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Abstract

By bridging the semantic gap, domain-specific language (DSLs) serve an important role in the conquest to allow domain
experts to model their systems themselves. In this publication we present a case study of the development of the Continuous
REactive SysTems language (CREST), a DSL for hybrid systems modeling. The language focuses on the representation
of continuous resource flows such as water, electricity, light or heat. Our methodology follows a very pragmatic approach,
combining the syntactic and semantic principles of well-known modeling means such as hybrid automata, data-flow languages
and architecture description languages into a coherent language. The borrowed aspects have been carefully combined and
formalised in a well-defined operational semantics. The DSL provides two concrete syntaxes: CREST diagrams, a graphical
language that is easily understandable and serves as a model basis, and crestdsl, an internal DSL implementation that
supports rapid prototyping—both are geared towards usability and clarity. We present the DSL’s semantics, which thoroughly
connect the various language concerns into an executable formalism that enables sound simulation and formal verification in
crestdsl, and discuss the lessons learned throughout the project.

Keywords Cyber-physical systems - Domain-specific language - Modeling - Simulation - Verification

1 Introduction

Modeling and simulation are used by engineers to design,
probe and verify their systems before construction, thereby
reducing design flaws and increasing the development speed.
From large monolithic installations such as oil platforms to
wide, distributed networks (e.g. electrical power grids), to
intricate robotic designs for medical applications, the use of
these modeling techniques is indispensable. To aid the pro-
cess of model creation, system engineers rely on a broad
set of formalisms, languages and tools. The ever-growing
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diversity allows expert modellers to choose the most appro-
priate formalism for their particular system, and even use
a combination of different languages to model the various
aspects of their system. Modern modeling platforms there-
fore often support the choice between different formalisms
and languages (e.g. Matlab Simulink [58]) or even encour-
age the use of several modeling paradigms in concert (e.g.
Ptolemy II [70]). These developments enable the creation of
large-scale and high-performance models but require a lot of
experience with the individual languages and a good knowl-
edge of the underlying modeling principles. The required
knowledge, the steep learning curves and the often significant
financial investment are major deterrents for the adoption
of modern systems engineering best practices by non-expert
application creators and developers of small-scale installa-
tions.

In recent years, consciousness of this problem led to an
increased interest in domain-specific modeling solutions.
Thus, existing products are modified to more closely repre-
sent the needed system features, rather than generic concepts.
The semantic gap describes this “distance” between a model
and the original installation. Wide gaps are often the result
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of using tools or languages that cannot properly repre-
sent the system’s features and frequently demand elaborate
workarounds. One common approach is the use of DSLs, lan-
guages dedicated to creating models at an abstraction level
where domain users are able to model their systems them-
selves without having to learn another language.

In this article we describe the development of the Con-
tinuous REactive SysTems language (CREST), a domain-
specific modeling language (DSML) [69] for the hybrid
modeling of cyber-physical systems (CPSs). The language
targets the creation of CPS models of small-scale, custom
systems such as smarthome applications, automated gar-
dening setups and office automation installations. Usually,
these CPSs are compositions of off-the-shelve components
that interact through the transfer of physical resources such
as electricity, heat and water. CREST supports creators of
such systems by putting a focus on usability and simplic-
ity. Its target audience includes novice modellers, private
developers as well as system creators and maintainers who
want to add trust into their existing applications. For this
purpose, the DSL joins a system’s behavioural and struc-
tural concerns inside the same concrete syntax, which lowers
its entry-barrier and allows systems engineering newcom-
ers to quickly take advantage of the benefits of simulation
and verification. Throughout the paper, we elaborate on
our language development methodology, starting from the
requirements analysis and evaluation of existing solutions,
to the definition of the language’s abstract syntax and for-
mal semantics, to the implementation of the language itself.
In the process, we describe particular design choices such
as the reuse and combination of well-known concepts from
existing formalisms into a coherent language. This method
builds upon a vital formal syntax and semantics description
that asserts a sound combination of the various language
aspects, without which, it would be much more difficult to
perform advanced modeling tasks such as simulation and
verification. The DSL’s formalisation itself is provided as an
appendix to this article. CREST’s pragmatism is manifested
in the form of crestdsl, an infernal DSL implementation
based on the Python general-purpose programming language
(GPPL). Employing a widespread programming language
increases CREST’s usability by allowing modellers to rely
on popular development environments and established exe-
cution platforms that they are already familiar with. This
lowers the entry bar to modeling, as users prefer to con-
tinue working with the tools they already know [73]. Even
though it will probably not be required for most audiences,
crestdsl’s GPPL-basis additionally allows power-users
to extend the DSL using scripting application programming
interfaces (APIs), interact with common data analysis pack-
ages and create object libraries to increase development
speed and reusability.
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The rest of this paper is organised as follows: Sect. 2 pro-
vides the scientific background on the use of DSLs, highlights
examples and provides detailed comparisons of different
approaches. Section 3 dives into the methodology that we
followed for the creation of CREST, a formalism for the
specification of hybrid CPS models. First, Sect. 3.1 analyses
the target domain requirements towards CREST. Section 3.2
outlines the components of the CREST formalism, and
highlights the concepts that were borrowed from existing
languages to create a coherent formalism. Sections 3.3 and
3.4 introduce CREST diagrams, CREST’s graphical syntax,
and crestdsl, its implementation as pragmatic internal
DSL, respectively. Section 4 describes CREST’s operational
semantics and its use for simulation and verification. Both
aspects are introduced from a CREST-based view, followed
by their practical description in crestds1. The section also
includes a brief outline of crestds1’s satisfiability modulo
theories (SMT) approach to discover the points in time where
discrete behaviour changes, i.e. state transitions, occur. This
is a vital concept for our DSL’s implementation. Section 5
reviews our method and discusses valuable insights into the
development process, lessons learned and critically evaluates
potential pitfalls that should be avoided. Section 6 compares
our approach to related research efforts. Section 7 outlines
future developments of our project, and Sect. 8 concludes.

2 Background—from modeling to
domain-specific languages

Systems modeling is widely accepted as a standard item in the
engineering toolbox. The models facilitate system conceptu-
alisation, design and verification by reducing complexity and
hiding unimportant implementation details [55], and often
allow simulation and analysis even before the actual system is
being built. In many cases, different models are created, each
focused on a particular viewpoint such as system architec-
ture, safety, concurrency or performance. Depending on the
specific task at hand, engineers choose a suitable modeling
formalism (or language) for the appropriate representation of
the particular system aspect [ 16]. Nonetheless, abstract math-
ematical system descriptions are conceptually distant from
the actual system. For instance, formalisms such as Discrete
Event System Specification (DEVS) [81], Petri nets [68]
or Bond graphs [15] are designed to be generic and appli-
cation agnostic, but oftentimes so abstract that it is difficult
to recognise the original system within the actual model.
This leads to an often-criticised lack of practicability and
applicability [43]. Sometimes it is even necessary to develop
workarounds to assert that the actual system behaviour can be
expressed using formalism’s semantics. A common example
is the discretisation of models to be able to use languages
and tools that do not support continuous evolution. Such a
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divergence between the system and its model, where system
behaviour has to be approximated or modelled using inap-
propriate means is commonly known as semantic gap [30].
Wide semantic gaps, often created by operation on the wrong
abstraction level, lead to confusion and problems not related
to the actual system itself. The results are understandability
issues and risks of introducing hidden bugs [74]. To overcome
the complexity, domain experts require the help of profes-
sional system modellers who first need to learn about the
system’s behaviour and then correctly translate the system
to the formalism’s semantic domain. Obviously, misunder-
standings and communication problems are common.

2.1 Modeling languages and tools

An alternative approach to employing expert modellers is to
allow domain users to model their systems themselves. To do
so, they require means that are understandable even without
extensive systems engineering training, experience or mod-
eling knowledge. As displayed in Fig. 1, these approaches
still operate on a generic level, but usually provide helpful
features for the representation of system engineering con-
cerns. Modeling languages such as the Unified Modeling
Language (UML) [64], the Specification and Description
Language (SDL) [48] or Modelica [34] raise the abstraction
level and bring models closer to the system domains. They
allow convenient abstractions to improve system design and
reasoning, while still offering translation to various low-level
formalisms or directly to software source code. However,
even though these languages allow systems to be modelled
at an abstraction level that is closer to the original, they tend
to be still very generic and involve steep learning curves. For
instance, users usually require several months of continuous
exposure before they become proficient with UML [33]. This
means that the main users of these languages tend to be pro-
fessional system developers, rather than domain end-users,
i.e. the people who will actually build and use the system on
a daily basis. In fact, to enable domain users to also model
their own systems, it is necessary to provide them with the
capability to use modeling tools that operate in the system
domain level, using the concepts, terminology and tools that
the users are already familiar with. This approach removes
steep learning curves and avoids the risk of confusion and
misconceptions.

2.2 Domain-specific approaches

In the last few decades, this final domain-adaptation step
has evolved in several forms, as shown in Fig. 1. A com-
mon approach is to adapt an existing modeling language
by altering its concrete syntax (and sometimes its seman-
tics) to more closely represent the features found in the
actual system domain. Business process management mod-

System Agnostic

[ Calculi ] [Formalismsj
Modeling . Modeling . S
[ Tools j [ GPPLs j [Languages General Purpose

Profiles, APIs, . - i
[Extcnsions] [ Libraries ] [ DSLs ] Domain-Specific

Fig.1 Levels of domain adaptation in systems modeling

els [78], for example, are inspired by Petri nets and allow the
modeling and analysis of business workflows. The match-
ing BPMN [62] language offers a graphical interface for
simplified representation. In a similar way, the Architecture
Analysis and Design Language (AADL) [75] can be extended
using the AADL annex mechanism. Such annexes can be
used to add discrete behaviour [29], continuous behaviour [2]
or error modeling capabilities [23] to the language. UML can
be adapted to various domains using UML profiles [36], a
UML-native means to extend and adapt the language. The
UML Profile for Modeling and Analysis of Real Time and
Embedded systems (MARTE) [63] for instance, is an exten-
sion of standard UML that offers concepts for the modeling
of real-time applications. The Systems Modeling Language
(SysML) [65] is a well-known adaptation of UML that alters
and extends a specific subset of UML to allow dedicated
systems engineering. However, both SysML and MARTE
can be seen as generic languages themselves, as they are
not applicable to a specific target domain. A more concrete
experience report of using UML profiles for implementing
domain-specific modeling is described in [25], where the
authors adapt the language specifically for robotic applica-
tions.

Another approach to incorporate domain knowledge into
a modeling tool or language is the use of tool libraries.
Especially when using versatile modeling platforms such
as Simulink or Ptolemy II, it is possible to create domain
libraries that aid users by providing reusable APIs or objects.
The Modelica language is well-known for its large number
of object libraries,! that add capabilities to model specific
domains such as chemical processes, hydraulic flows or
power systems.

2.3 Domain-specific languages

A third method to close the semantic gap between model
and domain is to create a dedicated modeling language for
a specific target domain or application [69]. DSLs [80] raise
the abstraction level of system models to facilitate model
creation and reasoning, while at the same time hiding the

1 https://www.modelica.org/libraries.
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underlying complexity of the modeling process. Ideally, this
leads to DSLs that allow domain users to easily perform all
their tasks using pre-existing knowledge and without the
need to newly familiarise themselves with a tool or lan-
guage. This increases productivity and makes the language
easier to comprehend [39]. Language engineering experts
work in concert with domain users to learn about their
needs and trim the DSL according to these requirements.
Hidden behind the DSL, the data are then executed using
purpose-built tools or translated to other, well-established
modeling languages in order to use already existing execu-
tion software. The recent popularity of DSLs is manifested
in the numerous conferences and workshops organised on
the topic, and seminal books such as [80] and [28] show
that the field is reaching maturity, with established best prac-
tices, available experience reports and educational resources.
Despite all the benefits that they bring, the classical language
engineering approach comes with a hefty price tag [79].
DSLs require a significant upfront investment into the initial
creation and subsequent maintenance of their infrastruc-
ture [24]. Even small DSLs need at least the provision of
a parser, a text editor and an execution engine or code gen-
erator (i.e. a translator to another language). Larger projects
often require further development of a textual or graphical
integrated development environment (IDE), auto-completion
engines, static and dynamic code analysis tools, language and
IDE versioning and version migration, interfaces to GPPLs,
library support, etc. These needs and the popularity of DSLs
led to the creation of language workbenches [27] such as
Xtext [11], MetaEdit+ [77] and MPS [17], that promise help
throughout the language design phase, but also convince
through automatic out-of-the-box generation of many of the
aforementioned artefacts. For instance, Xtext can generate a
full-fledged IDE including parser, auto-suggestions and code
analyser based on a DSL grammar alone. Its tight integration
into the Eclipse Modeling Framework (EMF) [76] allows
the facilitated development of code generators, model trans-
formation engines or graphical editors for these languages.
Nonetheless, even after the use of language workbenches,
DSLs often require further customisation and subsequent
maintenance effort that can easily become very costly in
terms of time and development effort.

Internal DSLs [39] are an alternative to the creation of stan-
dalone languages where DSLs are embedded inside another,
usually more generic language (e.g. a GPPL). This approach
is related to the creation of tool libraries, so that it is hard
to clearly distinguish between domain-specific libraries and
internal DSLs. Generally, it can be said that—in contrast to
tool libraries—internal DSLs tend to embed advanced fea-
tures such as their own semantics inside their host languages,
allowing for sound execution and verification. Further, inter-
nal DSLs often “use, and abuse, the host language” [31]
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by using metaprogramming, reflection and clever language
tricks to implement domain-specific behaviour. Next to the
reduced initial DSL development time and cost, users can rely
on their pre-existing familiarity with compilers, IDE, code
analysis frameworks and development best practices. Inter-
nal DSLs are usually easily extensible and integrate better
into existing language infrastructure and tooling [20]. This
is also reflected in their increased interoperability with other
tools and third-party libraries. Depending on the particular
host language, numerous software packages are available to
further extend the DSL’s capabilities.

A well-known example of an internal DSLs is Sys-
temC [12], a hardware description language that is imple-
mented in C++ and distributed as a software library. Models
are created using regular C++ source code that instantiates
library classes and executes macros. SystemC’s semantics are
implemented in a simulator module that is shipped along-
side the library. Other wide-spread examples for internal
DSLs include various testing frameworks (e.g. jMock [31],
XUnit [8], Chai?) and extensions for programming languages
such as Ruby [32] (e.g. Ruby on Rails [4]), Groovy and
Scala [39].

Internal vs. External DSLs The clear advantage of using
internal DSLs lies evidently in the reuse of the host lan-
guage’s syntax and execution environment [38]. One disad-
vantage of this reuse, however, is the lack of static checking
support. Internal DSLs often require models to be setup in a
certain manner, use specific properties (e.g. inherit from spe-
cific base classes) or prohibit the use of some host language
features (e.g. introspection, certain libraries, etc). While the
lack of static checking is a DSL problem in general [44],
external DSLs can benefit from static type and syntax check-
ing offered by language workbenches. This means, that
external languages can be defined to natively enforce these
rules inside the parser or interpreter and display the results
directly in the IDE. Internal languages on the other hand have
to build these features outside of the GPPL’s infrastructure,
such that users have to manually trigger syntactic and seman-
tic sanity checks. In the best case, they might use language
reflection and introspection APIs to create validation scripts
and thereby inform the user of potential problems. However,
typically manual execution of these scripts is required, which
delays the feedback and might even cause frustration if the
suggestions are incomprehensible.

Another issue might arise from choosing the wrong host
language. The benefit of reusing the syntax also means that
the host language’s syntax cannot be adapted or extended.
For instance, Matlab requires an ellipsis (“...”) to be written
at the end of each line of multi-line expressions. This fea-
ture can become problematic when designing so-called fluent

2 https://www.chaijs.com.
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interfaces that chain many method calls as described in [73].
In such situations, external DSLs show more flexibility, as
they can support a highly customised syntax. The disadvan-
tage here however often lies in the need to define the entire
language and interpretation from scratch. Especially when it
comes to adding “basic building blocks” such as mathemat-
ical expressions, operators, character string manipulations
and type systems, the development process can easily become
tedious. Modern language workbenches attempt to provide
reusable blocks of syntax and grammar (e.g. Xtext’s support
for Mixins and Traits [71]), but still require the execution
environment to be defined and adapted for the newly created
language.

Summarising, one can see that external DSLs provide
more powerful, flexible and customisable features, that
require time and effort to be created. Internal DSLs on the
other hand take advantage of the out-of-the box features, but
are limited by the host language’s syntax, execution platform
and IDEs. In the end, it depends on the language developer’s
insights to decide whether the benefit of a familiar GPPL
syntax and cheap reuse of existing execution platforms out-
weighs the flexibility of external DSLs.

3 Methodology

Our project focuses on the modeling of CPSs whose
behaviour is strongly influenced by the flow of physical
resources such as light, electricity, water and heat. In this
section, we describe the evaluation of modeling requirements
towards a language for our systems, our search for an appro-
priate candidate and the reasons that led us to develop our
own formalism and two modeling languages building upon
this formal basis.?

3.1 Language requirements

The approach we followed for this project is driven by the
practical need of a tool or language, that brings the benefits
of modeling and simulation to smaller-scale systems. While
the research effort of the last few decades has produced a
plethora of modeling formalisms, languages and tools that
have been applied to various projects in industries such as
transportation, avionics, manufacturing, heavy industry and
safety-critical systems, very little effort has been made to
transfer these developments to the end-user market. In par-
ticular, our target user group are creators of CPSs such as
smarthomes, office automation installations and automated
plant growing applications. Even though such systems usu-

3 In this work we follow the definitions of [16], where languages imple-
ment formalisms. Thus, CREST is implemented by two languages with
different concrete syntax.

ally are not classically safety-critical, i.e. do not pose harm
to health or life, their correct functionality is nonetheless
important. A plant watering setup that is assembled by a pri-
vate end-user might cause to water spillage and break wooden
floors or electrical devices, thereby creating significant finan-
cial damages. Similarly, a misconfigured office automation
system that was installed by a non-expert building manager
might lead to high bills if e.g. the lights and heating are run
even if no employees are present. In the current situation,
such users might shy away from creating their applications
as the risk of faulty installations is high and they lack the
time, capacity and financial means to use existing modeling
and verification solutions.

Before starting the development, we first designed three
case study systems that allowed us to evaluate the main
requirements of resource-flow CPSs. Attention was paid to
choose applications that represent the heterogeneity of our
target domain. While a full description of each would exceed
the scope of this article, we still provide a brief outline. A
complete description of the individual case studies can be
found in [50]. The three systems were designed as follows:

1. A smarthome system that connects appliances and Inter-
net of Things (IoT) devices such as automated vacuum
cleaners, televisions, a “smart” dishwasher and remote
controlled lights. Additionally, the house features a solar
power system and battery that produces electricity dur-
ing periods of sunshine. The system also has control
over the electric hot water boiler, which provides water
to the shower and dishwasher. The modeling aim is to
reduce resource consumption by performing tasks when
cheap solar electricity is available. Additionally, the user’s
schedule is considered to e.g. do the noisy vacuum clean-
ing when the user is at work.

2. Our second system is an office automation system whose
purpose is to monitor the temperature and lights in a
small office environment. The goal is to automatically
maintain a productive work environment. Depending on
the environmental observations (e.g. temperature, bright-
ness), the system controls window blinds, ceiling lamps
and air condition units. A constraint of the system is that
the emergency exit path is always lit when employees are
present.

3. The third system is an automated indoor gardening appli-
cation. It uses soil moisture and light sensors to measure
the environment conditions and control lamps, heaters and
water pumps to assert ideal conditions that lead to max-
imum harvest, while at the same time reducing resource
consumption. Figure 2 shows a schematic representation
of the system.

A comparison of these systems resulted in the discov-
ery of two important similarities. First, the types of systems

@ Springer
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Fig.2 Schema of the plant system’s components

we target in our study are commonly composed of off-
the-shelf components. This means, it is highly unusual that
system creators use custom components. Instead, they buy
devices (e.g. lamps, home appliances, IoT gadgets) accord-
ing to their needs and connect them to compose their system.
Second, despite modern communication interfaces, the influ-
ences between the individual components are in the physical
domain. For example, a dishwasher consumes hot water and
electricity, a vacuum cleaner uses electricity to clean the floor
and creates noise in exchange, and plants require sunshine or
artificial light on a daily basis.

Next to these two principal paradigms, we identified ten
aspects that have to be supported by a modeling language
or tool, in order to be able to address all necessary system
concerns. These aspects can be split into two groups, such
that the first seven describe “functional” properties that can
be objectively analysed:

Reactivity allows systems to adapt to changes in their envi-
ronment. For instance, all three case study systems need
to react to daylight changes and activate the lamps when
it becomes dark.

Synchronism allows to model the immediate influences
between system components and the momentary, discrete
CPS behaviour changes. This is necessary, as virtually all
physical effects are instantaneous, such as e.g. the flow
of water when the shower is turned on or the spreading
of light.

Parallelism is a vital concept in systems modeling, as many
effects can take place at the same time. In our smarthome
for example, the use of a shower draws water from the
hot water boiler, which causes it to be replenished with
cold water and the heating rod to activate at the same
time. In turn, the heating process consumes electricity
from the solar panels or the electricity mains. All these
actions need to be executed at the same time and update
the system state concurrently.

@ Springer

Locality is required since our systems are built from indi-
vidual components. A clear and coherent composition
mechanism facilitates system assembly. For instance,
despite the water boiler’s external influences (water in
and out flows, electricity), the water temperature inside
is locally determined and modified, and not set from the
outside.

Continuous Time is necessary to express physical effects,
such as continuous resource flows which are usually
described by differential equations.

Non-Determinism is omnipresent in the real world due to
unforeseeable behaviour of various components. Thus, it
should also be expressible in our models. As an example,
we can look at a light bulb. When the electricity starts
flowing, it can either produce light, or alternatively break
and cause a fuse to trip due to the power surge. Since
both effects can occur in the real system, it is important
to also model both.

A Formal Basis is required for advanced modeling tasks
such as simulation and formal verification. Without a
clear operational semantics, the models become impre-
cise and potentially invalidate verification results.

The remaining three language criteria largely depend on
the target users, their pre-existing knowledge and prefer-
ences. This means that while they first seven key aspects,
can be objectively evaluated, the additional criteria result
from the proper integration of the key aspects and their good
correspondence from a syntactic and semantic point of view.
Evidently, a sound, formal language definition supports this
integration.

Usability describes how easily a modeling tool can be
learned and used. It depends on the users’ knowledge
and capabilities. For instance, novice modellers usually
require clear instructions, whereas experts tend to prefer
extended configurability and adaptability.

Suitability is a property that states whether a language or
tool is apt for the use in a given task. A lack of suitability
often results in a wide semantic gap.

Expressiveness describes whether a modeling means is
capable of expressing all required domain concepts.

Equipped with these ten criteria, we set out to find a suit-
able language for the modeling of our case study systems.
However, to the best of our knowledge, we did not find
any language or tool that supports all our key properties, is
usable by non-experts and novice system engineers and suit-
able for the modeling of smaller-scale resource-flow CPSs.
Existing languages and tools that offer physical resources
modeling usually target expert engineers from financially
potent enterprises in the industrial sector. Their typical appli-
cation domains include large scale systems such as oil rigs
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and power plants. Other, academic tools lack usability and
therefore also require a long training phase. The tools that
we selected for closer evaluation represent a range of dif-
NN N S SN ferent modeing languages that are actively being used in
the domain of CPS modeling. We aimed to cover a broad
spectrum of approaches, covering general purpose languages
(e.g. MARTE, SDL), architecture description languages (e.g.
AADL [75], MontiArcAutomaton [72]), hardware descrip-
tion languages, synchronous programming languages (e.g.
Esterel [10], Lustre [42], Z€lus [13]), event-based approaches
(e.g. the quantised state [54] extension of PowerDEVS [9])
and modeling platforms such as Simulink/Stateflow and
Modelica. The selection is based on an informal upfront eval-
uation and feature comparison. For languages that are very
similar, we chose the more promising candidate. Table 1
shows our evaluation based on the previously obtained
requirements. It can be seen that most languages lack at least
one of the key requirements. MARTE and Modelica appear to
be favourable candidates, although both of them are inapt in
terms of usability and suitability. MARTE for instance builds
upon UML’s fourteen diagram types and requires the knowl-
edge of even more languages such as the Object Constraint
Language (OCL). # This significantly expands the language’s
learning phase. Furthermore, the language adds timing anno-
tations to the system which can be (ab-)used to describe
continuous variable evolution, but does not provide dedicated
concepts. Modelica on the other hand provides this possibil-
ity, but requires the creation of a domain library to augment
its usability for our target domain, which is a non-trivial task.
Furthermore, its textual syntax is difficult to understand for
newcomers and requires a lot of experience for proficiency.
SN N N N LS XS NS A more complete and detailed description of our evaluation,
including discussion of the other languages and formalisms
is provided in [50] and [52].

Usability Suitability Expressiveness

Add.crit.

Non-determinism Formal Basis

Locality Continuous

Parallelism

SN XS 0N S N S S X 3.2 CREST—concept

Based on the previous evaluation and the lack of an appro-
priate modeling language for the CPSs and system creators
targeted by our research, we decided to develop CREST as
a standalone project, rather than an extension or adaptation
of an existing product. CREST’s goal is to provide an easily
comprehensible and usable solution to CPS modeling. Thus,
for instance, from a user’s perspective, CREST should be
easy to learn and use, but flexible enough to model the broad
range of devices that are installed in modern smarthome
and office automation projects. On the development side,
we decided to reuse well-known abstractions and parts from
established modeling formalisms and languages. This allows
us to rely on a large body of knowledge, build on existing

Synchronism

Reactivity
Key aspects

v
v
v
v
v
v
v
v
v
v
v

Table 1 Modeling language evaluation for resource flow CPSs

Symbols: v (Yes) x (No) ~ (to some extent) ? (unknown)

Formalism/tool
UML / MARTE
SDL

AADL + Beh.Ann
MontiArcAutomaton
SystemC
Simulink/Stateflow
Modelica
PowerDEVS
Reprint from [50]

Esterel
Lustre
Zélus

4 https://www.omg.org/spec/OCL/About-OCL/.
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tools by transforming CREST models and cater to the knowl-
edge of users with pre-existing modeling skills.

CREST’s main purpose is to support its users through
three principal modeling tasks namely, the modeling, i.e. the
creation of a system model, simulation, i.e. the evaluation
of dynamic runtime behaviour and verification, i.e. the for-
mally sound evaluation whether a model can reach certain
beneficial or malicious states at all.

For the modeling itself, developers require a tool or lan-
guage that helps in the rapid prototyping and subsequent
refinement of their system and components. The provided
modeling means has to be both easy to handle and also
serve as an understandable resource for discussion. During
the aforementioned evaluation of other modeling languages,
we observed that these two requirements are often oppos-
ing. Graphical modeling languages such as UML or SDL
encode data using easily understood information such as
shape, size, colour and position. Their advantage over textual
languages is the facilitated comprehensibility and the quick
identification of required modifications [59]. The problem-
atic however lies behind the scene. A clear graphical syntax
has to be carefully engineered [67] and the creation of com-
plex graphical models often requires the use of cumbersome
graphical editors [18] which demand manual positioning and
sizing of components, drawing of connection edges and fre-
quent switching between keyboard and mouse. Especially
in the prototyping phase, where models have to be edited
and redrawn frequently, the creation of graphical models can
quickly become a tedious task. Figure 3 shows a screenshot
of the wide-spread Papyrus Modeling Editor, a common tool
for UML modeling. Note, how several views need to be used
in combination for navigation and model creation.

Textual modeling languages such as Modelica and Sys-
temC overcome these problems by using well-structured text
to express system architecture and behaviour. Models encode

@ Springer

relationships between components and subcomponents using
keywords, similar to programming languages. The advan-
tage of these types of modeling languages is the quick model
creation and manipulation, since the focus remains on the
actual model, rather than positioning, shape or size of its
representation. They also tend to be more powerful in terms
of “intelligent editors and copy&paste support” [1]. Further,
they often benefit from advanced features such as IDEs, static
analysis, code suggestions, as they are more easily created
for textual than graphical languages. On the other hand, it is
clear that textual models usually are not self-explanatory and
thus require secondary notions such as accompanying docu-
ments or code comments to carry additional information for
developers and users [67].

In the CREST project, we follow a pragmatic approach
that resulted in the creation of a textual and a graphical lan-
guage, such that their respective concrete syntax implements
the same formalism. Thus they share the same abstract syntax
and operational semantics. CREST diagrams, the graphi-
cal language, reuses abstractions and concrete syntax from
other widespread languages to increase comprehensibility
and usability. To build upon pre-existing knowledge, CREST
diagrams reuse notational conventions from well-known
formalisms such as automata and architecture description
languages. Evidently, the language suffers from the same
drawbacks as other graphical languages, in that the position-
ing and resizing of elements is intricate and time consuming.
Thus, to increase the development speed and add the benefits
from textual modeling, we created crestdsl, an inter-
nal DSL in Python. It offers the same expressive modeling
power as CREST diagrams and adds reusability to the mod-
eling by supporting classic programming concepts such as
inheritance and shared code. crestdsl further poses as
a flexible bridge to the implementation of advanced mod-
eling tasks such as simulation and verification. The DSL
facilitates the model creation and invites the development
object and domain libraries, providing scripting APIs that
also support user-developed language extensions and tool-
ing. Due to their expressive equivalence, CREST diagrams
and crestdsl models can be transformed from one repre-
sentation into the other, and, crestds1 does in fact provide
functionality to create interactive CREST diagrams based on
its models. A discussion of the translation functionality is
provided in Sect. 5. The next two sections introduce both
CREST diagrams and crestds1l, and highlight our design
choices.

3.3 CREST diagrams

CREST diagrams [50,53] are a graphical modeling language
geared towards usability. Its purpose is the modeling of phys-
ical resource flows between the components of CPSs. Thus,
it contains dedicated features to address concerns such as



Pragmatic reuse for DSML development

845

continuous flows and component hierarchies. The language
implements a formal syntax and structure specification that
clearly states requirements and constraints of CREST models
(see Appendix 1). In this section, we use CREST diagrams to
introduce the structure of a typical CREST model. Note, that
the CREST diagram syntax reuses modeling notions known
from other modeling languages to increase familiarity.

For simplicity, CREST diagrams combine architectural
and behavioural system aspects within the same language.
The advantage of this approach is that especially novice mod-
ellers have all information directly displayed to them, without
the need to switch between different viewpoints.

Architecturally, CREST models are primarily defined
through a system structure whose components (entities) are
arranged strictly hierarchically. Thus, each entity only has
one parent and a CREST system has only one, single root
entity that defines the system’s scope. CREST’s behaviour
description is inspired by finite state machines (FSMs) and
hybrid automata. This means, that every entity defines a state-
automaton that represents its behaviour modes. In each state,
the system can expose different behaviour, such that a device
might produce other output when it is turned on than when
it is turned off, for instance.

Entities enforce CREST’s locality requirement and hide
their internal structure from the outside. Hence, an entity’s
automaton states cannot be read from another entity and
it is not possible that one entity’s state automaton directly
influences the output of another entity. Another advantage
is that within the entity hierarchy, a subentity can be treated
as coherent “black box”, whose system state is always up to
date and does not have pending state updates. This concept is
very important for CREST’s semantics (see Sect. 4.1), which
revolve around the creation of such “stable” system states, by
locally searching for fixpoints on the lowest entity levels and
recursively ascending in the entity hierarchy and stabilising
until the entire system is stable.

An entity’s black box view also exposes its communica-
tion interface, consisting of input (==) and output (C>)
ports. Similar to some common architecture description lan-
guages (e.g. MontiArc [40]), CREST’s ports define which
type of value they accept. These types (called resources)
consist of a unit (e.g. Celsius or Lumen) and a value domain
such as natural numbers N, real numbers R or discrete sets
(e.g. {on, off}). Next to its name and resource, a port also
defines its current valuation. Inputs and outputs are comple-
mented by a third type of port: locals (—=1). This port type
is not part of the communication interface, but rather serves
as internal storage of data.

CREST’s behaviour definition is inspired by FSMs. Thus,
each entity defines a set of states and guarded transitions

uard ..
(e.g. ). Transitions relate two states and a guard

function, such that the automaton switches to the new state if

the transition is enabled, i.e. if its guard condition holds. Usu-
ally, guard functions will access the entity’s port values for
their evaluation. Note, that the locality principle is enforced
here as well. Thus, to preserve consistency, transition guards
can only use their own entity’s ports and the output ports of
subentities for the computation.

Continuous behaviour, i.e. the flow of resources, can
be modelled in several forms. The most fundamental way
are update functions (- +). Updates extend the automaton
behaviour in a similar way to hybrid automata (HA). How-
ever, instead of defining each variable’s rate in each state (as
in HA), updates only modify specific port values. Specifi-
cally, an update relates a function to an automaton state and
a target port, such that the function is continuously executed
while the automaton is in its related state and the result is
written to the port. For instance, a device might define that
an update modifies the value of a specific output port while
it is in state on. To add timing behaviour to the language, an
update function also has access to §t € Rx¢, the amount of
time that has passed since it was last executed. This means
that in theory, updates are executed in infinitesimal inter-
vals (8§t = ¢) to produce continuous behaviour. Practically
though, CREST’s implementation is responsible to execute
updates as often as needed and often very coarse time steps
can be achieved.

CREST further offers influences (—) to statically link
two ports. Each influence relates two ports and a function
in a way, such that the function is executed with the source
port’s value as parameter and the result is written to the target
port. Actions (---») are similar to updates, except that they are
executed at the exact point when a transition is triggered. This
also means that they do not have access to a §¢ value. Note
that influences and actions are purely syntactic extensions of
CREST to increase the DSL’s usability. When required (e.g.
for static analysis purposes) influences can be replaced by
sets of updates, actions by introducing additional automaton
states and transitions.’

Note, that neither the CREST formalism (i.e. the abstract
syntax), nor CREST diagrams prescribe a specific definition
language for update and influence functions. This makes the
language flexible and adjustable to the knowledge of its users.
For instance, in the example in Fig. 4 we use a mathematical
notation for updates that uses ¢ to explicitly highlight timing
behaviour in updates and use value — 5 * 6t. However, due to
CREST’s flexibility it would be possible to adopt an ordinary
differential equation notation by e.g. writing value’ = —5
instead. One problem of such genericity is that in principle
any kind of functions and notations can be used and defined,
causing potential risks to the calculability of CREST systems.
To restrict the situation, CREST’s formalisation defines lim-

5 See [50] for details of the syntactic and semantic definitions of these
shortcuts.
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Fig.4 An air conditioning unit modelled as a CREST diagram

itations by specifying the formal update/influence functions’
signatures and the enforced function return value, to assert
it matches the target port’s value type. Additionally, there
are limitations as to which ports’ values can be used for the
return value calculation, so as to not infringe upon CREST’s
locality principle.

Figure 4 depicts the CREST diagram of a simple air condi-
tioning unit with an automatic timer. Its functionality depends
largely on the values provided by the two input ports for tem-
perature and switch, which influence the two output ports
for cooling power and statuslight. Internally, the local port
ont ime measures how long the AC has been in the On state.
Due to the shown abstraction level, the entire component can
be modelled as a single entity, although we could imagine a
refined version that uses sub-entities to e.g. model separate
heating and cooling elements. Such a refined system would
however exceed the purpose of this article.

The working principle of the AC unit is rather straightfor-
ward: Provided that the temperature input reads more
than 22 degrees and the switch is on, the AC unit will run
for 30 time units, or until the temperature or switch con-
ditions are invalid. This is expressed using the condition
(switch = off) A (ontime > 30) A (temperature < 22).
After a maximum of 30 time units, the device switches back
to the Of f state and remains there until the timer reaches
zero again. The timer functionality is modelled using two
updates that modify the ontime port. When in state On, the
port’s value is continuously increased according to the time
that passes. This means, that the update calculates the result
of ontime + 6t and writes that value to ontime. In state
Of £, the value is decreased towards zero by five times that
rate (i.e. max (0, ontime — 5 * 87)) until it reaches zero.® Two
more updates are used to modify the coolingpower out-

6 This function uses max to prevent ontime’s value from dropping
below zero.
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put, depending on the automaton state. When Of £, the AC
produces 0 Watt, when On, the power increases by 50 Watt
for every degree over 22C. Finally, an influence is used to
set the statuslight’s colour: green when the switch
is on, red otherwise.

The CREST diagram in Fig. 4 uses mathematical notation
for updates and transition guards, and pseudo-code for the
influence’s functionality specification. As introduced above,
the notational form can be easily adapted to the modeller’s
knowledge and preferences. For instance, for more practi-
cal projects a programming language could be used specify
each function’s behaviour. This approach is followed in
crestdsl, CREST’s implementation in the Python GPPL,
as introduced in the next section.

Note, that the ports of Fig. 4 display the initial values of
the system (including its initial inputs). Though these values
are theoretically part of the model’s environmental embed-
ding, we allow their definition. This (rather operational) view,
is founded in the fact that similarly sensors often output a
default value (e.g. 24C) or special value (e.g. None, unde-
fined) before the first, actual reading.

3.4 crestdsl

In many cases, system developers prefer the use of textual
over graphical languages. Even though graphical repre-
sentations can be more easily understandable when used
correctly [67], in recent years numerous tools were devel-
oped that allow textual modeling, followed by a conversion
to a graphical representation.” Inspired by these tools, we
aimed to create a textual DSL that is both simple to learn
and write for programmers, but also offers a native conver-

7 See e.g. https://modeling-languages.com/text-uml-tools-complete-
list for a comparison of text-to-UML tools.
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sion to CREST diagrams for system developers who prefer
graphical models.

Before developing the DSL, we evaluated the pros and
cons of external DSLs against those of embedded languages
and decided against the use of language workbenches. An
often-used argument for the development of external DSLs is
their integration with many existing products. Languages that
are based on Xtext for example, promise to seamlessly inte-
grate with many expert model transformation, model analysis
and model execution platforms. In our project, however, the
model translation to other formalisms and integration into
meta-modeling frameworks are not primary goals and we do
not expect large parts of our user base to require them for their
purposes. Thus, the adaptation to new simulation engines and
translation of models are not considered as primary require-
ments. The following sections will show however, that our
approach is capable of interfacing with libraries and pro-
grams, which is beneficial for DSL-development on the one
hand, but also allows experienced power-users to address
potential advanced use cases on the other. Another reason
to avoid the workbench-based DSL development method is
our experience with the arising problems when it comes to
the iterative development of DSLs and the problematic of
changing grammars and their underlying meta-models. We
therefore decided for the more lightweight approach and
reuse a GPPL as the foundation for our language. As pro-
gramming is nowadays widespread skill that is even taught
at high-school level, we rely on the assumption that even
non-professional and private CPS creators will have the
familiarity and capacity to write simple scripting tasks. Thus
the target users of crestdsl include professional and pri-
vate CPS creators with (at least some) existing scripting and
program development knowledge. They might for instance
also include building managers that aim to increase the safety
of their (small-scale) installations. Our method also allows
us to reuse a wide-spread host language’s syntax and seman-
tics for the specification of transition guards, updates and
influences. This approach is also well-known in modern
data analysis and machine learning frameworks, that offer
low-entry-barrier solutions for novices, but powerful pro-
gramming APIs for advanced purposes.

crestdsl uses Python as host language for several
reasons. First, it is easy to learn and use, and experiences
growing popularity. This fact is also manifested in a large
number of third-party libraries, numerous tutorials and a
helpful online community. From a DSL development view,
Python offers many attractive features such as a flexible meta-

class system that allows customisation of object creation,
function and class annotations (so-called decorators), and
the availability of a powerful reflection API. Furthermore,
many external tools such as SMT solvers, theorem provers
and formal verification engines offer Python bindings and
thus a native integration. The latter is a vital advantage for
implementing the DSL and its execution engine.

During the development of crestdsl we paid atten-
tion to make its use as simple as possible, while at the same
time support common Python development best practices.
The software is available through the Python package index®
and can be installed through Python’s pip program. There-
after, crestds1 can be used by importing, just as any other
Python library.

crestdsl entities are modelled as instances of the
Entity class. Features that belong to that entity (e.g. its
ports, states, transitions, updates) are modelled as entity
attributes. To simplify the creation of several similar entities,
crestdsl provides entity types. These types are classes that
inherit from the Entity class. The type’s structure is then
defined using class attributes and methods. Listing 1 shows
an entity type that models the architectural parts of our air
conditioning unit. It features two inputs, two outputs and two
states. Note that just as CREST diagrams, crestdsl also
requires every port to have a resource and current value spec-
ified. Similarly, every entity has to have one state designated
as current state.

Listing 1 Definition of entity types via classes

from crestdsl.model import *

# Resources require a unit and domain
watt = Resource(unit="Watt",domain=REAL)
celsius = Resource("Celsius", INTEGER)

6 onoffSwitch = Resource("Switch", ["on","off"])
colour = Resource("Colour",["red", "green"])
time = Resource("Time", REAL)

10 class AirCon(Entity):

11 temperature = Input(celsius, 24)

1 switch = Input(onoffSwitch, "off")
I coolingpower = Output(watt, 0)

14 statuslight = Output(colour, "red")

16 on = State()
I off = current = State()

19 my_new_ac = AirCon()
my_other_ac = AirCon()

8 https://pypi.org/project/crestdsl/.
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Listing 2 An entity type with transitions and update functions

class DynamicAirCon(AirCon) :
# add the ontime port
ontime = Local(time, 0)

# A transition created by a transition object

6 off_to_on = Transition(source=off, target=on,
guard=(lambda self: self.temperature.value > 22
and self.switch.value == "on" and self.ontime.

value <= 0))

# Another transition, this time using the
decorator
) @transition(source=on, target=off)
10 def on_to_off(self):
1 return self.temperature.value <= 22 or self.
switch.value == "off" or self.ontime.value >=
30

13 # update ontime

14 ontime when on = Update(state=on, target=ontime,
function=(lambda self, dt: self.ontime.value +
dt))

1

I # An update via decorator

17 Qupdate(state=off, target=ontime)

1 def ontime when off(self, dt):

1 new_time = self.ontime.value -
return max(0, new_time)

5 % dt

# Adding an update as object
cooling when off = Update(state=off, target=
coolingpower, function=(lambda self, dt: 0))

# An update via decorator
26 @Qupdate(state=on, target=coolingpower)
def cooling _when on(self, dt):
return (self.temperature.value - 22) * 50
@influence(source=switch, target=statuslight)
def light influence(value):

if value == "on":
return "green"

34 else:
5 return "red"

dyn_ac = DynamicAirCon()

Upon instantiation, the Entity class’s constructor and
metaclass work to provide a correctly instantiated object.
crestdsl supports class inheritance to create specialised
or extended versions of an entity type. This feature is
not a general CREST concept, but significantly increases
crestdsl’s usability. Listing 2 for instance, shows the
extension of AirCon by adding transitions, updates and an
influence to the class. Note, that the listing shows two ways
to specify transitions and updates. The first one is similar to
the definition of ports and states: A Transition objectis
created and assigned as class attribute. The required transi-
tion guard is specified either as a lambda-expression or using
a function. Alternatively, it is possible to define the transi-
tion guard as a class method. By using the @transition
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decorator, it is then possible to convert the method into a tran-
sition. The listing also shows the specification of updates via
Update object and @update decorator, and the creation
of an influence using @influence.

Class inheritance is a powerful concept, as it can also
be used to adjust entity behaviour. Python’s multiple inheri-
tance functionality allows class fragments (a.k.a. mixins) to
be added to the language. This enables modular development
and the separation of specific concerns (e.g. reusable compo-
nent fragments for adding value inspection or signal probing)
into individual classes, that can then be reused where
required. If used correctly, this feature permits advanced
users to create reusable component fragments and thereby
even add aspect-oriented system design to the DSL. The
inheritance design principle invites code reuse and the cre-
ation of object libraries. For this purpose, crestdsl also
provides parametrisable entity types using class constructors.

Without the provision of a separate example, we want
to highlight that system composition follows the same DSL
design, where subentities are defined by assigning entity
objects as class attributes.

To test whether the system model was correctly assem-
bled, a SystemCheck class can be used. This static system
analysis performs a number of sanity checks such as testing
the entity hierarchy and asserting that each entity defines
a current state. Its purpose is to help crestdsl users
debug their model quickly and find potential causes for
misbehaviour. If necessary, users can also extend the class
and implement their own static analysis routines that assert
certain system setups (e.g. testing for specific architecture
setups, port type conformance, etc.).

4 Simulation and verification

Usually, model creation serves as stepping stone for fur-
ther, advanced modeling tasks such as model-based anal-
ysis, simulation and verification. Above, we introduced
SystemCheck as an example for simple, static analysis.
Due to its formally defined semantics, CREST also supports
sound simulation and verification.

4.1 CREST semantics

To support the combination of aspects from several for-
malisms (FSM, architecture descriptions, hybrid systems),
it is necessary to pay careful attention to the precise mean-
ing of each element. For this reason, CREST’s semantics
have been formally defined to assert consistency with the key
principles that we obtained in the requirements evaluation.
Thus, it is paramount, that the operational semantics uphold
the reactivity, synchronism, parallelism, locality, continuity
and non-determinism that are essential for the expression of
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Fig.5 Anexcerptof a CREST diagram highlighting dependencies between subentities. Note, that for clarity the port types and values were omitted

our systems. In this section, we outline CREST’s semantics
and highlight the relation to other languages and formalisms,
such as data-flow languages and hybrid automata. Note, that
this section focuses on providing a high-level description
of the semantics and its effects in the simulation of CREST.
The actual formalisation, including its structured operational
semantics (SOS) rules, is provided in Appendix 1. A more
elaborate description, that exceeds the scope of this publica-
tion can be found in [50].

CREST foresees two ways of model interaction. First, the
change of the root entity’s input port values, and second, the
advance of time. After each of these, the model has to be
stabilised until a “fixpoint” is reached. Fixpoints are system
states where the model is stable and will not change without
another interaction.

Input value change The external modification of input port
values represents changes in the system’s environment to
which it should react. Thus, such a modification can only
occur at the hierarchical top level. This is due to CREST’s
locality principle, which requires every entity—hence also
the root—to be treated as coherent black box that only
exposes its communication interface (input and output ports).
Once a port value change is observed, the semantics require
the stabilisation to be triggered, which then propagates the
updated information throughout the system. The process
starts by performing the stabilisation first on the system’s
root-entity, which then recursively calls stabilisation on its
subentities. Evidently, modifiers (i.e. influences, updates and
subentities) within an entity can depend on each other. For
instance, Fig. 5 shows an excerpt of such a CREST system.
It is clear, that sub2 depends on the output value of subl.
Thus, to assert a correct system state, it is necessary to first
make sure that subl has been stabilised and reached a fix-
point, before executing influence; to propagate the value
of subl-output to sub2-input;.

This brief example illustrates the need to establish a mod-
ifier execution order. The creation of this execution order

ad:Stabilise (entity: Entity, &t: ']I‘)J

®
J

{Get ordered modiﬁers}

4 Kiterative > Y
/ odifier

[type(modifier) = Update]

Update
E
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Fig.6 Schematic representation of the stabilisation semantics as UML
2.0 Activity diagram

is closely related to the use of Kahn process networks [49]
and commonly used for the execution of data-flow languages
such as e.g. Lustre [42]. The ordered modifiers are then exe-
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cuted one by one. This means that in this order, each update
function is evaluated and the result written to its target port,
and subentities are recursively stabilised (see Fig. 6).

Only after all modifiers have been executed, the transitions
from the current state are tested whether they are enabled.
If no transition can be triggered, the process ends and the
entity is stabilised. Otherwise, one transition is chosen and
executed. CREST does not prescribe a resolution strategy in
case multiple transitions are enabled at the same time. This
means, that any enabled transition can be triggered, which is
CREST’s way of introducing non-deterministic behaviour—
a vital concept and one of CREST’s key aspects. After a
transition is executed, the stabilisation process has to recur-
sively call itself again, to assert that updates that are related
to the new automaton state—and are thus newly active—are
executed.

Note, that the semantics in Fig. 6 do not mention influences
and actions, as these are syntactic sugar and can be expressed
through updates and states alone, as described in Sect. 3.
This trait both simplifies the formal semantics and CREST’s
system analysis.

It is also of interest to mention that generally, the reaching
of a fixpoint cannot be guaranteed. Especially in the pres-
ence of Zeno behaviour (i.e. an infinite number of transitions
in finite time [82]) or cycles of continuously enabled transi-
tions it can happen that infinitely many actions are executed
without ever reaching a stable state. Even though CREST’s
implementation provides a few configurable heuristics to
detect these kinds of situations, it is up to the system designer
to avoid the modeling of such problematic behaviour.

Advancing time The notion of time is an important aspect of
CREST. It allows the modeling of continuous effects, such
as the filling of a water tank without the need of introduc-
ing artificial discretisation. Since CREST implements must
semantics (as known from e.g. hybrid automata), this intro-
duces an interesting challenge, as it is necessary to find the
precise moment in time when a transition becomes enabled.

For instance, when looking at the time-based behaviour of
the air condition, we observe that—provided the input values
do not change—the model will alternate between on and off
states, so that it is 30 time units in state on, followed by 6
time units in state o f £, before switching to on again. Figure 7
shows a trace of this behaviour. Evidently, when simulating
continuous time systems, it is important to choose the right
step-size for the current system behaviour. Advancing in too
small time intervals might cause a high calculation overhead
and perhaps even render the simulator unusable. Too coarse
step sizes can lead to “missing” an important point in time,
which either requires the simulator to step back and retry
with a smaller step size, or, if undiscovered, might even lead
to wrong simulation results. CREST’s semantics assume the
existence of a next transition time function, that calculates
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Fig.8 Locating the next transition time, assuming that ont ime = 18.7
at the beginning

the precise amount of time until a behaviour change (i.e. a
state transition) occurs. This means, that calling the function
when the air condition system is in state on and ont ime has
a value of 18.7, should return the exact value of 11.3 time
units, since at this time the port’s value reaches 30 and thus
a transition should be triggered (see Fig. 8).

crestdsl implements next transition time using an
SMT approach. Whenever it is necessary to calculate the
time until a transition event, the simulation engine translates
the update functions and influences that potentially affect the
value of a transition guard into a set of SMT constraints (see
details in the next section). This constraint set is then handed
to Microsoft’s Z3 Theorem Prover [22], which either calcu-
lates a value for ¢ that solves these constraints and hence
enables the transition, or alternatively signals that the con-
straint set cannot be solved and therefore the transition cannot
be enabled by the advance of time alone.

Once the simulator obtains the knowledge at what point
in time the next transition becomes enabled, advancing time
is merely a matter of iteratively stepping forward to the next
transition point and triggering the stabilisation process after
every step. Note, that in this case the stabilisation process has
to trigger updates with the correct §¢-value, to consider the
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timing behaviour when calculating the updates’ target port
values.

CREST’s formal semantics (see Appendix 1) do not spec-
ify how the next transition time should be calculated. Thus,
CREST can be used for any type of system. The implementa-
tion’s SMT approach however relies on the use of Z3, which
is not capable of solving nonlinear optimisation problems.
This means, that even though crestdsl produces a non-
linear constraint set, it cannot be solved and the simulation is
likely to run into issues in the presence of nonlinear dynam-
ics. At the moment, we are aiming to extend crestdsl to
add support for nonlinear systems by using theorem provers
with nonlinear optimisation capabilities such as dReal [37].

Next Transition Time Calculation

As stated above, CREST’s semantics require the calculation
of the nearest point in time when a transition will occur.
crestdsl implements this functionality by creating a con-
straint set for each transition, which expresses the value
change of its guard condition over time. These constraints
are then handed to the SMT solver to find a minimal solution
to these constraints.

The challenge of this approach is the creation of a con-
straint set that captures the dependencies between the ports.
For instance, we see that the input sub2-input; of Fig. 5
is influenced by subl-output, whose value might in turn
depend on other ports. crestdsl automatically converts
these modifier-dependencies into constraint sets, so that any
time-based updates of predecessor-ports are also considered,
as these might indirectly enable transitions.

Listing 3 The on_to_off transition

@transition(source=on, target=off)
def on_to_off(self):
return self.temperature.value <= 22 or self.
switch.value == "off" or self.ontime.value >=
30

Listing 3 shows one of the air condition’s transitions. It
states that the device should turn off when either the switch
is off, ontime reaches 30 or the temperature drops
below 22 degrees. Thus, the first constraint ¢ captures the
guard condition.

c1 =(temperature < 22) v (switch = “off’")

V (ontime >= 30)

From the CREST diagram in Fig. 4, we see that the
three sub-expressions are based on the values of two input
ports (switch and temperature) and one local port
(ontime). Since AirCondition is the root entity, its
input port values cannot be changed by any system mod-
ifier (neither by updates, nor influences, nor subentities).

ontime on the other hand is continuously modified by the
ontime_when_on update function. It is therefore neces-
sary to add its functionality to the constraint set. From the
update function’s source code lambda self, dt: self.
ontime.value + dt we can see that when executing, the
function reads the current ontimer value and adds dt, i.e.
the amount of time since the update’s last execution, to it.
Therefore, the next constraint to add is

cr = ontime = ontimegy + §t

where ontimeo and ontime are the port’s values before and
after ontime_when_on’s execution, respectively.

As the air condition has no other dependencies, the sys-
tem input ports have to be linked to their current port values,
since otherwise the SMT solver might assign any value that
solve the constraint. Our analysis aims at time-based changes
alone. We thus have to set the values of these ports, so that §¢
is the only assignable variable in the constraint set. The con-
straints c¢3 to cs express this by linking remperature, switch
and ontime to the values shown in Fig. 4. c¢ asserts that 8¢ is
positive. The final constraint set contains all equations neces-
sary to discover when the on_to_off transition becomes
enabled:

c3 = switch = “on”

c4 = temperature = 24
c5 = ontimeg =0

cg :=6t>0

When handing these six constraints to an SMT solver, it
will not directly return the nearest transition time, as any
8t > 30 is a solution to the problem. Therefore, we use Z3’s
optimization functionality to find a minimal 6¢, which in the
example above is 30.

4.2 crestdsl simulation

Using CREST’s formal semantics and crestds1 itis possi-
ble to create a simulation engine that helps answering “What
happens if...?” questions. Users can try out system interac-
tions and observe possible usage scenarios. Listing 4 shows
the example code of a simulation scenario. The listing uses
the standard Simulator that follows CREST’s seman-
tics and implements non-determinism. However, crestdsl
provides two other simulation engines that allow slightly
altered usage. The first one, InteractiveSimulator
, prompts the user to choose an enabled transition anytime
a non-deterministic situation is encountered. This allows
users to explore specific scenarios despite non-deterministic
models. Finally, PlanSimulator can be used to define
strategies on how to deal with non-determinism. This sce-
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Listing4 Simulator example

from crestdsl.simulation import Simulator
system = DynamicAirCon() # create system
sim = Simulator(system) # init simulator
4+ sim.stabilise() # automaton state is off

6 system.switch.value = "on" # modify input
sim.stabilise() # state: on
sim.advance(10) # ontime: 10
sim.advance(20) # ontime: 30, state: off

nario can be used to model controllers that, given a range
of similar transition choices, will choose one according to a
pre-defined policy. The PlanSimulator can also be used
to follow a specific execution trace that is e.g. discovered by
state space exploration or similar verification techniques, as
described further below.

4.3 Verification

CREST’s semantics allow the construction of state spaces
and the use of formal verification techniques, such as model
checking, thereon. Based on existing approaches, logic for-
mulas can be defined and their truth-value examined on a
model’s state space. Since CREST is a hybrid formalism, it
is however necessary to extend the classical temporal log-
ics (e.g. LTL, CTL) to incorporate timing aspects in their
language. Given CREST’s non-determinism, and thus its
branching behaviour, we use the timed computation tree logic
(TCTL) [45], a timed extension of CTL, and its operators
and formulas for the specification of system behaviour. We
will not elaborate on the foundations of classic and tempo-
ral model checking, but instead refer the interested reader to
seminal works such as [3] and [14]. In general, TCTL formu-
las are composed of a set of operators, which are inductively
defined:

¢= True|p|—¢|dAP|PEUI ¢ |pAUI ¢

where p € AP is an atomic proposition, and / is an inter-
val in CREST’s time base that defines the timing aspect
of the EU; and AU; operators. Based on these opera-
tors, further abbreviation operators can be defined, such as
EF;¢ = TrueEU;¢ and AG;¢p = — EF;—¢. Note,
that in comparison to classical CTL, there is no X (“next”)
operator, since in continuous formalisms there is no “next
point in time”.

Subsequently, we can test these formulas on timed Kripke
structures [57]. Timed Kripke structures are graph-based
encodings of a system’s state space, whose nodes repre-
sent discrete system states and edges are timed transitions
between them. Each node is annotated with a set of APs
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Fig. 9 A timed Kripke structure with five system states § =
{s0, ..., sa}. Nodes labels are the APs {p, ¢}

that represent certain behaviour (e.g. “the AC is on” or “the
coolingpower outputis above 100 Watt”). CREST’s con-
tinuous semantics demand that the transitions be annotated
with the amount of time it takes to pass from one state to
another. Figure 9 shows an example of a timed Kripke struc-
ture.

Following some minor adaptation of the timed Kripke
structure, the TCTL formulas can then be evaluated using
graph search algorithms that are inspired by classical CTL
model checking approaches. Details on these algorithms are
provided in [57] and an elaborated description of the creation
and adaptation of timed Kripke structures for CREST models
is described in [50].

4.4 crestdsl verification

crestdsl implements a Python-native verification
subpackage that provides APIs for the specification of system
configurations, the creation of a model’s state space and the
search of that behaviour within that state space. System states
are specified as checks, which can be used to either define that
an entity is in a given automaton state (e.g. check(entity
) == entity.on), or to compare a port against a constant or
another port value (e.g. check(model.coolingpower)
> 200). crestdsl also allows to create composed checks
as conjunctions, disjunctions and negations of other checks.
Checks can then either be evaluated directly on a sys-
tem state using by calling its check() method. Alternatively,
they can be used for the formal verification of a crestdsl
model’s state space. Todo so, crestds1 provides two APIs.
The first is crestdsl’s convenience verification APL. It
provides interfaces for users that are unfamiliar with model
checking and formal verification. Modellers are provided
with a set of functions that can be executed for common
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Table2 Verification API and TCTL equivalents

crestdsl Function TCTL Formula
is_possible(chk) EF chk
always(chk) AG chk
always_possible(chk) AG AF chk
always_possible(chk, AG AF(0,1ime) chk
within=time)
never(chk) AG —chk
forever(chk) EG chk

where chk isa crestdsl check and t ime is numeric

verification tasks. For instance, the always function, ver-
ifies that a given condition can never be invalid. Similarly,
is_possible asserts that it is possible to reach a given
state and never asserts that a given system configuration can
never be reached. Table 2 shows some convenience API func-
tions and their TCTL equivalent formulas, Listing 5 shows
their programmatic usage.

Listing 5 Model checking of crestdsl checks.

from crestdsl.verification import check,
is possible, always, before

system = DynamicAirCon()
chk = check(system.ontime) == 25

6 # model checking
is possible(chk).check () # True
always(chk).check () # False

crestdsl also implements an expert API, that allows to
manually create complex TCTL formulas and obtain direct
control over the model checking process. By directly cre-
ating and using the StateSpace object, it is possible to
gradually explore a state space. This allows crestdsl’s
routines to be used in some infinite state spaces. The tctl
API groups implementations of all TCTL operators, so that
experienced modellers can create complex formulas to be
evaluated. Listing 6 provides an example of the expert veri-
fication APIL.

Listing 6 Examples of tctl formula definitions.

from crestdsl.verification import tctl, check,
StateSpace, ModelChecker

3 # define a system and check

4+ system = DynamicAirCon()

5 chk = check(system) == system.on

s before 30 = tctl.EF(chk, tctl.Interval(end=30))

# explore state space and model checking
statespace = StateSpace(system)

10 statespace.explore()

11 mc = ModelChecker(statespace)

> mc.check(before_30)

5 Discussion

DSL Development Process Our experiences throughout the
CREST project were mostly positive. Although our aim to
cut the development effort for the creation of a new modeling
formalism drove us to reduce some of the typical model-
ing overhead (e.g. syntax definition), we still had to invest
into defining a coherent language semantics. Furthermore,
our internal discussions often resulted in debates about the
tradeoff between the need for the creation of independent,
dedicated modeling concepts and the effort of adopting well-
known aspects from other languages. For instance, there are
many different types of component composition described in
research, and indeed there is evidently a possibility to invent
new ones if needed. However, our reusage goal led us to adapt
the hierarchical modeling aspect known from architecture
description languages (ADLs) and their reported experi-
ences in using ports for composition. Similarly, we managed
to reuse abstractions and concepts from hybrid automata,
synchronous data-flow languages, and combined visual and
textual modeling approaches within the same language. Their
joint use in CREST is based on a formalisation that thor-
oughly combines the syntactic and semantic aspects of the
individual language parts. The success of the SystemC hard-
ware description language inspired us to implement CREST
as internal DSL, so we can rely on existing IDEs, execution
environments and programming aids.

Indeed, by implementing crestdsl in Python, we
quickly noticed the advantages of its large developer com-
munity. It also allows us to integrate the language with
third-party developments, such as the Project Jupyter” run-
time. This interactive platform allows code to be defined in
so-called cells that are executed at command, inviting iter-
ative and fine-grained development approaches and thereby
increasing usability and user experience. Jupyter’s user inter-
face is browser-based, can be easily installed via Docker
images or hosted on external servers. Cells are housed in
notebooks and also provide a means to write text in e.g.
using Markdown format right next to executable code, which
merges documentation and executable code in one document.

Through our integration of crestds1 into Jupyter, mod-
els can be plotted directly using a combination of HTML
and JavaScript code. This results in an interactive output
(see Fig. 10) that can be explored, zoomed in and out and
interacted with. Through popups and mouse-over events, it
is possible to access and view live data from the model, as
well as to manipulate the display itself (e.g. move and resize
entities).

Python’s many third-party-libraries can also be used for
other aspects of CREST. For instance, it is possible to use the

9 https://jupyter.org.
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Fig. 10 Interactive CREST diagram plot and simulation trace of a crestds1 model

Pandas'® data analysis package to query and analyse system
traces, or the Plotly!! library to create an interactive represen-
tation thereof, as shown in Fig. 10. We invite readers to visit
the crestdsl webpage at https://crestdsl.readthedocs.io/
for more details on our work and crestds1’s online docu-
mentation. You can also find a demo that can be launched
online inside your browser at https://github.com/crestdsl/
sosym-aircondition.

Translation between Languages We found a major advan-
tage of CREST to be the combination of both, the textual and
graphical modeling environment. crestds1’s module for
the automatic translation of its models to interactive CREST
diagrams proved to be a useful commodity at model cre-
ation time. As a result, developers create a system model
using an efficient textual programming style, but also ben-
efit from the perks of a visual language for discussion and
brainstorming. Additionally, as the languages share the same
abstract syntax and operational semantics (see Appendix 1),
it is possible to first draw a graphical diagram model and
then implement it in crestds1 for simulation and verifica-
tion. At the moment, our tool implementation only supports
the textual-to-graphical translation though, as we initially
believed that our users’ workflow would typically start in
crestdsl and move to CREST diagrams for enabling
visual inspection and discussion. However, we noticed that
our users often “think in CREST diagrams” and actually start
the modeling process by sketching out system models as
CREST diagrams using pen and paper, before switching to
implementing individual components in crestdsl. This
insight is an important insight and big encouragement for
the creation of a parser that enables automatic translation
from CREST diagrams to crestdsl models, to enable
creation of an outline in CREST diagrams and switching
to crestdsl for the detailed model creation. We are cur-
rently in the process of evaluating the requirements to such

10" https://pandas.pydata.org.
11 https://plot.ly/python/.
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an interactive graphical development environment and eval-
uating likely development workflows to find out which tasks
can be more efficiently executed in which syntax. This analy-
sis should also help us answer the question for which phases
the user will switch between languages. A point of concern
is that a translation from CREST diagrams to crestdsl
necessitates the parsing of transition guards, update func-
tions, etc, whose syntax is currently not limited by CREST.
Thus, a graphical-to-textual translation mandates a limita-
tion of the supported syntax, which could for instance be
Python for integration with crestdsl or some dedicated,
embedded DSL. Though the benefits of this extension appear
evident, we consider a thorough evaluation of the complete,
required feature scope (e.g. a graphical editor, parser, etc)
and the analysis of development and maintenance costs for
the (interactive) bidirectional translation as future work.

User feedback Since our project aims at the use by non-
expert modellers, throughout the project we sought the
input of people from outside the modeling research domain.
Given our academic background, we therefore asked our stu-
dents (Bachelor’s and Master’s level) to use CREST and
crestdsl, in order to gather feedback and improve the
usability. The conclusions drawn from these evaluations are
largely positive and show that both, the CREST formalism as
well as the crestds1 implementation can be easily learned.
Even though the users neither had a background in model-
ing nor any training in CPS design, they rapidly acquired the
necessary knowledge to model our case study systems and
were even able to create object libraries.

These experience reports provide us with valuable feed-
back and confirm that our method is promising, although we
admit the necessity of a more formal evaluation. Thus, we are
currently in the process of designing a DSL usability study
based on the principles found in works such as [5] and [6].

Lessons learned Throughout the project, we relied on
our experience with semantic definitions and language for-
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malisation. Our methodology is based on the thorough
formal definition of all required syntactic and semantic con-
cepts before their implementation in CREST diagrams and
crestdsl. Thisincreased our trustin the DSL’s correctness
and helped us identify potential problems that we otherwise
may have overlooked. We see this part of our method as
vital for the success of this project and a creation of a usable
language. It is still important to clarify that the formal defi-
nition did not follow a “one-shot” approach, as we had to go
through several iterations before all required features were
implemented. Compared to other approaches to DSL cre-
ation by reuse of existing design concepts (see Sect. 6), our
approach proved to be dynamic and flexible, as our focus
was not placed on a direct combination of existing for-
malisms and languages. Instead, our goal was to increase
CREST’s usability as much as possible and, although we
aimed to maintain “the spirit” of the original formalisms
(e.g. automata, ADLs), we valued a concise product over
their direct reuse. Our design method helped us to iteratively
select the best concept from various options. For instance, we
chose state automata for the definition of entity modes over
a Petri net-based approach, which would have simplified the
modeling of concurrent behaviour and certain parts of the
semantics, but increased complexity and reduced intuitive
usage. Similarly, we evaluated various forms of component
composition and different formalisations of ports that exist
in literature. Nonetheless, it is important mentioning that our
approach is not meant for algorithmic or (semi-)automatic
DSL composition. It appears that such a composition is in
many cases opposing the coherent integration of language
features. Resulting language compositions typically require
adapters (or some form of “glue”) to enable the interaction
between the domains of the existing languages [41].

The availability of the three case study systems also facil-
itated DSL design, increased development speed and helped
us identify which language aspects should be implemented.
One noteworthy point is that even after identifying the
DSL’s requirements and necessary system features, the for-
malisation caused discussions about tradeoffs. For instance,
as mentioned above, CREST’s influences and actions are
treated as syntactic sugar and translated to their correspond-
ing update representations. Before this definition, we initially
developed an equivalent semantics that treated the former
separately. It was only after another iteration and application
study, that we decided to simplify the operational semantics
to their final state.

Tool Implementation A more practical problem arises when
it comes to the use of crestdsl. Even though the lan-
guage offers much flexibility, one caveat of using an internal
DSL is that the available host language syntax is not lim-
ited. This can lead to problematic situations, as the user does
not receive any feedback when they try to use illegal con-

cepts. For instance, in crestdsl updates and influences
are not allowed to model nonlinear behaviour, as the simu-
lation engine relies on the use of Microsoft’s Z3 Theorem
Prover which is restricted in that sense. An extension to a
more powerful SMT solver (e.g. dReal [37]) could greatly
increase the applicability of crestdsl. In a similar way,
modulo operations are not supported and the use of string
datatypes is limited. If modellers use these constructs in their
system models, however, they will not be informed of their
wrongdoing until the simulation or an explicit system check
is triggered. This delay in feedback can easily lead to frustra-
tion. crestdsl provides a SystemCheck class that aims
to discover and inform the user of illegal models using reflec-
tion APIs. Nonetheless, users have to explicitly execute this
functionality for feedback. We see this behaviour as less pow-
erful when comparing to external DSLs, which tend to have
an explicit grammar and abstract syntax tree (AST) checks
built into editors and IDEs and provide imminent feedback
during model creation and editing.

When developing internal DSLs, it is also important to
invest into properly informing users of the activity that is
performed in the background. Many times certain modeling
tasks need a significant amount of time to perform, and thus,
users require feedback when calculations are performed in
the background. For instance, during model checking the cre-
ation of a state space and the search of the resulting timed
Kripke structure take a long time. Here, it is especially impor-
tant to provide the user with feedback about the exploration
state.

Target systems We found that, as intended, our DSL
provides a convenient means for the modeling of smaller
systems. However, we noticed that CREST can also be used
to elegantly describe larger, more complex systems, at higher
abstraction levels, although its crestdsl implementation
quickly reaches acceptable performance limits for simula-
tion and verification times in its current implementation. For
instance, some of our benchmark implementations modelled
the above mentioned case study systems at various levels of
detail. Though these studies are preliminary and warrant for
further exploration, they show that crestds1 can be effec-
tively used for the modeling and simulation of systems with
50 to 70 non-trivial components. As another benchmark, we
included a linear approximation of the heating process inside
a water boiler into one of these systems. The component’s
linearisation splits the water volume into several intercon-
nected “heating zones”!? which expose mutual temperature
influences among each other. Though crestdsl has not
been implemented for modeling of such complex nonlinear
processes or their linear approximations, the system shows

12 See https://github.com/crestdsl/case-studies/tree/master/
SmartHome for details.
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that for small numbers of heating zones (up to 7), the system
can provide valid simulation results in acceptable perfor-
mance. Nonetheless, for larger numbers of zones (and thus
finer model granularity), crestds1’s performance exceeds
acceptable limits. Similarly, due to the large state space an
efficient verification of such systems is not efficiently possi-
ble at the moment.

CREST joins the architectural and behaviour system
aspects into one, coherent language. The creation of mod-
els as a team of multiple modellers is a necessity for large
projects, but has not been foreseen in CREST and certainly
poses inconvenience. Similarly, the use of Python as a host
language leads to significant performance bottlenecks that
cannot be resolved easily. Especially when it comes to veri-
fication of complex TCTL formulas on large model spaces,
for example, Python and crestds1 reach their limits.

6 Related works

The approach presented in this paper is related to several
current research directions. Next to the generic background
work described in Sect. 2, we aim to highlight several works
that tackle similar gaps as our research, namely the modeling
of CPSs using DSLs on the one hand, and creation of new
DSLs through combination and integration of aspects and
design of existing ones on the other.

In the recent past, the employment of DSLs in modeling
has become a widely popular means to manage complex-
ity, especially in elaborated domains. Nordmann et al. [61]
survey the vast landscape of DSL use in robotics, a CPS
domain closely related to ours. To not exceed the scope
of this article, we focus in this section on research that is
closely related to our work, namely the creation of inter-
nal DSLs. Notable advances in this subdomain includes the
work of De Laet et al. [21], which provides insights into
the differences of a DSL that was both implemented inter-
nally (in Prolog) and externally using the Xtext framework.
In their discussion, the authors note amongst other points
the enhanced readability of the internal DSL. Functional
programming languages pose a popular choice for host envi-
ronments due to their readability, as shown in [26,46,66].
The authors of the former use F# to implement a DSL for
the synthesis of programs by a learning system. Readabil-
ity is of vital interest, as humans are required to verify the
generated programs. Recently, Sadati et al. [73] created an
internal DSL within Matlab that is based on fluent inter-
faces."® This research is of particular interest, as the authors’
motivation lies in the experience that users are hesitant of
employing new tools and prefer using familiar develop-
ment environments—an observation that similarly drove the

13 https://martinfowler.com/bliki/FluentInterface.html.
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design of crestdsl. Their publication describes the effi-
cient use of Matlab’s specific language features and also
highlight some unavoidable caveats introduced by the Matlab
language syntax. Another internal DSL that uses similar con-
cepts to crestdsl is presented in Fryer and McKee [35].
Their language is implemented in C++ and —similar to
crestdsl—uses @annotations to specify additional
model semantics and to extend the model class definitions.

Generally, it appears that though other languages and
(internal) DSMLs integrate existing modeling formalisms
and languages to extend their capabilities (see also e.g. Mon-
tiArcAutomaton [72], AADL’s Behavioral Annex [29]), it
appears that these languages’ target audience remains to be
modeling experts, such that their usage is often very difficult
for newcomers or non-experts (see Sect. 3.1). On the other
hand, various DSLs exist e.g. in the domain of “smart” end-
user electronics that allow the simplified assembly of systems
and creation of workflows using pre-defined building blocks
and object libraries.'* These languages, often created by the
gadgets’ manufacturers are an easy means to system configu-
ration, but often closed-source and limited in capabilities and
without clear syntax and semantics. As a result, users cannot
easily—often not at all—extend the language, define custom
behaviour or add own components. In comparison, CREST
aims to fill the gap between these two sides by providing
an open, versatile approach that allows the precise definition
of system behaviour, model simulation and formal verifica-
tion, while still aiming for ease of use. Thus CREST features
the reuse of formally sound concepts (e.g. automata, ports)
that are well-known by expert system creators, and combines
them to form a coherent language that is also easy to learn and
comprehend by novice users and private smarthome creators.

The domain of reusing and combining various aspects of
modeling languages has similarly been approached using dif-
ferent methods. Lacoste et al. [56] describe the creation of
a hybrid language by combining the Event Scheduling for-
malism with ODEs. They implement their language in the
ATOM? platform, which is the basis of creating a graphic
editor. Similarly [7] describes the syntactic and semantic
composition of DSLs for testing purposes.

Mustafiz et al. [60] follow a similar research, combining
Timed Finite State Automata and Causal Block Diagrams to
a hybrid language. Their approach is novel in that it relies
on the extraction of language specification fragments (LSF),
which represent modular, formal extracts of language fea-
tures that allow the flexible combination on syntactic and
semantic level. They then combine these LSFs by embed-
ding one into another. In comparison, CREST operates on
a more integrated level. Instead of extracting individual lan-

14 Amazon Alexa “Skills” or Google Assistant “Actions” are two exam-
ples of workflow languages that can automatically activate smart devices
according to predefined rules.
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guage features as LSFs, it combines syntactic and semantic
concepts of different languages coherently. Mustafiz et al.’s
approach on the other hand it is possible to distinguish the
features that belong to each LSF, and the newly added con-
cepts that “glue” the LSFs together.

Modularity and reuse of language design are also treated
from a Software Product Line (SPL) methodology (e.g. [47]),
where DSLs can be dynamically created based on product
line models such as feature diagrams. A similar approach
is followed by the Neverlang project [19], which aims to
capture language features in so-called slices (parts of syn-
tax and semantics), that can easily be combined. Compared
to the SPL method, Neverlang aims to provide flexibility
throughout the evolution of a DSLs and its components.
These approaches are very powerful when it comes to the
creation and adaptation of DSLs, as individual language fea-
tures and slices can be easily added or removed to achieve
a high level of customisability. Nonetheless, for CREST’s
purposes the initial cost of extracting such features and slices
for later combination is too high, especially when taking into
consideration that we do not have any concrete plans for the
creation of a family of similar DSLs.

7 Future directions

The development of CREST not only provided valuable
insights into the creation of DSLs from existing formalisms
and hands-on experience in the development of internal
DSLs, but also resulted in a powerful basis for continued
research in this area. So far, we identified several directions
in which we want to extend our method.

CREST Improvements and Extensions CREST’s current
state can be adapted and extended in several ways. First, we
noticed certain difficulties when it comes to the verification
of models with large state spaces. Due to the use of Python as
a host language, we attribute a lot of performance loss to the
interpreted execution environment. To overcome the perfor-
mance bottleneck, we are investigating several possibilities.
On the one hand, we might translate CREST models into
other formalisms (e.g. hybrid automata, Petri nets, DEVS) for
which performant tools already exist. Alternatively, we are
looking into adapting verification heuristics (e.g. symbolic
model checking) to CREST’s specific semantics, in order to
reduce the state space size.

Another project we are working on aims to use CREST in
concert with modern machine learning and artificial intelli-
gence approaches. For instance, we are working actively on a
means to allow CREST systems to synthesise the behaviour
of individual update functions and transition guards. Initial
results of this research have already been presented at dedi-
cated workshops [51].

We are also looking into the use of reinforcement learning
approaches for the automated generation of system con-
trollers for CREST models. The aim is to create software
models of controller entities that will provide valid system
inputs and assert that beneficial behaviour is enforced and
unfavourable behaviour avoided. Usually a manual controller
creation process is time-intensive and error-prone, and highly
complex for hybrid systems specifically. Thus, automated
generation techniques will allow to strongly improve this
system engineering task.

Embedding a Behaviour DSLs It appears, that for some user
groups (e.g. non-programmers) the implicit restrictions on
the Python code that can be used inside transition guards and
update functions outweigh the advantages of using an inter-
nal DSL. While a completely external DSL would certainly
solve this issue, one of our future developments investigates
the embedding of a dedicated DSL into crestdsl. For
instance, it would be possible to use the crestds1 to define
the basic system structure, but enforce another (restricted)
DSL for the specification of transition guards and behaviour
functions. This way, it is more easily possible to guide the
users’ behaviour and avoid frustration by incomprehensible
statements. In the background, the embedded behaviour DSL
could then be transpiled to Python code to rely on the existing
language implementation.

Similar DSLs We intentionally designed CREST and
crestdsl for a specific type of CPSs. In these systems,
each component has one behaviour and parallel activi-
ties are separated in individual subentities. However, there
are numerous industrial installations where the component
behaviour is highly dynamic and dependent on many fac-
tors. Petri nets have been successfully used to model parallel
and concurrent behaviour. Currently, we are investigating an
adapted version of CREST, where the entity automata are
replaced with Petri nets. Evidently, this modification also
requires an alteration of the operational semantics, such as
an adaptation of the synchronism concern. Similarly, other
system requirements demand different extensions. Digital
communication can be introduced by reusing concepts from
e.g. communication diagrams.

8 Summary

CREST is a hybrid domain-specific language (DSL) specif-
ically created for the modeling of cyber-physical system
(CPS) whose components primarily interact through the
exchange of physical resource flows such as water, heat or
electricity. The language reuses well-known concepts from
existing formalisms to create a coherent language with aim
on usability and simplicity. Through its formal basis, CREST
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concisely combines the syntactic and semantic features from
several languages to support vital modeling tasks such as
sound model creation, well-defined simulation and formal
verification. In this article, we elaborate on the development
of CREST and provide details on the language requirements
of the DSL. CREST’s graphical syntax is inspired by com-
mon modeling formalisms such as automata notations and
architecture description languages. Its carefully formalised
operational semantics assert the thorough combination of
the languages’ features into an executable formalism that
focuses on the implementation of key aspects such as reactiv-
ity, locality, synchronism, parallelism and non-determinism.
These principles have been identified as necessities for the
correct modeling of our target systems, prior to the defi-
nition of the DSL. CREST is implemented in the form of
crestdsl, an internal DSL that is based on the foundations
of the Python programming language. Its aim is to provide
a convenient means to CPS modeling, with the advantage of
reusing a widespread programming language syntax. The use
of Python as host language also has the advantage that exist-
ing language infrastructure such as familiar IDEs, established
best practices and well-tested execution environments can be
reused. Both CREST and crestdsl were developed with
pragmatism in mind, so as to avoid recreating and redevel-
oping modeling concepts that are already broadly available.
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A formalisation of CREST

This section provides an overview of the formal aspects of
CREST. The following definitions are a summarised version
of the original formalisation (see [50]). Due to spatial con-
siderations, we only provide a brief introduction and refer
the reader to the extended original for a more elaborate

@ Springer

description including detailed explanations, examples and
discussions.

A.1 formal language structure

CREST’s formalisation (both structure and semantics) is
defined on a system-global level. This means that states, tran-
sitions, ports, etc., are first defined as a system-wide sets and
then divided into mutually exclusive sets for each entity.

To help this separation, the formalisation uses the notion of
non-overlapping set partitions (denoted by the |_| operator).

Notation (Partition of sets) Given a set S, the subsets
Si, ..., Sy are defined to be a partition of S = ||, Si iff
Vi,j,i#j=>8NS;=0andS= |J S
1<i<n

Definition 1 (7ime Base) Being a timed language, CREST
requires the definition of a time base T that the systems oper-
ate in. Next to the set of time values T is also required to
contain an infinitesimal element € and infinity element co.
Usually we assume T to be positive rational or real, e.g.
R>o U {€, oo}.

Definition 2 (Types and Values) Given Units, a set of
resource units, and Domains, a set of value domains, the set
of resource types is defined as Types € Domains x Units.
The values of a resource type type are {(v,unit) | v €
domain, (domain, unit) € Types}, where type = (domain,
unit). The set of all resource values is defined as Resources =
{(v, unit) | A(domain, unit) € Types A v € domain}. It con-
tains all possible couples of values and units.

For legibility, the simplified notations domain unit and
vunit can be used for resource types and values. Thus we
write e.g. NWatt and 3Watt for (N, Watt) and (3, Watt). For
instance, Fig. 4 uses these definitions:

Units ={Watt, Switch, Celsius, Colour}
Domains ={R, {on, of £}, {red, green}}
Types ={Rwatt, {on, off}Switch, RCelsius,...}
Resources ={0Watt, onSwitch, 22Celsius,...}

Definition 3 (Hierarchy of Entities) A CREST system’s
structure forms a rooted tree, where each entity can con-
tain children entities. The system’s entity tree is defined
by a set of entity names Entities, and a function parent :
Entities — Entities U { L}, which returns the parent of an
entity or L if it has no parent. The function children
Entities — 'P(Entities) returns the direct children of an
entity, and root : Entities provides the system’s only entity
without parent.

Definition 4 (Ports) CREST systems use ports for the trans-
fer of resources, and storage of data. These ports are defined
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by a set of port names Ports, and a function type : Ports —
Types that assigns the resource type of each port. The AC
example’s port names and types are

Ports = {temperature, switch, ontime, . ..}
type(temperature) = RCelsius
type(switch) = {on, off}Switch
type(ontime) = RTime

The system’s port names are partitioned into inputs, out-
puts and local ports: Ports = Ports! U Portst L Ports©, and
each port is assigned to exactly one entity:

|_| Ports,

e € Entities

Ports =

Intersection of these partitions defines each entity’s inputs,
outputs and locals:

Portsg = Ports' N Ports,
Ports® = Ports® N Ports,
Portst = Ports™ N Ports,

Ve € Entities

To enforce the locality principle, CREST allows only cer-
tain ports to be used in transition guards (sources) and updates
only to write to other specific ports (targets).

The function sources : Entities — P (Ports) defines those
ports of an entity, that can be used to calculate transition
guards or the value of update functions. They consist of an
entity’s inputs and locals, and its subentities’ outputs.

Ve € Entities, sources(e) = Portsé U Portsf U

U Portseo,

e’ € children(e)

Similarly, targets : Entities — P(Ports) defines the set
of possible targets of update functions, i.e. its local ports,
outputs and all direct subentities’ input ports.

Ve € Entities, targets(e) = Portseo U PorlseL U

U Portsg/

e’ € children(e)

Definition 5 (Bindings)Bindings = {b : Ports — Resources |
VYp € Ports,b(p) € type(p)}, is the set of mappings
that associates each port with a value of its respective
resource type. For instance b(temperature) = 24Celsius
and b(switch) = offSwitch.

Definition 6 (States and Transitions) Entity behaviour is
defined using state automata, such that each entity speci-
fies its own automaton. The system’s set of states States, is

globally defined and partitioned into subsets for each entity,
such that each entity has at least one state:

I_l States,

e € Entities

States = Ve € Entities, States, # &

Transitions are defined by the Transitions relation, which
associates two states (of the same entity) and a guard function
namet € T

Transitions < U

e € Entities

(Statese x States, x T)

The function 7 : 7 — (Bindings x Bindings — B) maps
the guard function names to guard function implementations.
CREST does not specify a syntax or semantics for these
implementations but requires them to adhere to a signature.
Specifically when called with a current port bindings binding
and a previous port bindings pre (binding, pre € Bindings)
guard implementations need to yield whether the transition
is enabled.

Definition 7 (Updates) Updates are used to modify port val-
ues. Each update relates an automaton state to a target port
and an update function name u# € U, so that u continuously
updates the target port’s value when the automaton is in the
related state.

Updates C U

e € Entities

(Statesg X targets(e) X LI)

Only one update definition is allowed for each combina-
tion of target port and state, to avoid write-conflicts when
two updates try to write to the same port:

Vp € Ports, s € States, | {(s, p, u) € Updates} | <1

The function v : U — (Bindings x Bindings x T —
Resources) maps the update names to their implementation
functions. Applied to port bindings bind, the previous port
bindings pre (bind, pre € Bindings) and a passed time span
8t € T, they provide a new value for the specified target

port. Note the use of time T that allows time-based value
evolution.

Notes 1 The pre binding stores all ports’ previous value
bindings. It can be used for various functionality in CREST
systems where knowledge of the previous value is required,
such as change of a port p’s value over time using update u’s
implementation v (u) (b, pre, 8t) = pre(p) + 2 * §t.

Definition 8 (dependencies) The function dependencies :
U — Ports returns a set of ports for each update function
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name. We add a constraint that an update’s dependencies can
only be source-ports of the update’s entity.

Y(s, p, u) € Updates,Ve € Entities, s € States,, p € targets(e),

dependencies(u) C sources(e), p ¢ dependencies(u)

The dependencies function is used to determine the exe-
cution order of updates within the operational semantics.

Note, that CREST entities are not allowed to specify
circular dependencies between ports. This means that if a
dependency e.g. reads a port A and writes B, then there can-
not be an update reading B and write A.

Definition 9 (io-dependencies) io-dependencies : Ports —
‘P(Ports) is afunction that specifies the dependencies inside
an entity. As entities are usually treated as black boxes, by
default the assumption is that all output ports depend on all
input ports. This assumption can occasionally lead to cyclic
dependencies between subentities. io-dependencies can help
resolve these dependencies by “shining a light” into the black
box and revealing the actual dependencies inside a subentity.

Ve € Entities,Vp € Portsg, io-dependencies(p) C Portsé

Due to spatial limitations, we refer the reader to [50] for a
detailed explanation of this aspect.

A.2 Global state of a CREST system

Definition 10 (State of the system) The global state w € W
of an entire CREST system is a combination of the current
states of all entity automata, the bindings of all ports, the
previous bindings of the ports, and a global time.

W = Currents x Bindings x Bindings x T

Each CREST system further needs to define its initial state
wo e W.

The set of current automata states (not to be confused
with the global system state) is given by Currents = {f :
Entities — States | Ve € Entities, f(e) € States,}. In
the AC example current € Currents is initially defined as
current (AirCondition) = Off.

Definition 11 (CREST Syntactic Structure) Based on the pre-
vious definitions, a CREST system is specified as a structure
S containing information about the resources (data types),
entity hierarchy, ports, states and transitions, updates, depen-
dencies, io-dependencies, and the initial global state wy:

S = (Units, Domains,

Entities, parent, Ports, type,

Updates, U, v,

io-dependencies, wy)

States, Transitions, T, T,

dependencies,
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A.3 Operational semantics

The following definitions specify the modification of indi-
vidual automaton states and port values. The propagation of
such changes’ effects on a complete CREST system and the
upkeep of a well-formed system state however require more
complex routines that are defined further below using struc-
tured operational semantics (SOS) rules.

Definition 12 (Change of automata states) The state transi-
tion of an entity e to a state s is represented by w[e > s]. This
change within one entity creates a new (global) system state
w’ where the current automaton state of all entities remains
the same, except for e (the entity to be updated), which now
maps to s.

Yw € W, w = (current, bind, pre, t), Ve € Entities, Vs € States,,
wle — s] = (current’, bind, pre, t),
ife! =e

where Ve’ € Entities, current’ (¢) = , .
current(e’) otherwise

Definition 13 (Change of port values) Changes to port bind-
ings are denoted by w[ps], where ps is a set of port-value
mappings (p +—> r) such that there is at most one mapping
for each p.'> We define the value assignment to be the cre-
ation of the global state where the bindings for all ports p
appearing within ps are the new values and all ports not spec-
ified within ps remain unchanged.

Yw € W, w = (current, bind, pre, t),
Vps € {f : P' — Resources | P’ C PortsA
(Vp € P', f(p) € type(p))}.
w(ps] = (current, bind', pre, t), where
bind' (p) = r A pré' (p) = bind(p)

Vp € Ports, , .
bind' (p) = bind(p) A pre'(p) = pre(p) otherwise

ifdp—>reps

Note that the previous port values pre of the ports in ps
have to be updated, so that efficient dataflow modeling is
possible and value changes can be observed.

A.3.1 Modifiers and precedence

The propagation of state updates within a CREST system
requires a correctly ordered execution of updates and state
transitions throughout the entire entity hierarchy. Thus, this
execution order has to be established and used. The for-
mal semantics use a precedence operator < that defines the
according dataflows semantics. The operator expresses a par-
tial order between ports, updates and child entities that arises
from the dependencies. In this subsection we look at the for-
mal definitions of these helper functions and operators.

15 j e. there cannot be a set of mappings ps = {p > r, p — s}.
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Definition 14 (Port Precedence) The < operator for ports
defines a partial order based on the dependencies function
(see Definition 8), and the input-output dependency func-
tion io-dependencies (Definition 9). We say that for any two
ports p1, pa € Ports p1 < p> iff one of the following cases
applies:

1. there is an update that reads p; to calculate the value
written to p; (i.e. p; is a dependency of an update that
writes p2);

2. there is an entity, and pj is an input, p> is an output and
there exists an io-dependency between the two;

3. there exists a port p’ so that p; < p’ and p’ < p» (i.e.
p1 < p2 by transitivity).

Formally < is expressed as: Vpy, pa € Ports, p1 < p> iff

A(s, pa, u) € Updates, p1 € dependencies(u) (Casel)
V p1 € io-dependencies(p2) (Case2)
vap' e Ports,p1 < p' AP < pr (Case3)

Note that < satisfies anti-symmetry to avoid circular
dependencies between ports.

Definition 15 (Active-modifiers) An entity’s modifiers are all
elements that have the capability of altering an entity’s target
ports’ values, i.e. its updates and subentities. To facilitate the
subsequent definitions, we define the set of all modifiers to
be the union of all entities and updates.

Modifiers = Entities U Updates

Active modifiers are those modifiers that are “active” in a
certain system state w € W. This means all updates that are
related to a currently active automaton state, and all subenti-
ties. active-modifiers yields all such updates and child entities
for an entity.

active-modifiers : W x Entities — P(Modifiers)
active-modifiers({current, bind, pre, time), ¢) =

{(s, p, u) € Update | s = current(e)} U children(e)

modified-ports returns the list of ports that are modified
by an entity. This means, it consists of all ports that are the
targets of the update functions of the current automaton state
or outputs of a subentity.

modified-ports : W x Entities — Ports
modified-ports({current, bind, pre, time), e) =
{p | 3(s, p,u) € Updates, s = current(e)}U
{p | 3¢ € children(e), p € Ports?}

Definition 16 (ordered-ports) The function ordered-ports
creates a total order of ports that are modified according to
their precedence.

ordered-ports : W x Entities — PortLists
ordered-ports(w, e) : [po, p1, ... pnls. t.VYpi, pj,i
<J,Pi < Dj

The list of ports is defined by the PortLists type:
PortLists := @ | (Ports, PortLists)

We use the common list notation [pg, p1, p2] instead of
(po, (p1, (P2, D))), where i € N is a port’s list index. The
operator ““:” splits a list’s head (its first element) from its tail
(the rest of the list) as follows: [pg : fail], where pg is the

first element and zail the rest [p1, p2, ..., pul.

Definition 17 (ordered-modifiers) Based on the list of mod-
ified ports, we create a list of modifiers (updates and
subentities) to specify their correct execution order, so that
elements are executed only after the ports whose values they
depend on are updated. This avoids calculations using wrong
or outdated values. The type ModifierLists is used to describe
such lists of modifiers. Its signature is given as

ModifierLists := & | (Modifiers, ModifierLists)

The notation [mg, mi, my, m3, ma] and the “head-tail”
operator “:” are defined for lists of modifiers, similar to the
PortLists type above.

ordered-modifiers creates a modifier list so that for each

port in ordered-ports there is a modifier that updates it.

ordered-modifiers : W x Entities — ModifierLists

ordered-modifiers(w, e) : [mo, my, ... My, Myy1, ..., Myyik]

Specifically, for each port p;, there is a modifier m; that alters
this p;’s value, i.e. Vp; € ordered-ports(w, e)

dm,; € active-modifiers(w, e)

A imi = (s, pi, u) € Updates

m; = €' € children(e), p; € Portsf,

All additional modifiers m,,, ..
the end of the list:

., my; are appended at

Vi € active-modifiers(w, e), 0 < j <k,
ﬂp € ordered-ports(w, e),
Mptj = (s, p,u) € Updates N mpy j

= ¢’ e children(e), p € Portsg
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Definition 18 (enabled-transitions) The function enabled-
transitions finds all transitions from an entity’s currently
active automaton state, whose guard functions evaluate to
True.

enabled-transitions : W x Entities — P (Transitions)
enabled-transitions({curr, bind, pre, time), e) =
{(s, t, g) € Transitions | s,t € States,
A s = curr(e) A

1(g)(bind, pre) — True}
A.4 Formal operational semantics

CREST’s semantics describe modifications of the global sys-
tem state (w € W) and the propagation of changes from the
root to the leaves of the system’s entity tree. Thus, each entity
maintains its own state and triggers the update of its direct
subentities.

The semantics revolve around the concept of reaching a
fixed point (“fixpoint”) after each system modification. In a
fixpoint the system is stable and no changes happen unless
time passes or external factors modify the system’s inputs.

set-values This fixpoint concept is triggered when modify-
ing the system’s input port values, as shown in Rule 1. The
altering of the port value bindings using according to the set
vs requires a subsequent application of the stabiliserule
on the system’s root. Stabilisation triggers an entity’s updates
and automaton transitions until a fixpoint (stable state) is
reached. In the process stabilisation also recursively propa-
gates port value modifications to the subentities.

stabilis
wi = wlvs], (wy, root, 0) ———>
set-values
(w, vs) ———> w2 (1

stabilise Rule 2 is called on an entity e that should be sta-
bilised, using a timestep size 6¢. Here, §¢ is the time that
should be advanced in the system. For stabilisation of the
system without time advance, (i.e. after the setting of port
values), this rule is called with §# = 0, to propagate values
but not take time into account in update functions.

Specifically, the rule first obtains the ordered list of
modifiers and triggers their (ordered) execution in the
apply-all rule. Subsequently, transitions executes
the automaton transitions.

@ Springer

mods = ordered-modifiers(w, e),

apply-all transitions

(set-pre(w, e), e, mods, 8[> — > wy, (wy, &) ———
stabilise
(w, e, §t) ——

@

The above rule uses a set-pre, that, given a state w =
(curr, bind, pre, time) and an entity e, creates a new state,
where the ports’ previous value binding pre is updated. This
function is used before triggering modifiers execution, to
assert that the modifiers have access to the port’s previous
values (i.e. the values before the updates), which is necessary
e.g. for incremental increases of port values and resolution
of algebraic cycles.

set-pre((curr, bind, pre, time), e) = (curr, bind, pre’, time)
bind(p)
pre(p)

, if p € targets(e)
where pre'(p) = )
otherwise

apply-all This rule takes an ordered list of modifiers and
executes the first one (mg). Subsequently, the rule recurses
to execute the rest of the list. When the list is empty (i.e. @),
Rule 4 serves as a break-condition to the recursion. In this
case, no action is taken and w remains unchanged.

apply-one apply-all
(w, mo, 6t) ppyome wy, (wy, mods, ét) 2pyE wy
apply-all
(w, [mg : mods], 8t) ey wo 3)
apply-all
(w, &, §t) ——— w 4)

apply-one Two apply-one functions execute a modifier
(update or subentity) based on its type. If the modifier is
an update, update is called to calculate a new port value.
Otherwise (if the modifier is a child entity), Rule 6 triggers
stabilise to propagate the changed system state to the
subentity.

d
mod € Update, (w,mod, 8t) 2= w,
ly-
(w, mod, 8t) 22X s
mod € Entities, (w, mod, §t) stabilise
Ty-
(w, mod, §t) 22X ©
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update calculates the update’s target port value based on
its function implementation (identified by v(u)). The new
system state is calculated by taking the old state w and setting
update’s target port p to the calculated value.

(s, p,u) =mod, w = (curr, bind, pre, time),

(w, mod, §t) % wlp — v(u)(bind, pre, 5t)] 7)

transitions The transitions rules are responsible for
triggering transitions and deciding whether further stabilisa-
tion is required. If enabled transitions exist (Rule 8), one of
them is executed (w[e +> t]) and the rule recurses on the sta-
bilisation rule. Without enabled transitions, no further action
is taken (Rule 9).

(s, t, g) € enabled-transitions(w, e),
stabilise

(wi,e,0)

transitions

(w, e) ——— wy (8)

w; = wle — t],

enabled-transitions(w, e) = &

transitions

(w,e) —— w &)

Note that CREST does not prescribe a strategy in the event
where more than one transition is enabled. Thus, this is the
place where non-determinism is possible, e.g. if guard con-
ditions “overlap”.

Time Advance Being a timed formalism, it is necessary to
discover at what point the system has to be brought into a
coherent state. Specifically, this means that through contin-
uous port value modifications (using updates), a transition
might become enabled, requiring subsequent stabilisation.
The semantics use four SOS rules to address several pos-
sibilities. The first two cover the basic requirements. As the
time base T is defined for positive sets only, a CREST system
cannot “step back in time”.
An advance of §¢ = 0 triggers a stabilisation.

stabilise
5t =0, (w, root, 0) —— w’

(w, 8t)

advance
— > w

(10)

For 6t > 0, we distinguish two cases. Assuming that, in a
given system the next transition (and hence requirement for
system stabilisation) becomes enabled at time #,,;; (due to the
continuous time advances in update functions), we refer to

oty {

to nitt

Fig. 11 Depending on §¢ and the point in time of the next transition
(i.e. to +ntt = tyy), Rule 11 is applied if 6t < ntt (e.g. 5¢1) and Rule 12
otherwise (e.g. 812)

the duration until that next transition time as n#f. Any time
advance 8¢ < ntt only requires stabilisation at the end of the
advance, to update the update ports’ target values. This is
implemented in Rule 11.

8t < next_transition_time(w),

stabilise
(set-pre(w, e), root, §t) ——

(w, 8t)

(curr, bind, pre, time)

advance . .
——— (curr, bind, pre, time + §t)

(11)

If 61 is bigger than the next transition time n#f, Rule 12 splits

the advance into two steps: First, it will advance with §t =
ntt (using Rule 11) and trigger the a stabilisation, including
transition firing and activating of the set of updates related to
the new current state. Next, CREST recurses on the advance
rule using the remaining time (i.e. 6t — ntt). This will trigger
either Rule 11 or Rule 12.

8t > ntt, ntt = next_transition_time(w),

advance advance
(w, ntt) —— wy, (wq, 8t —ntt) —— wy

advance

(w, §t) ——— wy (12)

Figure 11 depicts these two scenarios graphically.

CREST’s semantics rely on the availability of
next_transition_time : W — T. Given a system’s current
state w, the function calculates the precise amount of time
4t that has to pass until updates enable any transition’s guard
condition. It returns oo in case time-based advances do not
enable any transition.

Note that these semantics do not prescribe an actual
implementation of this function. Depending on the available
resources, different ways of computing next_transition_time
are possible, such as a search approach or complex analysis
techniques that include symbolic reasoning. CREST’s imple-
mentation translates the system functions into constraints that
are handed to an SMT prover that aims to find a minimum
next transition time.
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