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Abstract This paper provides a comprehensive over-
view and analysis of research work on how uncertainty
is currently represented in software models. The survey
presents the definitions and current research status of
different proposals for addressing uncertainty modeling,
and introduces a classification framework that allows to
compare and classify existing proposals, analyse their
current status and identify new trends. In addition, we
discuss possible future research directions, opportunities
and challenges.
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1 Introduction

A fundamental characteristic of software models is their
ability to represent the relevant characteristics of the sys-
tem under study, at the appropriate level of abstraction.
Software models were initially conceived to design and
develop general Information Technology (IT) systems,
such as financial applications, enterprise databases or
component-based systems, and have proven to be excel-
lent artefacts for representing the basic structure and
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behavior of these systems. However, we now live in the
age of cyber-physical systems (CPS), smart applications
and the Internet of things (IoT), which require some
forms of interaction with the physical world. This im-
poses new requirements on software models to deal with
the essential aspects of these kinds of systems, such
as self-adaptation [39], integration with embedded sys-
tems [187], management of physical quantities [211], or
uncertainty handling [133,147,193].

In this paper we are concerned with the general
challenge of representing uncertainty in software mod-
els. Uncertainty is an inherent property of any system
that operates in a real environment or that interacts
with physical elements or with humans. Uncertainty can
be due to different factors, such as imprecision in the
measuring tools; lack of knowledge about the system
or its environment; imperfect, incorrect, incomplete or
vague information; unreliable data sources or commu-
nication networks; numerical approximations; distinct,
even conflicting, interpretations of the same evidences by
separate parties; unforeseen, emergent or unpredictable
behavior; or the inability to determine whether partic-
ular events have occurred or not [163]. The purpose of
explicitly representing uncertainty is twofold: a software
engineer who represents or simulates a system needs
to capture the relevant characteristics of uncertainty
in a suitable way, while a systems engineer analyses
uncertainty to try to remove it, reduce it or mitigate its
effects [185].

Scientists and engineers already know how to deal
with uncertainty in its many forms (objective, subjective,
epistemic, aleatory) [219], using different approaches
such as mathematical and numerical models [189], prob-
abilities [145,146], Fuzzy set theory [205,233], variability
analysis [210] or risk assessment [202], among others.
Uncertainty has also been an active research field in
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computer science and database systems, with special-
ized venues and scientific journals devoted to this topic.
However, software models are still falling short for ex-
plicitly representing uncertainty and effectively dealing
with it [133,147]. For example, primitive datatypes nor-
mally neglect measurement uncertainty in numerical
values, and cannot adequately cope with physical units;
the underlying Boolean semantics of UML and OCL
assumes crisp decisions, ignoring the case for predicates
that may be partially true; software designs are usu-
ally set in stone and difficult to adapt to unforeseen
situations; the behavior of the environment is assumed
to be known in advance; interpretations of models are
assumed to be objective and unique, and so on.

The situation began to change in the early 2000s,
when the modeling community realized that uncertainty
needed to be embraced as a first-class entity in software
models, especially in domains such as the IoT [151], In-
dustry 4.0 applications [187,232] or in Intelligent Trans-
portation Systems [141,165]. Otherwise, software models
were not faithful enough to the systems they represented,
and the advantages of using models to understand sys-
tems and predict their behavior could be lost [147,174].

Research on uncertainty representation in software
models has significantly grown since then. Several groups
are working on different types of uncertainty, using
various notations and formalisms. The OMG also pro-
poses partial solutions in the fields of real-time sys-
tems and system engineering, with the UML Profile for
MARTE [72] and the SysML notation [71], respectively.
They allow modelers to specify probability distributions
in property values to represent measurement uncertainty,
and also in activity diagrams to represent stochastic be-
havior. Nevertheless, these notations cannot deal with
other types of uncertainty, such as Design or Belief un-
certainty. The OMG is also working on a metamodel for
the precise specification of uncertainty (PSUM) [193],
based on a previous uncertainty model for the domain
of cyber-physical systems [121].

With regard to the representation of uncertainty, the
majority of these proposals, including those from the
OMG, have been developed independently of each other,
mainly with specific applications in mind, and without a
common conceptual reference framework. This leads to
problems such as conflicting terminology, contradictory
notations and redundant work, which can be mislead-
ing for software engineers who need to deal with the
representation of uncertainty in their software models.

In this context, a clear and complete picture of the
current research on uncertainty representation in soft-
ware models would provide very valuable benefits to
the software (modeling) engineering community. In par-
ticular, it would help to identify overlapping proposals

that address the same type of uncertainty but using
different (and potentially complementary) approaches;
gaps in unexplored areas that would require further
research; application domains that would benefit from
the results of existing proposals currently implemented
in other domains; and, finally, new requirements for
software modeling notations and tools in order to tackle
the new challenges posed by cyber-physical, IoT, and
human-centered systems.

With these goals in mind, we wanted to identify
(1) the existing proposals on this topic; (2) the different
types of uncertainty currently addressed by these works;
(3) the notations and formalisms used to represent it;
(4) the application domains where uncertainty in soft-
ware models is used and how the proposals are applied
in practice; (5) the software development phase in which
they are used, and (6) the types of analyses that each
proposal allows (simulation, visualization, verification,
etc.), as well as their level of tool-support.

This paper provides a comprehensive overview and
analysis of research work on uncertainty representation
in software models, which aims to answer these ques-
tions. The paper presents a classification framework
that allows to compare and classify existing proposals,
analyse their current research status and identify new
trends. In addition, the survey identifies some key areas
of research that need to be addressed, as well as some
of the main challenges ahead.

The structure of this document is as follows. Next,
Sect. 2 provides a brief introduction to uncertainty,
mainly in the context of software models. We also de-
scribe an uncertainty classification framework that will
be used to categorize existing proposals. Then, Sect. 3
describes how the literature review has been conducted,
including the data sources consulted, the inclusion/exclu-
sion criteria, quality assessment and the data extraction
process. It also poses the six research questions that
will guide our study, which are responded in detail in
sections 4 to 8. Sect. 9 discusses other relevant aspects
of the survey, such as the distribution of research around
topics, their coverage, or the common publication venues.
We also discuss there some limitations and threats to
the validity of the study. Finally, Sect. 10 describes what
we consider the main challenges and opportunities for
this research, and Sect. 11 concludes the paper.

2 Preliminaries

Uncertainty is “the quality or state that involves imper-
fect and/or unknown information. It applies to predic-
tions of future events, estimates, physical measurements,
or unknown properties of a system” [163].

Uncertainty can be classified according to different
criteria and parameters, and it also depends on the
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specific application domain. The community has not yet
agreed on a common classification of uncertainty, despite
the many existing proposals (see Sect. 2.1), probably
because of the diversity of application domains and
the particular nature of each one. This section presents
the main classifications of uncertainty currently used
in several domains, and proposes one for the general
problem of representing uncertainty in software models.
It will allow us to classify the surveyed research works.

2.1 Existing classifications of uncertainty

The primary classification of uncertainty divides it into
aleatory and epistemic uncertainty [167,189]. Aleatory
uncertainty refers to the inherent probabilistic variability
or randomness of a phenomenon. For example, deciding
the result of rolling a die. This type of uncertainty is
irreducible, in that there will always be variability in the
underlying variables [163]. Epistemic uncertainty refers
to the lack of knowledge we have about the system (mod-
eled or real) or its elements. For instance, the confidence
we have on the actual occurrence of a modeled event,
or the current location of the Lost Ark. This type of
uncertainty is reducible, in that additional information
or knowledge may reduce it.

Two related terms, not to be confused with uncer-
tainty, are randomness and stochasticity [221]. Ran-
domness refers to the unpredictable variation over time
and/or space, which does not follow any pattern; i.e.,
given complete knowledge of all previous outcomes, it
is not possible to predict the next one. In contrast,
Stochasticity refers to the variations of processes over
time and space, which are mathematically describable
by some probability distributions. Thus, randomness
implies aleatory uncertainty when we try to predict
the outcome of a process, whilst stochasticity can be
considered a kind of epistemic uncertainty because the
process outcomes can be approximated, thus taming
their unpredictability.

We can also distinguish between Objective and Sub-
jective uncertainties. The former refers to phenomena or
concepts whose value, existence or nature are indepen-
dent of any observing agent; the latter depends on the
particular observation or reasoning by each agent [193].

In [219], the authors present an interesting summary
of uncertainty taxonomies in various fields, including
social sciences, physics, computational modeling and
simulation, and several engineering disciplines. A spe-
cific uncertainty classification for the design and devel-
opment of complex systems is proposed in that paper,
too, which distinguishes between ambiguity, epistemic,
aleatory, and interaction uncertainty. Epistemic uncer-
tainty is in turn subdivided into model-form, phenomeno-

logical, and behavioral uncertainty. Targeted at design
and development of complex systems in general, it has a
broader scope than ours and therefore provides a more
generic classification framework (covering cases such as
linguistic imprecision and approximation). Nevertheless,
it misses others that are specific to the representation
of uncertainty in software models, such as belief or oc-
currence uncertainty. In this sense, it can be considered
as complementary to ours.

Other uncertainty classifications have also been pro-
posed for specific domains within software development
and engineering, mainly in the areas of adaptive sys-
tems [73,135,144,180,199,201,223], complex event pro-
cessing [125], databases [131,156,175,178,195,200,224],
requirements engineering [207], and cyber-physical sys-
tems [120,121]. All of them try to harmonize the ter-
minology of uncertainty and propose conceptual frame-
works that classify different types of uncertainty accord-
ing to several criteria.

The fact that they were defined for specific appli-
cation domains enabled them to perform well when
classifying existing work within those domains. How-
ever, none of them allowed us to adequately cover all
the cases that we came across in our literature review.
For instance, classifications focusing on software archi-
tectures and adaptive systems perfectly cover Design
uncertainty, which is a type of uncertainty that is not
normally treated in the rest of the domains. In con-
trast, these classifications do not properly cover sub-
jective interpretations and degrees of belief, i.e., Belief
uncertainty, which can be found in the database and
cyber-physical systems domains.

2.2 Types of uncertainty

In the end, we decided to use an uncertainty taxonomy
that provided a suitable and comprehensive classification
of the types of uncertainty identified in our survey, which
allowed us to represent all the different approaches, and
covered all cases. The classification defines six types
of uncertainty, which are described next, together with
some of their particular characteristics.
Measurement uncertainty. This is an aleatory uncer-
tainty that refers to a set of possible states or outcomes
of a measurement, where probabilities are assigned to
each possible state or outcome [163]. It is normally asso-
ciated to the values of model attributes and properties
that are represented using primitive datatypes.

– In the case of numeric values, this type of uncertainty
is usually represented according to the GUM [163],
i.e., expressed by a parameter, associated with the
result of a measurement x, which characterizes the
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dispersion of the values that could be attributed to
the measurand. This can be expressed in different
ways, e.g., by means of the standard deviation u of
the possible variation of the values of x (x± u, e.g.,
3.5± 0.01); using intervals (e.g., [a..b]) according to
Uniform or Triangular distributions; by means of
samples [163]; or by specific probability distributions
that describe the estimated dispersion of the true
value of x, which is not possible to determine [153].
See [215] for an extensive survey on this topic.

– Measurement uncertainty applies not only to numer-
ical datatypes (Real, Integer), but also to all other
primitive datatypes (Boolean, String and enumera-
tions), and their collections. In the case of Boolean
values, their uncertainty can be expressed using ei-
ther real numbers in the range [0..1] that repre-
sent probabilities (interpreted in Probability the-
ory [146] or Uncertainty theory [176]), possibilities
(in Fuzzy set theory [205,233]), or plausibilities or
belief functions (in Dempster-Shafer’s theory [213]).
Many-valued logics (e.g., Kleene or Priest logics, that
include null values [138]) can also be used to repre-
sent incomplete information in logic predicates (as
in SQL or OCL).

– Uncertainty in Strings can be expressed either by
assigning a confidence to each character, to the entire
string, or to both. By confidence we mean a real
number in the range [0..1] or a fuzzy value that
measures the degree of belief that the contents of the
String are correct. This is common, for instance, in
Optical Character Recognition (OCR) systems that
extract data from images or from hand-written text.
This type of uncertainty measures the reliability of
the contents of the String. For example, a confidence
of 0.91 in the string “Hello wor1d” indicates that
we are unsure about at most one of its characters [6].

– Uncertainty in enumerations can be expressed us-
ing different mechanisms, such as discrete random
variables [145] or fuzzy numbers [154] denoting collec-
tions of possible values and their associated probabil-
ities. For example, an automatic classification system
for apples could assign the value {(Braeburn,0.6),
(Fuji,0.3),(Cameo,0.1)} to a given apple, instead
of having to choose only one literal.

– Finally, Measurement uncertainty in collections rep-
resents the lack of confidence that we have on their
contents, too. This is just a generalization of the
uncertainty that can be associated to Strings, and
treated similarly.

Occurrence uncertainty. This is a kind of epistemic
uncertainty that refers to the degree of belief that we
have on the actual existence of an entity, i.e., the real
entity that a model element represents.

– Normally expressed in software models by assigning
a confidence level to individual instances (i.e., objects
or links) that refers to the likelihood that such an
instance or link exists in reality.

– The confidence level is usually expressed by real
numbers in the range [0..1] that represent probabili-
ties (interpreted in Probability theory or Uncertainty
theory), possibilities (in Fuzzy set theory), or plausi-
bilities (in the Dempster–Shafer theory).

– Examples include the confidence assigned to events
in a stream coming from unreliable sources (where
false positives and false negatives are possible [125]),
objects identified by automatic recognition systems,
or relationships between objects established by au-
tomatic recommendation systems.

– Normally, the level of confidence is propagated through
the decision rules, enabling the corresponding uncer-
tainty analysis [11].

Design uncertainty. This is a type of epistemic uncer-
tainty that refers to a set of possible decisions or system
design options.

– It captures the usual uncertainty that the developer
has about the system design, which may be different
depending on the conditions the system may face
during its operation, and the expected requirements
by its intended users. This information is normally
unknown during the early analysis phase, but heavily
influences the system design. It also covers ambigu-
ous or imprecise requirements regarding the envi-
sioned operating environment, target technologies,
market or legal regulations, etc.

– Under design uncertainty, the modeler may decide
to maintain all options open and try to defer the
decisions to later stages, when some of this epistemic
uncertainty is gone. Alternatively, probabilities can
be assigned to the design options.

– Normally represented in software models by vari-
ability models [216] that specify the possible design
options, using different approaches. For example, by
using feature or partial models that explicitly de-
scribe the possible design options and their probabil-
ities [33,85]. Alternatively, these options can be im-
plicitly specified by sets of conditions or constraints
that describe the possible options, as a Constraint
Satisfaction Problem (CSP); or by incomplete mod-
els that can be completed in different ways, each one
representing a possible design alternative which are
automatically computed by SAT solvers, or other
design space exploration techniques [222].

– Examples include alternative architectural designs
of a software system that may need to contemplate
three or four architectural levels, or the use of dif-
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ferent design patterns or mechanisms depending on
conditions not known yet by the modeler.

Behavior uncertainty. A type of epistemic uncer-
tainty that refers to the lack of knowledge about the
real behavior of the system or its environment, including
the actions that can be performed, the motivations for
performing them, the real values of the parameters of
these actions, and when and how they can be performed.

– Examples include the behavior of pedestrians and
drivers in intersections, environmental weather con-
ditions, or that of unmanned vehicles.

– This kind of uncertainty is also common in ap-
proaches such as self-adaptive [21,107] or “uncertain-
ty-aware” systems [39,120], whose operating envi-
ronments are unknown or may exhibit uncertain
behaviors; for example, a robot operating on Mars,
or an application whose users may have erratic or
random behavior [73,180].

– Uncertain behavior in software models can be repre-
sented in different manners, depending on the nature
of the unknowns. First, using variability models [216]
to specify the possible alternative options and their
valid combinations. Second, using declarative ap-
proaches based on fuzzy or probabilistic extensions
of modal logics, such as temporal [184,230] or de-
ontic [80,206] logics. Third, using operational ap-
proaches such as probabilistic statecharts [148,188],
sequence diagrams [203], Fuzzy-DEVS [169], Markov
chains [214], Fuzzy Petri Nets [177,183], Generalized
Stochastic Petri Nets [182], or probabilistic process
algebras [73]. Other approaches use partial behavior
models [90,101], which are based on modal transi-
tion systems [172] that allow modeling incomplete
behaviors. Finally, other authors use Bayesian Be-
lief networks [142,196], Causal networks [197,198],
or Influence diagrams [158] to specify the decisions,
uncertainties and objectives of possible behaviors.

Belief uncertainty. A type of epistemic uncertainty
in which a belief agent is uncertain about any of the
statements made in the model about the system or
its environment (i.e., about how the system has been
modeled, or about the system itself).

– Normally represented in software models by assign-
ing a degree of belief to model elements such as
classes, relationships, attributes, or their values.

– The confidence level assigned in this kind of uncer-
tainty is subjective, i.e., it depends on the individual
agent holding the belief. For example, Mary is 95%
confident about the precision of the temperature
sensor readings; John is 95% sure that the model
class Employee indeed represents all valid employees
of the real system.

– Belief uncertainty is sometimes called second-order
probability or second-order uncertainty in the litera-
ture of statistics and economics because it can also
be used to quantify other types of uncertainties. For
example, Ada is 85% sure that the probability of
rain tomorrow is 60%, or Bob is 60% sure that the
stock market will lose more than 20% of its investors
due to the financial crisis.

– Belief uncertainty is normally expressed by proba-
bilities (interpreted in Probability theory or in Un-
certainty theory), possibilities (in Fuzzy set theory),
plausibilities (in the Dempster–Shafer theory), or
opinions (in Subjective logic [164]).

Spatiotemporal uncertainty. This type of epistemic
uncertainty refers to the lack of certainty about the ge-
ographical or physical location of a system, its elements
or its environment, or about time properties expressed
in statements about the system or its environment.
– It is normally represented in software models using

different ways, including Fuzzy set theory, many-
valued logics (with unknown values), interval arith-
metic, discrete random variables or fuzzy numbers
(denoting collections of possible values and their asso-
ciated probabilities), or by means of rough sets [231].
A formalism called Object-Fields [140] is also used to
represent this type of uncertainty in software models.

– Examples include timestamps of events produced by
sources that have different clocks, models of typhoon
or storms trajectories, the geographic locations of
historical cities and archaeological sites, or the dates
of particular historical events (e.g., “circa 700 B.C.”,
or “during the late Jurassic period”) [63].

– While it might be thought that this type of uncer-
tainty could be represented by the Measurement
uncertainty of the attributes representing times or
geographical coordinates, its nature is different. Mea-
surement uncertainty expresses possible variations
of a measured value, and is of an aleatory and objec-
tive nature (due, for example, to the precision of the
GPS system in the expression of the position of an
object when it is given by its latitude and longitude).
However, Spatiotemporal uncertainty also implies
vagueness and incompleteness, and is of epistemic
and subjective nature (e.g., when stating that an ar-
chaeological site is located “somewhere” in Northern
Europe). This is why this type of uncertainty has
required its own dimension in the classification.

2.3 Relationship with other uncertainty classifications

As mentioned in Sect.2.1, several authors have proposed
other classifications of uncertainty for different appli-
cation domains. Some of them had a wider scope than
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ours (e.g., [219], which targets the design and devel-
opment of complex systems, in general), whilst others
were aimed towards concrete domains such as adaptive
systems, complex event processing or databases, and
hence had different scopes.

This section defines the terminology mappings be-
tween our dimensions and those defined by other tax-
onomies in order to improve the understanding and
interoperability of our proposal.

Measurement uncertainty is also called Attribute
uncertainty by other authors [125,131,175,225]. Other
proposals distinguish between uncertainty in the values
of numerical attributes (and also call it Attribute un-
certainty) and the confidence assigned to Strings and
collections (Content uncertainty). However, the term
Content uncertainty is also used in other proposals to
refer to the degree of belief that a belief agent has in the
content of a belief statement [120,121,193]. To avoid
terminology conflicts, we grouped all objective uncer-
tainties of the values of model attributes (numerical or
not) in the Measurement uncertainty dimension, while
subjective uncertainty was classified in the Belief or
Spatiotemporal uncertainty dimensions.

Occurrence uncertainty is also called Existential un-
certainty [131,225], Record uncertainty [175] or Tuple
uncertainty [195] in the database domain, although the
meaning in all the cases is the same.

Design uncertainty is also referred to as Model un-
certainty in other contexts [223].

Some classifications also group Measurement and
Occurrence uncertainties under the names Data uncer-
tainty [125] or Content uncertainty [121]. We found our
separation useful for discriminating between the different
nature of these two types of uncertainty. Moreover, we
wanted to avoid the term Content uncertainty because
we realized it referred to quite different uncertainties in
different classifications.

Other authors also separate the Spatiotemporal di-
mension intoGeographical location uncertainty and Time
uncertainty [63,120,121,125]. However, we preferred to
unite them under the same dimension, as it is usually
done in the Geographical Information Systems (GIS)
domain [212]. Also, because they share some specific
characteristics.

Finally, other authors define a separate dimension:
Environment uncertainty [121,180], also referred to as
Context uncertainty [144,223]. This type of uncertainty
embraces a variety of uncertainties originating from en-
vironment circumstances, such as different or unknown
execution contexts, the boundaries and surroundings of
the system to be modelled, or the behavior of external
actors interacting with the system. By analysing the
existing proposals that deal with this type of uncertainty

in software models, we concluded that it comprises two
main aspects. The first one affects the Design of the
system in order to accommodate to unknown, vague
or changing user or environmental requirements. The
second one focuses on the execution of the system at
runtime, to cope with uncertain behaviors from external
actors or from the environment itself. In all cases, the
system and its environment could be treated as the two
flip sides of the same coin, and thus we realized that
this type of uncertainty could be perfectly covered with
the Design and Behavior uncertainty dimensions.

Similarly, the uncertainty aspects of the system Re-
quirements and goals, which was another dimension
defined in other taxonomies [144,180,201], could be eas-
ily integrated into other dimensions of our classification
depending on whether they refer to the system Design
or Behavior because they also affected them. In fact,
we came to this conclusion about the Environment and
Requirements dimensions because we initially defined
them, but as soon as we started classifying the proposals,
these dimensions were never used in isolation but to-
gether with others. It was then that we began to realize
the overlapping nature of these dimensions and decided
to include them in others, with satisfactory results.

3 Research questions and review method

To gather the papers related to uncertainty represen-
tation in software models, we followed a systematic
and structured method inspired by the guidelines of
Kitchenham [166] and Webster et al. [226]. We also took
inspiration from surveys on related topics, such as for-
mal verification of static software models in MDE [150],
model transformation design patterns [171] and the exe-
cution of UML models [137].

3.1 Research questions

The first step is to state the research questions that will
guide our study. These are the following.
– RQ1. What proposals exist right now to represent

uncertainty in software models?
– RQ2. What type(s) of uncertainty does each pro-

posal address?
– RQ3. What notations and formalisms are used to

represent each type of uncertainty?
– RQ4. In which domains are the different proposals

applied?
– RQ5. To which phase of the software life cycle does

each proposal apply?
– RQ6. Besides the representation of uncertainty, do

they allow any kind of analysis? Are they supported
by tools?
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By answering them, we get an overview of the existing
proposals, the type of uncertainty they address and how
they represent it. The questions also relate to the way
these representations are used, in particular the appli-
cation domains in which they are used, how and when
they are applied in them, and also to their maturity, i.e.,
whether the existing proposals provide any additional
added value (e.g., uncertainty analysis, tool support) to
software engineers beyond the mere representation of
uncertainty in their models. In short, these questions
correspond to the who, which, how, where, when, and
what, respectively.

The rest of this section is devoted to answer RQ1.
The others are answered in sections 4 through 8.

3.2 Inclusion and exclusion criteria

We scrutinized the existing literature (up to January
2020, when we conducted the literature review) look-
ing for papers having as focus the representation of
uncertainty in software models. We focused on works
dealing with the explicit modeling of uncertainty as-
pects of systems and their environments using software
modeling notations (general-purpose notations such as
UML, SysML or OCL; extensions of UML such as Fuzzy
UML and other UML profiles; or Domain-Specific Lan-
guages such as ConML, FAME, FUSION, or RELAX,
to mention a few).

We excluded works according to different criteria.
First of all, those works whose goal was not to repre-
sent or specify systems, but to query or analyse them.
Examples include the extensions to SQL or to Event Pro-
cessing Languages to deal with uncertainty in databases
or event streams, respectively. Examples of excluded
papers in this line are [209,186], which deal with prob-
abilistic databases and uncertainty in complex event
systems, respectively. Similarly, we did not consider the
numerous works dealing with model-based performance
or reliability engineering of software systems, which en-
rich software models with the information required for
evaluation using different notations (e.g., UML Profiles
such as SPT [190], MARTE [72] or DAM [129]), trans-
form the enriched model to a formal and mathematical
model supporting the evaluation (e.g., Queueing Net-
works [161,217], Probabilistic Process Algebras [157],
Stochastic Petri Nets [182,183], Fault Trees [143] or
Markov chains [214]) and evaluate the performance or
reliability of the system using the tools available for
the formal model [139,127]. The interested reader can
consult already existing corresponding surveys about
these topics, such as [131,156,175,195,200,224] in the
context of databases, [125] in the context of complex
event processing, or [127,128,168,160] on model-based

performance or reliability engineering of software sys-
tems. Second, we excluded papers that only describe
transformations between notations representing uncer-
tainty that are semantically equivalent. However, we
did include those works proposing transformations if
the representation in the target domain has a specific
purpose related to uncertainty analysis, and it is shown
in the paper. For instance, we included [117,118], which
transform from Fuzzy UML models to Fuzzy Description
Logics and to Fuzzy Ontologies, because they use the rep-
resentation in the target domain for uncertainty analysis
purposes. Third, we did not consider works proposing
representations of uncertainty that do not use software
modeling notations; for example those that use math-
ematical models [204], programming languages [136],
programming libraries [152,173], or use lower-level mod-
eling notations, such as partial Kripke structures [132].
Finally, we excluded papers that provide classifications
of the different kinds of uncertainty applied to specific
application domains, such as [135,144,180,199,201,207],
or that do not explicitly represent uncertainty [124].

3.3 Data sources

The first step for collecting the research works rele-
vant to this study is to identify the digital libraries
and electronic databases to use as sources. Apart from
their popularity, and inspired by [150], we considered a
strong requirement for the selected digital libraries the
possibility to perform batch retrievals of bibliographical
references. This allowed us to use reference managers for
handling the papers. In particular, we used JabRef1 and
Zotero,2 which are both open source. Having all the pa-
pers loaded into a reference manager reduces processing
time compared to having to look at each paper on the
corresponding digital library website. In addition, both
reference managers can perform quality checks on the
references to detect duplicate entries or missing details,
so we were able to save time and ensure the quality of
the supporting data.

After analyzing several digital libraries, we selected
the ones displayed in Table 1. All of them provide ad-
vanced search engines.

3.4 Search strategy and paper selection

Table 1 displays the number of papers obtained from
each digital library. We used the different engines for
applying the query (vagueness OR imprecis* OR un-
certain* OR accura* OR fuzz*) AND (“software model”

1 http://www.jabref.org/
2 https://www.zotero.org/

http://www.jabref.org/
https://www.zotero.org/
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Table 1 Search engines and number of studies retrieved.

Digital Library Studies

ACM 586
DBLP 422
Elsevier 173
IEEE Xplore 389
Scopus 1,403
SpringerLink 224
Web of Science 788

Total 3,985

OR uml OR “modeling language”) on the papers’ meta-
data, i.e., title, abstract and keywords. Note that we
did not only try to search for uncertainty, but also for
other terms sometimes used in the same context, such
as vagueness, imprecision, accuracy and fuzziness. Also
note that there are other design languages apart from
UML that can be used to model uncertainty. More-
over, our search query uses wildcards. Given that not
all search engines allow this type of search, we tried
to match the search terms as closely as possible when
queries with wildcards were not supported. In addition,
not all engines allow to search in the title, abstract and
keywords of the papers. For example, with SpringerLink
we could only search in the papers’ title and main text.

We generated one bib file per search engine. Springer-
Link only produces CSV files, so we had to use Zotero
to obtain a bib file with the papers [179]. Then, we
consolidated all references together in one single bib file
that was loaded into JabRef. We started with an initial
set of 3,985 papers, as shown in Fig. 1, which displays
an overview of the selection process. We used JabRef
and Zotero to remove duplicates, obtaining 3,131 papers
after this first step.

The next step was to apply the inclusion and ex-
clusion criteria presented above to filter the documents
from the set of 3,131 papers. For this task, they were
split among the four authors of this article, who screened
them and decided whether they should be initially se-
lected or not. We discarded 3,008 documents that did
not match the inclusion criteria of the survey, maintain-
ing a pool of 123 papers.

Then we carefully read these 123 papers and ex-
tracted the relevant information, as explained in Sect. 3.5.
43 of these papers were discarded in this phase, too, be-
cause when we read the papers in detail, we realized
that some of them did not meet the inclusion criteria
(the contributions of some of the papers were sometimes
difficult to classify).

At this stage we also performed a process of back-
ward snowballing [227], considering the related works
described in the selected papers. The purpose of this
process is to identify further papers that had not been
retrieved by any search engine or that were discarded by

Fig. 1 Overview of the selection process.

mistake in the initial filtering step. 36 new papers were
added after this process, making a total of 116 papers.
Other three papers were suggested by the reviewers of
the paper. Finally, before producing the final version
we sent the paper to those whom we cited, to check our
comments for accuracy and omission. This also provided
one final stage in the systematic trawling of the litera-
ture for relevant work, which resulted in 4 more papers
added to the final list after checking their suggestions
and performing a filtering and snowballing process on
them. This set of 123 selected papers will be referred
to as primary studies, and are listed separately at the
beginning of the References section. They can also be
consulted online [220].

3.5 Data extraction

All 123 primary studies were carefully analyzed to an-
swer our research questions. For each work, we extracted
the following information: the types of uncertainty ad-
dressed; the logic or formalism and modeling notation
used to represent the uncertainty; the software life cycle
phase where the proposal is used; the kinds of analyses
that the proposal enables as well as the tool support it
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Table 2 Types of uncertainty and papers that deal with them (#Papers > 123 because many papers address more than one).

Type of uncertainty #Papers Primary studies

Behavior 37 [2,5,15,17,20,21,22,29,30,35,36,37,38,39,46,54,67,68,71,72,73,77,78,82,87,90]
[94,98,100,101,107,108,110,115,119,120,121]

Belief 36 [3,4,12,16,26,41,44,45,55,56,57,58,59,60,61,79,80,87,88,91,93,95,96,97,99]
[111,112,113,114,117,118,119,120,121,122,123]

Design 31 [5,9,10,17,20,23,25,27,28,29,30,31,32,33,34,35,39,42,47,49,52,67,81,83,84,85,86]
[94,107,108,115]

Measurement 50 [1,6,7,8,13,14,24,26,40,43,45,47,48,53,54,55,56,57,58,59,60,61,65,66,69,70,71,72]
[74,75,76,87,89,91,92,95,97,102,109,110,111,112,113,114,117,118,119,120,121,123]

Occurrence 33 [8,11,26,44,45,48,51,55,56,57,58,59,60,61,69,81,87,91,92,93,95,97,99]
[111,112,113,114,117,118,119,120,121,123]

Spatiotemporal 11 [18,19,50,62,63,64,103,104,105,106,116]

Table 3 Types of uncertainty addressed per paper.

Types of uncertainty #Papers

Behavior 17
Behavior, Belief, Measurement, Occurrence 4
Behavior, Design 12
Behavior, Measurement 4

Belief 10
Belief, Measurement, Occurrence 19
Belief, Occurrence 3

Design 17
Design, Measurement 1
Design, Occurrence 1

Measurement 18
Measurement, Occurrence 4
Occurrence 2
Spatiotemporal 11

Total 123

provides; the application domains in which the proposal
is used, and the case studies carried out.

Primary studies were read by at least two different
authors to avoid misinterpretations or misclassifications.
To facilitate the process, we filled in a data extraction
form for each primary study in a shared spreadsheet.

Summary. To answer RQ1, about the existing propos-
als for representing uncertainty in software models, we
identified 123 primary studies that range a 20-year
time period (Jan. 2001 – Jan. 2020).

4 Types of uncertainty addressed

The previous section was intended to respond to RQ1
by identifying the existing proposals to represent uncer-
tainty in software models. This section aims at answering
RQ2: What type(s) of uncertainty does each proposal
address?

To respond to this question we will use the classifi-
cation framework introduced in Sect. 2.2, which defines
six types: Behavior, Belief, Design, Measurement, Oc-
currence and Spatiotemporal. Tables 2 and 3 summarize
our findings.

First, Table 2 identifies the papers that deal with
each type of uncertainty. The total number adds up to
198 because 48 of the 123 papers deal with more than one
type of uncertainty. We can see how there is a fairly uni-
form distribution of papers around dimensions, except
for the Spatiotemporal uncertainty that has received
less attention from the software modeling community so
far, with only eleven papers. In contrast, Measurement
uncertainty has received the highest attention, with 50
papers that deal with it.

Table 3 refines this information, describing the types
of uncertainty addressed by each paper. Of the 123
surveyed papers, 75 focus on only one type of uncertainty,
while 48 papers deal with more than one: 25 deal with
two types, 19 with three, and 4 proposals deal with four
types of uncertainty.

The remainder of this section will describe the types
of uncertainty shown in Table 3, using a few illustra-
tive examples that describe their most representative
features, and how they have been modelled using some
of the surveyed proposals. The order in which they
are described below aims at improving readability, and
therefore we will not strictly follow the order in which
they appear listed in Table 3.
Belief uncertainty. Ten papers focus precisely on this
type on uncertainty, using different approaches. For
example, paper [122] adds degrees of belief to UML
Use Case diagrams, using different options and logics:
Plausibility, Possibility and Probability. A Fuzzy exten-
sion to OCL is proposed in [96] to enable the use of
fuzzy variables within OCL constraints to combine re-
quirements on meta-model level with domain heuristics.
In [88], fuzzy and probabilistic information is used to
represent Belief uncertainty in the UML class diagrams.
Paper [12] allows belief agents to assign a degree of
belief to model statements and elements (e.g., attribute
values, constraints or OCL expressions in general) using
probabilities, while paper [41] annotates models with
subjective and temporal information. In turn, papers [3,
4] propose a collaborative conceptual model develop-
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ment framework, that uses Subjective logic for merging
viewpoint models developed by different users, and of-
fers various tools for reasoning and negotiating over
the models and hence formally building and measuring
consensus among the viewpoints. Other three papers
deal with the specification of trust in software models.
First, paper [16] defines Trust Transition Diagrams to
specify the trust of each agent and how it evolves, using
Fuzzy set theory. Then, papers [79,80] deal with trust
management and risk analysis, using extensions of the
STAIRS probabilistic sequence diagrams [77].
Measurement uncertainty. Proposals to represent
this type of uncertainty generally define extensions of
UML that enrich values of attributes with measurement
uncertainty. Most of the papers use probability dis-
tributions [6,7,13,14,24,43,65,74,89,102,109] or Fuzzy
set theory [66,75]. Two other papers use Probabilistic
Relational Models (and extension of Bayesian Belief net-
works) to represent uncertain values [1,53]. Finally, other
two papers deal with imprecise OCL constraints [40,
76]. We have also considered here the OMG propos-
als for modeling metrics (SMM [70]), real-time systems
(MARTE [72]), or systems engineering (SysML [71]),
which allow to add standard deviations or probability
distributions to property values to represent measure-
ment uncertainty. These annotations can also be used
in activity diagrams to represent stochastic behaviors,
combining these two types of uncertainty, Behavior and
Measurement, as proposed as well in [54,110].
Occurrence uncertainty is treated in isolation in two
papers. The first one [51] deals with cardinality con-
straints, which are assigned a degree of certainty on the
objects they hold, while the second paper [11] allows
modelers to assign a degree of certainty to the model
instances themselves. The rest of the proposals combine
Occurrence with other types of uncertainty.
Belief, Measurement and Occurrence uncertain-
ties. There is a significant number of papers that use
Fuzzy set theory to represent uncertainty in software
models, combining Belief, Measurement and Occurrence
uncertainties. For example, a UML Profile (FAME) [44,
45] was proposed for adding fuzzy information to UML
model elements. However, most of the works on express-
ing uncertainty using Fuzzy set theory employ Fuzzy
UML [58,59,60,91] or Fuzzy Entity-Relationship (ER)
models [55,57], sometimes combined with Description
logic [26,56,61,117,118,123] or with Fuzzy probabili-
ties [111,112].

Fuzzy UML follows the initial ideas by Zvieli and
Chen [234] and distinguishes three levels of fuzziness
in UML models. The first one assigns an attribute or
a class a degree of belief, which in Fuzzy set theory
corresponds to a real number between 0 and 1 expressing

a degree of membership. The second level is related
to whether some instances are indeed instances of a
class, for which an additional attribute (µ) in the class
indicates a membership degree of the instance. The third
level refers to the fuzziness of the value of an attribute,
indicated by a keyword FUZZY in front of the attribute
name. They correspond, respectively, to what we have
called Belief, Occurrence and Measurement uncertainty

Note that other proposals that use Fuzzy set theory
for representing uncertainty in software models employ
plain XML, defining specialized schemata. They nor-
mally cover several types of uncertainties, such as Belief,
Measurement and Occurrence uncertainty [58,95,97,113,
114]; or Belief and Occurrence [93,99]. The main goals
of using an abstract syntax such as the one provided by
XML are to enable the notation-independent representa-
tion of uncertainty and to facilitate the interoperability
among modeling notations that use Fuzzy set theory
for representing uncertainty. Therefore our decision to
include them in this survey.

Three other proposals [8,69,92] combine Occurrence
with Measurement uncertainty, expressing vagueness in
attribute values, class instances and association links,
based on Fuzzy set theory and using either UML or their
own modeling notations. Occurrence and Measurement
uncertainty is explicitly represented in [48] using prob-
ability distributions to achieve Risk and Cost analysis
under uncertainty.
Example 1 . To illustrate the representation of Belief,
Occurrence and Measurement uncertainties, let us use
an Alarm class (see Fig. 2) that represents the devices
typically used in buildings, industrial plants and other
facilities to detect fire. Objects of this class have three
attributes: an identifier ID, e.g., the device serial num-
ber; the current temperature of the room, as read by
a sensor embedded in the device; and whether there
is smoke in the room of not, as detected by another
internal sensor. First, sensors’ readings may have some
Measurement uncertainty, in terms of precision; for ex-
ample, the temperature sensor may have a precision
of 0.1 degrees Celsius, or the smoke sensor may have
a sensitivity of 85%. Second, the Alarm device itself
may be working or not, so we need to assign a confi-
dence to it (Occurrence uncertainty). Finally, external
belief agents may assign a degree of belief (e.g., 0.7) to
the temperature readings of the alarm, indicating their
subjective trust on that sensor (Belief uncertainty).

Figure 2 shows the Alarm class modeled using sev-
eral proposals for representing these three types of un-
certainty. First, the alarm is shown in (a) in plain
UML, i.e., without any uncertainty. Then, Fig. 2(b)
uses the UML uncertain datatypes proposed in [6,11,
12]. Measurement uncertainty is specified by means of
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Fig. 2 Different proposals for modeling the Alarm class and one of its instances: (a) without uncertainty; (b) using UML
uncertain datatypes [6]; (c) with SysML [71]; (d) with Fuzzy UML [59]; and (e) with the UML MARTE profile [72]

the primitive datatypes UReal and UBoolean, which
allow modelers to specify the required precision and sen-
sitivity in the sensor readings; Occurrence uncertainty
is modeled by an additional attribute (confidence) in-
herited from abstract class ProbableElement; and the
Belief uncertainty is modeled using stereotype «Belief»
that enables the specification of degrees of belief to
model elements. Fig. 2(c) shows the system modeled
with SysML [71], which only supports Measurement
uncertainty. It does so by assigning probability distri-
butions to the possible values of measures, which are
modeled as Valuetypes: in this case, the values of the at-
tribute temperature follow a Normal distribution with
standard deviation 0.1. One advantage of this proposal
is that units can also be specified in Valuetypes (Cel-
sius, in this case). Fig. 2(d) displays a model of the
system using Fuzzy UML [58,59]. This notation sup-
ports the specification of the three types of uncertainty:
Measurement uncertainty is specified by declaring the
two sensing attributes as FUZZY; Ocurrence uncertainty
is specified by the µ attribute; and the Belief uncer-
tainty on the temperature attribute is modeled using
the expression “WITH 0.7 DEGREE” (in Fuzzy UML, indi-
vidual degrees of belief held by different agents about the
same model element cannot be specified). We could not

find any modeling tool that supported the Fuzzy UML
notation, unfortunately, despite the large amount of
papers that describe it. Finally, Fig. 2(e) shows a model
of the system specified with the MARTE UML pro-
file [72]. Similar to SysML, MARTE only supports the
specification of Measurement uncertainty. In MARTE,
this is accomplished by means of the precision at-
tribute of NFP Types. These are extensions of datatypes
that incorporate precision, units and other properties
to the values of attributes that represent physical quan-
tities [72]. In the example, attribute temperature has
been defined using NFP_Temperature NFP type, and
therefore a precision can be specified.
Behavior uncertainty. Seventeen papers focus on the
representation of this type of uncertainty, in different
ways. Seven of them make use of probabilistic state
machines [22,38], probabilistic sequence diagrams [36,
77,78,82], Markov chains [2], or stochastic temporal
logic [15]. Two of them use Fuzzy State Machines [46] or
Fuzzy DEVS [37] to represent the stochastic behavior of
the system objects. One paper [73] proposes a probabilis-
tic extension of the π-calculus to specify the uncertain
behavior of the system environment. Two other papers
use some form of variability to deal with uncertain behav-
ior, depending on the application domain: component



12 Javier Troya et al.

John : Buyer : Seller

request

quotation

palt {0.7}{0.3}

payment

palt {0.9}{0.1}

goods

writeoff

cancelation

sd purchase

subj

John : Buyer
: Seller

payment

palt {trust}{1-trust}

goods

writeoff

ssd est (out trust)

[est.trust≥0.6]

[est.trust<0.6]

Fig. 3 STAIRS probabilistic sequence diagrams representing
uncertain behavior and trust [80].

interfaces with variability are used in the development of
component-based systems in [100], while the selection of
the best adaptation to use is proposed in [21] within the
Rainbow project to deal with uncertain behavior in self-
adaptive systems. Partial behavioral models [90,101]
allow the specification of incomplete behaviors using
modal-transition systems (MTS) [172]. The work [101]
extends the semantics of scenarios expressed in, e.g.,
sequence diagrams, to produce MTS, while [90] extends
Harel’s Live Sequence Charts [155] also with MTS se-
mantics. Finally, one paper [68] provides a formal se-
mantics for Fuzzy Communication Diagrams in terms of
Fuzzy Petri Nets, and other [98] also uses Fuzzy Petri
Nets to simulate a system specified in Fuzzy UML.
Example 2 . Figure 3 displays subjective sequence di-
agram, as defined in [80], which is one of the ways in
which uncertain Behavior and Belief can be represented
in models. In addition to the probabilistic choices de-
clared in the palt blocks, the behavior of the system is
also determined by the subjective probability estimate
x of agent John to trust the seller, and pay before the
goods are delivered. Behavior, trust and risk analyses
can be carried out based on such specifications.
Design uncertainty. Most papers that address this
type of uncertainty use variability models to describe the
possible design alternatives, using different approaches,
such as partial models or design space exploration tech-
niques. Partial models are used in general [31,33,34,83,
84] or applied to particular domains where uncertainty
is unavoidable, such as requirements engineering [85],
model evolution [86], software product lines [10,23,32],
Web engineering [9], or collaborative modeling [28]. De-
sign space exploration techniques are more common

Fig. 4 Uncertain design of the state machine of a distributed
file sharing application [33].

in approaches that deal with the uncertainty of model
transformations [25,27,52]. The uncertainty in this case
is a consequence of writing non-deterministic programs,
i.e., programs that do not have a general consistency
restoration procedure or that fail in being deterministic.
Some authors also assign probabilities to the different
design options in order to conduct various types of anal-
ysis, particularly in the field of enterprise architectures
to analyse their quality properties [49], or evaluate their
evolution [42].

Example 3 . To illustrate one way to represent Design
uncertainty in models, let us use the case study de-
scribed in [31,33], and shown in Fig. 4. It corresponds
to a simple peer-to-peer file sharing application whose
behavior is specified by a UML State Machine. Because
of the user’s vague requirements, six alternative behav-
iors must be considered simultaneously during the early
design phases, until the user decides what (s)he wants.
The 6 alternatives are described in the diagram shown in
Fig. 4, using the compact notation defined in [33] to spec-
ify partial models. The dashed lines represent decisions
not yet made, and the “may” formula determines the
valid combinations of the possible options. The reason-
ing about the system behavior considering all possible
alternatives is supported by the tool MU-MINT [31].

Behavior and Design uncertainties. Twelve papers
deal with both Behavior and Design uncertainties. They
all focus on the analysis of behavioral requirements of
the system under the presence of uncertainty, mostly
within the field of self-adaptive systems. They use differ-
ent approaches, such as feature or variability models [39,
94], Fuzzy set theory [5,20,30,115], Fuzzy branching
temporal logic [107,108], stochastic Petri nets [35], or
even Machine Learning techniques (Model Trees Learn-
ing) [29]. Finally, another paper of this group [17] uses
partial models and probabilities to deal with uncertain
behavior in assurance cases in the Automotive domain,
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Fig. 5 ConML classes (above) and objects (below) represent-
ing information with Belief and Spatiotemporal uncertainty.

while partial models are used in [67] to handle uncertain
environments.
Design and other uncertainties. One proposal [47]
combines Design and Measurement uncertainty in the
domain of business modeling to conduct profitability
analysis. It assigns probability to alternative designs and
uses probability distributions to describe the variability
of the attributes’ values. With the same goal, feature
models with fuzzy weights that denote fuzzy priorities of
the possible alternatives are also used [81] to represent
Design and Occurrence uncertainty.
Spatiotemporal uncertainty. Eleven papers address
Spatiotemporal uncertainty, using different notations.
Six of them [18,19,50,64,106,116] use Fuzzy UML or
other fuzzy notations. Three of them [103,104,105] use
a formalism called Object-Fields to represent this type
of uncertainty in software models. Two other papers [62,
63] use intervals and coarse-grained datatypes to specify
vagueness and accuracy in time and space information.
Example 4 . To illustrate the use of Belief and Spa-
tiotemporal uncertainty and its representation in soft-
ware models, we will use one of the existing propos-
als [63], which defines a UML-like language called ConML
for this purpose. The system shown in Fig. 5 is extracted
from a project from Digital Humanities, called DIC-
TOMAGRED [181], aimed at extracting information
about the location of toponyms in North Africa as they
appear in historical sources. The upper part of Fig. 5
shows some of its main classes, and the lower part dis-

plays a few objects. We can see that special datatypes
Number, Unit, Time can accept vague or even unknown
values, and attributes values can be qualified with sub-
jective degrees of belief : (*) stands for sure, (+) means
probable, (∼) possible, (-) improbable, and (!) impossi-
ble. In addition, a ReliabilityLevel can be associated
to Distance objects to indicate the confidence that we
have on the information they provide.
Behavior, Belief, Measurement and Occurrence
uncertainties. Four proposals deal with these four
types of uncertainty. They correspond to papers that de-
scribe overarching proposals for representing the various
types of uncertainty that may simultaneously happen
in certain domains, such as software architectures [87]
or cyber-physical systems [119,120,121]. They usually
support several options for representing each type of
uncertainty using different formalisms, leaving it up to
the user to decide which one to use.

Summary. RQ2 queried about the type of uncertainty
addressed by each proposal. As shown in Table 2, the 6
types of uncertainty are covered by the primary studies
in a balanced way, although a slightly higher treatment
of Measurement uncertainty is observed (25% of the
papers), and lower (5%) in the case of Spatiotemporal
uncertainty. In turn, 75 papers addressed only one type
of uncertainty; the rest treated two (25), three (19) or
even four (4).

5 Logics, formalisms and notations

This section describes the logics, notations and for-
malisms used in the papers, with the goal of answering
RQ3: What notations and formalisms are used to repre-
sent each type of uncertainty?

First, Table 4 lists the logics and formalisms used
by the different proposals. The first column defines the
keyword used to identify them, while column two lists
alternative notations used. For example, Probabilistic
Automaton refers to those approaches that use Proba-
bilistic or Stochastic State Machines, or Probabilistic or
Stochastic Sequence Diagrams. The last two columns
indicate the number of papers that use the formalism
and the type of uncertainty represented, respectively.

Table 5 indicates in detail the combination of logics
and formalisms that the primary studies use, depending
on the type of uncertainty targeted. It extends the in-
formation shown in Table 3, identifying the logics and
formalisms used in the different proposals.

Notations used. Another aspect of interest is the nota-
tions used by the proposals for representing uncertainty.
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Table 4 Logic/Formalism used (#Papers>123 because many papers use more than one formalism).

Keyword Includes #Papers Type of Uncertainty Represented

Possibility Fuzzy logic 43 Belief, Measur., Occur., Spatiotemp.
Probability Credence, Confidence 22 Belief, Design, Measur., Occur., Spatiotemp.
Plausibility Belief Functions, Entropy 7 Belief, Occur., Spatiotemp.
Bayesian Belief Networks Causal Networks 3 Belief, Measurement
Fuzzy Description Logic 6 Belief, Measurement, Occurrence
Fuzzy Probability 4 Belief, Measurement, Occurrence
Subjective Logic 2 Belief
Prob. Distributions GUM 16 Measurement
Many-valued logics Null values 4 Measurement
Intervals 4 Measurement, Spatiotemp.
Discrete Random Vars. 3 Measurement, Spatiotemp.
Fuzzy Numbers 2 Measurement
Probabilistic Automaton Prob. State Machines, Prob. Seq. Diagrams 16 Behavior
Fuzzy Temporal Logic 2 Behavior
Fuzzy Automaton Fuzzy State Machines, Fuzzy Seq. Diagrams 2 Behavior
Fuzzy Petri Nets 2 Behavior
Prob. Process Algebras 1 Behavior
Stochastic Petri Nets 1 Behavior
Modal Transition Systems 2 Behavior
Variability Models Partial Models, Feature Models 26 Design, Behavior
Design Space Exploration CSP, ASP 3 Design

Table 5 Combinations of Logics/Formalisms used in each paper (#Papers=123).

Keyword #Papers Type of Uncertainty Primary Studies

Fuzzy Automaton 2 Behavior [37,46]
Fuzzy Petri Nets 1 Behavior [68]
Possibility, Fuzzy Petri Nets 1 Behavior [98]
Probabilistic Automaton 7 Behavior [2,15,22,38,77,78,82]
Probabilistic Automaton, Intervals 1 Behavior [36]
Probabilistic Process Algebras 1 Behavior [73]
Modal Transition Systems 2 Behavior [90,101]
Variability Models 2 Behavior [21,100]
Plausibility 1 Behavior, Belief, Measur., Occur. [87]
Plausibility, Possibility, Probability 3 Behavior, Belief, Measur., Occur. [119,120,121]
Possibility 4 Behavior, Design [5,20,30,115]
Probability, Variability Models 1 Behavior, Design [17]
Fuzzy Variability Models 3 Behavior, Design [29,39,94]
Temporal Logic 2 Behavior, Design [107,108]
Variability Models, Design Space Exploration 1 Behavior, Design [67]
Stochastic Petri Nets 1 Behavior, Design [35]
Prob. Distributions, Probabilistic Automaton 4 Behavior, Measurement [6,7,43,74]
Possibility 1 Belief [96]
BBN, Possibility 1 Belief [16]
Fuzzy Probability 1 Belief [88]
Plausibility, Possibility, Probability 1 Belief [122]
Probability 2 Belief [12,41]
Probabilistic Automaton 2 Belief [79,80]
Subjective Logic 2 Belief [3,4]
Possibility 11 Belief, Measurement, Occurrence [45,55,57,58,59,60,91,95,97,113,114]
Fuzzy Probability 2 Belief, Measurement, Occurrence [111,112]
Possibility, Fuzzy Description Logic 6 Belief, Measurement, Occurrence [26,56,61,117,118,123]
Possibility 3 Belief, Occurrence [44,93,99]
Variability Models 12 Design [9,10,25,28,31,32,33,34,52,83,84,85]
Probability, Variability Models 3 Design [23,42,49]
Variability Models, Design Space Exploration 2 Design [27,86]
Intervals, Variability Models 1 Design, Measurement [47]
Possibility 1 Design, Occurrence [81]
BBN, Discrete Random Vars. 1 Measurement [53]
BBN, Probability 1 Measurement [1]
Fuzzy Numbers, Many-valued logics 1 Measurement [75]
Probability 4 Measurement [40,66,76,109]
Prob. Distributions 6 Measurement [13,14,24,65,70,102]
Prob. Distributions, Many-valued logics 1 Measurement [89]
Probability, Prob. Distributions 4 Measurement [54,71,72,110]
Possibility 2 Measurement, Occurrence [8,69]
Fuzzy Probability, Fuzzy Numbers 1 Measurement, Occurrence [92]
Probability, Prob. Distributions, Variab. Models 1 Measurement, Occurrence [48]
Probability 1 Occurrence [11]
Possibility 1 Occurrence [51]
Possibility 6 Spatiotemporal [18,19,50,64,106,116]
Probability 1 Spatiotemporal [103]
Discr. Random Vars., Intervals, Many-val. logics 2 Spatiotemporal [62,63]
Plausibility, Possibility 2 Spatiotemporal [104,105]
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Table 6 Notations used (#Papers>123 because some papers
use more than one notation).

Notation used #Papers %

DSL (new) 32 22.22%
DSL (existing) 23 15.97%
UML 32 22.22%
UML Profile 11 7.64%
OCL 10 6.94%
Fuzzy UML 22 15.28%
Fuzzy XML 7 4.86%
Other 7 4.86%
Total 144 100.00%

Table 6 shows this information. We can see how more
than one third of the proposals (38.19%) use Domain-
Specific Languages (DSL). Almost half of them are new
languages, defined either in an ad-hoc manner to repre-
sent uncertainty (e.g., ConML [63] or the one supported
by MU-MINT to represent partial models [31]), or as
extensions of other DSLs. For example, UIMFL (Uncer-
tain IFML) [9] is an extension of OMG’s Interaction
Flow Modeling Language, (IMFL) [192]. Other propos-
als use existing DSLs, because they already provide some
features to represent uncertainty (e.g., SysML [71]) or
simply use their basic functionality (e.g., KAOS [170]).

Almost 30% of the papers use UML, sometimes com-
bined with OCL, to represent uncertainty. All these
papers propose extensions to the standard notations
by adding new datatypes or novel languages features.
Eleven proposals use UML Profiles, which are the UML
mechanism for extending the language in an orderly
and semantics-preserving manner. A few of them use
standard UML profiles, such as UTP (the UML testing
profile [191]); while other proposals define new profiles,
such as UUP [119], or DAM [87].

Around 20% of the papers (29) use Fuzzy UML [58],
or Fuzzy XML [99]. Interestingly, these notations do
not seem to be supported by model editors (see Sect. 8).
Probably this is why their application within the field
of model-based software engineering seems to be rather
limited and mostly at the theoretical level, with no
primary study reporting any industrial application of
these notations.

Finally, a few proposals use other modeling notations,
namely, Fuzzy DEVS [169], the Object-Field model [140],
or fUML [194].

Summary. RQ3 was interested in knowing the nota-
tions and formalisms proposed to represent each type
of uncertainty. Our study shows a wide variety of for-
malisms used to support the model-based representation
and analysis of uncertainty. They depend largely on the
type of uncertainty being addressed and the type of anal-
ysis of interest (Tables 4 and 5). The notations used to
represent uncertainty in software models are also quite

diverse: approximately 38% use DSLs, 37% use UML,
OCL or UML profiles, and 20% use Fuzzy UML/XML.

6 Application domains

This section describes the main application domains
where uncertainty has been reported to be used, with
the aim of answering RQ4: In which domains are the
different proposals applied?

6.1 Case Studies

Examples, scenarios or case studies are often used to
clarify the contents of the papers, illustrate the propos-
als, or evaluate them. The way this resource is used
differs from paper to paper. Depending on the depth
with which the example has been developed, as well as
its closeness to the real world, we have classified the
case studies according to the following categories:

– Small Fragment: Short example that shows a sim-
ple piece of a system. These examples are easy to
understand, and usually known to the reader because
they represent prototypical cases, such as a printer,
a bank account, or a simple client-server application.
They are described and developed in a very brief way,
focusing on the theoretical concepts to be illustrated,
and avoiding superfluous details.

– Synthetic Case Study: An example that describes
a system, partly inspired in a real-life scenario that
contains uncertainty, but made up to illustrate some
particular aspect of interest and to ignore the rest.
Despite their simplifications, these case studies allow
the reader to effectively evaluate how the proposal
would work in a real situation. Examples related to
robotics, automotive applications, adaptive systems
and real-time systems are commonly used in this
category.

– Real Case Study: A case study based on a real
application. These examples, unlike the previous
ones, are analyzed and developed in depth. They
are usually closely linked to research projects or
challenges that arise in industrial environments and
are brought to the academic world by an industry
partner. Many of these case studies come from the
Systems Engineering domain.

– None: Although it is not frequent, we have also
found in the literature pure theoretical proposals
that are not illustrated by any example.

Table 7 shows the number of papers classified in each
category. From the 123 primary studies, 31 proposals
(25.2%) have been validated in real settings and describe
real case studies.
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Table 7 Types of case studies used in the papers.

Type of Case Study #Papers

Real 27

Synthetic 45
Synthetic plus Real 3

Small fragment 44
Small fragment plus Real 1

None 3

Total 123

6.2 Application domains

To classify the application domains where the primary
studies have been carried out, we have used the stan-
dard ACM Computer Classification System (CCS) [126],
descendeding to the second level of its hierarchy. We
have identified 12 CCS categories, which are detailed
below. Table 8 shows the primary studies carried out in
each one, highlighting in a separate column those that
have been applied in real applications.

1. Enterprise computing: mainly related to archi-
tecture frameworks (component-based architectures)
and enterprise architectures (DoDAF). 5% of the
papers (i.e., 6 out of 123) fall into this category and
most of them use non-real case studies. Papers are
dated between 2007 and 2019.

2. Arts and Humanities: application of IT in these
fields. Used in 4 proposals, mostly in the last 3 years,
and using both real and hypothetical cases.

3. Dependable and fault-tolerant systems and
networks, including self-adaptive and context-res-
ponsive systems. Thirteen papers fall into this cate-
gory, five of them applied in real case studies.

4. Embedded and cyber-physical systems: model-
ing uncertainty in this application domain is attract-
ing a growing interest as reflected by the increasing
number of papers published in the last five years.
Moreover, this is the domain where more proposals
use real case studies.

5. Real-time systems: Three papers fall into this
application domain type, which includes case studies
directly related to the industrial sector.

6. Collaborative and social computing: These are
human-centered computing proposals that allow mul-
tiple parties to collaborate on textual and graphical
models. Only one paper falls in this category, using
a real case study.

7. Data management systems: database applica-
tions constitute 10% of our primary studies and
tend to be the oldest ones. They are not normally
reported in real scenarios.

8. Cross-computing tools and techniques: papers
in this generic category of information systems present
general approaches to represent uncertainty in soft-
ware models, but without being oriented towards
any specific application domain. Due to their generic
nature, most papers in this category (that represents
23.6% of the papers) deal with non-real case studies.

9. Information systems applications: papers in this
category include those dealing with uncertainty en-
vironmental applications such as energy, air quality,
or land desertification, as well as geographic infor-
mation systems or systems with spatial-temporal
constraints. 12 papers address these issues, many of
them dealing with real case studies.

10. WorldWideWeb: dedicated to systems that model
uncertainty in the context of web applications and
services. Four primary studies fall into this category,
mostly applied in non-real case studies.

11. Formal methods and theory of security: these
are papers dealing with aspects of privacy, security,
trust and risk analysis. It only contains two papers,
none of them based on real cases.

12. Software notations and tools, including context-
specific languages, system description languages, or
transformations between models. It accounts for
17.8% of the proposals, most of them based on non-
real case studies.

Summary. RQ4 investigated the domains in which the
different proposals are applied. The results show three
main fields of application. Firstly, we have the cyber-
physical systems, real time and adaptive systems do-
mains where uncertainty can play a key role, which
together gather 31 proposals (25%), most of which are
used in industrial projects. Secondly, we have general
Information Systems applications, including enterprise
computing, arts and humanities, collaborative comput-
ing, data management systems, as well as WWW and
security applications, in which uncertainty is addressed
in 41 proposals (33%). Finally, 51 proposals (41%) are
applied in supporting applications for cross-computing
tools and techniques, and software notation and tools.
The use of real cases decreases in these last domains,
where proposals are demonstrated with synthetic appli-
cations or simple examples.

7 Software Development Phase

This section is devoted to answer RQ5: To which phase
of the software life cycle does each proposal apply? For
this, we have used the traditional phases defined in the
software engineering literature. They are agnostic with
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Table 8 Types of application domains (according to the ACM classification system) and papers that deal with them.

Type of application #Papers Real Synthetic Small Fragment None
domain

Enterprise Computing 6 [87] [22,26] [42,49,73]

Arts and Humanities 4 [62,63,64] [41]

Dependable and fault-tolerant 13 [20,30,67,107,108] [15,29,44,45] [5] [21]
systems and networks [66,115]

Embedded and cyber-physical 15 [39,54,89,110,119] [10,13,17,35,37]
systems [120,121,122] [38,74]

Real-time systems 3 [2,36] [72]

Collaborative and social 1 [28]
computing

Data management systems 12 [114] [8,55,56,57,58,59] [111]
[60,75,112,113]

Cross-computing tools and 29 [3,4,6,7,11,12] [9,33,43,51,61,76] [88]
techniques [14,31,34,40,65] [77,82,86,92,102]

[78,85,96,100] [118,123]

Information systems 12 [18,19,98,104,105] [46,90,101,103] [50,116]
applications [106]

World Wide Web 4 [53] [117] [16,91]

Formal methods and 2 [79,80]
theory of security

Software notations and tools 22 [47,48,52,69] [23,68,84,94,95] [1,24,25,27,32,70]
[97,99] [71,81,83,93,109]

Total 123 31 45 44 3

respect to the development methodology used. We list
them here only to clarify the terminology used.

– Requirements Analysis, including the elicitation
and analysis of requirements.

– Software Design, including both the development of
high-level conceptual models of the system, and the
production of detailed design models. Model transfor-
mations can also be defined in this phase to conduct
model analysis (horizontal transformations to other
semantic domains) or to generate implementations
(vertical model transformations).

– Verification, i.e., formal evaluation of the models
to check whether they capture the customer needs
and requirements, including simulation and other
types of analyses, such as model checking, theorem
proving, or light-weight formal methods.3

– Implementation, i.e., generation of the implemen-
tation code and the rest of the artifacts needed to
execute the system. It can be partly automated in
case of model-driven development, or manual.

– Testing (aka validation) of the system, i.e., the
process of checking that the final product meets the
specifications, which in this context includes, e.g.,
model-based generation of test cases and test scripts.

– Operation, including the deployment of the system
in the real environment and its operational use.

3 Verification and validation are two controversial terms,
to which different people assign different meanings. In this
context we will use the meanings defined and used in ISO
standards [162].

Table 9 Software Life Cycle Phase targeted by each paper.

SLC Phase #Papers

Analysis 8
Analysis, Design 7
Analysis, Operation 4
Analysis, Design, Operation 1

Design 35
Design, Implementation 11
Design, Operation 1
Design, Testing 2
Design, Verification 43

Testing 4
Verification 7

Total 123

– Maintenance: evolution of any of the artefacts or
documentation associated to the software system.

Table 9 shows the software life cycle phases where
the proposals are applied, together with the number of
papers that target them. This is graphically depicted
later in Fig. 10.

In turn, Table 10 lists the papers that target each
phase. The total number adds up to 193 because many
papers target more than one phase, as shown in Table 9.
As expected, most of the proposals (100) target the
Design phase because this is where software models are
most commonly used in practice.

Proposals addressing the Analysis phase (20) nor-
mally aim at capturing the system requirements when
they are unknown, incomplete, vague, imprecise or in-
consistent. Most proposals provide reasoning support for
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Table 10 Software life cycle phases targeted (#Papers>123 because many papers target more than one phase)

SLC Phase #Papers Primary studies

Analysis 20 [5,16,17,20,26,29,30,31,35,39,45,71,72,85,94,107,108,115,121,122]

Design 100 [1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,18,19,21,22,23,24,25,27,28,31,32]
[33,34,37,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,55,56,57]
[58,59,60,61,62,63,64,65,66,67,69,70,71,72,73,74,75,77,78,79,80,81]
[82,83,86,84,88,89,91,92,93,95,96,97,99,100,102,103,104,105,106,109,110]
[111,112,113,114,116,118,120,121,122,123]

Verification 50 [1,2,3,4,6,7,10,11,12,13,14,15,22,23,32,37,38,40,43,46,47,48,49,51,56,63,64]
[67,68,73,74,75,78,79,80,82,84,90,87,96,98,100,101,102,103,105,110,117,118,123]

Implementation 11 [19,53,57,58,59,93,95,97,99,113,114]

Testing 6 [36,54,76,89,119,120]

Operation 6 [21,29,30,35,39,115]

analysing the uncertainty in the system requirements,
as we shall later see in Sect. 8.

Some proposals (35) only do Design, but other (43)
also propose some sort of Verification and analysis on
the produced models including, e.g., consistency, satis-
fiability, risk or performance analysis. Seven proposals
focus mainly on verification. These analyses, as well as
the tool support they provide, will be later described
and discussed in Sect. 8.

Ten out of the eleven works that deal with the Imple-
mentation phase provide solutions for generating persis-
tent representations of uncertainty values, using either
XML schemata [19,58,93,95,97,99,113,114] or database
tables [57,59]. As mentioned above, these artefacts are
very valuable not only for storage and persistence pur-
poses, but also to achieve interoperability among differ-
ent modeling representations. Another paper [53] shows
how to generate code and database artifacts to produce
a functional prototype of a Web application, as well
as the uncertainty model to allow the propagation of
evidence and the knowledge inference.

Six proposals target the Testing phase of the soft-
ware development cycle, by showing how test cases can
be automatically generated for the system under test,
considering uncertainty. Most of them also provide some
type of analysis on the generated artefacts, such as test
coverage, consistency, correctness, etc.

Proposals targeting the Operation phase usually cor-
respond to systems that use models@runtime [130] to
implement self-adaptive features, such as requirements
or behavior. Thus, the system can self-adapt to changes
in the requirements, the environment, or the actual
usage of the system during the operation phase.

Finally, we found no modeling proposal targeting
the Maintenance phase considering uncertainty.

Summary. RQ5 inquired about the software develop-
ment phase in which the primary studies are applied.
As expected, the explicit representation of uncertainty
in software models is proposed in those phases where

software models play a prominent role. In particular,
the Design phase is the one with most proposals (100),
followed by the Verification phase where the software
engineers check that the models with uncertainty meet
the users’ requirements (50).

8 Analysis provided and tool support

The last research question, RQ6, investigates whether,
in addition to the representation of uncertainty, the
proposals allow some kind of analysis on the models
produced, and the level of tool support they provide.

8.1 Types of analysis

In Sect. 7 we identified 50 proposals that targeted the
Verification phase of the software life cycle, providing
some sort of analysis on the models. In addition, 16 of
the 20 papers targeting the Analysis phase also provide
some sort of analysis, which makes a total of 66 papers
(roughly 54% of the primary studies of our survey) that
are able not only to represent uncertainty, but also to
conduct some kind of analysis on the models endowed
with uncertainty. The rest of the papers simply proposed
notations for the representation of uncertainty, but gave
no hint as to the types of analysis that could be per-
formed with these representations. Table 11 lists these
types of analyses, as well as the papers that support
each one. The number of papers in Table 11 adds up
to 82 because some of the 66 papers provide more than
one type of analysis. The categories in Table 11 include
different analysis types, which are described next.

First, Requirement Analyses include the study
of the consistency, refinement, satisfiability or traceabil-
ity when requirements are vague [45], changing [5,29,
31,115] or partial [84,85], as well as operations for un-
certainty mitigation [20,107,108], or fuzzy requirements
elicitation [122].
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Table 11 Type of analysis supported by primary studies.

Type of Analysis #Papers Primary Studies

Req. Analysis 12 [5,20,29,31,35,45,84]
[85,107,108,115,122]

Queries 15 [6,7,11,12,13,14,40,43]
[46,63,64,74,75,96,102]

Design Space Explor. 4 [10,30,32,47]

Correctness 11 [1,3,4,39,51,56,82,100]
[117,118,123]

Capability Analysis 1 [26]

Cost Analysis 2 [23,48]

Performance Analysis 3 [46,49,110]

Risk Analysis 5 [23,48,79,80,94]

Reliability Analysis 4 [4,22,68,87]

Safety Analysis 1 [17]

Trust Analysis 2 [79,80]

Temporal Analysis 8 [2,15,38,67,73,78,90,101]

Simulation 12 [6,7,11,12,13,14,15]
[37,40,90,98,101]

Visualization 2 [103,105]

Total 82

Queries refer to the possibility of querying the
model about the level of uncertainty of the complete sys-
tem or that of some of its model elements. This includes
supporting uncertainty analysis, i.e., the propagation of
uncertainty throughout operations [163], and also sensi-
tivity analysis, i.e., how the uncertainty in the output
of a model or system can be divided and allocated to
different sources of uncertainty in its inputs [208].

By Correctness we mean the analysis of the con-
sistency, satisfiability or faithfulness [174] of the model
specifications once they are endowed with uncertainty.

Design space exploration refers to systematic
analysis and pruning of all possible design choices based
on parameters of interest.

Other types of analyses include Capability, Per-
formance, Risk, Cost, Safety, Trust or Reliability
analysis. Although a few of them are carried out in
the Requirements Analysis phase, the majority of the
proposals conduct these analyses on the Design models.

Temporal analysis focuses on the study of the tem-
poral properties of the system, be they real time prop-
erties or not. For the latter, some modal logics are
generally used.

Twelve proposals allow the Simulation of the mod-
els endowed with uncertainty, using different notations
such as Fuzzy-DEVS [37], Fuzzy Petri Nets [98], or
action languages associated to modeling tools such as
SOIL [134], the textual action language provided by the
USE modeling tool [149].

Finally, two studies focus on Visualization of the
Spatiotemporal information with uncertainty, using Ob-
ject-Fields [140].

8.2 Tool support

We also wanted to know the level of tool support that the
123 proposals provided. For this purpose we differentiate
between the following three different types of tools.

– Model editors, to specify the models and represent
the associated uncertainty;

– Analysis tools, to carry out the analysis tests that
the proposals provided; and

– Supporting tools, in charge of performing inter-
mediate tasks, such as the transformations between
the outputs of the model editors and the analysis
tools.

First, Model editors are essential tools in model-
based engineering, where models are software artifacts
that must be able to be manipulated by computers,
through model transformations or through other tools.

Table 12 shows that only 61 of the 123 proposals
(49.6%) claimed any tool support for specifying their
models. Tool support ranged from dedicated editors
developed as Eclipse plugins, as stand-alone tools, or as
extensions of existing model editors. Eleven proposals
defined a UML Profile, so any UML modeling tool with
support for Profiles could be used to edit these models.

The remaining 62 proposals (50.4%) remained at a
theoretical level. Even when this topic is recent, we find
such a number somewhat excessive for any engineering
discipline that aims to provide useful results for prac-
titioners and industrial developments. Besides, only 22
of the 61 proposals with a priori tool support for model
edition provided a link to access the tool or UML Profile
mentioned in the article, which means that only 18% of
the 123 proposals could actually be modeled with tools.

Table 12 also shows the number of proposals that pro-
vided some sort of Verification/Analysis on the models
endowed with uncertainty, as identified in the previous
section. Of these 66 proposals, only 37 provided some
form of tool support for implementing or carrying out
these analysis, including queries, model verification, sim-
ulation, temporal analysis, etc. The type of tool varied
according to the proposal: analysis tools developed ad-
hoc for the proposal, external tools used to perform
the analyses, libraries developed to perform the tests,
etc. Of those that provided some type of analysis tool
support, only 15 indicated a working link to use the
proposal. The others did not mention any reference to
a website or URL from which the analysis toolkit could
be accessed, downloaded or used; mentioned that their
tools were still in a prototype stage and not ready for
public use; or provided a link that did not work.

The right side of Table 12 shows the breakdown
of tool support according to the type of uncertainty
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Table 12 Tool support provided by the primary studies.

123 (100%) Design Meas. Belief Occur. Behav. Spatiot.

Proposals with tool-supported editors 61 (50%) 19 25 13 9 23 3
With working link to the editing tool a 22 (18%) 7 11 1 2 6 0

Proposals providing model analysis/evaluation 66 (54%) 20 20 14 10 28 4
Proposals supported by analysis tools 37 (30%) 10 13 4 3 14 2
With working link to the analysis tool 15 (19%) 6 7 1 2 6 0

handled by the different proposals. There is no particular
bias towards any of them. Something that is interesting
to note is that more than half of the proposals with tool
support have been published in the last 5 years (see
Fig. 11 in Sect. 9), which represents a positive trend.
Even so, the number of proposals with tool support
remains very low.

Summary. RQ6 investigated the level of tool support
provided by the different proposals. Firstly, only 61%
of the proposals provide tool-supported model editors
with the ability to describe the models with uncertainty,
a somewhat disappointing result for an engineering dis-
cipline. Fortunately, the situation is improving in recent
years with the emergence and adoption of Software Lan-
guage Engineering tools and techniques. Secondly, only
half of the primary studies that proposed analysis meth-
ods were supported by tools, and only a third made these
tools available to the community. Once again, we see a
recent trend to make tools and other software artifacts
available to the community so that other researchers
and practitioners can use them in their applications. In
turn, the types of analysis provided by primary stud-
ies widely differ (see Table 11), with four main groups:
requirement analysis, model queries, quality analysis
(such as correctness, cost, reliability, trust, safety, etc.),
and simulation and visualization.

9 Analysis of literature review

9.1 Timeline and publication trends

Figure 6 shows the number of primary studies according
to the year of their publication. We can see how there
is an increasing trend throughout the years.

9.2 Publication venues

Figure 7 shows the distribution of papers according to
the type of publication. Figure 8 refines this information
by showing the evolution over the years of the differ-
ent publication venues where the primary studies have
appeared. We use the 5-year average, which is more infor-
mative and visually understandable than the individual
years’ figures, because it absorbs the peaks that some
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Fig. 7 Distribution of papers per publication type.

particular years present (this is normal when dealing
with publications in journals, which may suffer delays
that cause artificial accumulations in some years).

9.3 Research distribution across uncertainty types

Figure 9 shows a pie chart with distribution of primary
studies published for each type of uncertainty. This
information is refined in Table 13, which shows the
number of papers published every year for each type
of uncertainty. We can see an increasing trend in the
number of publications, which is similar in all types of
uncertainty.
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9.4 Software Development Phase

Figure 10 displays the number of primary studies that
are applied in each software life cycle phase, which were
described in Table 10. As mentioned in Sect. 7 when
discussing these results, they correspond to how general
software models are used in these phases, too.

9.5 Tool support

Finally, Fig. 11 shows the 5-year average number of
primary studies supported by tools. Again, the 5-year
average is used to display the data because this infor-
mation allows to see the trends in a more informative
and visually understandable manner than showing the
individual years’ numbers. We can clearly see in the
chart how the number of primary studies that provide
tool support steadily increases, with a significant growth
in the last five years.

Table 13 Number of papers that address each type of uncer-
tainty per year of publication.

Year Beh. Bel. Des. Mea. Occ. Spa. Total

2001 0 0 0 1 1 1 3
2002 0 2 0 1 2 0 5
2003 0 1 2 0 2 0 5
2004 0 0 0 2 2 0 4
2005 0 2 0 1 1 1 5

2006 1 2 0 3 2 1 9
2007 2 1 0 2 1 0 6
2008 2 3 0 1 0 0 6
2009 4 2 2 4 1 0 13
2010 4 2 2 2 1 1 12

2011 3 2 1 2 2 0 10
2012 0 2 1 3 2 0 8
2013 4 4 5 3 3 0 19
2014 1 2 2 2 4 0 11
2015 2 1 4 4 1 1 13

2016 2 2 3 6 2 0 15
2017 3 1 3 1 1 2 11
2018 3 3 2 5 3 1 17
2019 6 4 3 7 2 3 25
Jan’20 0 0 1 0 0 0 1

Total 37 36 31 50 33 11 198
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Fig. 10 Number of papers for each software life cycle phase.

10 Discussion

The previous sections aimed to give a picture of the state
of the art of the explicit representation of uncertainty in
software models and its evolution since it started, in the
early 2000s. This section examines some of the trends,
opportunities and challenges of this topic. The threats
to the validity of our study are also presented.

10.1 Maturity level

From our survey we can see how the community has
explored many different options, using alternative nota-
tions and underlying logics, and applied them in diverse
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domains and case studies. From our point of view, ef-
forts so far have been mostly of an exploratory nature,
trying to investigate the different types of uncertainty
that occur in these domains, how to represent them
explicitly in software models, and how to reason about
the system with these models once they are endowed
with uncertainty.

This basically corresponds to the Initial level of any
Maturity Model [159]. This level is characterized by
heroic and individual efforts, normally undocumented
and driven in an ad-hoc, uncontrolled, chaotic and re-
active manner. Tool support is scarce and no agreed
guidelines and methods are in place. This is the situ-
ation identified by our survey. Now we need to move
forward, advancing through the following levels.

In next maturity level, called Repeatable, the process
is documented sufficiently such that repeating the same
steps may be attempted, possibly with consistent results.
In this case, precise guidelines need to be in place to help
software engineers to identify the types of uncertainty
that can affect their application domains, suggest the
best notations to use depending on the required level of
analysis and tool support, and count on methods to im-
plement them in practice. Although not rigorous yet, the
process of modeling uncertainty should be documented,
predictable and supported by engineering tools.

In the third maturity level, called Defined, the com-
munity should have agreed on a series of standard pro-
cesses and tools for modeling uncertainty, which should
be widely known and have a supporting history of suc-
cessful (and failing) applications and validation in a
range of situations. They should also be subject to some
degree of improvement over time.

The final two phases, Capable and Efficient, respec-
tively require that the representation of uncertainty in
software models be quantitatively managed according
to agreed metrics, and that it be subjected to deliberate
optimization and improvement processes.

Our survey makes it clear that we are still at the Ini-
tial maturity level. However, we have also seen a recent
trend to apply these proposals in real case studies, from
various application domains. The results and lessons
learned from these experiences are fundamental to start
working towards the next level of maturity, through
the development of guidelines, methods and tools for
the representation and analysis of uncertainty in soft-
ware models. In particular, tools are essential in any
engineering discipline. Without them we can once again
disappoint the software industry with promises that will
not help them solve the real problems they have, this
time about managing uncertainty as a first-class citizen
of their analyses, designs and developments.

Reaching this next maturity level is probably the
greatest challenge that uncertainty modeling currently
faces. Note that it is also important that we consolidate
the second level before we can address some of the issues
that fall under the third one, such as standardization.

10.2 Trends and Opportunities

Our survey shows an increasing number of research
efforts dedicated to uncertainty modeling, which means
that there is a vibrant community interested in the topic.
Next we describe the opportunity envisioned, possible
next steps and the importance of industry.

Opportunity. The growing number of application do-
mains where uncertainty needs to be explicitly repre-
sented in software models demonstrates an increasing
interest in this area, particularly in certain fields such as
self-adaptive systems, the IoT or cyber-physical appli-
cations. Such a momentum could be effectively used to
leverage the research power of the modeling community,
which has an outstanding opportunity to work in collab-
oration with other physics and engineering disciplines,
and with the industry, on this topic.

Next steps. So far, the efforts have been mostly made
in a disorganized and disorderly manner, mainly to ex-
plore modeling alternatives. Perhaps this is a good time
for the modeling community to try to organize their
efforts to achieve concrete objectives, useful for the in-
dustry and, as mentioned before, that can help reach
a higher maturity level. In particular, (i) reaching a
consensus on a taxonomy of types of uncertainty, (ii)
identifying the most appropriate notations for represent-
ing them depending on the situation, and (iii) providing
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useful tool support, would constitute the most sensible
next steps.
Industry-driven. It is very important that we start
to be driven by industrial requirements, in addition to
the mainly scientific or research initiatives that have
guided us so far. In this way, we will be able to identify
the key problems to be addressed, as well as the main
requirements and limitations of our proposed solutions.
Industry’s current interest in this issue, as demonstrated
by the number of real case studies used in the primary
studies, should be the driving force behind our efforts.

10.3 Threats to validity of our study

According to Wohlin et al. [228], there are four basic
types of validity threats that can affect the validity of
our study. We cover each of these in the following.

10.3.1 Conclusion Validity

Threats to the conclusion validity are concerned with
the issues that affect the ability to draw correct conclu-
sions and whether the survey can be repeated. In order
to mitigate these threats, we have made available the set
of selected primary studies [220], from which papers are
easily accessible, so that the experiment can be repeated
and the results verified. Another possible threat to con-
clusion validity is that of publication bias [218]. This
threat refers to works rejected by reviewers or editors,
as well as works not submitted or published by their
authors, as they might be considered non-significant.
Such papers might alter the results of our study. How-
ever, we decided not to include them for two reasons:
the difficulty of finding them, and their possible lack of
quality since they have not undergone the scientific filter
of a peer review process. In this respect, the potential
advantage of including them could be jeopardised by
the possible disadvantages they might entail.

10.3.2 Construct Validity

These threats are concerned with the relationship be-
tween theory and what is observed. According to Woling
et al. [228], construct validity threats are related with
those issues that might arise during research design.
One of the threats is known as the mono-method bias,
which is related to the use of one single metric in the
papers analysis. In our survey, we have mitigated this
threat by studying the primary studies from several
dimensions and drawing conclusions for each one. As
explained in Section 3.1, such dimensions correspond
to the who, which, how, where, when and what of all

primary studies. Another type of threat is known as con-
founding constructs as well as levels of constructs [228].
In our study, this threat has to do with the fact that a
particular proposal could be categorized in more than
one specific dimension. In fact, a specific paper may deal
with more than one type of uncertainty (cf. Sect. 4). To
mitigate this threat, we have considered all the types
of uncertainty that are addressed in all primary studies
when drawing figures and conclusions, and not just the
most representative one as is being done in some other
mapping studies [229].

10.3.3 Internal Validity

These threats are related to the factors that could affect
the results of our evaluation. In the case of internal
validity, they also influence the process of selecting the
papers. According to Wohlin et al. [228], we should
consider publication selection and instrumentation.

The main factors influencing the publication selec-
tion process are keywords, digital libraries, language of
publication and time frame. In terms of instrumenta-
tion, it is mainly related to the venues considered by the
digital libraries used. Our selection process is explained
in Sect. 3.2. Our goal was to mitigate the internal va-
lidity threats by avoiding overly restrictive decisions.
For example, the keywords used are sufficiently generic,
which is supported by the fact that we started with an
initial set of 3,131 documents after removing duplicates
(see Fig. 1). In addition, we use seven different digital
libraries, as shown in Table 1, which minimizes the risk
of having left out many important papers. Furthermore,
we trust that these seven digital libraries include all
venues where papers on the subject of uncertainty rep-
resentation in software models are published, since they
all return papers in the field of software engineering. Of
course, some papers may have been overlooked because
they did not explicitly mention any of the selected key-
words (uncertainty, vagueness, imprecision, etc.). Thus,
before submitting the final version, we sent the paper
to those whom we cited, to check our comments for
accuracy and possible omissions. This also provided one
final stage in the systematic trawling of the literature
for relevant work. We aimed for completeness by trying
to include all the papers on the subject of the study, as
explained above, but no survey of extensive literature
can ever claim to be complete.

10.3.4 External Validity

These threats are related to the extent to which it is
possible to generalize the findings and conclusions of
this study. Since this is a survey of a specific topic, we
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do not intend to make any generalizations. Our study
refers to published papers on the explicit representa-
tion of uncertainty in software models, so it cannot be
generalized to any closely related field of research.

11 Conclusions

We have provided a comprehensive overview and analy-
sis of the research work on uncertainty representation
in software models. The survey presented the current
research state of the existing proposals (up to January
2020). It also summarized the definitions, notations and
formalisms used to represent uncertainty in software
models, as well as the application domains in which
existing proposals are used, and how they are applied.
Finally, research trends, opportunities and challenges in
representing uncertainty in software models were also
discussed.

The results of our study show that we are at a stage
where the research community should move from an
initial level of maturity, focused purely on scientific and
exploratory issues, to a more pragmatic level where we
can reflect on what we have learned so far to improve
current industrial modeling practices. In this respect,
we advocate the development of agreed guidelines, meth-
ods and tools for the representation of uncertainty in
software models that can help software engineers to rep-
resent and analyse their systems in a more predictable
way, with consistent results and supported by useful
tools. After twenty years of research on this topic, we
are at a time when the community should analyse cur-
rent achievements and existing proposals, and try to
synthesise notations, guidelines and tools for the indus-
trial representation of uncertainty in software models.

We hope that this survey can help software engi-
neering researchers in that endeavor, and that it will
help more researchers contribute to the difficult prob-
lem of modeling complex systems in a more faithful and
accurate manner.
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