
Noname manuscript No.
(will be inserted by the editor)

Predictions-on-Chip: Model-based Training and Automated Deployment
of Machine Learning Models at Runtime
For Multi-Disciplinary Design and Operation of Gas Turbines

Sebastian Pilarski · Martin Staniszewski · Matthew Bryan · Frederic Villeneuve ·
Dániel Varró

Received: date / Accepted: date

Abstract The design of gas turbines is a challenging area of
cyber-physical systems where complex model-based simu-
lations across multiple disciplines (e.g. performance, aerother-
mal) drive the design process. As a result, a continuously
increasing amount of data is derived during system design.
Finding new insights in such data by exploiting various ma-
chine learning (ML) techniques is a promising industrial
trend since better predictions based on real data result in sub-
stantial product quality improvements and cost reduction.

This paper presents a method that generates data from
multi-paradigm simulation tools, develops and trains ML
models for prediction, and deploys such prediction mod-
els into an active control system operating at runtime with
limited computational power. We explore the replacement
of existing traditional prediction modules with ML counter-
parts with different architectures. We validate the effective-
ness of various ML models in the context of three (real) gas
turbine bearings using over 150,000 data points for training,
validation, and testing. We introduce code generation tech-
niques for automated deployment of neural network models
to industrial off-the-shelf programmable logic controllers.

S. Pilarski
McGill University
E-mail: sebastian.pilarski@mail.mcgill.ca

M. Staniszewski
Siemens Canada Ltd.
E-mail: martin.staniszewski@siemens.com

M. Bryan
Siemens Energy Inc.
E-mail: matthew.bryan@siemens.com

F. Villeneuve
Siemens Energy Inc.
E-mail: frederic.villeneuve@siemens.com

D. Varró
McGill University
E-mail: daniel.varro@mcgill.ca

Keywords Prediction-at-runtime ·Machine learning · Neu-
ral networks · Automated deployment · Code generation ·
Gas turbine engines

1 Introduction

A cyber-physical system (CPS) needs to (i) autonomously
perceive its operational context, (ii) adapt to changes in an
open, heterogeneous and distributed environment with a mas-
sive number of nodes, (iii) dynamically acquire available re-
sources and aggregate services in order to make real-time
decisions, and (iv) continuously provide critical services in
a safe, resilient and trustworthy way [10,25].

Gas turbine development is a challenging area of CPSs
where complex model-based physical simulations across mul-
tiple disciplines (e.g. performance, aerothermal, secondary
air system) drive the engineering process at design-time to
predict relevant system parameters. However, some of these
predictions need to be carried out as part of the real engine
control system where the programmable logic controller (PLC)
hardware has very limited computing capabilities. Since design-
time simulations are computationally very expensive, dedi-
cated runtime predictor programs need to be developed and
maintained which may significantly lack in precision com-
pared to their design-time counterparts. In this paper, we
seek to leverage advanced machine learning (ML) techniques
for such runtime predictor programs.

Research Challenges The design of safety-critical CPSs, such
as gas turbines, frequently relies on systems engineering prin-
ciples facilitating the use of well-defined components inter-
acting with each other via precise interfaces. These compo-
nents are then deployed to a dedicated hardware platform.

While in the last decade, advances in ML techniques
have revolutionized various industrial domains, their use in

2 Sebastian Pilarski et al.

safety-critical applications is still limited. In such domains, a
certification process may prescribe an extra level of scrutiny,
but existing quality assurance techniques for ML fail to justi-
fiably ensure safe operation. In fact, incremental re-certification
is a major industrial driver which aims to scrutinize only
those system components which are potentially affected by
a change. As a result, substantial certification costs could be
saved. However, when the change of a component involves
the use of ML techniques, very few guidelines are available
for engineers for certification.

Therefore, in the current paper, we investigate three re-
search questions related to introducing ML components on
the system level as a replacement of existing components
design with traditional engineering methods in the context
of gas turbine design as a representative safety-critical CPS.

RQ1 How effective is it to replace an individual (traditional)
prediction component or a chain of components (mod-
ule) with ML-driven counterparts?

RQ2 How effective are different combinations of ML predic-
tion components for engineering models of gas turbines?

RQ3 How to automate the deployment of a trained ML model
to a CPS hardware platform to improve maintainability?

Objectives and Contributions In this paper, we aim to ex-
ploit ML techniques to enhance the precision and automate
the development and deployment of runtime prediction pro-
grams. For this purpose, we propose a novel family of predictors-
on-chip by (1) training various ML models using design-
time simulation data and then (2) automatically deploying
the trained ML models to the production environment by au-
tomated code generation. Design-time physical simulations
(and potentially existing field data) provide high-quality data
for the training of a ML model, and the trained model is de-
ployed without further alterations to the runtime system to
reduce (software) engineering efforts.

The main novel contributions of the paper can be sum-
marized as follows:

1. We present a novel industry application of existing ML
techniques in the context of gas turbine design where the
penetration of ML techniques is still sparse.

2. Given the safety-critical nature of gas turbines as a CPS,
we propose various deviations from common ML best
practices:
(a) We use only 20% of data for training and validation

and 80% for testing to ensure generalized behaviour.
(b) In addition to traditional error metrics which evalu-

ate the average behavior of ML components, we also
investigate worst-case behaviour and the direction of
error (e.g. when under-estimating a parameter can be
more problematic than over-estimating it).

(c) We incorporate deployment constraints imposed by
the target hardware platform as design consideration
for the ML component.

3. We carry out an extensive experimental evaluation of
various ML techniques taking a system-level perspec-
tive in the context of gas turbine design for bearing load
prediction with key insights.

– ML-driven components consistently provide better
bearing load prediction than existing (traditional) pre-
dictors. However, the errors of individual components
may accumulate in a component chain thus violating
compositionality principles (RQ1).

– Replacing multiple components with a combination
of ML prediction components improves upon exist-
ing traditional prediction modules, but replacing a
chain of traditional components with a single ML
component may be even more beneficial (RQ2).

4. We combine ML and code generation to automate the
deployment of ML components to programmable logic
controllers (PLCs) (RQ3).

The paper primarily focuses on gas turbine design as a
motivating CPS scenario of high industrial relevance, and
our contributions are evaluated in this context. However, we
believe that many of our core ideas could be adapted to other
CPS domains where high-fidelity runtime predictions are
necessitated in a real-time execution environment.

Structure of the paper. After an overview of related work
(Section 2), we discuss in Section 3 how ML components
can be used as functional prediction components in a CPS.
Furthermore, we summarize core ML concepts used in the
paper. We provide a brief overview of some engineering
challenges of gas turbines (Section 4). Then, we propose a
high-level architecture Section 5 for integrating ML tech-
niques and components into the design of gas turbines. Sub-
sequently, we present the prediction module problem def-
inition in Section 6. We propose load prediction module
architectures in Section 7 along with how to use ML best
practices to train various ML predictors using existing multi-
disciplinary simulators of gas turbine design as data sources.
We evaluate and compare such ML-based runtime predic-
tors with existing runtime predictors as individual compo-
nents as well as in prediction chains (where the output of
one predictor serves as the input of another predictor) (Sec-
tion 8). Next, we propose an automated code generation-
based technique to deploy an ML model to a real controller
chip with limited computing resources used in the real-time
control system of existing gas turbines (Section 9). We dis-
cuss threats to validity (Section 10) and finally, Section 11
concludes our paper.

2 Related Work

While machine learning, systems engineering, and runtime
CPS research areas are quite mature, the intersection of these

Predictions-on-Chip: Model-based Training and Automated Deployment of Machine Learning Models at Runtime 3

disciplines remains at an early stage of research. We catego-
rize related literature into several main areas: artificial in-
telligence (AI) techniques in gas turbine design, parameter
prediction, digital twins, model-driven engineering and ML,
and code generation for PLCs.

Load and Bearing Prediction Many applications of ML and
AI techniques exist to various parameter prediction prob-
lems in a larger engineering context (excluding gas turbine
design). For example, there exists a wealth of literature for
load prediction in buildings. Unsupervised and supervised
deep learning techniques for cooling load prediction are eval-
uated in [13]. The authors of [43] explored 12 different pre-
diction algorithms for building load prediction. A neural net-
work steam load predictive model was developed in [21]
while a support vector machine algorithm was used in [26]
to predict hourly building cooling load and evaluated in com-
parison to back-propagation neural networks. Suspended sed-
iment load in river water was predicted in [23] using support
vector machines and neural networks.

There also exists literature which relates to bearings in
various contexts. Several ML algorithms trained on high res-
olution bearing fault simulations are evaluated in [38]. Sup-
port vector machines and relevance vector machines classi-
fiers are created in [44] for fault diagnosis and classification
based on testing rig data. Feature models for classification
of bearing faults are created in [36].

Our paper exploits similar ML techniques for gas turbine
design and expands upon them by (1) evaluating various
system-level architectures, (2) assessing design decisions on
ML algorithms and feature selection, and (3) proposing an
automated technique to deploy a trained ML model to a ded-
icated (resource-constrained) production platform.

AI in Gas Turbine Design There exists significant litera-
ture concerning ML and AI techniques applied to gas tur-
bine design. For example, a hybrid AI and numerical ap-
proximation methodology was used to produce new turbine
designs in [15], and areas of gas turbine design where AI
could be applied described in [32]. Additionally, there ex-
ist works on machine learning for runtime prediction: using
neural networks for internal cycle parameter prediction [11]
[17], fault detection [31], engine sensor and component fault
and health diagnosis [18], and operating parameter predic-
tion [24]. A number of works also study neural networks
for prognosis [14] [19] and propose architectures such as
physics-informed recurrent network cells [29].

Our work can be regarded as a novel case study for in-
telligent gas turbine design with the novel aspects of (1)
contextualizing our work to systems engineering and CPSs,
(2) studying the impact of introducing ML-based predictor
modules into an existing system-level architecture, and (3)
directly deploying ML models into the control system.

ML in MDE/Digital Twins The intersection of model-driven
engineering (MDE) and ML is a rapidly growing research
area. Within MDE literature, there are works applying ML
for metamodel classification [30], model transformation [9],
artificial intelligence for requirements aware runtime mod-
els [5], and code generation [34]. Additionally, some pub-
lications focus on domain specific languages for machine
learning and code generation [8] [22].

Digital twins are a sprouting research area at the inter-
section of model-driven software and systems engineering,
telecommunication and artificial intelligence [28,7]. A dig-
ital twin prediction model for tool wear and condition is
presented in [35]. A framework for developing ML mod-
els from a digital twin perspective is proposed and validated
on a robot interacting with external parts in [4]. The authors
of [27] developed a digital twin framework and applied it to
fault diagnosis and prediction.

Our work presents new perspectives and problems in
these intersecting research areas. We present methodology
for applying MDE principles for automated deployment of
ML algorithms. Existing works focused on using ML for
MDE, and generating high level framework code implemen-
tations of algorithms (Tensorflow, PyTorch, etc.). Meanwhile,
we develop a code generator for machine learning in off-
the-shelf, low-level PLCs, where hardware limitations im-
posed by industrial environment precludes porting standard
frameworks or libraries. Likewise, our work presents de-
ployment of internal system behaviour prediction and moni-
toring within the low-level control system rather than to ex-
ternal (more computationally powerful) machines maintain-
ing digital twins. We present the efficacy and possible risks
of our methodology.

Code Generation for PLCs Literature exists related to pro-
grammable logic controller code generation. This includes
control loop code generation from defined state automata
[37] [40], ontologies [39] [41], and formal specification lan-
guages [12]. [16] presents model predictive control on a PLC.

Our work extends previous PLC code generation capa-
bilities to include ML such as neural networks in a manner
which enables MIMO model predictive control despite the
limited hardware capabilities.

3 Machine Learning in Systems Engineering

3.1 Runtime Predictions in Cyber-Physical Systems

Most cyber-physical systems have a well-defined system ar-
chitecture using functional components where the role of
each component is to (periodically) calculate a function as
output when a given set of inputs is provided (see Figure 1).
Model-based systems engineering aims to determine neces-
sary components, define input and output requirements for

4 Sebastian Pilarski et al.

each component, and connect all components together. De-
sign decisions for components and component interactions
result from domain knowledge and experience.

Module

Component C

Component A

Component B

Fig. 1 Functional architecture with components.

Definition 1 (Functional component) A functional com-
ponent Comp = (InP,OutP, Fun) consists of a set of in-
put ports InP and output ports OutP in order to provide a
certain functionality Fun.

Definition 2 (Functional module) A functional moduleMod =

(InP,OutP,Comp,Link) (aka compound component) con-
sists of input ports InP and output ports OutP , a set of
(simple or compound) components Comp with links Link
where each l ∈ Link connects (1) an output port of compo-
nent ci to an input port of component cj , (2) an input port of
module Mod to an input port of internal component ci and
(3) an output port of internal component cj to an output port
of module Mod.

Before deployment to production, such designs must un-
dergo thorough design review and certification, which in-
volves (multi-disciplinary) simulations to investigate and pre-
dict various characteristics (e.g. thermal, stress, reliability,
performance, etc.). In case of high fidelity models, such sim-
ulations provide precise estimates, but they need to be exe-
cuted on powerful server farms, yet a single simulation run
may still take hours to complete.

Definition 3 (Prediction module) A prediction modulePred =

f(In,Mod) : Out created in accordance with functional
module Mod operates at runtime by calculating output data
Out for each output port Mod.OutP when input data In
is provided to each input port Mod.InP of the respective
functional module.

Many of such predictions need to be deployed as part of
the CPS in operation executing on dedicated target hardware
within the control loop. However, due to high computational
complexity, most existing design-time simulators cannot be
deployed to a runtime environment, thus custom prediction
components need to be developed. As a consequence, the
precision of such runtime prediction components may be
lagging significantly behind their design-time counterparts.

In this paper, we aim to exploit various ML techniques
to train and deploy prediction components to CPSs in oper-
ation. Our approach uses design-time simulation results for
training various ML models, which are then deployable to
the target hardware thanks to their reduced memory foot-
print and small number of calculations. While at design-
time, the prediction of an ML module may be less precise
than a prediction obtained by using simulators, at runtime,
the prediction of a ML module can be more accurate than
existing traditional prediction modules.

3.2 Core Machine Learning Concepts

Machine learning (ML) [6] is the research discipline fo-
cusing on algorithms which learn to make inferences and
predictions from data without explicit logical instructions.
Machine learning usually relies on heavily statistical, prob-
abilistic, and derivative-based algorithms.

A major subclass of ML approaches are supervised ML
techniques, which will be used exclusively in the current
paper. Supervised algorithms require both input and corre-
sponding target output provided and seek to learn a function
which transforms the input to the target output. Applicable
tasks can be either classification (outputs belong to a defined
discrete set of prediction classes) or regression (outputs are
predicted along continuous variable spaces).

ML architecture There exist a multitude of ML algorithms
with vastly different underlying techniques. However, there
exist some general concepts relevant to the majority of those.

In a supervised learning context, all algorithms seek to
minimize a loss function. Some algorithms are derivative-
based (learn by gradient adjustment) and thereby require
the loss function to be differentiable. The actual learning in
most supervised algorithms learn occurs by repeatedly ad-
justing model parameters such as weights or probabilities
in order to minimize the loss function following some opti-
mization strategies. Examples of supervised ML algorithms
include neural networks, logistic regression, support vector
machines, Bayesian approaches, etc.

Hyperparameters Many algorithms have extra parameters,
typically designated as hyperparameters, which cannot be
estimated from the data and require manual adjustment dur-
ing the training process. A sample hyperparameter can be
the number of neurons or layers in a neural network.

Data sets Machine learning heavily relies on the availability
of high quality data, which is typically separated into three
independent sets: training, validation, and test. The training
set is used (at design-time) to train or fit ML algorithms.

Predictions-on-Chip: Model-based Training and Automated Deployment of Machine Learning Models at Runtime 5

However, as these algorithms can be sensitive to perturba-
tions in data, models must be tested on additional indepen-
dent data sets. The effect of tuning hyperparameters is eval-
uated on the validation set. The best tuning of an algorithm,
as determined on the validation set, is then tested on a final
independent test set.

Algorithms may not perform equally on each data set.
An algorithm suffers from overfitting when it achieves high
performance on a training set, but not on the test set, which
means that the algorithm does not properly generalize. An
algorithm suffers from underfitting when it does not achieve
sufficient performance on any of its data sets.

Specific attention may be required to decrease the num-
ber of inputs for an algorithm, as high dimensionality may
result in prohibitively high amount of data or training time.

3.3 Pipeline of Machine Learning

The engineering of a ML algorithm follows a general pipeline.

1. Problem definition: Clearly define objectives, require-
ments, and evaluation criteria for the problem.

2. Collect data: Ascertain that data is high quality, relevant
and (ideally) abundant.

3. Process data: Create a clean data set from the collected
raw data (distillation). This step could involve the re-
moval of certain pieces of data with errors and the re-
moval of extraneous parts. Data is split into appropriate
test, validation, and test sets.

4. Feature engineering: Determine which inputs and out-
puts (features) are best suited for the defined problem.
May also involve combining data to form new features
not present in data collection.

5. Develop ML architecture: Define and create a ML ar-
chitecture for the problem (e.g. use linear model or neu-
ral network with a given architecture, etc.).

6. ML training: Train or fit the ML architecture using the
training set.

7. ML validation: Validate the performance of the ML ar-
chitecture with a given set of hyperparameters on the
validation set.

8. ML testing: Test the ML architecture (with best deter-
mined hyperparameters) on the test set.

9. Optimize ML for deployment: Optimize the ML for
deployment onto the target production platform.

10. ML in runtime: Run the ML component on the real pro-
duction platform.

3.4 Categorizing Machine Learning Models

The machine learning community often refers to machine
learning algorithms as models. To avoid ambiguity, we will

refer to them as ML models. From a systems engineering
perspective, models may exist at both design time and run-
time. To place ML models in a systems engineering context,
ML models will also be differentiated accordingly.

– Pre-ML models: A pre-ML model is characterized by
the creation of a problem definition and datasets. These
are required for ML as a starting point.

– Design-time ML models: Such models are used by en-
gineers while the system is still under development, dom-
inantly for training and validation purposes, which are
carried out using powerful dedicated hardware (e.g. GPUs).

– Training ML Model: A training model includes train-
ing data and an ML architecture and a specific com-
bination of hyperparameters. Typically, a wide range
of training models are trained as part of tuning step.

– Validated ML Model: A validated model has un-
dergone significant training and tuning, thus it repre-
sents the best-performing training model for a given
architecture on the validation set. Its performance is
typically verified on an independent test set. Such
predictors (for each ML architecture) are considered
trained and finalized.

– Runtime ML Models: Runtime models are deployed on
the real system in operation as runtime predictors. As
such, they need to operate on the target computing plat-
form (e.g. on a controller chip) to process real inputs and
provide real-time output (as part of a controller loop).

– Deployment ML Model: This model evolves from a
validated model which has been optimized to fulfill
production requirements (memory limits, computa-
tion time, etc.). It is ready for production testing.

– Production ML Model: This model is a deployment
model actively running in production on the desig-
nated target hardware.

Runtime ML models can also be separated into two types
based on the exploitation of runtime data:

– Adaptive: An adaptive model participates in online learn-
ing during production. This model must remain train-
able and must maintain relevant learning settings for its
problem. This may involve keeping some of its train-
ing model configurations, but removing others. Note, the
model should be optimized to run and learn on its pro-
duction platform.

– Nonadaptive: A nonadaptive model does not actively
learn during production. The model can be considered
compiled, for a static instruction set of mathematical op-
erations is simply optimized to run on the production
platform. The majority of training model settings (dropout
configurations, optimizer function, etc.) can be excluded
from this model to reduce memory footprint.

6 Sebastian Pilarski et al.

Fig. 2 Example gas turbine [2] with simplified, labeled model.

4 Engineering Gas Turbines: An Overview

Our approach and methodology arises from engineering chal-
lenges faced by Siemens Power and Gas. First, we provide
an overview of the engineering context.

4.1 Engineering Context

Gas turbines (Figure 2) are a common type of internal com-
bustion engine used to generate power. Due to a multitude
of complex physics interactions (fluid interactions and com-
bustion), thorough design validation is required to ascertain
that the control system properly regulates engine behaviour
to prevent failures. An event which can trigger a damaging
engine failure is an over-load or under-load of a bearing. As
a result, significant engineering efforts are spent at design
time to ensure the engine maintains appropriate load on the
bearings at all times.

Design time Some engine models integrate an active bear-
ing load control component managed by the control system.
For such a component, the control system expects the cur-
rent load on the bearing and the target load as input. Un-
fortunately, no sensors exist to measure the actual bearing
load, thus it must be estimated from other sensor informa-
tion and engine parameters. In current engineering practice,
engineers need to manually create predictors which estimate
the bearing load, which is a very time consuming process.

Due to high costs of manufacturing and engine testing,
the majority of design validation is performed by running
engineering simulations (mainly physics-based equation solvers
for simulated conditions on physics engineering models).
Such simulations help engineers define safety envelopes, i.e.
parameters within which the engine can safely run.

Engineers run simulation tools and manually extract rel-
evant data from the results, which is then used to determine
correlated parameters to form the basis of generated predic-
tion functions. These functions are then integrated into load
prediction modules in the control system.

Runtime At runtime, the engine system runs the control sys-
tem code. Sensor readings are forwarded to the load predic-
tion module, which uses the engineer-developed correlation
functions to predict what the current bearing load is. Using
this prediction, the control system controls actuators to ad-
just the active bearing load control component to shift the
current bearing load towards a defined target load.

4.2 Simulation of Physical Engineering Models

The design of gas turbines is carried out with many teams
along several disciplines which include whole engine, sec-
ondary air system, aerothermal, thermo-mechanical, etc. Teams
develop models for each system component within their dis-
cipline and, at one stage, each team’s designs must unified
for the entire engine as a whole.

Engineering models are developed within engineering
tools and are heavily used during the design and validation
of a model. Models are changed to test new design ideas and
simulate how they perform. Physical simulations are run on
models which involve solving of physics equations (flow,
force, etc.) across the model. The majority of the engineer-
ing simulations use iterative physics solvers which attempt
to converge for each parameter in the model to a set thresh-
old. For a given model, a convergent solution, cannot always
be found by the simulation solver. Simulations are evaluated
across the range of engine operating conditions.

Engine disciplines, of course, interact and depend upon
each other. Thus, periodically, models must be converged.
Due to model interdependence, each discipline model con-
tains input parameters from other models. Such parameters
remain unchanged until changes are approved from the other
disciplines. To converge models, simulations are run in a
loop, until model parameters cease changing. This requires
a loop until convergence, as models affect each other. Each
small parameter change within a model’s simulation run af-
fects the inputs of other models, which, in turn, will affect
the model. This is illustrated in Figure 3.

In the scope of this work, we incorporate three relevant
gas turbine engineering disciplines, namely, performance,
aerothermal, and secondary air system.

4.2.1 Performance Discipline

Modeling and analysis of whole engine behaviour is the ba-
sis of engine design and enables decisions on which com-
ponents engineers should focus on to best improve engine
operation. Whole engine modeling is the focus of the perfor-
mance discipline, and primarily uses a 1D thermo-dynamic
meaning direction is limited to one spatial dimension.

This model maintains a static directed graph, with each
node relating to an engine component, station, or even on-
engine sensor. Edges connect various engine components to-

Predictions-on-Chip: Model-based Training and Automated Deployment of Machine Learning Models at Runtime 7

Engineering Model A Engineering Model B

X

Y

X

Y

Engineering Model A
(Updated) Engineering Model B

X'

Y

X

Y

Engineering Model A
(Updated) Engineering Model B

X'

Y

X'

Y'

Engineering Model A
(Updated) Engineering Model B

X''

Y'

X'

Y'

Engineering Model A
(Updated) Engineering Model B

W

Z

W

Z

Converged
Models

Model
Updated

Convergence
Iter. 1

...

Updated
Converged

Models

Fig. 3 Multi engineering model convergence illustrated. Purple high-
lights changes.

gether and define flow paths. The model requires the abstrac-
tion of components (blades, compressors, etc.) into simple
factors (efficiency, capacity, etc.) which form the attributes
of the graph nodes.

Definition 4 (Directed attribute graph) A directed and at-
tributed graph DAG = (N,E,A, src, trg, attr) has a set
of nodes N , a set of edges E connected to source and tar-
get nodes with respective functions src : E 7→ N and
trg : E 7→ N . Extra attribute values can be assigned to
nodes and edges using a predefined set of attributes A as
attr : (N ∪ E)×A 7→ <.

Definition 5 (Engineering performance model) An engi-
neering performance model is a directed attributed graph
EPM = (N,E,A, src, trg, attr) with defined engine com-
ponents and stations as nodes N , flow paths between com-
ponents as edges E with sources src and targets trg, and
attributes attr such as pressures, flows, efficiencies, etc.

The engineering performance model allows an engineer
to run the engine under substantially different operating con-
ditions, using limits (for example CO, turbine temperature,
turbine speed, NOx, etc.), and other settings. During simu-
lation, an iterative convergence algorithm is executed to find
the behaviour at each operating point (temperatures, pres-
sures, flows, rotation speeds, etc.).

Definition 6 (Engineering simulation) An engineering sim-
ulation,ESIM = (EM,OP, SOLV), involves setting cer-
tain operating conditions (attributes) OP for an engineering
modelEM and running a physics-based solver, SOLV . The
solver calculates the behaviour across the entire engineering
model as a result of the given operating conditions.

These determined behaviours are highly important for
control loops during the runtime of the engine as they pro-
vide a theoretical baseline for what should be occurring across
the whole engine. However, as performance simulations are
computationally too complex to run within the engine con-
trol system, some of the behaviour calculations are approxi-
mated using runtime predictors.

In this paper, we use the performance model to create
an array of operating points (varying temperature, humid-
ity, engine power output, etc.), which will generate the on-
engine sensor readings for each point. Then these values will
serve as the input to a ML-based predictor of bearing loads.

4.2.2 Aerothermal Discipline

Engines are designed to rotate turbine blades as efficiently
and quickly as possible to generate power. The aerothermal
discipline aims to design compressor and turbine blades.

Designing the airfoil and its cross sections of a turbine
blade involves the use of 2D and 3D models to balance the
aerodynamic properties of the blades with lift. Such sim-
ulations involve solving Bernoulli equations to determine
stresses, lift, efficiencies, the required amounts of flow, tem-
peratures, and pressures for the turbine and compressor blades
to function properly. Aerothermal flow requirements are used
as input to run secondary air system models under correct
assumptions.

4.2.3 Secondary Air System Discipline

Gas turbines endure high temperatures and pressures as a re-
sult of compression and combustion. Thereby efficient cool-
ing is paramount to maintain proper engine function, struc-
tural integrity, and significant engine life. The secondary air
system seeps air from the main intake path and guides air
through secondary passages to cool parts of the engine, pri-
marily discs, as well as to balance pressures. These passages
are lined with seals and restrictions to meter the flows re-
quired in the cooling process.

The vast majority of secondary air system design time
is spent working on a 1D model, which is represented as a
directed graph. Each graph node (with a set of attributes)
corresponds to a component (e.g. inlet, seal, pump) within
the secondary air system and graph edges form connections
(paths) between components.

8 Sebastian Pilarski et al.

Definition 7 (Engineering SAS model) An engineering SAS
model ESM = (N,E,A, src, trg, attr) is a directed at-
tributed graph with SAS components (pumps, seals, etc.)N ,
air flows E with sources src and targets trg, and attributes
such as pressures, flows, loads, and temperatures attr.

A simulation run involves setting the attributes of the en-
gineering SAS model (e.g. pressures and temperatures from
the combustion process), and iteratively solving the physics
flow equations for the remaining node attributes until con-
vergence. Pressures, temperatures, and loads are calculated
on the different components within the graph.

The SAS system must behave correctly at runtime other-
wise the engine will suffer large stresses and high levels of
heat. Because each SAS simulation run is a computationally
complex operation, certain SAS predictors must exist at run-
time to help the control system determine proper behaviour
and prevent safety-critical operation errors.

In this paper, we propose to create the data necessary to
train predictors for runtime bearing load prediction by run-
ning the secondary air system model simulations across a
vast number of operating conditions and storing the outputs.
The solver-calculated pressures and loads are used to calcu-
late bearing loads.

4.3 Objectives

In order to decrease engineering efforts and better maintain
proper bearing loads, the challenge is (1) to improve pre-
dictions, and (2) to automate the process of developing and
deploying predictor components.

These high-level challenges trigger three main technical
challenges in a systems engineering context:

1. Improve quality of runtime predictions: Better run-
time predictions of bearing loads result in improved main-
tenance of target loads, improved engine life, and pre-
vention of safety-critical failures.

2. Automate the design process of predictors: An auto-
mated design process saves engineers significant time
which can be better spent on other tasks. An additional
benefit is that more data and simulations can be ran in the
background yielding better predictors and evaluations.

3. Automate deployment of runtime predictors to ded-
icated hardware: The hardware on which the control
system of such engines is developed is a Programmable
Logic Controller (PLC). PLCs are primarily designed to
be robust, consistent and capable of functioning in any
environment. As such, these controllers tend to be weak
by modern computation standards, as they are single-
threaded, they disallow dynamic allocation, and do not
optimize provided code. This forces the deployed pre-
dictor to be computationally efficient.

5 System Architecture for Load Prediction

This section presents an architectural overview of the pro-
posed bearing load prediction system for gas turbines (illus-
trated in the form of a SysML block diagram in Figure 4).
The architecture incorporates three stages of development:
design time, deployment, and production. It details the
process starting from running engineering design tools to
physically running a real-time engine bearing load predictor
in the control system.

The design phase begins after there exist approved ver-
sions of performance, aerothermal, and secondary air system
design models. These models enable simulations of each of
the corresponding subsystems. A mixture of data from all
three subsystems is needed to develop the predictor in the
Predictor Creator module. The simulations of the various
systems are connected as a chain. The chain begins with a
performance model being run at an operating condition. Per-
formance outputs are required for aerothermal simulations
to be run, and the outputs of both are required by the sec-
ondary air system model. A Tool Runner was developed
to automate and launch each of the analysis tools across a
desired set of operating conditions and to organize simula-
tion output data in a way which maintains consistency be-
tween each of the performance, aerothermal, and secondary
air system outputs. This data organization is crucial as it en-
abled data querying used for data distillation. The Distiller
filters out important parameters and combines pieces of data
to create data sets for machine learning. The distilled data
sets are used in the Prediction Creator, in which an ML
predictor is developed (i.e. a neural network in our case).

The resulting predictor is deployed onto a PLC in the
deployment phase. The predictor is saved in a customized
JSON format which includes the model type, connections,
and weights within the network. The predictor is provided
to the Code Generator module which contains a Source
Code Generator and Configuration Generator. The for-
mer creates PLC source code for the runtime predictor in-
cluding instructions for activation functions and proper exe-
cution order of instructions. The latter packages this source
code together as well as generates the configuration require-
ments such as data structures, and metadata such as version-
ing. Using these configurations and source code, the predic-
tor is uploaded onto the PLC as a routine.

In production, on-engine Sensors are read periodically
and their values are delivered to the Load Predictor. The
Load Predictor uses these input values and updates the cur-
rent bearing load predictions. These predictions are used by
the Active Load Controller to calculate how to adjust the
actuator to increase or decrease the bearing load to the target
value from the prediction. A change induced by the actua-
tors causes a change in the bearing load. This loop repeats
indefinitely until engine shut down.

Predictions-on-Chip: Model-based Training and Automated Deployment of Machine Learning Models at Runtime 9

Deployment

Integrator

Controller	Code	Generator

Production

Control	System

Design Time

Performance

Aerothermal

Secondary Air/Oil System

Performance
Model

Aerothermal
Model

SAS
Model

Calculated
Performance
Parameters

Aerothermal
Requirements

SAS Paramaters

Data	Generator	Module

Engine
Operating Conditions

Tool Runner

Peformance
Conditions

Peformance Conditions

Data Distiller

Performance
Parameters

Aerothermal
Requirements

SAS
Parameters

Distilled
Data

Predictor Creator

Distilled
Data

Predictor

Engine

Control System Code
+ Structures

Predictor

Source Code Generator

Generated Predictor Code

Predictor Importer

Deployable Control System Code

Deployable Control System Code

Predictor

Deployable Control System Code

Sensors

Active Load Mechanism Active Load Control

Load Predictor

Control System Code
Predicted Load

Mechanism
Instruction

Mechanism
Instruction

Mechanism
Instruction

Sensor
Readings

Sensor
Readings

Sensor
Readings

Engine Operating Conditions

C
on

tr
ol

 S
ys

te
m

 C
od

e

Predictor
Configuration Generator

Predictor
Source
Code

Generated Predictor
Code

Control System Code + Structures

Fig. 4 SysML internal block diagram style overview of entire system from design time to deployment and runtime. Contributions of this paper are
highlighted with a purple border.

10 Sebastian Pilarski et al.

Industrial Benefits The adoption of this architecture and the
technical details presented in the following sections have
yielded several notable benefits for Siemens Energy:

1. Improved predictions: ML-based prediction modules
have demonstrated improvement upon existing traditional
prediction modules wrt. pre-defined metrics. For exam-
ple, mean absolute error was reduced by up to 60x by
using ML-based predictions (see Section 8).

2. Process time saving: The process of automating data
generation and component creation periodically saves
20+ engineering days. As this a repeatedly recurring pro-
cess, it translates into significant cost reduction.

3. Versioning: Due to savings in process time, if engineer-
ing models are updated, new, improved, versions of pre-
diction modules can be deployed.

4. Improved control software: Thanks to automated code
generation, the process of writing, debugging, and test-
ing prediction modules is significantly simplified, simul-
taneously improving product quality and decreasing costs.

5. Multi-platform support: Code generation enables a sin-
gle ML model artifact to be deployed to multiple produc-
tion platforms (e.g. different-vendor PLCs).

6 Prediction Module Problem Definition

Below, we define the requirements, evaluation and deploy-
ment criteria for the prediction module, and present an ex-
isting (traditional) solution for the problem.

6.1 Requirements for the Load Prediction Module

The load prediction module must fulfill certain design re-
quirements (related to inputs, outputs and computational cost
of operations) as well as specific deployment constraints in
order to operate in the existing engine architecture.

– Inputs: Inputs are limited to any subset of the available
on-engine sensors. These inputs can be considered as
valid - there exist other mechanisms in the engine to test
sensor validity - the sensor readings will not be woefully
unreliable/inaccurate.

– Output: The output of a given load prediction mod-
ule is a predicted bearing load provided in the standard
units employed in the control system. Prediction will
take place on three (real) bearings referred to as Bearing
1, Bearing 2, and Bearing 3.

– Computation budget: Computation is limited to at most
L computational operations (e.g. addition, multiplica-
tion, subtraction, reads and writes). This computation
limit is imposed by constraints of the target hardware
platform on which the predictor is deployed to guaran-
tee in-time prediction (see Section 9 for further details).

The prediction module must be capable of being de-
ployed to a 32-bit programmable logic controller (PLC). The
deployed module must adhere to the following constraints:

– Operations: The deployed predictors are limited to in-
teger, Boolean, and floating point operations in 32 bit.

– Allocation: No dynamic memory allocation is possible.
Defined variables (software registers) are typed and per-
sisted at runtime.

– Deadline: A prediction must be completed within a dead-
line t for real-time control behavior.

6.2 Evaluation Criteria

Our experimental evaluation is based on normalized bearing
load prediction error (where smaller is better). Each predic-
tion model is evaluated on the following four metrics and
compared with the existing traditional prediction module
presented in Section 6.3:

– Maximum Overprediction (MO): Largest difference
between predicted load and actual load, where predicted
load is greater than actual load.

– Maximum Underprediction (MU): Largest difference
between predicted load and actual load, where predicted
load is less than actual load.

– Mean Absolute Error (MAE): The average of the ab-
solute value between predicted load and actual load.

– Root Mean Square Error (RMSE): The square root
of the average of the value between predicted load and
actual load squared.

MAE and RMSE are standard ML evaluation criteria
and help understand the average performance for a given
predictor. MO and MU are motivated by the engineering
context where worst case scenarios are highly relevant. Bear-
ing failures can be safety-critical when a bearing is over-
loaded (result of underprediction) or underloaded (result of
overprediction). Thus it is imperative to evaluate how well
a prediction module behaves at the extremes. As such, we
intentionally deviate from ML best practices to adapt them
to a safety-critical engineering context.

6.3 Existing Load Prediction Module

The existing (baseline) load predictor module is a sequential
composition of two prediction components (Figure 5). Our
baseline prediction architecture represents the current engi-
neering best practice at Siemens for analyzing gas turbines.

– The first component is a correlation map which corre-
lates (a subset of) on-engine sensor readings to some
unmeasured internal engine parameters such as pressure.
These internal parameters exist as attributes in the per-
formance discipline’s 2D thermo-mechanical model.

Predictions-on-Chip: Model-based Training and Automated Deployment of Machine Learning Models at Runtime 11

Prediction	Module

Performance
Component

SAS
Component

On-Engine
Sensors

Internal
Parameters

Load
Prediction

Fig. 5 Prediction module with components.

– The second component is a correlation map from these
internal engine parameters to the bearing loads. The bear-
ing loads were determined via calculations obtained from
the 2D secondary air system model.

Each prediction component was developed individually
with performance discipline engineers developing the first,
and secondary air system discipline engineers developing
the second. These two components were then combined to
form the load predictor module. The two components, for
clarity, are henceforth referred to as performance component
and SAS component.

The internal engine parameters (output of performance
output and input to SAS component) have been tradition-
ally used in the prediction chain due to the strong physics
interlinkage between them and the bearing loads.

7 ML-Based Load Prediction Architectures

This section proposes several ML-based load prediction mod-
ule architectures together with the underlying ML models.

7.1 Proposed Prediction Module Architectures

We propose a number of purely ML-based and hybrid archi-
tectures for the prediction module (visualized in Figure 6):

1. 1ML: Single ML model: A module with this architec-
ture will be limited to one ML model component which
predicts bearing loads directly from on-engine sensors.

2. HSML: Hybrid model with ML SAS component: Such a
module keeps the existing performance component and
replaces the existing SAS component with an ML model.

3. HPML: Hybrid model with ML performance compo-
nent: This architecture will replace the existing perfor-
mance component with an ML model and keep the ex-
isting SAS component.

4. 2ML: Dual ML model: Both existing components will
be individually replaced in this architecture.

We propose these architectures to study the replacement
of modules and components in the existing context of gas
turbine design. These architectures cover all permutations
of the prediction chain in the existing module.

Prediction	Module

ML
Load Prediction Component

On-Engine
Sensors

Load
Prediction

Prediction	Module

Existing
Performance
Component

ML
SAS

Component

On-Engine
Sensors

Internal
Parameters

Load
Prediction

Prediction	Module

ML
Performance
Component

Existing
SAS

Component

On-Engine
Sensors

Internal
Parameters

Load
Prediction

Prediction	Module

ML
Performance
Component

ML
SAS

Component

On-Engine
Sensors

Internal
Parameters

Load
Prediction

1ML

HSML

HPML

2ML

Fig. 6 Architectures of investigated ML-based predictor modules.

Each architecture will be instantiated with two sets of
starting sensor inputs designated as limited and all. The lim-
ited set includes only sensors used as input to the existing
traditional prediction module. The all set will enable the
prediction module to access all available on-engine sensors.
Modules with limited sensors will be tagged as and modules
with access to all sensors as (all).

For each architecture, we experiment with two subclasses
of ML techniques using Bayesian ridge regression and feed-
forward neural network described in Section 7.2. In the 2ML
architecture, we study the effect of different combinations of
underlying ML models.

7.2 Background on ML Architectures

Two ML architectures are explored in this paper: (1) Bayesian
ridge regression and (2) feed-forward neural networks (NNs).

– Bayesian ridge regression was selected due to its low
computation requirements (which is beneficial for de-
ployment to PLCs) and effectiveness in various appli-
cation contexts (e.g. Bayesian approach fits to existing
data well).

– Neural networks have demonstrated to successfully learn
complex functions from a variety of data sets. Extremely
large neural networks and deep learning techniques are
not explored due to the hardware limitations of the un-
derlying PLC controller.

12 Sebastian Pilarski et al.

While we also studied and experimented with other ML
architectures, we restrict our presentation to these two tech-
niques in the paper to limit the number of combinations of
hybrid components.

We provide formal definitions for the core ML models
used in the context of the paper.

Definition 8 (ML model) A machine learning (ML) model
ML = (x, ŷ, Data,Arch,HP) consists of a vector of in-
puts x, a vector of outputs ŷ, a (training) data set Data with
pairs of associated input and output values (x(d)

i ,y
(d)
i), an

ML architecture Arch and a set of hyperparameters HP .
During prediction, the model applies a function fML to

the input to predict the output i.e. ŷ = fML(x). The func-
tion is determined during training by minimizing a given
loss function based on training data. An architecture Arch
implicitly includes a loss function loss(ŷ,y) = val which
calculates a metric value val, measuring how different a set
of predictions ŷ is from its corresponding set of actual val-
ues y. Common loss function metrics include mean square
error and cross entropy loss [6].

7.2.1 Bayesian Ridge Regression

Bayesian ridge regression is a linear ML model, which pre-
dicts only a single value as output.

Definition 9 (Linear ML Model) A linear ML modelLIN =

(x, ŷ, Data,Arch,HP) has an architecture Arch with a
(single) output prediction defined as a weighted sum (ŷ =

fLIN (x) :=
∑

i wi · xi) of the input variables.

Weightswi within a linear model are determined by some
algorithms which minimize a defined loss function on train-
ing data. Due to the simplicity of linear models, they are fast
to train and compute, and they have low storage needs for
parameters (one weight value for each input value). An ad-
ditional benefit of their simplicity is that they rarely overfit:
they have very few parameters and must learn to fit the over-
all trend of data. On the other hand, they may not properly
learn to handle outliers well.

There are many techniques to determining suitable weights.
Bayesian ridge regression determines a linear ML model us-
ing Bayesian inference. This linear approach is more robust
to outliers and it can also provide confidence level in predic-
tion as a measure of variance from previous data.

Definition 10 (Bayesian Ridge Regression [42]) Bayesian
ridge regression BR = (x, ŷ, Data,Arch,HP) is a linear
ML model whose architecture relies on Bayesian inference
to determine the weights under two assumptions:

1. The prediction has a probability density which is nor-
mally distributed p(ŷ|x,w, α) = N (y|µ, σ2), where
µ = wTx and σ2 = α is some internal parameter.

2. A prior on the weights is normally distributed with a
mean of 0, i.e. p(w|λ) = N (w|0, λ−1Ip), where λ is
an internal parameter related to precision.

Formally, the output of the Bayesian ridge regression model
is a (normal) distribution, which is then turned into a single
value prediction ŷ by taking its mean. An iterative learn-
ing algorithm jointly estimates the parameters, w, α, and λ
whereα and λ are estimated by maximizing the log marginal
likelihood.

7.2.2 Neural Networks

Neural networks are composed of artificial neurons which
apply an activation function to their inputs to get the output.

Definition 11 (Artificial Neuron) An artificial neuron an =

(x, y, Bias, fa) consists of a vector of inputs x, a single out-
put y, a bias term Bias and activation function fa. A neu-
ron applies (activates) the activation function to the sum of
its inputs and adds its bias term to generate its output, i.e.
y = fa(

∑
i xi)+Bias. Activation functions used in the pa-

per include the rectified linear unit,ReLU(x) = max(0, x),
and linear, LINEAR(x) = c · x where c is some constant.

Neural networks are composed of layers of neurons where
signals are sent from one layer to another via connections.
The first layer is the input layer, the last layer is the output
layer, while internal layers are called as hidden layers.

Definition 12 (Artificial Neuron Connection) An artificial
neuron connection anc = (src(i), trg(j), w) leads from a
source neuron src(i) (in layer i) to a target neuron trg(j) (in
a subsequent layer j) with a given weight w. When neuron
src(i) activates, the neuron connection multiplies the output
of src(i) by its weight w and sets the k-th input element of
trg(j) as the product (trg(j).xk = w · src(i).y).

Definition 13 (Artificial Neural Network) An artificial neu-
ral network ann = (x, ŷ, AN,ANC) contains a vector of
inputs x, a vector of outputs ŷ, a set of artificial neurons
AN arranged in n layers (where each neuron an(i) ∈ AN
belongs to exactly one layer 1 ≤ i ≤ n), and a set of ar-
tificial neuron connections ANC. The input x is composed
of (the single) input of neurons in layer 1, i.e. xi = an

(1)
i .x

while the output ŷ is composed of (the single) output of neu-
rons in layer n, i.e. yj = an

(n)
j .y. The output is calculated

by activating each neuron in each layer sequentially.

Definition 14 (Neural Network ML Model) A neural net-
work ML model NN = (x,y, Data,Arch,HP) is an ML
model in which the Arch is defined as an artificial neural
network ann. Hyperparameters HP include the number of
neuron layers n, the number of neurons per each layer, and
the activation functions used within the architecture.

Predictions-on-Chip: Model-based Training and Automated Deployment of Machine Learning Models at Runtime 13

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

Linear

ReLU

ReLU

Input Layer Hidden Layers Output Layer

Loss =

Fig. 7 Neural Network Architecture Setup.

Neural networks learn from data by adjusting the weights
of their connections. Such adjustments are performed by
an optimization algorithm (optimizer) aiming to minimize
a given loss function. Many such optimizers are derivative-
based, which impose further assumptions on the loss and
activation functions.

7.3 Configuration and Training of ML Architectures

7.3.1 Bayesian Ridge Regression

We use the implementation of Bayesian ridge regression in
the Scikit-Learn library [1]. This implementation uses four
hyperparameters (α1, α2, λ1, λ2) to provide Gamma distri-
bution priors over the α and λ parameters. We set α1 =

α2 = λ1 = λ2 = 10−6 to maintain non-informative priors
at the start. Training occurs by fitting to the training data set.

7.3.2 Neural Networks

Architecture setup We use the TensorFlow framework [3]
to develop NNs. A similar architecture (Figure 7) is used for
all cases: all neurons within hidden layers use the ReLU ac-
tivation function, and output neurons have linear activation
functions. ReLU enables non-linear learning and the linear
activation allows for a wide range of bearing load predic-
tions.

Each NN uses the mean square error loss function and
the Adam optimizer [20] to optimize connection weights.
Mean square error was chosen because it is differentiable
and penalizes large outliers. The Adam optimizer is a stan-
dard optimizer used in ML; it has been found to be an effec-
tive optimization algorithm for most problems.

Training Each neural network is trained for 1000 epochs
(with data shuffled at the end of each epoch and a batch size
of 32) over the training data set. Early stoppage is not used
as no overfitting was experienced [33].

Tuning hyperparameters Given the computational constraint
L imposed to obtain deployable ML models (see Section 6.1),
we classify neural networks into two complexity categories.
Simple neural networks are allowed to perform at most L/2
computational operations while complex neural networks are
given a constraint of L computational operations.

While enforcing these computational constraints on the
number of operations, we tune the number of neurons, the
number of neurons per layer, and the number of neuron lay-
ers as hyperparameters. The best performing combination of
hyperparameters for each simple and complex NN (as mea-
sured on the validation set) is then evaluated on the test set.

7.4 Data and Feature Engineering

Our process includes generating data, distilling the data into
a dataset, feature engineering, and splitting data into train-
ing, validation, and test sets.

7.4.1 Data Generation

Data is generated from real engineering model simulations.
The appropriate engineering models for each performance,
aerothermal, and secondary air system are provided by en-
gineers from each discipline.

A tool runner (script) launches engineering performance,
aerothermal, and secondary air system model simulations
sequentially. The engine operating conditions are defined
for each performance run (engine power, altitude, ambient
temperature, etc.). The performance outputs are then fed as
inputs to the secondary air system model simulator with
aerothermal parameters.

The tool runner runs simulations across a vast number
of operating conditions to generate more than 150,000 engi-
neering data points (while traditional practice relies on less
than 200 points). The simulation results are organized and
saved into a storage location that can be queried.

7.4.2 Data Distillation

The data distiller links data across each of the engineering
discipline simulations into a common dataset for training
ML models. The distillation process extracts on-engine sen-
sor values and internal-engine parameters from performance
simulations, and parameters necessary to calculate bearing
loads from the SAS simulations. If a simulation run termi-
nates with an error, (e.g. convergence failure) then this run
is excluded from the distilled data set.

7.4.3 Feature Engineering

Due to the rigorous requirements of our engineering con-
text, we have clearly defined inputs (sensors) and outputs.

14 Sebastian Pilarski et al.

As such, real feature engineering is limited to determining
bearing load values from SAS simulation data. This involves
a sequence of arithmetic calculations on a number of dis-
tilled SAS parameters.

7.4.4 Data Sets

We split the data set into training, validation, and test sets.
We randomly select 10% of data for training, 10% for vali-
dation, and 80% for test.

We deviate from common ML practice of selecting a
high percentage of data for training and a much smaller per-
centage for test due to the safety-critical nature of the predic-
tion problem. We must ascertain that our prediction module
generalizes well to unseen cases. In our engineering context,
our prediction module needs to learn an underlying physics
interaction or equation. As the module is learning to ap-
proximate solutions to a series of physics equations (only
changes are variable values), an excessive number of data
points should not be required. Given that a large amount of
data is generated (150,000+ points), 10% should be suffi-
cient to train effective predictors.

To experimentally justify the 10/10/80 data split, Fig-
ure 8 presents RMSE results for 1ML architectures, i.e. for a
single (individual) prediction component. There are minimal
differences between training, validation, and test set scores,
and only for one case is there a larger RSME result on the
test set than encountered in training or validation. MO and
MU values metrics increase in the test set as compared to
training, but with a larger sample of data more outliers are
expected. The increases in MO and MU values are within
a reasonable range. While we limit our presentation here to
only 1ML architectures for simplicity, all ML models tested
exhibit minimal differences in RMSE between data sets.

8 Experimental Evaluation

In order to evaluate RQ1 and RQ2,this section presents re-
sults for each of the 1ML, HSML, HPML, 2ML architec-
tures presented in Section 7.1 evaluated on MO, MU, MAE,
and RMSE metrics as described in Section 6.2. Evaluations
are conducted on the test set described in Section 7.4.4 con-
sisting of 120,000 data points for each architecture. More-
over, each architecture implementation is compared with the
existing traditional prediction module as a baseline.

Results (normalized) are presented for three bearings:
Bearing 1, Bearing 2, and Bearing 3. Extra details are
provided for Bearing 1, and an overview for all three. These
results represent predictions in real Siemens engines; pre-
cise details are masked and normalized as they represent
business-sensitive data.

Fig. 8 RMSE metric results for each train, validation, test split. Eval-
uated for 1ML architectures.

8.1 1ML: Single ML Model

First, we create ML models which predict Bearing 1 load
from the on-engine sensors (both lim and all) as a single AI
component. We explore the performance of each ML model
architecture and effect of the different inputs sets of sensors.

We compare six prediction modules with lim and all
sensors for each of the linear, neural network (simple), and
neural network (complex) architectures described in Sec-
tion 7.1). Figure 9 presents the evaluated results.

Observation 1 suggests that ML-augmented prediction
modules can improve on traditional techniques, but they may
not always perform better for every metric. Observation 2
highlights that certain ML models can exhibit poor perfor-
mance, but this was not a common case. Observation 3 re-
veals that the ML module benefits from access to more sen-
sor data. Observation 4 is most easily observable when com-
paring neural network (simple) with neural network (com-
plex). While neural network (complex) performed better with
respect to MAE (Improvement of up to 60x) and RMSE, it
performed worse in terms of MO and MU. This is impor-
tant to note when deciding on a deployment model to deploy
to production, i.e. how to balance worst case performance
(MO, MU) with average performance.

8.2 HSML: Hybrid Model with ML SAS Component

In this section we present results for the HSML modules. We
begin by evaluating the SAS components individually with

Predictions-on-Chip: Model-based Training and Automated Deployment of Machine Learning Models at Runtime 15

Observation 1: All 1ML modules outperformed the existing
module wrt. MU, MAE, and RMSE.

Observation 2: Only Linear (lim) 1ML module exhibited worse
MO than existing module.

Observation 3: Each 1ML (all) module outperformed all 1ML
(lim) and existing module in all metrics.

Observation 4: More complex ML models always achieved better
MAE and RMSE, but not always better MO and MU. 1ML(NN-
Complex, All) decreased MAE by almost 60x.

Fig. 9 1ML prediction modules for Bearing 1.

respect to the existing traditional SAS component and then
present the evaluation of the entire hybrid module.

Figure 10 presents results for SAS components evalu-
ated independently (not full prediction module). When ana-
lyzing these results, there are several key observations.

Observation 1 suggests there exists a propagation of er-
ror across components in the existing traditional module. Er-
rors in the performance component further propagate with
inaccurate predictions in the SAS component. Observation
2 presents further evidence that ML-augmented components
can improve upon existing techniques. Observation 3 shows
that components can be biased towards a specific metric -
clearly the existing traditional SAS component is biased to-
wards underprediction. Observation 4 shows that even more
complex models (beyond computation limit imposed) could
yield even better performance metrics. Observation 5 sug-
gests that all on-engine sensors could provide more relevant
information for predicting the bearing load than the prede-
fined SAS component internal engine parameter inputs.

We have several ML model components which could
serve as replacements for the existing SAS component. Each

Observation 1: The existing traditional SAS component achieves
better performance in all metrics than the complete existing
module.

Observation 2: Each ML-augmented SAS component outper-
formed the existing traditional SAS component wrt. MU, MAE,
and RMSE.

Observation 3: Each ML-augmented SAS component had much
worse MO than the existing SAS component.

Observation 4: The more complex ML models achieved better
MAE and RMSE scores.

Observation 5: Each ML model architecture (linear, neural net-
work) achieved worse MAE and RMSE as a SAS component than
as a 1ML (all sensors) architecture in Figure 9.

Fig. 10 Prediction by SAS component (tested individually) for Bear-
ing 1.

of these ML model components perform better in regards to
MAE and RMSE. We now replace the existing traditional
SAS component for each of these new ML model compo-
nents in the existing module.

The existing performance module is kept unchanged and
the existing SAS component is swapped for each trained ML
model component in Figure 10. Thus, the traditional per-
formance component predicts the internal parameters from
the limited sensor input and a SAS component predicts the
Bearing 1 load. Figure 11 presents results.

Observations 1 and 2 show that replacing existing com-
ponents with ML-augmented components can improve mod-
ule performance, but improvement may be limited by other
components. Observation 3 is particularly important as it is
a negative result. We observed that improvement in a single
component in a system could actually decrease the overall
performance of the system, thus violating compositionality
for predictor components. It is therefore paramount to re-
execute integration and system-level testing to investigate
the system behaviour in its entirety before deploying “im-
proved” components.

16 Sebastian Pilarski et al.

Observation 1: Replacing the existing traditional SAS component
with ML model components improved the prediction module wrt.
MAE, RMSE, and MU.

Observation 2: MO performance did not significantly change
between any of the SAS component implementations.

Observation 3: While neural network SAS components achieved
better MAE and RMSE measures independently as compared to the
linear model component (Figure 10), the full prediction integrating
neural network SAS components performs worse than the one inte-
grating the linear model SAS component.

Fig. 11 HSML prediction modules for Bearing 1.

8.3 HPML: Hybrid Model with ML Performance
Component

We present the results of a prediction module with the HPML
architecture. We do not show independent ML performance
component evaluation as it is difficult to present concisely
(multi-parameter) and provides the reader little value. Fig-
ure 12 presents the results of HPML architectures.

Observations 1, 3, and 4, highlight that ML-augmented
components cannot guarantee improved performance in all
defined metrics. Observation 2 supports the hypothesis of
compounding propagated error between components. With
an improved performance component, the overall module
MAE and RMSE approached the MAE and RMSE of the
existing SAS component individually.

8.4 2ML: Dual ML Model

In Section 8.2 and Section 8.3 we developed a number of
ML-augmented SAS and performance components and eval-
uated hybrid models mixing existing components with the
new ML-augmented components. In this section we study
the 2ML architecture, by connecting two ML model compo-
nents to form the prediction module.

We present a subset of the available permutations which
we believe provides the most value to the reader (more per-
mutation results presented in Section 8.5. In this section,

Observation 1: Only the HPML(NN-Complex, All) module
outperformed the existing traditional module in all performance
metrics.

Observation 2: The neural network (complex, all) performance
component model brought the MAE (67.57) and RMSE (78.30) of
the entire system near the MAE (66.02) and RMSE (74.56) of the
independently evaluated existing SAS component.

Observation 3: All ML model performance components except
for the Linear (Lim.) improved full module MAE and RMSE.

Observation 4: No ML model performance component provided
significant module improvements for both MO and MU.

Fig. 12 HPML prediction modules for Bearing 1.

we compare all permutations arising from Linear (Lim.) and
NN (All, Complex) for the performance component and all
three of Linear, NN (Simple), and NN (Complex) for the
SAS component. Each of these are presented in relation to
the existing module in Figure 13.

From Observations 1 and 2 we show that different ML
model components have different sensitivities to input pa-
rameter noise. There clearly exist strong interaction effects
when component models are replaced. Unfortunately, these
effects are not easy to predict. Components must be evalu-
ated as integration to a whole. Observation 3 presents that
with accurate (MAE, RMSE) prediction components, the
propagation of error is quite low.

Predictions-on-Chip: Model-based Training and Automated Deployment of Machine Learning Models at Runtime 17

Observation 1: Using the Linear (Lim.) model as performance
component, the increasing complexity of the SAS component
model decreased the overall performance in all four metrics.

Observation 2: When the performance component is set to NN
(All, Complex), the more complex components achieve better
MAE and RMSE values.

Observation 3: Using the NN (All, Complex) model as perfor-
mance component, each module achieved almost the same RMSE
performance as the SAS performance component did individually.

– Linear: 29.67 (indep. SAS) vs. 31.80 (2ML)
– NN (Simple): 23.67 (indep. SAS) vs. 27.19 (2ML)
– NN (Complex): 9.01 (indep. SAS) vs. 9.61 (2ML)

Fig. 13 2ML prediction modules for Bearing 1.

8.5 Summary

In the previous subsections, we presented results for Bear-
ing 1 prediction modules incorporating the 1ML, HSML,
HPML, and 2ML architectures. Now we summarize our re-
sults for each architecture for Bearing 1, Bearing 2, and
Bearing 3. We omit results pertaining to limited sensor in-
put (except for the existing traditional module) as modules
limited to these sensors achieve much worse performance.

Results for Bearings 1, 2, and 3 are presented in tourna-
ment style tables in Figure 14. Pairings were done in sequen-
tial order of Existing, 1ML, HSML, HPML, and 2ML mod-
ule architectures. Note: certain modules may have advanced
further (or even won) in the tournament if paired with dif-
ferent modules - important observations can be found by
comparing non-competing modules. To help the reader nav-
igate through the table, only the better metric result for each
“competition” is coloured.

Observations 1 and 3 suggest that ML modules can be
effective replacements for existing prediction modules. Best
performing 1ML modules (in terms of MAE) achieved sig-
nificant 60x, 22x, and 17x MAE reduction for Bearings 1, 2,
and 3, respectively. Observation 2 suggests that integrated
one-component modules may be a recommended option for
prediction modules to decrease error propagation as well as
computation costs. As a final remark, no ML model trained
for each prediction task suffered from overfitting.
RQ1: How effective is it to replace an individual (tradi-
tional) prediction component or a chain of components
(module) with ML-driven counterparts?

– Experimental results for predicting bearing loads in a
gas turbine engine suggest that ML-driven prediction com-
ponents can be more effective than traditional prediction
components.

– Results also show the errors of individual components
may propagate along a chain of prediction components
thus degrading end-to-end prediction performance. As
such, the principle of compositionality is violated.

– As a consequence, special attention is needed for the re-
placement of individual components within a chain as an
”improved” component may degrade the overall predic-
tion of an entire module (component chain).

– In general, replacing components earlier in a prediction
chain is recommended (though no guarantees are pro-
vided for the best overall result).

RQ2: How effective are different combinations of ML
prediction components used for engineering models of
gas turbines?

– Replacing multiple components with a combination of
ML prediction components is demonstrated to improve
upon existing traditional prediction modules in our gas
turbine case study, However, results suggest that replac-
ing chains (modules) of prediction components with a
single ML component may be recommended.

9 Deployment

Next, we present an automated technique for creating de-
ployment models from validated models (with a focus on
neural networks due to their complexity) and deploying them
into production in the engine control system running on a
programmable logic controller (PLC) hardware. We propose
to use code generation techniques that treat ML models as
simple deployment model artifacts.

9.1 Hardware

The hardware on which the control system of such engines
is running is a Programmable Logic Controller (PLC). PLCs

18 Sebastian Pilarski et al.

1ML (Linear)

2ML (NN-Complex + NN-Complex)

2ML (NN-Complex + NN-Simple)

2ML (NN-Complex + Linear)

2ML (NN-Simple + NN-Complex)

2ML (NN-Simple + NN-Simple)

2ML (NN-Simple + Linear)

2ML (Linear + NN-Complex)

2ML (Linear + NN-Simple)

2ML (Linear + Linear)

2ML
(NN-Complex + NN-Complex)

2ML (NN-Complex + Linear)

2ML (Linear + NN-Simple)

2 ML (NN-Simple + NN-Simple)

2ML
(Linear + NN-Simple)

2ML
(NN-Complex +
NN-Complex)

2ML
(NN-Complex +
NN-Complex)

1ML (NN-Simple)

HPML (NN-Complex)

HPML (NN-Simple)

HPML (NN-Complex)

HSML (NN-Complex)

HPML (Linear)

HSML (NN-Complex)

HSML (NN-Simple)

HSML (Linear)

HSML (Linear)

1ML (NN-Simple)

1ML (NN-Simple)

1ML (NN-Complex)

Existing

91.38 41.19 21.49 16.87

144.24 48.32 2.97 1.76

219.22 260.86 71.62 57.94

249.77 327.92 73.65 59.38

267.70 254.20 78.62 62.89

281.20 923.89 106.40 84.76

260.10 727.30 103.39 86.57

113.38 619.41 78.30 67.57

267.70 254.20 78.62 62.89

113.38 619.41 78.30 67.57

91.38 41.19 21.49 16.87

219.22 260.86 71.62 57.94

240.05 628.03 131.57 105.33

106.88 53.39 19.20 14.91

91.38 41.19 21.49 16.87

113.38 619.41 78.30 67.57

HPML
(NN-Complex)

106.88 53.39 19.20 14.91

91.38 41.19 21.49 16.87

1ML
(NN-Simple)

1ML (Linear)

96.08 204.93 27.75 21.21

115.92 136.84 45.26 37.74

124.21 216.98 31.81 24.77

54.19 294.69 9.62 6.79

152.88 154.81 49.63 39.47

124.21 216.98 31.81 24.77

105.48 156.64 53.68 43.75

115.92 136.84 45.26 37.74

96.08 204.93 27.75 21.21

54.19 294.69 9.62 6.79

91.38 41.19 21.49 16.87

54.19 294.69 9.62 6.79

96.08 204.93 27.75 21.21

197.82 148.49 29.57 22.31

125.80 197.47 25.10 20.21

54.19 294.69 9.62 6.79

114.70 212.84 22.14 27.19

54.19 294.69 9.62 6.79

125.80 197.47 25.10 20.21

1ML (NN-Simple)

2ML
(NN-Complex + NN-Complex)

2ML (Linear + Linear)

Bearing 1

1ML (Linear)

2ML (NN-Complex + NN-Complex)

2ML (NN-Complex + NN-Simple)

2ML (NN-Complex + Linear)

2ML (NN-Simple + NN-Complex)

2ML (NN-Simple + NN-Simple)

2ML (NN-Simple + Linear)

2ML (Linear + NN-Complex)

2ML (Linear + NN-Simple)

2ML (Linear + Linear)

2ML
(NN-Complex + NN-Complex)

2ML (NN-Complex + Linear)

2ML (Linear + NN-Complex)

2 ML (NN-Simple + NN-Simple)

2ML
(Linear + NN-Complex)

2ML
(NN-Complex +
NN-Complex)

2ML
(NN-Complex +
NN-Complex)

1ML (NN-Complex)

HPML (NN-Complex)

HPML (NN-Simple)

HPML (NN-Complex)

HPML (Linear)

HPML (Linear)

HSML (NN-Complex)

HSML (NN-Simple)

HSML (Linear)

HSML (Linear)

1ML (NN-Complex)

1ML (NN-Simple)

1ML (NN-Complex)

Existing

69.51 280.13 27.43 21.66

67.13 111.34 8.53 6.71

372.09 342.91 127.39 102.93

396.23 716.38 130.00 103.39

370.27 456.80 125.35 103.80

282.44 71.21 132.93 125.75

365.20 160.28 135.95 107.72

336.02 84.81 145.17 136.49

282.44 71.21 132.93 125.75

336.02 84.81 145.17 136.49

67.13 111.34 8.53 6.71

372.09 342.91 127.39 102.93

529.18 176.08 193.18 146.56

120.94 302.60 27.43 21.66

67.13 111.34 8.53 6.71

282.44 71.21 132.93 125.75

HPML (Linear)

120.94 302.60 27.43 21.66

67.13 111.34 8.53 6.71

1ML
(NN-Complex)

1ML (Linear)

194.30 496.40 21.64 15.31

271.80 287.35 119.81 100.02

94.87 456.02 32.36 24.99

73.44 519.57 19.56 14.57

251.73 459.29 125.20 103.02

94.87 456.02 32.36 24.99

261.67 306.22 126.83 104.76

271.80 287.35 119.81 100.02

194.30 496.40 21.64 15.31

73.44 519.57 19.56 14.57

67.13 111.34 8.53 6.71

73.44 519.57 19.56 14.57

126.36 666.74 30.72 24.67

194.30 496.40 21.64 15.31

75.01 431.40 31.38 24.38

73.44 519.57 19.56 14.57

130.16 479.90 36.80 30.73

73.44 519.57 19.56 14.57

75.01 431.40 31.38 24.38

1ML (NN-Complex)

2ML
(NN-Complex + NN-Complex)

2ML (Linear + Linear)

Bearing 2

1ML (Linear)

2ML (NN-Complex + NN-Complex)

2ML (NN-Complex + NN-Simple)

2ML (NN-Complex + Linear)

2ML (NN-Simple + NN-Complex)

2ML (NN-Simple + NN-Simple)

2ML (NN-Simple + Linear)

2ML (Linear + NN-Complex)

2ML (Linear + NN-Simple)

2ML (Linear + Linear)

2ML
(NN-Complex + NN-Complex)

2ML (NN-Simple + NN-Complex)

2ML (Linear + NN-Simple)

2 ML (NN-Simple + NN-Simple)

2ML
(Linear + NN-Simple)

2ML
(NN-Complex +
NN-Complex)

2ML
(Linear + NN-Simple)

1ML (NN-Complex)

HPML (NN-Complex)

HPML (NN-Simple)

HPML (NN-Simple)

HSML (NN-Complex)

HPML (Linear)

HSML (NN-Complex)

HSML (NN-Simple)

HSML (Linear)

HSML (NN-Simple)

1ML (NN-Complex)

1ML (NN-Simple)

1ML (NN-Complex)

Existing

79.22 295.51 12.81 9.19

67.11 217.46 6.78 5.20

167.80 150.22 66.84 53.90

137.51 238.79 61.35 52.11

132.32 242.14 59.04 50.12

340.05 108.47 75.10 62.66

295.98 238.01 61.29 46.55

281.60 238.76 77.00 66.24

132.32 242.14 59.04 50.12

295.98 238.01 61.29 46.55

67.11 217.46 6.78 5.20

137.51 238.79 61.35 52.11

326.85 107.52 104.17 89.48

108.41 120.71 24.86 19.55

67.11 217.46 6.78 5.20

132.32 242.14 59.04 50.12

HSML
(NN-Complex)

108.41 120.71 24.86 19.55

67.11 217.46 6.78 5.20

1ML
(NN-Complex)

1ML (Linear)

145.24 198.78 20.96 14.92

148.42 275.04 35.95 29.17

253.79 408.43 36.28 27.49

205.51 426.87 14.78 10.51

253.79 408.43 36.28 27.49

294.06 400.44 35.19 27.70

296.44 313.44 43.23 32.53

148.42 275.04 35.95 29.17

145.24 198.78 20.96 14.92

205.51 426.87 14.78 10.51

67.11 217.46 6.78 5.20

145.24 198.78 20.96 14.92

145.24 198.78 20.96 14.92

240.76 289.59 20.70 12.81

238.41 140.71 31.98 24.75

145.24 198.78 20.96 14.92

111.58 504.51 15.76 11.71

205.51 426.87 14.78 10.51

238.41 140.71 31.98 24.75

1ML (NN-Complex)

2ML (Linear + NN-Simple)

2ML (Linear + Linear)

Bearing 3

Observation 1: 1ML and 2ML architectures routinely outperform the existing, HSML, and HPML architectures.

Observation 2: 2ML architecture composed of two NN-complex components only outperformed 1ML architectures in Bearing 2 (note
that 1ML (NN-Complex) only exhibits inferior MO in comparison), despite having more than twice the allotted computation (does not
fulfill deployment requirement).

Observation 3: ML-based prediction modules were able to outperform the existing traditional prediction modules in all three bearings on
all metrics except for MU in bearing 3.

Fig. 14 Tournaments are presented where module architectures are paired against each other to visually filter a “best performing” module archi-
tecture for each bearing. Tournament advances are decided by superior performance (colour indicates superior, white inferior) on a majority of
metrics (tie-breaker is MO - most dangerous scenario). Metrics in each match follow the same order and colouring schema as in previous figures:
MO (blue), MU (orange), RMSE (green), MAE (red). Models with red names fail to meet the computation requirement; nevertheless, we leave
them as they may help the reader better understand the capability of each architecture.

Predictions-on-Chip: Model-based Training and Automated Deployment of Machine Learning Models at Runtime 19

are primarily designed to be robust, capable of function-
ing in any environment, and consistent. As such, these con-
trollers are single-threaded and do not support dynamic mem-
ory allocation or code optimization.

Real-time programs loaded into a PLC controller are
looped continuously in time intervals until the controller is
turned off. Each program is given a time frame (e.g. 10ms)
within which it must complete. It is common practice to as-
sign different priorities and allowed time to different real-
time programs. Programs with greater priority may preempt
or interrupt lower priority programs, execute, and then relin-
quish control. This is illustrated in Figure 15.

Fig. 15 PLC time interval logic. 1 has highest priority, 3 has lowest. 1
has 10ms time interval and requires 5ms, 2 has 30ms time interval and
requires 10ms, 3 has 60ms time interval and requires 2.5ms.

Given that the controller has a slow processor and the
control system has strict, hard real-time requirements, any
deployment model must be computationally efficient to be
able to complete its prediction in time. Deployment to PLCs
is currently limited to nonadaptive models.

9.2 ML Model Format

A feed-forward neural network model is simply a mathemat-
ical function, composed of smaller mathematical operations
occurring in layers. As such, it is possible to encode, or rep-
resent, the model as a sequence of operations in a standard-
ized format. This is the basis for how Tensorflow, Keras, Py-
torch, MATLAB, etc. allow one to save a model and reload
it later. However, each contains its own standard, and for
the purposes of a PLC, encapsulates extraneous information,
such as training-time parameters and behaviour. Thus, we
developed a new model representation for storing validated
models for PLC deployment to prevent vendor lock-in.

Our neural network ML model uses the JavaScript Ob-
ject Notation (JSON) format. The JSON file maintains a list
of layers (feed forward neural networks can only receive in-
puts from previous layers). For each layer in the model, the
following attributes are maintained:

– Name: The given name for a layer will be used to refer
to layer computations in the generated PLC code.

– Activation function: The generated PLC code will call
appropriate activation function instructions, which is as-
sumed to be identical within a layer. If multiple activa-
tion functions are desired in a layer, the layer can be split
into two parallel layers.

– Size: Number of neurons in the layer.
– Input size: Number of inputs for each neuron.
– Input layers: List of references to layers which serve as

input to the layer.
– Weights: Weights for each connection from neurons in

the input layers to the neurons in the layer.
– Bias: Biases for each neuron in the layer.

Each ML model is tagged with a model type, version
number, author, date, training set data id, test set id, and
model metric scores. JSON documents are easily compara-
ble to find differences between models. Listing 1 showcases
an example JSON file.
” m o d e l t y p e ” : ” Feed −Forward N eu ra l Network ” ,
” v e r s i o n ” : ” Bear ing1 A . 1 . 1 ” ,
” d a t e ” : ” 2020 −01 −01T01 : 0 0 : 0 0 + 0 0 : 0 0 ” ,
” t r a i n i n g i d ” : ” B e a r i n g 1 A t r n 2 0 2 0 ” ,
” t e s t i d ” : ” B e a r i n g 1 A t s t 2 0 2 0 ” ,
” m e t r i c s ” : {

”MO” : 9 3 . 1 3 ,
”MU” : 1 0 9 . 4 1 ,
”RMSE” : 5 1 . 2 3 ,
”MAE” : 3 9 . 3 2 ,

} ,

” l a y e r s ” : [
{INPUT LAYER} ,

{
”NAME” : ”HIDDEN” ,
”ACTIVATION FUNCTION” : ”RELU” ,
” SIZE ” : 3 ,
” INPUT SIZE ” : 1 ,
”INPUT LAYERS” : [”INPUT”] ,
”WEIGHTS” : [[0 . 0 3 1 , 0 . 0 4 1 , 0 . 0 5 8]] ,
”BIAS” : [0 . 0 0 3 , 0 . 0 2 4 , 0 . 0 0 9]

} ,

{OUTPUT LAYER}
] ,

” l a y e r s p t r ” : {
”INPUT” : 0 ,
”HIDDEN” : 1 ,
”OUTPUT: 2

}

Listing 1 JSON neural network example. Input and output layers are
omitted to simplify presentation.

9.3 Source Code Generation

To deploy the JSON encoded neural network onto a PLC, we
use code generation techniques. Given that we have a uni-
fied encoding of a sequence of mathematical operations, we
need to correctly unfold the sequence, and apply the proper
operations at the right time.

PLC code can be composed of routines and functions.
Routines define an execution order of instructions and allow
for jumps to other routines. Upon completion of a routine
which was jumped to, the caller routine continues execution.
Functions are reusable pieces of code which can be called in
a routine with provided variables.

The prediction model deployed to the PLC uses the fol-
lowing generated logic. As feed-forward neural network can

20 Sebastian Pilarski et al.

only receive input from previous layers, the activation of lay-
ers occurs sequentially where each layer has its own routine.
Each neuron activates in a layer, and then the next layer’s
routine is run. This process is repeated until each defined
layer in the model is generated.

A sample ”main” routine which executes the core logic
of a prediction program is presented in Listing 2.
/ / N o r m a l i z a t i o n o f i n p u t s
Execu te r o u t i n e APPLY INPUT NORM ;

/ / P o p u l a t e s i n p u t s t o n e u r o n s i n HIDDEN l a y e r
Execu te r o u t i n e APPLY WEIGHTS BIAS HIDDEN ;

/ / Each HIDDEN neuron a c t i v a t e s and s t o r e s o u t p u t
Execu te r o u t i n e APPLY ACTIVATION HIDDEN ;

/ / P o p u l a t e s i n p u t s t o n e u r o n s i n OUTPUT l a y e r
Execu te r o u t i n e APPLY WEIGHTS BIAS OUTPUT ;

/ / Each OUTPUT neuron a c t i v a t e s and s t o r e s o u t p u t
Execu te r o u t i n e APPLY ACTIVATION OUTPUT ;

/ / De− n o r m a l i z a t i o n o f OUTPUTS
Execu te r o u t i n e APPLY OUTPUT DENORM;

Listing 2 ”Main routine” example.

9.3.1 Activation Functions

Activation functions are generally simple mathematical op-
erations that take one input and return one output. Each neu-
ron in a neural network requires an activation function. The
code generator contains templates for standard, named ac-
tivation functions (ReLU, Linear, etc.). As usual, templates
for each PLC programming language are derived from pre-
viously developed code.

Definition 15 (PLC activation function) A generated PLC
activation function PAF = (In,Out, fn,Name) defines
the input memory location In, the output location Out, the
function code fn applied to the input to get the output, and
the activation function name Name.

We use a naming convention to name each activation
function as NN ActivationFunctionName (e.g. NN Linear)
for consistency and to create a library of (template) func-
tions for the PLC.

The code generator extracts all types of activation func-
tions used within the NN from the validated ML model and
then extracts the proper activation function PLC code from
its template library. Each activation function is generated as
its own independent function and will be used as such. When
a neuron ”activates”, it calls the relevant function from the
defined function sets. An example of what a RELU activa-
tion function template would like is presented in Listing 3.
F u n c t i o n NN RELU(INPUT , OUTPUT) {

I f (INPUT > 0 . 0) OUTPUT = INPUT ;
E l s e OUTPUT = 0 . 0 ;

}

Listing 3 Pseudocode RELU activation function example.

9.4 Layer Generation

Each neuron layer has two generated routines from the val-
idated ML model described in Section 9.2. Each layer con-
tains references to defined arrays with naming convention
OUTPUT LayerName. Each array element serves as a stor-
age location for neuron - it captures neuron input value and
provides the output value post-activation.

Determining the output for each neuron occurs in two
stages: (1) first, we compute the input (routine referred to
as APPLY WEIGHTS BIAS LayerName) and then (2) we
apply the activation function to get the output (routine re-
ferred to as APPLY ACTIVATION LayerName). The input
is determined by adding the neuron’s bias term with the sum
of products between weights and their corresponding neu-
rons outputs from previous layers (referenced by their corre-
sponding OUTPUT PrevLayer names, see Listing 4. This
input is stored in the array, after which the activation func-
tion is applied (Listing 5) and overwrites the array value.
OUTPUT HIDDEN [0] = OUTPUT INPUT [0] * WEIGHTS HIDDEN [0] [0]

+ BIAS HIDDEN [0] ;
OUTPUT HIDDEN [1] = OUTPUT INPUT [0] * WEIGHTS HIDDEN [0] [1]

+ BIAS HIDDEN [1] ;
OUTPUT HIDDEN [2] = OUTPUT INPUT [0] * WEIGHTS HIDDEN [0] [2]

+ BIAS HIDDEN [2] ;

Listing 4 Pseudocode APPLY WEIGHTS BIAS HIDDEN example.

Execu te func NN RELU(OUTPUT HIDDEN [0] , OUTPUT HIDDEN [0]) ;
Execu te func NN RELU(OUTPUT HIDDEN [1] , OUTPUT HIDDEN [1]) ;
Execu te func NN RELU(OUTPUT HIDDEN [2] , OUTPUT HIDDEN [2]) ;

Listing 5 Pseudocode APPLY ACTIVATION HIDDEN example.

9.5 Configuration Generation

PLC code must be packaged in a way that enables deploy-
ment into the control system. We define a configuration file
which contains named routines with auto-generated source
code, initializes all data structures, and metadata.

Routines Routines are composed of generated source code.
For the purpose of consistency for code generation, each
routine follows a defined naming convention.

– APPLY WEIGHTS BIAS LayerName for routines that
compute neuron inputs.

– APPLY NORMALIZATION LayerName for routines that
apply normalization.

– APPLY ACTIVATION LayerName for routines which
apply the activation function for each neuron in a layer.

Data structures Each layer in a NN needs three defined data
structures: an array for weights, an array for biases, and an
array for storing layer neuron outputs. Each array is com-
posed of floating point numbers. For optimization purposes,
the weight and bias arrays are defined as constants.

Predictions-on-Chip: Model-based Training and Automated Deployment of Machine Learning Models at Runtime 21

Metadata The generated configuration file defines several
key pieces of data such as the author, the generation date,
and the program name.

9.6 Code Optimization

In the context of the control system, the code of the deployed
predictors need to run at real-time, thus the efficiency of the
code is important. However, via a series of experiments, we
determined that not all PLCs have effective compilers. Op-
timizing changes in the code syntax (oftentimes to the detri-
ment of readability) could have profound changes on the ex-
ecution time of code.

One such optimization revealed via experimentation was
to avoid separating variable operations into multiple lines.
Due to a lack of compilation, it appears the PLC performs
extra unnecessary read and write operations. One can achieve
25%+ faster execution times by only setting a variable (var =
...) once and keeping all operations on one line of code, al-
beit, the line may become 1000+ characters long if a layer is
composed of many neurons.
OUTPUT HIDDEN [0] = OUTPUT INPUT [0] * WEIGHTS HIDDEN [0] [0]

+ . . . + . . . + BIAS HIDDEN [0] ;

Listing 6 Pseudocode PLC optimization example.

Obviously, code performance improvements are more
important than readability for such a prediction module, es-
pecially, since the code is auto-generated and it should not
be touched by control systems engineers.

9.7 Physical Deployment

Unfortunately, physical deployment, cannot be fully auto-
mated in the context of gas turbines. The process of physi-
cally deploying the prediction module to the control system
involves control system engineers importing the generated
code and configurations, properly connecting the on-engine
sensors to the module, and uploading the control system
code onto the physical PLC.

9.8 Deployment constraints for ML architectures

A real-time program must guarantee to complete within its
allocated execution time. The available time is imposed by
the PLC hardware, which may define restrictions and con-
straints for the underlying ML architectures. Even if a given
ML architecture performs particularly well during training
and validation, it cannot be used for runtime predictions if
the architecture cannot be deployed to the PLC. As such,
our goal was to identify some deployment constraints for
ML modules that can be enforced at design-time to enable
their deployment to the production environment.

Through a series of experimental tests on physical PLC
hardware, we are able to determine how much time cer-
tain floating point, integer, read and write operations require.
This knowledge can help us place constraints on neural net-
work training model size (Section 6.1).

The majority of NN computation is spent on the multi-
plication of neuron output values by their respective weights.
Thus the total computation time of a NN model is dominated
by the number of existing connections. Using our experi-
mentally determined hardware computation times, we can
put a conservative constraint on the number of connections
in a neural network training model to ensure that the de-
ployed module will satisfy timeliness related requirements.

9.9 Overview

In this section, we used code generation to automate the cre-
ation of optimized ML deployment models for a specific
production hardware to address RQ3.

RQ3: How to automate the deployment of a trained ML
model to a CPS hardware platform to improve maintain-
ability?

– Automation of trained ML model deployment can be ac-
complished via code generation techniques to develop
source and configuration files required for a PLC hard-
ware platform. ML models and relevant metadata can be
represented within template artifacts. Given code gener-
ation and configuration scripts, complex ML models can
be maintained (upgraded, replaced, etc.) without signif-
icant engineer involvement.

10 Threats to Validity

Construct Validity To limit threats to construct validity from
a design perspective, our test metrics directly relate to in-
puts and outputs of the existing prediction module and the
correctness of simulation data was validated by Siemens en-
gineers. While we exclusively rely upon simulation data (in-
stead of real field data) for training, this is unavoidable in our
engineering context as bearing loads cannot be measured di-
rectly. In addition, the output of our predictors has been vali-
dated by using independent system-level runtime simulators
regularly used in engine design. During those tests, no warn-
ings or errors were reported.

Internal Validity We mitigate threats to internal validity by
using implementations of ML techniques from trusted and
popular ML libraries (Scikit-Learn and TensorFlow) and fol-
lowing machine learning best practices. Likewise, we com-
pare predicted results to actual design time results and vali-
date on 120k unique simulation runs in the test set for each

22 Sebastian Pilarski et al.

of three bearings of a real gas turbine engine. For valida-
tion, each of these three bearings underwent black-box and
system-level testing. Additionally, to increase the level of
confidence in predictions, we provide metrics evaluating worst
case over and under-prediction in addition to standard error
metrics used in ML.

External Validity While we carried out extensive evaluation
of ML-based predictors in the context of gas turbine design,
we do not claim that similar results and findings would be
obtained for other CPSs. In particular,

– The data sets within this paper arise from specialized
non-chaotic physics simulations. For other data sets, other
ML techniques may be more effective or may not per-
form better than existing traditional predictors.

– Our deployment optimizations are specific to PLC hard-
ware and the compilers which were used, and thus may
not generalize to other hardware platforms.

– While in our context, it is frequently more effective to
replace earlier prediction components in a chain, this
may not always be the case (e.g. information loss such
as lossy channel between).

On the other hand, our key negative finding that the prin-
ciple of compositionality can be violated within chains of
prediction components should generalize (by definition). We
do not see any inherently special characteristics of our sys-
tem which would limit this system-level finding to the con-
text of designing prediction components for gas turbines. As
such, developing ML-based predictors which exhibit com-
positional behavior is a major open challenge.

11 Conclusions

In this paper, we addressed the problem of applying and de-
ploying machine learning predictors to gas turbine design
from a systems engineering perspective. Given the safety-
critical nature of gas turbines and the interdependence of ex-
isting subsystems developed by coordinated efforts of many
multidisciplinary engineering teams working on individual
components and modules, architectural changes in the sys-
tem are difficult and rare.

For this purpose, we proposed and evaluated four ar-
chitectures (1ML, HSML, HPML, 2ML) for potentially re-
placing existing bearing load prediction modules with ML-
driven counterparts. Despite using only 10% of data for train-
ing, for each of these architectures and for both Bayesian
ridge regression and NNs, the models generalized and ex-
hibited very minimal differences in performance between
training, validation, and test sets.

Additionally, we showcased how an ML model can be
automatically deployed and integrated into an off-the-shelf

PLC hardware platform. We provided various insights into
deployment as well as source code optimization. For exam-
ple, how to determine and incorporate platform and compu-
tation requirements for training ML models to ascertain that
the deployed ML predictors can actually run on the desig-
nated platform.

Conceptual Contributions

– We demonstrated the efficacy of applying ML for pre-
diction purposes within a gas turbine CPS control sys-
tem. With ML, we managed to reduce mean absolute er-
ror (vs traditional methods) by up to 60x and decrease
worst-case over and under-predictions.

– We evaluated the effects of replacing existing system
components with ML-driven counterparts. In some cases,
prediction module performance dropped even if a com-
ponent was replaced with a seemingly better (when eval-
uated as an individual black box) ML-driven counter-
part. Integration testing is key, as interaction between
components is difficult to predict. Thus, as a key neg-
ative finding, we experienced the violation of composi-
tionality in components of prediction chains, thus pro-
viding a major barrier for incremental re-certification.

– We proposed and validated methodology for automating
deployment of ML models into a low-level control sys-
tem of gas turbines. By using code generation from a
well-defined ML model template, we were able to de-
ploy neural networks and linear models onto a PLC.

Engineering/Industrial Impact

– Thanks to the automated deployment of prediction mod-
ules, over 20 engineering workdays are saved each time
an update to a prediction module is required.

– Within our deployment framework we incorporated ver-
sioning to distinguish between prediction modules. This
improved version comparisons and the ability to revert
to previous versions easily if necessary.

– By using code generation, we showed how a prediction
module can be deployed to multiple supported PLC plat-
forms from one ML model artifact. This reduces the num-
ber of software defects thus increasing software quality
across multiple supported hardware platforms.

The work presented in this paper will be continued at
Siemens Energy. It will be applied to other subsystems and
deployed in the field in new and revised engines.
Further studies, especially in other CPS domains, would help
validate opportunities of automated code generation for de-
ployment of ML in existing systems. This would provide
other unique case studies with different data sets and hard-
ware platforms which would greatly decrease existing threats
to external validity. We believe researching methods which
improve compositionality for prediction components would
be highly beneficial to the industry at large.

Predictions-on-Chip: Model-based Training and Automated Deployment of Machine Learning Models at Runtime 23

Acknowledgements This work was partially supported by the Dig-
ital Multidisciplinary Analysis and Design Optimization Platform for
Aeroderivative GasTurbines (Siemens Ca CRDPJ 513922-17 X-247371
and NSERC CRDPJ 513922-17 X-247323 funds)

References

1. Scikit-Learn Bayesian Ridge Regression. URL https://
scikit-learn.org/stable/modules/generated/
sklearn.linear_model.BayesianRidge.html#
sklearn.linear_model.BayesianRidge

2. SGT-A65: Aeroderivative gas turbine: Gas turbines: Man-
ufacturer: Siemens energy global. URL https://www.
siemens-energy.com/global/en/offerings/
power-generation/gas-turbines/sgt-a65-tr.
html

3. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefow-
icz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga,
R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V.,
Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg,
M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale ma-
chine learning on heterogeneous systems (2015). URL https:
//www.tensorflow.org/. Software available from tensor-
flow.org

4. Alexopoulos, K., Nikolakis, N., Chryssolouris, G.: Digital twin-
driven supervised machine learning for the development of artifi-
cial intelligence applications in manufacturing. International Jour-
nal of Computer Integrated Manufacturing 33(5), 429–439 (2020).
DOI 10.1080/0951192X.2020.1747642

5. Bencomo, N., Paucar, L.H.G.: RaM: Causally-connected and
requirements-aware runtime models using bayesian learning. In:
2019 ACM/IEEE 22nd International Conference on Model Driven
Engineering Languages and Systems (MODELS), pp. 216–226.
IEEE (2019)

6. Bishop, C.M.: Pattern recognition and machine learning. Springer
(2006)

7. Boschert, S., Rosen, R.: Digital Twin—The Simulation Aspect,
pp. 59–74. Springer International Publishing, Cham (2016). DOI
10.1007/978-3-319-32156-1 5

8. Breuker, D.: Towards model-driven engineering for big data
analytics–an exploratory analysis of domain-specific languages
for machine learning. In: 2014 47th Hawaii International Con-
ference on System Sciences, pp. 758–767. IEEE (2014)

9. Burgueño, L., Cabot, J., Gérard, S.: An LSTM-based neural net-
work architecture for model transformations. In: 2019 ACM/IEEE
22nd International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS), pp. 294–299. IEEE (2019)

10. Cengarle, M.V., Bensalem, S., McDermid, J., Passerone, R.,
Sangiovanni-Vincentelli, A., Törngren, M.: CyPhERS: Cyber-
physical european roadmap & strategy characteristics , capabili-
ties, potential applications of cyber-physical systems: a prelimi-
nary analysis. Tech. Rep. 611430 (2013)

11. Chbat, N.W., Rajamani, R., Ashley, T.A.: Estimating gas turbine
internal cycle parameters using a neural network. In: ASME 1996
International Gas Turbine and Aeroengine Congress and Exhi-
bition, pp. V005T15A023–V005T15A023. American Society of
Mechanical Engineers (1996)

12. Darvas, D., Viñuela, E.B., Majzik, I.: PLC code generation based
on a formal specification language. In: 2016 IEEE 14th Inter-
national Conference on Industrial Informatics (INDIN), pp. 389–
396. IEEE (2016)

13. Fan, C., Xiao, F., Zhao, Y.: A short-term building cooling load
prediction method using deep learning algorithms. Applied energy
195, 222–233 (2017)

14. Fast, M.: Artificial neural networks for gas turbine monitoring.
Division of Thermal Power Engineering, Department of Energy
Sciences . . . (2010)

15. Gregory, B.: Turbine preliminary design using artificial intelli-
gence and numerical optimization techniques. Journal of Turbo-
machinery 114, 1 (1992)

16. Huyck, B., Ferreau, H.J., Diehl, M., De Brabanter, J., Van Impe,
J.F., De Moor, B., Logist, F.: Towards online model predictive con-
trol on a programmable logic controller: Practical considerations.
Mathematical Problems in Engineering 2012 (2012)

17. Ibrahem, I., Akhrif, O., Moustapha, H., Staniszewski, M.: Neu-
ral networks modelling of aero-derivative gas turbine engine:
A comparison study. pp. 738–745 (2019). DOI 10.5220/
0007928907380745

18. Kanelopoulos, K., Stamatis, A., Mathioudakis, K.: Incorporating
neural networks into gas turbine performance diagnostics. In:
ASME 1997 International Gas Turbine and Aeroengine Congress
and Exhibition, pp. V004T15A011–V004T15A011. American
Society of Mechanical Engineers (1997)

19. Kiakojoori, S., Khorasani, K.: Dynamic neural networks for gas
turbine engine degradation prediction, health monitoring and
prognosis. Neural Computing and Applications 27(8), 2157–2192
(2016)

20. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014)

21. Kusiak, A., Li, M., Zhang, Z.: A data-driven approach for steam
load prediction in buildings. Applied Energy 87(3), 925–933
(2010)

22. Kusmenko, E., Nickels, S., Pavlitskaya, S., Rumpe, B., Timmer-
manns, T.: Modeling and training of neural processing systems. In:
2019 ACM/IEEE 22nd International Conference on Model Driven
Engineering Languages and Systems (MODELS), pp. 283–293.
IEEE (2019)

23. Lafdani, E.K., Nia, A.M., Ahmadi, A.: Daily suspended sediment
load prediction using artificial neural networks and support vector
machines. Journal of Hydrology 478, 50–62 (2013)

24. Lazzaretto, A., Toffolo, A.: Analytical and neural network models
for gas turbine design and off-design simulation. International
Journal of Applied Thermodynamics 4(4), 173–182 (2001)

25. Lee, E.A., Hartmann, B., Kubiatowicz, J., Rosing, T.S.,
Wawrzynek, J., Wessel, D., Rabaey, J.M., Pister, K., Sangiovanni-
Vincentelli, A.L., Seshia, S.A., Blaauw, D., Dutta, P., Fu, K.,
Guestrin, C., Taskar, B., Jafari, R., Jones, D.L., Kumar, V., Mang-
haram, R., Pappas, G.J., Murray, R.M., Rowe, A.: The swarm at
the edge of the cloud. IEEE Design & Test 31(3), 8–20 (2014).
DOI 10.1109/MDAT.2014.2314600

26. Li, Q., Meng, Q., Cai, J., Yoshino, H., Mochida, A.: Applying sup-
port vector machine to predict hourly cooling load in the building.
Applied Energy 86(10), 2249–2256 (2009)

27. Luo, W., Hu, T., Zhang, C., Wei, Y.: Digital twin for CNC ma-
chine tool: modeling and using strategy. Journal of Ambient
Intelligence and Humanized Computing (2018). DOI 10.1007/
s12652-018-0946-5

28. Madni, A.M., Madni, C.C., Lucero, S.D.: Leveraging digital twin
technology in model-based systems engineering. Systems 7(1), 7
(2019)

29. Nascimento, R.G., Viana, F.A.: Fleet prognosis with
physics-informed recurrent neural networks. arXiv preprint
arXiv:1901.05512 (2019)

30. Nguyen, P.T., Di Rocco, J., Di Ruscio, D., Pierantonio, A., Iovino,
L.: Automated classification of metamodel repositories: A ma-
chine learning approach. In: 2019 ACM/IEEE 22nd International
Conference on Model Driven Engineering Languages and Sys-
tems (MODELS), pp. 272–282. IEEE (2019)

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html#sklearn.linear_model.BayesianRidge
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html#sklearn.linear_model.BayesianRidge
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html#sklearn.linear_model.BayesianRidge
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html#sklearn.linear_model.BayesianRidge
https://www.siemens-energy.com/global/en/offerings/power-generation/gas-turbines/sgt-a65-tr.html
https://www.siemens-energy.com/global/en/offerings/power-generation/gas-turbines/sgt-a65-tr.html
https://www.siemens-energy.com/global/en/offerings/power-generation/gas-turbines/sgt-a65-tr.html
https://www.siemens-energy.com/global/en/offerings/power-generation/gas-turbines/sgt-a65-tr.html
https://www.tensorflow.org/
https://www.tensorflow.org/

24 Sebastian Pilarski et al.

31. Ogaji, S., Singh, R.: Artificial neural networks in fault diagnosis:
A gas turbine scenario. In: Computational Intelligence in Fault
Diagnosis, pp. 179–207. Springer (2006)

32. Pilarski, S., Staniszewski, M., Villeneuve, F., Varró, D.: On ar-
tificial intelligence for simulation and design space exploration
in gas turbine design. In: L. Burgueño, A. Pretschner, S. Voss,
M. Chaudron, J. Kienzle, M. Völter, S. Gérard, M. Zahedi,
E. Bousse, A. Rensink, F. Polack, G. Engels, G. Kappel (eds.)
22nd ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems Companion, MODELS Com-
panion 2019, Munich, Germany, September 15-20, 2019, pp. 170–
174. IEEE (2019). DOI 10.1109/MODELS-C.2019.00029

33. Prechelt, L.: Early Stopping - But When?, pp. 55–69. Springer
Berlin Heidelberg, Berlin, Heidelberg (1998). DOI 10.1007/
3-540-49430-8 3

34. Puschel, M., Moura, J.M., Johnson, J.R., Padua, D., Veloso, M.M.,
Singer, B.W., Xiong, J., Franchetti, F., Gacic, A., Voronenko, Y.,
et al.: SPIRAL: Code generation for dsp transforms. Proceedings
of the IEEE 93(2), 232–275 (2005)

35. Qiao, Q., Wang, J., Ye, L., Gao, R.X.: Digital twin for machin-
ing tool condition prediction. Procedia CIRP 81, 1388 – 1393
(2019). DOI https://doi.org/10.1016/j.procir.2019.04.049. 52nd
CIRP Conference on Manufacturing Systems (CMS), Ljubljana,
Slovenia, June 12-14, 2019

36. Rauber, T.W., de Assis Boldt, F., Varejão, F.M.: Heterogeneous
feature models and feature selection applied to bearing fault diag-
nosis. IEEE Transactions on Industrial Electronics 62(1), 637–646
(2015)

37. Sacha, K.: Automatic code generation for PLC controllers. In:
International Conference on Computer Safety, Reliability, and Se-
curity, pp. 303–316. Springer (2005)

38. Sobie, C., Freitas, C., Nicolai, M.: Simulation-driven machine
learning: Bearing fault classification. Mechanical Systems and
Signal Processing 99, 403–419 (2018)

39. Steinegger, M., Zoitl, A.: Automated code generation for pro-
grammable logic controllers based on knowledge acquisition from
engineering artifacts: Concept and case study. In: Proceedings of
2012 IEEE 17th International Conference on Emerging Technolo-
gies & Factory Automation (ETFA 2012), pp. 1–8. IEEE (2012)

40. Thapa, D., Park, C.M., Park, S.C., Wang, G.N.: Auto-generation
of IEC standard PLC code using t-MPSG. International Journal of
Control, Automation and Systems 7(2), 165–174 (2009)

41. Thomas, G., Cabaret, S., Barillère, R., Kulman, N., Rochez, J.,
Pons, X., Azarov, K.: LHC-GCS: a model-driven approach for au-
tomatic PLC and SCADA code generation. Tech. rep. (2005)

42. Tipping, M.E.: Sparse bayesian learning and the relevance vector
machine. Journal of machine learning research 1(Jun), 211–244
(2001)

43. Wang, Z., Hong, T., Piette, M.A.: Building thermal load prediction
through shallow machine learning and deep learning. Applied En-
ergy 263, 114683 (2020)

44. Widodo, A., Kim, E.Y., Son, J.D., Yang, B.S., Tan, A.C., Gu, D.S.,
Choi, B.K., Mathew, J.: Fault diagnosis of low speed bearing based
on relevance vector machine and support vector machine. Expert
systems with applications 36(3), 7252–7261 (2009)

	Introduction
	Related Work
	Machine Learning in Systems Engineering
	Engineering Gas Turbines: An Overview
	System Architecture for Load Prediction
	Prediction Module Problem Definition
	ML-Based Load Prediction Architectures
	Experimental Evaluation
	Deployment
	Threats to Validity
	Conclusions

