name: tau$Con

::
fm : FamilyMember & n = fm.membername & fm.

memberOf.father->includes(fm) &
not(fm.traces$FamilyMember2Male$fm@pre->exists

(tr$1 | true)) =>
Male->exists(m | m.name = fm.memberOf.
familyname + ", " + n &
FamilyMember2Male$trace->exists(tr$0 |
tr$0.fm = fm & tr$0.m = m))

::
fm : FamilyMember & n = fm.membername & fm.

memberOf.sons->includes(fm) &
not(fm.traces$FamilyMember2Male$fm@pre->exists

(tr$1 | true)) =>
Male->exists(m | m.name = fm.memberOf.
familyname + ", " + n &
FamilyMember2Male$trace->exists(tr$0 |
tr$0.fm = fm & tr$0.m = m))

Use Case, name: tau$Cleanup

Male::
traces$FamilyMember2Male$m@pre->isEmpty() =>

self->isDeleted()

The Pres constraints concern incremental execution, i.e.
re-application of tau to a modified source model. The first
Pres constraint removes a pair (f m,m) of family member
f m and male m from the relation trace if f m no longer
satisfies the conditions to be mapped to m. The second and
third propagate name changes from f m and f m’s family to
m’s name.

The Con constraints apply to initially map a families
model to a personsmodel and to propagate the introduction of
new source elements to new target elements. The antecedent
of these constraints includes a check that f m is not already
mapped to some m.

Finally, the Cleanup constraints remove target elements
that are not related to some source element. Notice that the
inverse direction of the trace-to-class association in Fig. 4 is
used to optimise the Con and Cleanup constraints.

The translation can be used to show semantic equiva-
lence of different versions of the transformation, to support
bidirectionalisation of the transformation. Further details of
this example are given in https://nms.kcl.ac.uk/kevin.lano/
qvt2umlrsds.pdf.

5.4 Properties of the semantics

The three phases Presτ (m), Conτ (m), Cleanupτ (m) of τ ′
should establish the following consistency relations Relτ of
τ directed at m:

1. That any existing target instance t x : E of any entity
type E of m must appear as a target property of some

123

https://nms.kcl.ac.uk/kevin.lano/qvt2umlrsds.pdf
https://nms.kcl.ac.uk/kevin.lano/qvt2umlrsds.pdf

Implementing QVT-R via semantic interpretation in UML-RSDS 745

trace: E→ f or All(t x |R1$trace→exists(r1|r1.t1 =
t x) or ... or Rk$trace→exists(rk|rk.tk = t x))where
the Ri are as for CleanupE (m).

2. That all instances tr of R$trace satisfy the logical rela-
tion guardR(m)& θR(m) defined by R, for each relation
R: tr .guardR(m) & tr .θR(m).

3. That any tuple of source elements for svarsR that satisfies
sguardR(m) is linked to some R$trace instance tr , for
top relations R.

Conditions (2) and (3) imply that for any source element
tuple x for svarsR which satisfies sguardR(m), for top rela-
tion R, there is an extended tuple y of elements for ovarsR
such that y is in R$trace and satisfies guardR(m)& θR(m).
This means that the checkonly semantics of R is satisfied at
termination of τ ′.

However, the following equivalence is not generally true
(either at termination or during transformation execution) for
a top relation R, for any tuple vals of instantiating elements
for the object variables ovarsR = {vi }i of R:

R$trace→exists(tr |&i (valsi = tr .vi))

≡ (guardR(m)[vals/ovarsR] & θR(m)[vals/ovarsR])

That is, membership of vals in the trace is equivalent
to successful execution of R on vals. This fails in the ⇐
direction because it is possible for a tuple vals to satisfy
guardR(m)(vals) & θR(m)(vals) but not be in R$trace,
because vals has not been processed by R. For example,
consider the transformation with top rules:
top relation R1
{ enforce domain src a : A { name = n };
enforce domain trg b : B { name = n };

}

top relation R2
{ enforce domain src c : C { value = v };
enforce domain trg b : B { value = v };

}

where source element a1 : A and target elements b1 : B,
b2 : B all have the same name and source element c1 : C has
the same value as b2. One possible execution would match
a1 to b1 and c1 to b2, so that at completion of the transfor-
mation guardR1(trg)[a1/a] & θR1(trg)[a1, b2/a, b] holds
but not (a1, b2) ∈ R1$trace. R1 only selects one possible
B instance to match to a1, in this case b1.

The �⇒ direction can also fail, because conflicts
between relations may invalidate existing traces. For exam-
ple, if id : String is a key for target class B, and source
classes A,C haveString-valued features id, value andname,
value respectively, then the relations

top relation R1X
{ enforce domain src a : A

{ id = ix, value = v };

enforce domain trg b : B
{ id = ix, value = v };

}

top relation R2X
{ enforce domain src c : C

{ name = n, value = v };
enforce domain trg b : B

{ id = n, value = v };
}

can conflict, with some b : B created by R1X and hence
with b = tr .b for some tr : R1X$trace, but also matched
by key to some c : C by R2X and hence potentially modi-
fied so that b.value no longer satisfies θR1X (trg). Another
situation of conflict between relations is if a relation R2 has
a negative when test not(R1(v)) on another relation. Sub-
sequent execution of R1 may invalidate the guard of R2 and
hence invalidate the �⇒ direction of the equivalence. Such
tests should be replaced by alternative guards when using the
“Guard against duplicate applications” pattern.

To address these issues,we formulate five correctness con-
ditions for QVT-R specifications τ directed at a model m.
These conditions ensure that the postconditions (1), (2), (3)
are established by the semantic interpretation τ ′ of τ :

• (a) “No secretly createdobjects”:No target features/entity
names of T L occur in the when clause or source domain
patterns of any relation, and relations can only refer to
target features/class names via explicitly declared object
variables t : T and their features, in domain templates.
Target data cannot be read, only written, in the parts of a
relation that are effective for update in direction m;

• (b) “No inter-relation conflicts”: If two top relations both
write (directly or via called relations) to the same target
features or entity types, these updates are non-conflicting
(i.e. they create/update disjoint sets of elements of the
same target entity type, or update disjoint sets of features
of the same instances of the entity).
If all updates to a reference feature f of *-multiplicity
are additions, these are also non-conflicting. Similarly, if
all updates to a 0..n or * multiplicity reference feature f
are all removals, these are non-conflicting;

• (c) “No intra-relation conflicts”: There are no self-
conflicts or internal conflicts of a relation R, i.e. one
application of R cannot invalidate the same or a different
application, e.g. by defining contradictory values for the
same target data (Sect. 6). The where clause should not
conflict with target domain templates;

• (d) “No secretly deleted objects”: If target element t : A
is referenced by τ , so also is any target element b : B
linked to t via a mandatory target reference A :: r (i.e.
where r is of 1 or 1..n multiplicity at the B end), and

123

746 K. Lano, S. Kolahdouz-Rahimi

Fig. 7 Deletion propagation (from B to A) situations where condition
(d) applies

so is any aggregation owner element b : B linked to t
by an aggregation association (Fig. 7). Another way to
express this is if t appears in any trace tuple of some τ

relation, b must also appear in a trace tuple, of the same
or a different relation;

• (e) “Call graph is surjective and non-cyclic”: Relation
calls inwhen clausesmust be positive (including disjunc-
tions or conjunctions of positive calls). Any recursion in
queries should be shown to be always terminating. There
should be no recursion between relations via when or
where clauses3. All non-top relations are called from at
least one top relation directly or indirectly. No relation
can be called via both when and where clauses starting
from one relation. More precisely, it should be possible
to order the top relations as R1, . . . , Rn such that:

1. Ri called in R j .when �⇒ i < j
2. S called in R j .where∗ and Ri called in S.when∗

�⇒ i < j
3. S called in Ri .where∗ and S called in R j .when∗

�⇒ i < j .

Condition (a) prevents relations from referring to arbitrary
target elements or to the extents T .all I nstances() of target
classes T . Thus, predicates such as v = T .all I nstances()
→si ze() or T→exists(t |P) are prohibited. The condition
ensures that all target elements whose data are read by or
written to in a relation must also be linked to some trace
of the relation. (a) and (e) ensure that the constraints in the
Presτ and Conτ phases can be ordered to avoid cycles in
data-dependency.

These conditions ensure that cycles cannot arise in the
trace data dependencies of Fig. 5. This means that bounded
loop execution can be used for the Conτ and Presτ phases,
resulting in polynomial time complexity for both batch and
incremental execution modes. (b) and (c) make precise the

3 Self-recursion via where is permitted for non-top relations by our
translation, but the specifier must then ensure this does not result in
conflicting updates or non-termination.

conditions for specification consistency based on clashes of
bindings discussed in [30]. Condition (d) is a further consis-
tency requirementwhich avoids conflict between the creation
and deletion actions of relations. Condition (e) is the ‘no
cycles’ condition also assumed by [8]. Recursion in specifi-
cations can hinder bidirectional execution and can usually be
replaced by the Map Objects before Links pattern, closure
expressions [28] or f or All quantifiers.

Theorem 1 If the correctness conditions (a) to (e) hold for a
separate-models transformation τ , then a partial execution
order � can be defined on all concrete relations based on
the order Ri < R j of top relations defined by i < j . For top
relations, � is defined as <. For non-top R, top P, R � P
means that any top S with R ∈ S.where∗ must have S < P.
For non-top P, top R, R � P means that any top S with
P ∈ S.where∗must have R < S. For non-top P, R, R � P
means that any top S, T with R ∈ S.where∗, P ∈ T .where∗
must have S < T .

Proof The transitivity property for � can be established by
considering different cases of �. Clearly P � R implies
P �= R. If P � R, then R � P is not possible:

• If P and R are both top relations, then P < R and hence
¬(R < P).

• If P is top, R non-top, then any top Swith R ∈ S.where∗
has P < S. But R � P would imply that S < P .

• Likewise for non-top P , top R.
• If both P , R are non-top, then any top S, T with P ∈

S.where∗, R ∈ T .where∗ has S < T . But R � P
would imply T < S.

Thus, provided that every non-top relation P has some top
R with P ∈ R.where∗, the result follows. ��

This suggests a way to organise QVT-R transformations:
list the top relations in < order, and group the non-top rela-
tions of R.where∗ for top relation R together with R.

Note that it is possible for τ to satisfy the correctness con-
ditions (a) to (e) in one execution direction but not in others.
For a bx, we require that the conditions hold in all execu-
tion directions. This means that the transformation can be
executed in multiple directions to synchronise models which
may be modified independently. This capability fails for the
standard specification of the UML to RDBMS QVT-R trans-
formation [28]. A consequence of (a) is thatwhen clauses of
bx can only contain relation tests and equality/inequality tests
on variables, and no occurrences of source or target features
or class names.

Theorem 2 For both batch-mode and incremental-mode exe-
cution of a separate-models transformation τ , the correct-
ness conditions (a) to (e) ensure that τ establishes or
preserves the properties (1), (2) and (3).

123

Implementing QVT-R via semantic interpretation in UML-RSDS 747

Proof For batch-mode execution, assuming (a), (b), (c), (d),
(e), theConτ (m)phase establishes invariant (3), since if tuple
v satisfies sguardR(m) for concrete top relation R at termi-
nation of τ , i.e. sguardR(m)[v/svarsR], it also did so at the
start of the ConR(m) execution step of Conτ (m)—because
sguardR(m) depends only on source model and trace data
which are read-only subsequent to the start of ConR(m) (if
R reads S$trace via a relation test of S in a when clause,
then S � R in the execution ordering).

By definition of sguardR , there is an extended tuple w

of v which includes tvarsR elements in whenvarsR , which
satisfies guardR(m), i.e. guardR(m)[w/invarsR]. If w is
not already linked to an R$trace element, then ConR(m)

is applied to w, and w extended to u with created/matched
target elements of outvarsR then satisfies guardR(m) and
θR(m), and is linked to a new R$trace element. Trace ele-
ments can only arise in this manner, and are not removed
by Cleanupτ (m) (because of condition (d)); hence, (2) and
(3) hold. The validity of guardR(m) and θR(m) for u in
R$trace is not affected by subsequent ConP applications
in Conτ (m), either of R or another rule, by conditions (b),
(c), (e). Condition (e) also ensures termination of the Conτ

phase.
The Cleanupτ (m) actions do not invalidate guardR(m)

or θR(m) for u in R$trace because they cannot modify
elements that are in a trace. In particular, (a) means that
R only created/modified target elements that (after its exe-
cution) occur in R$trace, and hence cannot be affected
by Cleanupτ . For separate-models transformations, the
Cleanupτ (m) constraints establish (1) and do not invalidate
(2) because they only update the target model, not the source
or traces. Condition (d) ensures that Cleanup-initiated cas-
caded delete does not delete elements that are in traces. In
situations where a target a : A element would be deleted if a
target b : B element is deleted, if a is in some trace tuple, so
must b be.

For incremental-mode execution, if conditions (1), (2), (3)
already hold, then none of the phases Presτ (m),Conτ (m) or
Cleanupτ (m) have any effect. (2) means that the Presτ (m)

constraints have no effect. (3) means that no ConR(m) con-
straint is enabled. (1) means that no elements satisfy the
criteria to be deleted by Cleanupτ (m).

Assuming the above conditions (a) to (e) for transforma-
tion τ , Presτ (m) establishes (2) for any incremental change
in the source model, since for each top relation R, if a trace
element no longer satisfies guardR(m), then it is deleted;
otherwise, its linked elements are updated if necessary to re-
establish guardR(m) & θR(m). Deletion of source elements
will delete any trace that they belong to. Conτ (m) does not
invalidate any existing traces, because of the non-interference
and ordering properties (b), (c) and (e), but may create new
traces for new source elements, or for existing source ele-
ments which now satisfy some relation guard. Likewise,

Cleanupτ (m) does not invalidate existing traces, but deletes
target elements which no longer appear in traces. Thus, (1)
and (3) are established. ��

Changing the definition of target element resolution does
not affect this proof; however, the definition affects con-
ditions (b) and (c) of rule consistency. In some execution
scenarios, only one subtransformation needs to execute in
order to enforce (1), (2) and (3). In batch mode with an ini-
tially empty target model and empty trace, only theConτ (m)

use case is necessary.

Corollary If conditions (a) to (e) hold for τ in direction m,
then τ ′ satisfies the checkonly semantics of [30] in the direc-
tion m.

Proof Theorem 2 shows that the conditions (1), (2), (3) are
establishedby τ ′ at its termination. For each concrete top rela-
tion R of τ , conditions (2) and (3) imply that for any source
element tuple x for svarsR which satisfies sguardR(m),
there is an extended tuple y of elements for ovarsR such
that y is in R$trace and satisfies guardR(m) & θR(m). ��
Theorem 3 The presented semantics is consistent with the
Relations-to-Core semantics of [30].

Proof We consider the 6 principal rules of Sect. 10 of [30].

• Rule 1: The construction of R$trace in our semantics is
identical to that of T R in [30].

• Rule 2: (2.1): the relation R when clause is represented
in the guardR predicate. (2.2): relation domains are
either expressed in the source cpreds condition or target
epreds constraint. (2.3): an instance of R$trace is tested
(in PresR) or created (inConR). (2.4): each source prop-
erty template item becomes an equation/membership test
in cpreds; each target property template item becomes
an assignment/element addition in epreds. (2.5): when
predicates become tests on the LHS of PresR andConR .
(2.6): predicates of the where clause become RHS pred-
icates of PresR and ConR . In contrast to [30], we also
express relation calls in the where clause as predicates
(calls of operations).

• Rule 3: We only consider relations with at least one
enforceable domain.

• Rule 4: (4.1, 4.2): We permit multiple enforced tar-
get domains. (4.3): Each such domain has a realised
root variable (quantified by an exists or existsLC
operator) in epreds, if it is not also an input to R. Prop-
erty template items in enforced target domains become
assignments/element additions in epreds. (4.4): where
clause predicates are included in wherepx , which is
within the scope of the epreds realised variable quanti-
fiers. (4.5): sourcedomains aremappedas inRule 2. (4.6):
we do not model black-box operations, but these could
be formalised as updator operations in UML-RSDS.

123

748 K. Lano, S. Kolahdouz-Rahimi

• Rule 5: (5.1): we represent an invoked relation S by an
updator operation OpS, called from the constraints rep-
resenting the relations that call S. (5.2, 5.3): The root
variables of the S domains become parameters of OpS
and are instantiated in the call.

• Rule 6: As for rule 5, we treat relation calls as conven-
tional procedure calls.

Our semantics also gives complete definitions for incomplete
parts of theRelations-to-Coremapping: the getV arsO f Exp
function, and the RExpToMExp and TopLevel Relation
T oMappingFor En f orcement rules. ��

5.5 Incremental execution and change propagation

Source-to-target change propagation of the following source
model changes is supported for separate-models transforma-
tions in incremental mode by our semantics:

• Addition of a new source element sx : ST—if this ele-
ment satisfies some sguardR(m) of a relation R with
source domain s : SST for SST equal to ST or a super-
type of ST , then sx will be processed by ConR(m) and
appropriate target and trace elements selected or cre-
ated. Further top relationsmay consequently also become
enabled and will be applied.

• Changes to a 1-multiplicity reference f or non-key
attribute att of an existing s : ST—if s occurs in
some trace R$trace, and guardR(m) remains true for
s, then PresR(m) applies to update linked target ele-
ments appropriately. If s is in some tr : R$trace
but guardR(m) is falsified by the change of f /att
value, then tr is removed from R$trace by Presτ (m),
and Cleanupτ (m) removes any target elements that
depended exclusively on s. If s does not occur in any
trace, but the change in f /att now validates some
guardR , then ConR(m) is applied to s.

• Addition of an element to a collection-valued feature f
of existing element s : ST—if s is in tr : R$trace and
guardR(m) remains true, then PresR(m) propagates the
change to corresponding target elements. The cases of
guardR(m) being falsified and s not in R$trace are han-
dled as for the previous case.

In general, we use conditions on traces to selectively
enable specific constraints for particular incremental changes,
instead of re-applying the entire transformation. This is based
on a static scheme, rather than a dynamic mechanism as in
[10], but the performance was found to be satisfactory on
all the test cases of Sect. 8. A more elaborate static scheme
for managing incremental changes by additional operations
is defined by [33]; however, this considerably enlarges and

complicates the semantic representation of a transformation,
so making it harder to understand and analyse.

5.6 Variant semantics and extensions for QVT-R

The above semantics can be adapted to the cases of check-
before-enforce and least-change semantics for target element
resolution. We also consider the case of non-persistent traces
and propagation of element removal. In addition, a semantics
can be given to internal transformation composition.

5.6.1 Check-before-enforce semantics

Modifying the semantics of a relation R to use check-before-
enforce target resolutionmeans changing the definition of the
succedent of ConR (or ConOpR for non-top R). Two cases
need to be distinguished:

1. Either there is already a tuple of elements of outvarsR
which satisfy the required constraints

epreds(tdom, whenvarsR ∪ sourcevarsR∪
outvarsR) & wherep

In this case, the elements are selected and a new R$trace
instance created for ovarsR , or

2. No such tuple exists, and new target elements need to be
created and updated using epreds(tdom, whenvarsR ∪
sourcevarsR) & wherep, and the resulting ovarsR ele-
ments linked in a new trace element.

In order to achieve this logic, we need an extended OCL
let operator, which generalises the version defined in [29].
This has the form

let vars be P in Q

where vars are a list of variables, P are constraints on the
vars, and Q is a constraint which has a stat(Q) interpreta-
tion and does not write to the variables of P . This generalised
let has a procedural interpretation as an any statement [17]
and hence has a well-defined predicate transformer seman-
tics.

123

Implementing QVT-R via semantic interpretation in UML-RSDS 749

The check-before-enforce version of ConR(m) is there-
fore formalised as:

::
cpreds(sdom, {}) & whenp &
not(R$trace@pre→exists(tr |&sv∈svarsR tr .

sv = sv)) �⇒
i f ∃v · (epreds(tdom, whenvarsR∪

sourcevarsR ∪ outvarsR) & wherep)
[v/outvarsR]@pre

then
let outvarsR
be epreds(tdom, whenvarsR∪

sourcevarsR ∪ outvarsR) & wherep
in CreateTraceR

else
epreds(tdom, whenvarsR∪

sourcevarsR) & wherepx
endi f

whereCreateT raceR is R$trace→exists(tr |&sv∈svarsR tr .
sv = sv & &tv∈tvarsR tr .tv = tv)

To require that check-before-enforce semantics is used
for a relation, a stereotype/annotation@checkBeforeEnforce
could be written before the relation header. Alternatively, the
stereotype could be written before a transformation header
to express that it applies to all relations in the transforma-
tion. This definition of target element resolution affects the
circumstances under which consistency conditions (b) and
(c) are valid, as discussed in Sect. 6.

5.6.2 Least-change semantics

In some cases, it is useful to be able to specify that existing
target elements should be reused and updated if they par-
tially match the required conditions of a target pattern. The
‘check-before-enforce’ semantics only deals with situations
where target elements completely match the required con-
ditions, whilst the ‘always create new elements’ semantics
ignores existing target elements. Key-based partial matching
and update only operates for elements with keys.

We use the notation

e <:= E { pattern }

for target object templates where least-change partial match-
ing is required. Such templates have the semantic inter-
pretation E→existsLC(e|Pred) in the epreds predicate,
instead of E→exists(e|Pred), where Pred semantically
interprets pattern. Examples of the use of this mecha-
nism are in the online dataset directories con f luence and
simple f amilies2persons of [27]. The application of the
semantics to the families to persons case is explained in [26].

As for check-before-enforce, this definition of target
element resolution alters the circumstances under which con-
sistency conditions (b) and (c) are valid.

5.6.3 Non-persistent traces

We have defined the semantics τ ′ of τ on the basis that
trace instances of the R$trace classes are persisted to
support incremental execution. However, phases Conτ (m)

and Cleanupτ (m) are also applicable in the case of non-
persistent traces. The properties (1), (2), (3) remain valid as
postcondition properties established at termination of τ ′, and
the proof of Theorem 2 remains valid for batch-mode execu-
tion.

However, incremental execution mode is no longer sup-
ported. Execution of τ ′ on a non-empty target model may fail
to propagate changes to the correct target objects, because
the information of precise source–target correspondences in
persistent traces used by Presτ (m) is not available. Each
ConR(m) will be re-applied to every relevant source ele-
ment, irrespective of previousmappings established for these
elements via R.

5.6.4 Propagation of element removal

The semantics we have presented does not necessarily prop-
agate element removal changes. To address this, an explicit
undoR(m) predicate can be derived, which is a conjunc-
tion of predicates y.r→excludes(x) for each predicate
y.r→includes(x) or x : y.r in epreds(tdom, ovarsR ∪
whenvarsR ∪ sourcevarsR) & wherep, where x and y are
in ovarsR . PresR(m) is thenmodified to perform undoR(m)

if the guard of R is false for an existing trace:

R$trace@pre ::
i f guardR(m) then θR(m)

else undoR(m) & sel f →isDeleted()

endi f

Similarly for PresOpR in the case of non-top R.

5.6.5 Internal composition of transformations

QVT-R transformations are typically written in a monolithic
style, with all operations and rules contained in a single
semantic unit. For large transformations (such as the RelTo-
Core transformation, or the Ecore to SQL case of [36]), this
can result in very large numbers of rules and operations (e.g.
51 operations, 12 rules and 118 calling dependencies in the
first version of ecore2sql). To improve the organisation of
large transformations, we suggest using subtransformations
which are internally sequentially composed. The structure of
such a transformation would be:

123

750 K. Lano, S. Kolahdouz-Rahimi

transformation t(pars)
{ common declarations of keys,

shared operations

subtransformation t1(pars1)
{ relations for t1,

operations used only in t1
};

...

subtransformation tn(parsn)
{ relations for tn,

operations used only in tn
};

}

Each of the subtransformation parameter lists parsi is a
subsequence of the main transformation parameters pars.

A sequential composition τ = τ1; τ2 of two QVT-R
transformations can be given a semantics as a sequential com-
position of the corresponding UML-RSDS transformations
τ ′
1; τ ′

2. This chains the three phases of τ
′
2 after the three phases

of τ ′
1. Provided that the write frames of τ1 and τ2 are disjoint,

and that τ2 does not write to any data read by τ1, then the
composed effect of τ ′ is well defined: τ ′

2 does not invalidate
the postconditions established by τ ′

1 on its models.

6 Semantic analysis of QVT-R

The translation of a QVT-R relation R to an OCL constraint
θR(m) immediately exposes the semantic form of the relation
in terms of quantified source and target elements.

In general, each relation should only concern a single one-
to-many association within each model [16]. Hence, each
relation should refer to elements at two composition levels or
fewer, per model (e.g. to programs and classes, or to classes
and attributes, but not to programs, classes and attributes).
Multiple levels of quantification within one relation are both
difficult to comprehend (cf. the AbstractToConcrete case
from Modelmorf) and inefficient to execute.

The problems identifiedwith theClass2CStructV 2 rela-
tion in Sect. 2 can nowbe understood by considering the form
of the semantics θClass2CStructV 2(C) of the relation in UML-
RSDS notation:

e : Entity & n = e.name & p :
e.ownedAttribute &

n1 = p.name & k = p.isUnique =>
CStruct->exists(c |

c.name = n & c.ctypeId = n &
CMember->exists(m | m :

c.members & m.name = n1

& m.isKey = k))

For problem (1), if e.owned Attribute is empty, the antecedent
is not satisfiable for any p, and so no c : CStruct will be
created for e.

For problem (2), if CStruct does not have a key attribute,
then a different c : CStruct could be created for each differ-
ent p : e.owned Attribute. Check-before-enforce semantics
does not avoid this problem because there may not be a
CMember with all the required properties for p, and hence,
the c domain will need to be executed for p. However, the
least-change semantics for target element resolution for the
c : CStruct instantiation would resolve problem (2): new
CStruct instances would not be created for different p;
instead, the CStruct with name = e.name would be reused
and only new CMember instances would be created and
added as members of this CStruct .

To avoid such semantic problems, specifiers should sep-
arate matching on many-valued features into separate rules,
in which the owner elements are already bound by a when
clause. For example, Class2CStructV 2 should be restruc-
tured as two rules, Class2CStruct and:

top relation MapProperty2CMember
{ enforce domain design e : Entity

{ ownedAttribute = p : Property
{ name = n1, isUnique = k } };

enforce domain C c : CStruct
{ members = m : CMember { name = n1,
isKey = k } };

when { Class2CStruct(e,c) }
}

This avoids the problem in the same manner as NonTop
Property2CMember : the e and c variables are both bound
prior to the quantifiers on p and m, resulting in the logical
form ∀e∀c∀p∃m instead of ∀e∀p∃c∃m.

In general, the semantics can be used to identify anoma-
lies which can indicate specification errors. In our tools, we
include static checks for the correctness conditions (a) to (c)
and (e), includingflaws such as the use of calls to top relations
in where clauses, unused non-top relations, and updates to
the same data in the target domains and the where clause of a
relation. Figure 8 shows an example of analysis of condition
(b) and Fig. 9 an example of analysis of condition (e). (d)
cannot be statically checked, only by runtime monitoring.

Confluence analysis identifies cases of non-determinism
where the effect of a transformationdepends upon the order in
which source elements are matched by a relation. This arises
in particular if there is a conflict of kind (c) of Sect. 5.2
between one application of the relation and another. For
example, if key attributes aId, bId are used for a source
class A and target class B involved in a relation:

123

Implementing QVT-R via semantic interpretation in UML-RSDS 751

top relation A2B
{ enforce domain src a : A { aId = v, ... };
enforce domain trg b : B { bId = w, ... };

}

then assignments of a constant to bId, such as bId = “1′′,
are detected as potential confluence errors. These are also
cases of potential semantic conflicts (c) within a single rela-
tion (the QVT-R semantics of [30] only considers semantic
conflicts between different relations).

Assignments of (values of) non-keys A::att to key
attributes B::bId are also a potential confluence error
because different A instances a1, a2 can have the same att
values and hence match to the same B instance. If other fea-
tures of a1, a2 have different values and are used to update
B features, then a conflict of type (c) arises. Least-change
semantics is also prone to this kind of error. Potential con-
flicts of type (b) between relations can also be detected by
our analysis: a warning is issued if two different top relations
update the same features of the same target class (Fig. 8).

A more subtle confluence problem arises with specifica-
tions of the form

top relation R
{ enforce domain src a : A

{ br = bx : B {} };
enforce domain trg a1 : A1
{ b1r = b1x : B1 { b2r = b2x :

B2 {} } };
when { A2A1(a,a1) and B2B2(bx,b2x) }

}

where br and b2r are *-multiplicity references and b1r is
a 1-multiplicity reference. The specification requires that
for every bx in a.br , there exists a corresponding b2x in
a1.b1r .b2r . The semantics θR of the relation R has the form
(a,a1) : A2A1$trace & (bx,b2x) : B2B2

$trace & bx : a.br =>
B1->exists

(b1x | a1.b1r = b1x & b2x : b1x.b2r)

Assuming that there are no key features, there are three
different options for target resolution of b1x : (i) always cre-
ate new B1 instances b1x for each different bx : a.br ;
(ii) check-before-enforce; (iii) least-change check-before-
enforce. Option (i) is incorrect, because the assignment
a1.b1r = b1x will overwrite any previous assignment
to a1.b1r and invalidate previously established b2x ′ :
a1.b1r .b2r for bx ′ �= bx and (bx ′, b2x ′) : B2B2$trace.
Check-before-enforce semantics only avoids the creation
of b1x if b2x is already in a1.b1r .b2r . Hence overwrit-
ing can also occur in this situation. However, the least-
change semantics (iii) does give correct behaviour. Using
B1→existsLC(b1x , an instance b1x : B1 with a1.b1r =
b1x is only created once, then subsequently this instance
is looked-up and b2x : b1x .b2r is established for b1x .

This avoids the above confluence problem. Thus, using our
extended QVT-R notation, the relation should be written as:

top relation R
{ enforce domain src a : A

{ br = bx : B {} };
enforce domain trg a1 : A1 { b1r = b1x
<:= B1 { b2r = b2x : B2 {} } };

when { A2A1(a,a1) and B2B2(bx,b2x) }
}

Syntactic confluence checks for the default exists seman-
tics are defined in [24] and are implemented in the tools.

7 Design patterns

Several model transformation design patterns from [20,25]
are particularly useful in structuring QVT-R transformations
in order to reduce semantic flaws and increase capabilities
for bidirectional execution:

• Map objects before links: used to avoid mutual/cyclic
dependencies between relations and to separate out the
mapping of collection-valued references. The pattern
relies on key-based or mandatory-create target resolu-
tion, in order to impose a 1–1 mapping of elements in the
‘map’ phase (e.g. Model2Program in Sect. 2).

• Lens: used to provide incremental bidirectional execution
in cases where the forward map ignores existing target
data. This is used in cases where a target data feature
g of instances t : T of entity type T can be computed
in the forward direction as a function of source features
f1, . . . , fn of instances s1, . . . , sn of source entity types
S1, . . . , Sn :

t .g = get(s1. f1, ..., sn . fn)

In the reverse direction, puti functions update the fi
based on the initial values fi@pre of these features and
on the target data g:

si . fi = puti (t .g, s1. f1@pre, ..., sn . fn@pre)

In QVT-R, the equations can be placed in a rela-
tion where clause, the assignment to g will be effective
for update only in the source-target execution direction,
whilst the assignments to the fi will be effective only in
the target-source execution direction. The @pre suffix is
used for the fi so that correctness condition (a) is not vio-
lated in this direction. To avoid conflicting updates in the
put assignments, each s : Si for any i should be related
to only one t : T .

123

752 K. Lano, S. Kolahdouz-Rahimi

Fig. 8 Semantic analysis of QVT-R: update conflicts

• Entity splitting/merging: where the data of one class in
SL are distributed to data of two or more classes in T L ,
or vice versa. Horizontal merging/splitting is the situ-
ation where two or more exclusive classes are merged
into/split out from one class. Vertical merging/splitting
is the situation where two or more non-exclusive classes
are merged into/split out from one class.

• Flattening/unflattening: various situations inwhich source
model data structure corresponds to simplified or elabo-
rated structure in the target model. For example, intro-
duce intermediate class adds a new class C in T L
between two classes derived from SL linked by an asso-
ciation: A −→r B in SL is elaborated to A1 −→r1

C −→r2 B1 in T L , so that r is represented by the
composition r1.r2. The reverse of this transformation
is a flattening which discards the intermediate elements.
A recursive *-accumulation is a flattening where the
closure of a source association corresponds to a target
association.
Transformations involving flattening can be problematic
for bidirectional execution because of the loss of infor-

mation (e.g. the two cases where a bx is not definable in
[36] both involve flattening).

• Auxiliary metamodel: Introduce additional model struc-
ture in order to support bidirectionalisation, e.g. to
introduce flag attributes in target classes to record the spe-
cific source class from which a target instance is derived,
in the case of horizontal Entity merging.

• Auxiliary models: in cases where there is substantial dis-
parity between the structures of SL and T L , introduce
an intermediate model and split τ into a sequential com-
position of two transformations which use this model.
Auxiliary models can also contain configuration infor-
mation to restrict nondeterminism, as in the Families to
Persons case [37].

• Object indexing: Introduce identity attributes/keys for
elements in order to enforce reuse of target elements
(instead of creation of new elements) and to enforce 1–1
or n − 1 relations between source and target elements of
corresponding classes.

• Restrict input ranges: Use additional guards to prevent
duplicated application of relations with source object

123

Implementing QVT-R via semantic interpretation in UML-RSDS 753

Fig. 9 Semantic analysis of QVT-R: relation dependencies

variables s1 : S, s2 : S—so that each pair x1, x2 of
distinct S elements is only bound in one way to the si ,
similarly for other situations where repeated application
to the same input variables should be prevented. The addi-
tional guards should not involve relation tests.

In addition to design patterns, some specific idioms are
useful:

• Marker relation [6]: simple non-top relationswith domains
s : S{}; t : T {}; with no explicit functionality, which
are called from the where clause of more complex rela-

tions in order to store specific pairs or tuples of elements
into a trace that can be queried in other relations. For
example, the dag2ast/ast2dag and ecore2sql transforma-
tion versions of [36] use this idiom.

• Test and update bidirectional 1-* or 1-0..n associations
at the 1 end: as noted in Sect. 2, matching on 0..n mul-
tiplicity or * multiplicity association ends has semantic
complications. Therefore, it is preferable to manipulate
such associations via their opposite ends if these are 1-
multiplicity.

• Replace recursion by iteration: recursive relations can be
a cause of semantic problems and can be avoided inmany

123

754 K. Lano, S. Kolahdouz-Rahimi

cases by using the Map Objects before Links pattern, by
using the →closure(r) operator on a self-association r
[28] or by using a ∀ quantifier (e.g. the bag migration
case in Sect. 8, defined in “Appendix E”).

Deletion by selective copying is useful for update-in-place
transformations (“Appendix A”).

8 Evaluation

In this section, we consider the cases of [36] and other
bx examples, and use the above patterns and the imple-
mentation of QVT-R via UML-RSDS to provide systematic
specifications of these. We consider both batch-mode and
incremental-mode execution.

The code of all examples, together with their seman-
tic interpretations in UML-RSDS and example execution
scenarios, can be found at [27]. Due to space restrictions,
we provide the detailed evaluation results in supplemen-
tary material (“Appendix E”). The Families to persons case
is also presented as an example in [26]. We used Version
1.9 of the Agile UML tools for UML-RSDS, available at
https://projects.eclipse.org/projects/modeling.agileuml. We
used the current version of the Medini QVT tools [11]. All
tests were carried out on a Windows 10 i5-6300 dual core
laptop with 2.4GHz clock frequency, 8GB RAM and 3MB
cache.

8.1 Comparison

The cases can be evaluated in terms of the quality metrics of
[13,23] and in terms of the bx properties they support. Table 7
compares previous versions of the cases in QVT-R or ETL
(for the tree to graph case) with the QVT-R and UML-RSDS
versions defined in this paper, with regard to the number
of quality flaws per LOC. Quality flaws are counts ERS
and EHS of excessively large (over 50 LOC) rules/helpers,
counts EFO and EFI of rules with excessive (over 5) fan-out
and fan-in, counts EPL of excessive (over 10) numbers of
variables, and counts CBR of excessive numbers of calling
dependencies and DC of code clones. We also give the per-
formance gain ratios of our version relative to the original
version executed via Medini QVT (for the cases of [36]). In
each case, our solutions have the same or fewer flaws than
previous solutions and aremore efficient for batch-mode exe-
cution. Table 8 summarises the bx properties of our solutions.
Reduced flaws are due to our use of patterns, especially the
Map objects before links pattern, which leads to a logical
specification style with top relations dependent via when,
rather than a functional style using non-top relations with
where calls. Improved efficiency is due to optimisation in
the UML-RSDS design synthesis process (e.g. reducing the

range of element quantifications and searches where possi-
ble), and because code in 3GLs is produced, whereas Medini
uses interpreted execution.

We have therefore improved on the properties of the solu-
tions of [36] in two cases: the mapping of bags has been
specified by a bidirectional transformation instead of by two
separate forward and reverse transformations, and for trees
and dags we specified forward and reverse transformations
which are closely related and mutually inverse. We also pro-
vided incremental solutions for 4 of the 6 cases of [36] and
provided a deterministic solution for the sets/ordered sets
case. We improved the Hsm2nhsm transformation of [28] by
eliminating the circular calling dependencies of the previous
solution.

9 Related work

The closest related work to our approach is [2] and [8]. In
[8] QVT-R is translated into coloured Petri nets (CPNs).
This enables the use of CPN tools to simulate and analyse
QVT-R specifications. The translation covers batch-mode
execution but not incremental or in-placemodes. They follow
the semantic approach of RelToCore, using non-persistent
traces. Separate CPN representations of source-to-target and
target-to-source execution directions are generated. Both
checkonly and enforce semantics are treated. Only check-
before-enforce using key-based target resolution seems to be
considered in [8]. As in our approach, read access to target
models is considered an error in [8]. Criteria for termination
are provided, as are consistency checks. However, general
OCL expressions are not supported in specifications, and ver-
ification requires a developer to relate CPN-based analysis
results to the original QVT-R text, which is not trivial, due to
the complex and low-level encoding. Execution via CPN is
possible; however, this is not efficient and is only useful for
debugging/simulation. In [2], QVT-R is translated into a tran-
sition system formalism with model mu-calculus constraints
expressing the semantics. Both batch and incremental mode
are supported, but non-top relations are not permitted to cre-
ate elements. The formal representation varies depending on
the transformation direction. Key-based and check-before-
enforce target resolution is adopted, without traces. As with
[8], the formalism is quite distant from the UML/OCL basis
of QVT-R, and it is non-trivial to relate results from the
semantics back to the original specification. Execution and
verification via model checking are supported in princi-
ple, but not implemented by [2]. Table 9 summarises the
approaches of [2,8] and compares them with our approach.
Our approach is the only one which formalises both least-
change and in-place executionmodes and provides 3GL code
implementation. The conceptual distance of our formalisa-

123

https://projects.eclipse.org/projects/modeling.agileuml

Implementing QVT-R via semantic interpretation in UML-RSDS 755

Table 7 Quality flaw and
performance measures for cases

Case Original version Revised version Performance gain
Flaws/LOC Flaws/LOC

Tree to graph [14] 1/15 0/17 –

UML to Python – 0/30 –

Hsm2nhsm [28] 2/48 1/70 –

Person migration 0/63 0/19 893 (forward)

575 (reverse)

Weighted/unweighted 2/115 1/60 228 (forward)

Petri nets 182 (reverse)

Unordered/ordered sets 1/121 0/29 563 (reverse)

Migration of bags 1/157 0/66 45,404 (forward)

Gantt2CPM 10/378 1/54 –

Expression trees/dags 8/439 0/80 8.1 (forward)

34.5 (reverse)

Total flaws/LOC 25/1336 (0.019) 3/425 (0.007)

tion (in UML and OCL) from the standard is lower than for
the other approaches.

The problems with QVT-R semantics seem to go back to
the originalRFP for the language,which emphasised technol-
ogy alignment instead of language semantics [15]. Specific
problems in QVT-R semantics were documented by Stevens
in [34]. The limitations of a purely declarative interpretation
of QVT-R were identified. This work led to the semantics of
QVT-R defined using mu-calculus [2]. An alternative QVT-
R semantics is defined in [28], using constraint solving in
alloy to implement a least-change interpretation of relations
in enforce mode. We have instead formulated a least-change
semantics within standard UML/OCL.

Other approaches concern implementation of QVT-R by
translation to another language or formalism, but do not pro-
vide semantic analysis. For example, [32] translates QVT-R
to QVT-O, and [7] translates QVT-R to TGG. The translation
to TGG, however, helps to expose semantic ambiguities in
the QVT-R semantics. In [39], a fine-grain model of QVT-R
computations is defined and used to guide automated exe-
cution optimisation. Here we have described how QVT-R
specifications can be restricted and organised to avoid self-
dependencies of relations and mutual dependencies between
relations, and other forms of circular data-dependence. This
enables a simpler implementation approach to be adopted
whilst retaining high efficiency.

In [36], the problems in defining bx in QVT-R are
investigated via seven case studies. Specific limitations of
QVT-R are identified: the lack of definite ordering in where
clause/target domain execution, which complicates the defi-
nition of bx execution strategies, and the lack of facilities for
defining variability options, such as rules specific to one exe-
cution direction. We have addressed the first problem in our
semantics. The second would be a useful facility, especially

in cases wheremost relations can operate in both forward and
reverse directions, but some are only valid in one direction.
The transformation could be divided into three subtransfor-
mations: one (τ) for the fully bx relations, one (σ) for the
specific forward relations and another (ρ) for the specific
reverse relations. Transformation extension could be used to
combine τ with σ and τ with ρ.

Additionally, [36] identifies tooling problems for QVT-R,
in that the only practical QVT-R tool available, Medini QVT
[11], does not support the full language. We have defined
tooling support which overcomes this problem via transla-
tion to UML-RSDS (effectively a subset of UML) and its
tools. This supports domain conditions, relation overriding
and transformation extension (unlike Medini) and provides
an option to use least-change semantics.

Similar work has been carried out for other MT lan-
guages. For example, [4] translate ATL into an intermediate
representation with a formal semantics to support verifica-
tion. Similarly, [35] translate ATL to the Maude formalism.
Operationalisation approaches for TGG [5,9] have some sim-
ilarities to our approach, with the correspondence models in
TGG being used in a similar way to QVT-R traces. How-
ever, TGG is a simpler language than QVT-R because TGG
rules cannot explicitly refer to other rules, and the expres-
sion language used for TGG is simpler than OCL. As in our
approach, [9] also usesmultiple phases to define an incremen-
tal operational form of a TGG specification. However, this
form is a graph transformation, not a logical representation,
and requires the introduction of additional flag attributes.
In [25], we define an approach for bidirectionalising UML-
RSDS using syntactic inversion of predicates. Although this
produces efficient transformations, it requires the specifier
to ensure that they remain within the subset of the language
which is syntactically invertible. Using QVT-R enables bx to

123

756 K. Lano, S. Kolahdouz-Rahimi

Table 8 Bx properties for cases

Case Bidirectionality Batch/incremental Deterministic Patterns used

Tree to graph Bidirectional Incremental Yes Introduce/remove

intermediate class

Map objects

before links

UML to Python Bidirectional Incremental Yes Recursive

*-accumulation

Auxiliary

metamodel

Map objects

before links

Hsm2nhsm Partly separate Incremental Yes Recursive

forward/reverse *-accumulation

Entity merging/

splitting (horizontal)

Map objects

before links

Person migration Bidirectional Incremental Yes Lens

Weighted/ Bidirectional Incremental Yes Introduce/remove

unweighted intermediate classes

Petri nets Map objects

before links

Unordered/ Bidirectional Incremental Yes Map objects

ordered sets before links

Object indexing

Migration of bags Bidirectional Batch Yes Auxiliary models

Object indexing

Lens; Introduce/

remove intermediate

class; Map objects

before links

Expression trees/ Mutually inverse Batch No Deletion by

dags forward/reverse selective copy

Gantt2CPM Bidirectional Incremental Yes Entity merging

splitting (horizontal)

Introduce/remove

intermediate class

Map objects

before links

be defined in many cases using a single specification for for-
ward and reverse directions, avoiding the need for syntactic
bidirectionalisation. We have extended the QVT-R seman-
tics of [25] to provide variations in target element resolution
semantics, including theMedini QVT semantics and update-
in-place semantics.

10 Conclusions

In this paper, we have shown that a coherent mathematical
semantics can be given to QVT-R, based on a translation to
UML-RSDS. This semantics is compatible with the de facto
QVT-R semantics given by the Medini QVT tool, and it is
consistent with the (partial) QVT-R to QVT-C translation of
[30].

123

Implementing QVT-R via semantic interpretation in UML-RSDS 757

Table 9 Semantic translation
approaches for QVT-R semantic
analysis

Aspect CPN [8] Mu calculus [2] UML-RSDS

Modes batch, merging batch, incremental batch, incremental, update-in-

supported checkonly, enforce checkonly, enforce place, checkonly, enforce

Target Key-based Key-based, Key-based, least-change,

resolution check-before-enforce mandatory create,

check-before-enforce

Traces Non-persistent None Persistent/non-persistent

Execution Simulation via Simulation via Code-generation

CPN tools model-checker in 3GL

Analysis Termination, Debugging Confluence,

confluence, consistency,

consistency, debugging

debugging

Precise
√ × √

correctness

criteria

Restrictions No calling No element creation in No calling

cycles, OCL non-top relations cycles

restrictions

The semantics provides a basis for the static analysis of
QVT-R specifications and for the identification of seman-
tic problems in them. We provide variation points to permit
alternative target resolution approaches and trace models. In
addition, by translating to UML-RSDS, specifiers gain the
ability to perform other semantic checks, such as conflu-
ence analysis, and to generate efficient implementations of
QVT-R specifications in multiple programming languages.
By adopting MT design patterns from UML-RSDS, it also
becomes possible to systematically construct QVT-R bx of
particular kinds. We consider that overall our approach can
contribute to increasing the precision of QVT-R semantics
and enhancing the usability of the language for practitioners.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

AppendixA: Semantic translation for update-
in-place transformations

The definition of the semantics of update-in-place transfor-
mations in [30] is very brief and lacks detail (Section 7.7 of
[30]). We can adapt the separate-models mode semantics of
Sect. 5.2 to provide a translation for in-place QVT-R trans-
formations.

Update-in-place transformations τ operate on a single
model m : L , which is both the source and target of τ . All
domains of relations R have modelm, and two domains may
have root variables e : E with the same name. An element e
bound to these variables is therefore both read and written by
R. In this case, the first of these domains can be designated
as a source and the second as a target:

top relation R
{ checkonly domain m e : E { ...

source domain ... };
enforce domain m e : E { ...
target domain defining update of e ... };

when { ... }
where { ... }

}

sdom is thus the set of checkonly domains, and tdom
the set of en f orce domains. For update-in-place τ , we only
consider unidirectional top relations. In the case of multiple
domain root variables e : E with the same names and types,
traces for R record only a single e : E property.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

758 K. Lano, S. Kolahdouz-Rahimi

θR(m, vars) is defined as for the separate-models case,
but PresR(m) is redefined as:

R$trace@pre ::
i f guardR(m)@pre then θR(m)′
else sel f →isDeleted()

endi f

where θR(m)′ has antecedent (cpreds(sdom, ovarsR) &
whenp)@pre. We use this prestate version of the antecedent
of θR for the update-in-place semantics because the samedata
(features of E) may be read and written by R. The use of
the prestate expression enforces a bounded-loop implemen-
tation, which does not necessarily ensure that the relation
is established for all applicable instances of E . Instead, the
entire transformation will be iterated until all top relations
are simultaneously established (as in Section 7.7 of [30]).

ConR(m) is modified in a similar way to refer to prestate
versions of data on the LHS:

::
(cpreds(sdom, {}) & whenp)@pre &
not(R$trace@pre→exists(tr |&sv∈svarsR tr .sv

= sv)) �⇒
epreds(tdom, whenvarsR∪

sourcevarsR) & wherepx

The CleanupE constraints are defined as in the separate-
models case, except that the Ri range over all relations
with some e : E variable in their tvarsRi set (instead of
outvarsRi). The reason for this change is that target ele-
ments can exist because they were copied from the source
model, and do not need to be explicitly created. Unlike the
separate-models case, the CleanupE constraints can delete
source elements (since the source and target models are the
same) and delete traces.

The phases Presτ (m), Conτ (m), Cleanupτ (m) are then
defined from the Pres, Con and Cleanup constraints as in
the separate-models case. Correctness conditions (b) to (e)
are also applicable to update-in-place transformations, but
condition (a) is weakened to:

• (a’)Relations canonly refer to target features/class names
via explicitly declared object variables t : T and their
features.

Two cases of update-in-place transformation can be dis-
tinguished: (i) where a single execution is sufficient to
establish the required target model; (ii) where repeated itera-
tion is necessary. We suggest using transformation stereo-
types/annotations to distinguish these cases. For iterated
transformations, an annotation @iterated could be written

before the transformation header to indicate that the trans-
formation should have this semantics.

A simple example of an update-in-place rule for the UML
metamodel of Fig. 3 is:

top relation R
{ checkonly domain design e : Entity {};

enforce domain design e : Entity {}
{ e.stereotypes->includes("COM+") };

}

For this rule, PresR(design) and ConR(design) are:

R$trace@pre::
if e : Entity@pre
then

e.stereotypes->includes("COM+")
else

self->isDeleted()
endif

::
e : Entity@pre & not(R$trace@pre->

exists(tr | tr.e = e)) =>
e.stereotypes->

includes("COM+") &
R$trace->exists

(tr | tr.e = e)

This transformation does not need to be iterated, because
after one iteration it ensures that θR(design) is true for
all model instances. Notice that attributes such as name
and is Abstract do not need to be explicitly copied. More
complex update-in-place examples are transformations such
as class diagram refactoring [12] or graph rewriting with
implicit element deletion:

top relation R
{ checkonly domain graph n : Node {};

enforce domain graph n : Node {};
when { n.neighbours->size() = 1 }

}

where graph nodes have a set neighbours : Set(Node) of
neighbours, a name : String and a unique id : String.
Such transformations may require repeated execution. In
this example, ConR(graph) will not be enabled on n
which have n.neighbours@pre→si ze() �= 1; hence, such
nodes will not be recorded in R$trace and will be deleted
by CleanupNode(graph). This implicit deletion may then
reduce the set of neighbours of other nodes and result in R
being enabled on these in the next iteration.

ConR(graph) is:

::
n : Node@pre & n.neighbours@pre->

123

Implementing QVT-R via semantic interpretation in UML-RSDS 759

size() = 1 &
not(R$trace@pre->exists

(tr | tr.n = n)) =>
R$trace->exists(tr | tr.n = n)

This places any node with 1 neighbour into the trace.
PresR(graph) is:

R$trace@pre::
if n : Node@pre & n.neighbours@pre->
size() = 1
then

n.neighbours@pre->size() = 1 => true
else self->isDeleted()
endif

A node n may be in the trace because on the previous iter-
ation it had one neighbour in the Presτ phase, but after
Cleanupτ it does not. PresR(graph) will consequently
delete the trace containing n, and n will be removed by the
followingCleanupNode(graph). The same actions are taken
if n.neighbours has been changed by an incremental modi-
fication of the model to falsify n.neighbours.si ze = 1.

The consistency properties (1), (2) and (3) of Sect. 5.4
also apply to update-in-place transformations. (1) is estab-
lished by the Cleanupτ (m) constraints, and (3) is redun-
dant because the model has been restricted to elements
which are in traces. (2) need not be established by a
single iteration. For example, in the Node case, some
remaining node may have neighbours.si ze �= 1 due to
deletions carried out by Cleanupτ (m). Thus, the phases
Presτ (m);Conτ (m);Cleanupτ (m) need to be iterated until
both (1) and (2) hold. In such cases, the annotation@iterated
should be attached to the transformation.

The iteration of the transformation is defined by the activ-
ity of τ ′:

while not(2)
do

(Presτ (m);Conτ (m);Cleanupτ (m))

Proof of termination will generally require the use of some
variant expression ν : N, whose value is strictly reduced by
each iteration, as in [21]. In the above example, the size of
Node.all I nstances() could be used as a variant. Another
possibility would be to allow the number of iterations to be
manually controlled. In this case, the condition (2) could be
tested to determine if the execution is complete.

Examples of update-in-place execution are given in the
qvt2umlrsds dataset [27], including an update-in-place
solution to the tree to dag case of [36].

Appendix B: Definition of cpreds and epreds

cpreds and epreds convert the sequences of source and tar-
get relation domains of a QVT-R relation into UML-RSDS
OCL predicates. These use auxiliary functions cpred/epred
on individual relation domains.

cpreds([], bounds) is true, whilst cpreds([d]�doms,
bounds) is p & cpreds(doms, b) where (p, b) = cpred
(d.rootV ariable, d.pattern.templateExpression,

bounds ∪ {d.rootV ariable}) and cpred(e, expr , bound)

interprets a template or OCL expression expr as a UML-
RSDS OCL expression as follows, where bound is the set of
variables which are bound at the current text point.

In the case of a primitive domain, e : T , expr is true and
cpred(e, true, bound) is simply (e : T , bound ∪ {e}).

If expr is an ObjectT emplateExp ote of the form

e : E { f1 = val1, ..., fn = valn } { P }

then the first result p of cpred(e, ote, bound) is formed
as a conjunction of the predicates of cpred(e, f i =
vali, boundi) for each PropertyT emplateI tem f i =
vali , where bound1 = bound ∪ {e}:

• If vali is itself an ObjectT emplateExp, such as x :
F {g1 = w1, . . . , gm = wm}, then the predicate of
cpred(e, f i = vali, boundi) is x = e. f i & x : F
conjoined with the predicate result q of cpred(x, vali,
boundi ∪ {x}) if f i is single-valued (its multiplicity is
1), or x : e. f i & x : F & q if f i is collection-valued
(multiplicity �= 1). The type declaration x : F is omitted
if x ∈ boundi , since it will already have been previously
asserted.
x is considered to be bound by the first conjunct in both
cases if it is not alreadybound.That is, the bound set result
boundi+1 of cpred(e, f i = vali, boundi) includes x
and boundi .

• Otherwise, if vali is an unbound variable, vali /∈
boundi , and f i is single-valued, cpred(e, f i = vali,
boundi) is (vali = e. f i, boundi ∪ {vali}). If f i
is collection-valued, the predicate is vali : e. f i .
boundi+1 = boundi ∪ {vali}.

• If vali is a bound variable or other expression, the
result is (e. f i = vali, boundi) for single-valued f i or
(vali : e. f i, boundi) for collection-valued f i . That is,
boundi+1 = boundi

In the case of a set-typed collection template expression
cte:

s : Set(E) { x ++ rest }{P}

123

760 K. Lano, S. Kolahdouz-Rahimi

cpred(s, cte, bound) is

(s : Set(E) & x : s & rest = s − Set{x} & P,

bound ∪ {s, x, rest})

Similarly for a sequence-typed template ste:

s : Sequence(E) { x ++ rest }{P}

cpred(s, ste, bound) is

(s : Sequence(E) & s→si ze() > 0 & x = s→at(1)
& rest = s→tail() & P, bound ∪ {s, x, rest})

For the domain root variable e, the predicate e : E is added
as the first conjunct of the predicate result of cpred(e, e :
E{...}{P}, bnd). Any additional predicate P of the domain
is added as the final conjunct of the predicate.

For target enforce domains, epreds([], bounds) is true,
whilst epreds([d]�doms, bounds) is p& epreds(doms, b)
where (p, b) = epred(d.rootV ariable, d.pattern.

templateExpression, bounds ∪ {d.rootV ariable}).
Primitive domains cannot be targets, and collection tem-

plates cannot be used in target domains, so d is a relational
domain with an object template expression ote. ote is inter-
preted as a constraint succedent predicate as the predicate
result of epred(e, ote, bound) formed as a conjunction of
the predicates of epred(e, f i = vali, boundi) for the
PropertyT emplateI tem elements f i = vali of ote, where
bound1 = bound ∪ {e}:

• If vali is itself an ObjectT emplateExp, such as x :
F{g1 = w1, . . . , gm = wm}, then epred(e, f i =
vali, boundi) is (F→exists(x |e. f i = x & p),
boundi+1) where (p, boundi+1) = epred(x, vali,
boundi∪{x}) if f i is single-valued, or (F→exists(x |x :
e. f i & p), boundi+1) if f i is collection-valued. The
quantification on x is omitted if x is already in boundi .
The existsLC quantifier is used instead of exists if the
instantiation operator is < :=.

• Otherwise, if f i is single-valued, epred(e, f i = vali,
boundi) is (e. f i = vali, boundi). If f i is collection-
valued, epred(e, f i = vali, boundi) is (vali : e. f i,
boundi).

The root variable e of the target domain is exists-quantified
or existsLC-quantified over its type, if it is not already
bound. Any additional predicate P of the domain is added
as the final conjunct of the predicate of epred(e, e :
E{...}{P}, bound). The exists or existsLC quantifiers
introduced in epred have their scope extended over the

remainder of the logical interpretation of PresR , including
the where predicate interpretation4.

Appendix C: Definitions of rd,wr, stat, statLC

C.1 Read and write frames

Table 10 (an updated version of the corresponding table of
[24]) gives some cases of the definitions of read and write
frames of OCL constraints. var(P) is the set of all features
and entity type names used in P , likewise for var∗(P). V↓v

is V with pairs (x, f) removed, where x ∈ v.
In computing wr(P), we also take account of the features

and entity types which implicitly depend upon the explicitly
updated features and entity types of P , such as inverse asso-
ciation ends. In particular, if an association end role2 has
a named opposite end role1, then role1 depends on role2
and vice versa. Creating an instance x of a concrete entity
type E also adds x to each supertype extent F of E , and
so the extents of these supertypes are also included in the
write frames of E→exists(x |Q) and E→existsLC(x |Q)

in Table 10.
Deleting an instance x of entity type E by x→isDeleted()

may affect any supertype of E and any association end owned
by E or its supertypes, and any association end incident with
E or with any supertype of E . Additionally, if entity types E
and F are related by an association which is a composition at
the E end, or by an association with a mandatory multiplicity
at the E end, i.e. a multiplicity with lower bound 1 or more,
then deletion of E instances will affect F and its features
and supertypes and incident associations, recursively. del(x)
and del∗(x) are the corresponding sets of features and class
names potentially written by deletion propagation from x .

wr(G) of a set G of constraints is the union of the con-
straint write frames, likewise for rd(G), wr∗(G), rd∗(G).

C.2 Design synthesis

The design-level activity stat(P) synthesised from an
effective-for-update OCL predicate P is defined system-
atically based on the structure of P . stat(P) can be
read as ‘Make P true’. P involving negations not(Q) are
normalised where possible so that not is removed, e.g.
not(s→includes(x)) is rewritten to s→excludes(x).

Table 11 shows the main cases of the stat definition
(extended and refined from [24]). In the context of QVT-R
semantics, an expression is assignable if it is a local domain
variable, or is of the form v. f for a feature f of a target

4 Using the combination rule of E→exists(x |P) and
F→exists(y|Q) to E→exists(x |P & F→exists(y|Q)) recur-
sively, and similarly for →existsLC .

123

Implementing QVT-R via semantic interpretation in UML-RSDS 761

Table 10 Definition of read and write frames

P rd(P) wr(P) rd∗(P) wr∗(P)

Basic expression e Set of features {} Set of pairs (obj, f) {}
without quantifiers, and class of objects and

logical operators or names used features, obj . f ,

=, :, / :, <:, E[], in P: var(P) in P , plus

→includes, class

→includes All, names in P:

→excludes All, var∗(P)

→excludes,

→isDeleted

e1 : e2.r var(e1) ∪ var(e2) {r} var∗(e1) ∪ var∗(e2) {(e2, r)}
e2.r→includes(e1)

r collection-valued

e1, e2 single-valued

e2.r→excludes(e1) var(e1) ∪ var(e2) {r} var∗(e1) ∪ var∗(e2) {(e2, r)}
e1 / : e2.r

r collection-valued

e1, e2 single-valued

e1. f = e2 var(e1) ∪ var(e2) { f } var∗(e1) ∪ var∗(e2) {(e1, f)}
e1 single-valued

e2.r→includes All(e1) var(e1) ∪ var(e2) {r} var∗(e1) ∪ var∗(e2) {(e2, r)}
e1 <: e2.r

r , e1 collection-valued

e2 single-valued

e2.r→excludes All(e1) var(e1) ∪ var(e2) {r} var∗(e1) ∪ var∗(e2) {(e2, r)}
r , e1 collection-valued

e2 single-valued

E[e1] var(e1) ∪ {E} {} var∗(e1) ∪ {E} {}
E→exists(x |Q) rd(Q) wr(Q) ∪ {E} ∪ rd∗(Q) wr∗(Q) ∪ {E} ∪
(E concrete class) all superclasses of E all superclasses of E

E→existsLC(x |Q) rd(Q) wr(Q) ∪ {E} ∪ rd∗(Q) wr∗(Q) ∪ {E} ∪
(E concrete class) all superclasses of E all superclasses of E

E→ f or All(x |Q) rd(Q) ∪ {E} wr(Q) rd∗(Q) ∪ {E} wr∗(Q)

x→isDeleted() var(x) {E} ∪ del(x) var∗(x) {E} ∪ del∗(x)
x single-valued, of

class type E

C �⇒ Q var(C) ∪ rd(Q) wr(Q) var∗(C) ∪ rd∗(Q) wr∗(Q)

Q & R rd(Q) ∪ rd(R) wr(Q) ∪ wr(R) rd∗(Q) ∪ rd∗(R) wr∗(Q) ∪ wr∗(R)

Q or R rd(Q) ∪ rd(R) wr(Q) ∪ wr(R) rd∗(Q) ∪ rd∗(R) wr∗(Q) ∪ wr∗(R)

Q xor R rd(Q) ∪ rd(R) wr(Q) ∪ wr(R) rd∗(Q) ∪ rd∗(R) wr∗(Q) ∪ wr∗(R)

i f E then E1 var(E) ∪ wr(E1) ∪ wr(E2) var∗(E) ∪ wr∗(E1) ∪
else E2 endi f rd(E1) ∪ rd(E2) rd∗(E1) ∪ rd∗(E2) wr∗(E2)
let v in P be Q (var(P) − v) ∪ wr(Q) (var∗(P)↓v) ∪ wr∗(Q)

(rd(Q) − v) rd∗(Q)↓v

123

762 K. Lano, S. Kolahdouz-Rahimi

domain object variable v. In UML-RSDS, construction of
objects of concrete class E possessing a key is performed
by the createByPK E(keyvalue) operation, whilst creation
of objects of concrete classes E without keys is performed
by createE(). createByPK E(v) only creates a new E
instance if there is not already an instance E[v] of E with
key value v.

Updates to association ends may require additional fur-
ther updates to opposite association ends, updates to class
extents or to features may require further updates to derived
and other data-dependent features, and so forth. These
updates are all included in the stat activity. In particular,
for x→isDeleted(), x is removed from every association
end and entity type extent in which it resides, and further
cascaded deletions may occur if the association ends are
mandatory/composition ends. The or and xor constructs are
typically used in cases such as P or Q where Q is an alterna-
tive to be established if P fails to be established by stat(P)

or statLC (P). For P xor Q, a normalisation should exist for
not(Q).

The clauses for X→exists(x |x .id = v & P1) and
X→existsLC(x |x .id = v & P1) with id an identity
attribute of X test for existence of an x with x .id = v before
creating such an object: this has implications for efficiency
but is necessary for correctness: two distinct X elements with
the same key value should not exist.

statLC (P) gives a “least-change” procedural interpreta-
tion of expressions P: an update is only performed by this
interpretation to establish P if P does not already hold, or
if the update would make no change to data in the case P
holds.

statLC (v = e) is the same as stat(v = e), v:=e.
statLC (v : e) is the same as stat(v : e) for sets e, but for

sequences it is

i f e→includes(v) then skip else stat(v : e)

Similarly, for <:, / : and / <:. In the special case of 0..1
multiplicity features r , statLC (y : x .r) is

i f x .r→isEmpty() then x .r := x .r→including(y)
else skip

statLC (P & Q) is statLC (P); statLC (Q) under the
assumption that P �⇒ [statLC (Q)]P . This is ensured
if wr(Q) is disjoint from wr(P) and rd(P).

statLC (i f C then P else Q endi f) is

if C
then statLC(P)
else statLC(Q)

under the assumptions C �⇒ [statLC (P)]C and ¬C �⇒
[statLC (Q)]¬C . These are ensured ifwr(P) andwr(Q) are
disjoint from var(C).

statLC (P or Q) is

statLC(P) ;
if not(P) then statLC(Q) else skip

statLC (P xor Q) is

if P & Q
then statLC(not(Q))
else

if not(P) & not(Q)
then statLC(P) else skip

For s→ f or All(x |P), statLC is defined as f or x :
s do statLC (P).

For existential quantifiers E→existsLC(e|P1 & . . .

& Pn), their stat or statLC effect only creates a new e in
cases where there is no existing e : E that satisfies P par-
tially or completely. In the case of partial satisfaction, the
updates only for the unsatisfied conjuncts are carried out.

If E has an identity attribute pk and a conjunct Pi is of the
form e.pk = value, then stat(E→existsLC(e|P1 & . . .

& Pn)) is

var e : E;
e := createByPKE(value);
statLC(Pred)

Where Pred is P1 & . . . & Pn with Pi omitted.
Otherwise, stat(E→existsLC(e|P1 & . . . & Pn)) has

the form:

var e : E;
var eset : Set(E);
eset := E.allInstances();
if eset->isEmpty()
then

e := createE();
statLC(P1 & ... & Pn)

else
(e := eset->any(true);
eset := eset->select(P1);
if eset->isEmpty()
then

e := createE();
statLC(P1 & ... & Pn)

else
(e := eset->any(true);
eset := eset->select(P2);
if eset->isEmpty()
then

statLC(P2 & ... & Pn)
else

... case for 3 ...))

The general case for k ≥ 2, k < n is

e := eset->any(true);
eset := eset->select(Pk);

123

Implementing QVT-R via semantic interpretation in UML-RSDS 763

Table 11 Definition of stat(P) P stat(P) Condition

true skip

x = e x :=e x is assignable,

x /∈ var(e)

e : x x :=x→including(e) x is assignable,

x→includes(e) collection-valued, x /∈ var(e)

e / : x x :=x→excluding(e) x is assignable,

x→excludes(e) collection-valued, x /∈ var(e)

e <: x x :=x→union(e) x is assignable,

x→includes All(e) collection-valued, x /∈ var(e)

e / <: x x :=x − e x is assignable,

x→excludes All(e) collection-valued, x /∈ var(e)

x→isDeleted() ;-composition of Each class E

(single object x) E :=E→excluding(x) containing x

and y.r :=y.r→excluding(x) each association end

y.r containing x

obj .op(e) obj .op(e) Single object obj

objs.op(e) for x : objs do x .op(e) Collection objs

P1 & P2 stat(P1); stat(P2) wr(P2) ∩ wr(P1) = {}
wr(P2) ∩ rd(P1) = {}

P1 or P2 stat(P1);
if not(P1) then stat(P2)

else skip

P1 xor P2 if P1 & P2 then stat(not(P2)) else not(P2) can be

if not(P1) & not(P2) normalised

then stat(P1) else skip

E→exists(x |x .id = v if E .id→includes(v) E is a concrete class

& P1) then var x : E :=E[v]; stat(P1) with E→isUnique(id)

else (var x : E := createByPK E(v);
stat(P1))

E→exists(x |P1) (var x : E := createE(); E is a concrete class, P1

stat(P1)) not of form x .id = v & P2

for unique id attribute of E

e→exists(x |x .id = v if e→includes(E[v]) then Non-writable expression e

& P1) (var x : E :=E[v]; stat(P1)) with element type class E ,

else skip E→isUnique(id)

e→exists(x |P1) if e→not Empty() then Non-writable expression

(var x : E :=e→any(true); e, P1 not of

stat(P1)) else skip above form

E→ f or All(x |P1) for x : E do stat(P1) wr(P) ∩ rd(P) = {}
P1 �⇒ P2 if P1 then stat(P2) else skip P1 side-effect free

wr(P2) ∩ var(P1) = {}
i f E then P1 if E then stat(P1) E side-effect free

else P2 endi f else stat(P2) (wr(P1) ∪ wr(P2)) ∩ var(E) = {}
let v be P in Q any v where P then stat(Q) wr(Q) ∩ var(P) = {}

123

764 K. Lano, S. Kolahdouz-Rahimi

if eset->isEmpty()
then

statLC(Pk & ... & Pn)
else

... case for k+1 ...

For n, if Pk is an assignment result = e, then the code of the
case is simply e:=eset→any(true); result :=e. Otherwise
it is

e := eset->any(true);
eset := eset->select(Pn);
if eset->isEmpty()
then

statLC(Pn)
else

e := eset->any(true)

By reusing e : E instances where possible, the redundant
creation of instances is avoided; however, this also intro-
duces the possibility of conflicts where one target instance
is required to have conflicting attribute values to satisfy a
constraint wrt two source instances.

Appendix D: Relation overriding and trans-
formation extension

If relation R is declared as overriding relation S, then both
must either be top level, or both non-top level. R should have
corresponding relation and primitive domains dR for each
relation and primitive domain dS of S, with the same name,
model and modality:

dS ∈ S.domain �⇒
∃dR ∈ R.domain ·

dR .rootV ariable.name = dS .rootV ariable.
name ∧
dR .isCheckable = dS .isCheckable ∧
dR .isEn f orceable = dS .isEn f orceable ∧
dR .is Primitive = dS .is Primitive ∧
dR .t ypedModel = dS .t ypedModel

The type dR .rootV ariable.t ype of dR should be the same
as that of dS or a subclass/descendant of the dS type. R may
also have additional domains to those of S. The common-
named domains of S and R should occur in the same order
in both relations. For update-in-place R, S, domains of S
with the same root variable name are overridden by the cor-
responding domains of R on the basis of their modality.

The combination of S and R is expressed as a com-
posed relation P = S ⊕ R. This has domains dS ⊕ dR for
common-named domains d of S and R, together with any
additional domains of R. The when clause of P is the con-

junction S.when and R.when, i.e. the pattern formed by
concatenating S.when.predicate and R.when.predicate and
removing duplicated conjuncts. The same applies for the
where clauses. P is abstract if R is abstract, and concrete if
R is concrete.

dS ⊕ dR is defined by recursion on the structure of
the domain templates. For object template expressions
tS = dS .pattern.templateExpression, tR = dR .pattern.

templateExpression, we can consider tS .part and tR .part
to be ordered so that the common-namedvariables of the parts
are listed together in the same order at the start of each part
sequence. For two parts on a common property of non-object
type, ⊕ is defined on PropertyT emplateI tem to discard
the first part:

v = val1 ⊕ p = p

where p.re f erred Property.name = v.
Otherwise, if both parts are object definitions of same-

named properties, the definitions are merged:

f = v : E{p1} ⊕ f = w : F{p2} = f = u : G{p3}

where

v : E{p1} ⊕ w : F{p2} = u : G{p3}

Object templates can be combined in this manner if
w.name = v.name and either F = E or F is a sub-
class/descendant of E . The result has u = w and G = F .

Parts that belong to either tS or tR and have no correspond-
ing part (with the same property name) in the other template
are retained in tS ⊕ tR . The where conditions of the two
templates are conjoined to form the where condition of the
result.

The combination of two set-typed collection template
expressions cteS :

s : Set(E){x ++ rest}{P}

and cteR :

s : Set(F){x ++ rest}{Q}

is defined as cteS ⊕ cteR :

s : Set(F){x ++ rest}{P and Q}

where F is E or a subclass/descendant of E , likewise for
sequence-typed collection templates.

Errors may arise if R and S contain same-named domains
or same-named variables with conflicting types. For exam-
ple, object variables x : E , x : F where E and F are

123

Implementing QVT-R via semantic interpretation in UML-RSDS 765

not related by inheritance. Error messages are produced in
such cases. If S is called in a when or where clause, then
the domain.rootVariable.name sequences of the two relations
should be the same.

Transformation extension is syntactically represented as
τ extends σ in [30], but no semantics is provided. We can
infer that τ and σ should have the same set of typed models:

τ.model Parameter = σ.model Parameter

The helpers of the combination ρ = τ extends σ of the
transformations are the union of the helper sets of each trans-
formation. Name clashes are not permitted:

ρ.helpers = τ.helpers→union(σ.helpers)

The relations of ρ are the union of those of τ and σ , but with
common-named rules of the two transformations combined
using ⊕.

ρ.rule = σ.rule→reject(r |τ.rule.name→includes
(r .name))→union(

τ.rule→reject(r |σ.rule.name→includes
(r .name))→union(

σ.rule→select(r |τ.rule.name→includes
(r .name))→collect(r |r ⊕ τ.rule→any
(name = r .name))))

References

1. Anjorin, A., et al. A.: Benchmarx reloaded: a practical benchmark
framework for bidirectional transformations, BX (2017)

2. Bradfield, J., Stevens, P.: Enforcing QVT-R with mu-calculus and
games. FASE’13, LNCS (2013)

3. bx-community.wikidot.com/examples:uml2c
4. Chen, Z., Monahan, R., Power, J.: A sound execution semantics for

ATL via translation validation, ICMT (2015)
5. Giese, H., Wagner, R.: From model transformation to incremental

bidirectional model synchronization. SoSyM 8, 21–43 (2009)
6. Goldschmidt, T., Wachsmuth, G.: Refinement transformation sup-

port for QVT relational transformations, ENCS (2011)
7. Greenyer, J., Kindler, E.: Comparing relational model transforma-

tion technologies: implementing QVTwith triple graph grammars.
SoSyM 9(1), 21–46 (2010)

8. Guerra, E., de Lara, J.: Colouring: execution, debug and analysis of
QVT-R transformations through coloured Petri nets. SoSyM 13(4),
1447–1472 (2014)

9. Hermann, F., et al.: Model synchronisation based on triple graph
grammars. SoSyM 14(1), 1–29 (2015)

10. Hearnden, D., Lawley,M., Raymond, K.: Incremental model trans-
formation for the evolution of model-driven systems, MODELS
(2006)

11. IKV technologies, Medini QVT, projects.ikv.de/qvt/downloads.
Accessed Dec. 2019

12. Kolahdouz-Rahimi, S., Lano, K., Pillay, S., Troya, J., Van Gorp, P.:
Evaluation of MT approaches for model refactoring. Sci. Comput.
Prog. 85(Part A), 5–40 (2014)

13. Kolahdouz-Rahimi, S., Lano, K., et al.: A comparison of quality
flaws and technical debt in model transformation specifications.
JSS (2020). https://doi.org/10.1016/j.jss.2020.110684

14. Kolovos, D., Paige, R., Polack, F.: The Epsilon Transformation
Language, ICMT (2008)

15. Kurtev, I.: State of the art of QVT: amodel transformation language
standard, AGTIVE 2007. LNCS 5088, 377–393 (2008)

16. Kusel, A., Schwinger, W., Wimmer, M., Retschitzegger, W.: Com-
mon pitfalls of using QVT-Relations. ICECCS (2009)

17. Lano, K.: The B Language and Method. Springer, Berlin (1996)
18. Lano, K., Kolahdouz-Rahimi, S.: Constraint-based specification of

model transformations. J. Syst. Softw. 86, 412–436 (2013)
19. Lano, K.: Agile Model-Based Development Using UML-RSDS.

CRC Press, Boca Raton (2016)
20. Lano, K., Kolahdouz-Rahimi, S.: Model-transformation design

patterns. IEEE Trans. Softw. Eng. 40(12), 1224–1259 (2014)
21. Lano, K., et al.: A framework for MT verification. FACS (2014)
22. Lano, K., Yassipour-Tehrani, S., Alfraihi, H., Kolahdouz-Rahimi,

S.: Translating from UML-RSDS OCL to ANSI C, OCL (2017)
23. Lano, K., Kolahdouz-Rahimi, S., Sharbaf, M., Alfraihi, H.: Tech-

nical debt in Model Transformation specifications. ICMT (2018)
24. Lano, K.: The UML-RSDS manual. (2020). https://github.com/

eclipse/agileuml/blob/master/umlrsds19.pdf
25. Lano, K., Kolahdouz-Rahimi, S., Yassipour-Tehrani, S.: Declar-

ative specification of bidirectional transformations using design
patterns. IEEE Access 7(1), 5222–5249 (2019)

26. Lano, K.: Using the QVT-R analyser and code generator (2020).
https://github.com/eclipse/agileuml/blob/master/qvt2umlrsds.pdf

27. Lano, K.: QVT2UMLRSDS dataset. (2020). https://doi.org/10.
5281/zenodo.3951061

28. Macedo, N., Cunha, A.: Least-change bidirectional model trans-
formation with QVT-R and ATL. SoSyM 15, 783–810 (2016)

29. OMG. Object Constraint Language 2.4 Specification (2014)
30. OMG. MOF2 Query/View/Transformation v1.3 (2016)
31. OMG, MOF Query/View/Transformation – Open issues (Dec

2019). https://issues.omg.org/issues/lists/qvt-rtf
32. Romeikat, R., Roser, S., Mullender, P., Bauer, B.: Translation of

QVT Relations into QVT Operational Mappings, ICMT (2008)
33. Samimi-Dehkordi, L., Zamani, B., Kolahdouz-Rahimi, S.:

EVL+Strace: a novel bidirectionalmodel transformation approach.
Inf. Softw. Technol. 100, 47–72 (2018)

34. Stevens, P.: Bidirectional MT in QVT: semantic issues and open
questions. Sosym 9, 7–20 (2010)

35. Troya, J., Vallecillo, A.: A rewriting logic semantics for ATL. J.
Object Technol. 10(5), 1–29 (2011)

36. Westfechtel, B.: Case-based exploration of bidirectional transfor-
mations in QVT Relations. SoSyM 17, 989–1029 (2018)

37. Westfechtel, B.: Incremental bidirectional transformations: apply-
ing QVT Relations to the Families to Persons benchmark. ENASE
39–53 (2018)

38. Westfechtel, B., Buchmann, T.: Incremental bidirectional transfor-
mations: comparing declarative and procedural approaches using
the Families to Persons benchmark, ENASE 2018. CCIS 1023,
98–118 (2019)

39. Willink, E.: The micromapping model of computation, ICMT
(2017)

40. Willink, E.: MMT/QVT Declarative (QVTd), https://wiki.eclipse.
org/MMT/QVT_Declarative_(QVTd) (2019)

41. Willink, E.: QVTd In-place and Copy Transformations
(2019). https://wiki.eclipse.org/QVTd_In-place_and_Copy_
Transformations

123

https://doi.org/10.1016/j.jss.2020.110684
https://github.com/eclipse/agileuml/blob/master/umlrsds19.pdf
https://github.com/eclipse/agileuml/blob/master/umlrsds19.pdf
https://github.com/eclipse/agileuml/blob/master/qvt2umlrsds.pdf
https://doi.org/10.5281/zenodo.3951061
https://doi.org/10.5281/zenodo.3951061
https://issues.omg.org/issues/lists/qvt-rtf
https://wiki.eclipse.org/MMT/QVT_Declarative_(QVTd)
https://wiki.eclipse.org/MMT/QVT_Declarative_(QVTd)
https://wiki.eclipse.org/QVTd_In-place_and_Copy_Transformations
https://wiki.eclipse.org/QVTd_In-place_and_Copy_Transformations

766 K. Lano, S. Kolahdouz-Rahimi

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

K. Lano has worked for over
25years in the fields of system
specification and verification. He
was one of the originators of Model-
Driven Engineering and has been
a leading advocate of improving
the precision of software mod-
elling and in applying software
engineering principles to transfor-
mation construction. He is the prin-
cipal developer of the AgileUML
toolset which supports the inte-
gration of model-based develop-
ment and agile development.

S. Kolahdouz-Rahimi is an Assis-
tant Professor in the Software Engi-
neering Department at the Univer-
sity of Isfahan. She is an active
member of the Model Driven Soft-
ware Engineering Research Group
(MDSE) at this University. She
has completed her Ph.D. in Com-
puter Science at Kings College
London in 2013. Her current
research interests include model-
driven software engineering and
domain-specific languages.

123

	Implementing QVT-R via semantic interpretation in UML-RSDS
	Abstract
	1 Introduction
	2 QVT-R
	2.1 QVT-R transformation structure
	2.2 QVT-R relation semantics
	2.3 QVT-R relation dependencies
	2.4 Specialised control of transformation behaviour
	2.5 Overall QVT-R transformation semantics

	3 Issues in QVT-R semantics
	3.1 Incompleteness and inconsistencies in the QVT standard
	3.2 Issues with the RelToCore semantics
	3.3 Issues with Medini QVT

	4 UML-RSDS
	4.1 UML-RSDS specification structure
	4.2 UML-RSDS rule semantics
	4.3 UML-RSDS transformation semantics

	5 Translation from QVT-R to UML-RSDS
	5.1 Rationale for the semantics
	5.2 Translation for separate-models QVT-R transformations
	5.2.1 Preservation constraints
	5.2.2 Construction constraints
	5.2.3 Cleanup constraints
	5.2.4 Non-top relations
	5.2.5 Overall transformation semantics

	5.3 Example of the semantics
	5.4 Properties of the semantics
	5.5 Incremental execution and change propagation
	5.6 Variant semantics and extensions for QVT-R
	5.6.1 Check-before-enforce semantics
	5.6.2 Least-change semantics
	5.6.3 Non-persistent traces
	5.6.4 Propagation of element removal
	5.6.5 Internal composition of transformations

	6 Semantic analysis of QVT-R
	7 Design patterns
	8 Evaluation
	8.1 Comparison

	9 Related work
	10 Conclusions
	Appendix A: Semantic translation for update-in-place transformations
	Appendix B: Definition of cpreds and epreds
	Appendix C: Definitions of rd, wr, stat, statLC
	C.1 Read and write frames
	C.2 Design synthesis

	Appendix D: Relation overriding and transformation extension
	References

