
Noname manuscript No.
(will be inserted by the editor)

Model-Based Cloud Resource Management with TOSCA
and OCCI

Stéphanie Challita · Fabian Korte · Johannes Erbel · Faiez Zalila · Jens
Grabowski · Philippe Merle

Received: date / Accepted: date

Abstract With the advent of cloud computing, differ-
ent cloud providers with heterogeneous cloud services
(compute, storage, network, applications, etc.) and their
related Application Programming Interfaces (APIs) have
emerged. This heterogeneity complicates the implemen-
tation of an interoperable cloud system. Several stan-
dards have been proposed to address this challenge and
provide a unified interface to cloud resources. The Open
Cloud Computing Interface (OCCI) thereby focuses on
the standardization of a common API for Infrastructure-
as-a-Service (IaaS) providers while the Topology and
Orchestration Specification for Cloud Applications
(TOSCA) focuses on the standardization of a template
language to enable the proper definition of the topol-
ogy of cloud applications and their orchestrations on
top of a cloud system. TOSCA thereby does not de-
fine how the application topologies are created on the
cloud. Therefore, we analyse the conceptual similarities
between the two approaches and we study how we can
integrate them to obtain a complete standard-based ap-
proach to manage both Cloud Infrastructure and Cloud
application layers. We propose an automated extensive
mapping between the concepts of the two standards
and we provide TOSCA Studio, a model-driven tool

Stéphanie Challita
University of Rennes 1 & IRISA/Inria, France.
E-mail: stephanie.challita@irisa.fr

Fabian Korte & Johannes Erbel & Jens Grabowski
University of Goettingen, Germany.
E-mail: firstname.lastame@cs.uni-goettingen.de

Faiez Zalila
CETIC, Belgium.
E-mail: faiez.zalila@cetic.be

Philippe Merle
Inria Lille - Nord Europe & University of Lille, France.
E-mail: philippe.merle@inria.fr

chain for TOSCA that conforms to OCCI. TOSCA Stu-
dio allows to graphically design cloud applications as
well as to deploy and manage them at runtime using a
fully model-driven cloud orchestrator based on the two
standards. Our contribution is validated by successfully
transforming and deploying three cloud applications:
WordPress, Node Cellar and Multi-Tier .

Keywords Cloud Computing · Standards · OCCI ·
TOSCA · Model-Driven Engineering · Metamodels ·
Cloud Orchestrator · Models@run.time

1 Introduction

With the growth of cloud computing, plenty of pro-
prietary cloud APIs have emerged which made it hard
for cloud costumers to switch between different cloud
providers. To tackle the problem of this cloud provider
lock-in, consortia have been formed to develop com-
mon standards for interfacing with cloud resources. The
Open Cloud Computing Interface (OCCI) [1], devel-
oped by the Open Grid Forum (OGF)1, 2, thereby aims
to provide a standardized managing interface, enabling
the customer to manage cloud resources. It has been ini-
tially published in 2010 and several open-source imple-
mentations have been developed since then supporting
all major open-source cloud middleware frameworks, in-
cluding OpenStack3, OpenNebula4 and CloudStack5.

At a higher level of abstraction, the Organization
for the Advancement of Structured Information Stan-

1https://www.ogf.org/ogf/doku.php/start
2All URLs have been last retrieved on October 7, 2020.
3http://www.openstack.org
4http://opennebula.org
5https://cloudstack.apache.org

ar
X

iv
:2

00
1.

07
90

0v
2 

 [
cs

.S
E

] 
 5

 O
ct

 2
02

0

https://www.ogf.org/ogf/doku.php/start
http://www.openstack.org
http://opennebula.org
https://cloudstack.apache.org


2 Stéphanie Challita et al.

dards (OASIS)6 developed the Topology and Orches-
tration Specification for Cloud Applications (TOSCA),
a template format that aims to standardize the def-
inition of application topologies for cloud orchestra-
tion. As such, it enables the customer to define the
topology of the cloud application in a reusable manner
and to deploy it on TOSCA compliant clouds. TOSCA
has been initially published in 2013 and major indus-
trial cloud providers such as IBM Cloud are support-
ing it [2]. In contrast to OCCI, TOSCA does not define
how the topologies are programmatically created on the
cloud infrastructure and leaves the implementation to
the cloud provider. The latter is a complex and error-
prone task, it requires expertise in the technical details
of the target cloud API.

While the approaches of TOSCA and OCCI are dif-
ferent, both define a model for cloud resources. The
goal of this work is to identify the conceptual similari-
ties and differences between the two models and provide
a mapping between them where possible. Such a map-
ping is the first step for building a fully model-driven
cloud-provider agnostic cloud orchestrator that lever-
ages both TOSCA and OCCI for portable application
and infrastructure provisioning and deployment.

An initial mapping of the two standards was intro-
duced in [3]. In this article, we extend this mapping
to support a complete coverage of both standards and
we concretely implement our approach based on Model-
Driven Engineering (MDE) techniques to conceive with
a high level of abstraction, verify, deploy and adapt
cloud applications. The similarities and differences be-
tween the two standards are defined via transformation
rules between the concepts of their metamodels. These
rules are outputted as a TOSCA model, called TOSCA
Extension, that defines the necessary information about
the characteristics and the management of cloud appli-
cations based on TOSCA. TOSCA Extension conforms
to the OCCIware metamodel [4,5] written in Ecore. In
fact, the OCCIware approach [6] proposes an enhanced
metamodel for OCCI and a whole tool chain for manag-
ing cloud resources. We leverage MDE in our approach
since it has proven to be quite advantageous and is the
mostly adopted methodology to rise in abstraction from
the implementation level to the model level. It also re-
duces the cost of developing complex systems thanks to
its ability of validation and artifacts generation.

Proposing a metamodel for a cloud API plays an im-
portant role to capture the expectations of this API and
to a priori validate the correctness of its cloud config-
urations. These metamodels are manually designed so
far, which is prohibitively labor intensive, time consum-
ing and error-prone. To address this issue, we propose to

6https://www.oasis-open.org

generate a model-driven specification, i.e., TOSCA Ex-
tension, from the documentation of TOSCA written in
YAML. This is a work of reverse engineering [7], which
is the process of extracting knowledge from a man-made
documentation and re-producing it based on the ex-
tracted information. TOSCA Extension is at the base
of construction of TOSCA Studio which is a tool chain
for TOSCA based on the OCCIware approach. TOSCA
Studio is implemented in the form of a set of Eclipse
plugins. It mainly contains a TOSCA Designer allowing
users to design, edit and validate TOSCA-based cloud
applications, as well as an OCCI Orchestrator allow-
ing users to deploy these applications on IaaS Clouds
and manage them, following a models@run.time ap-
proach [8]. TOSCA-Studio is publicly available online7.

In other words, we propose a standard-based and
model-driven orchestrator for cloud applications. We
extend the features introduced in [3] in the following
ways:

– we propose an automated, extensive and extensible
approach for mapping TOSCA types towards OCCI
types,

– we propose an automated, extensive and extensible
approach for mapping predefined TOSCA topolo-
gies towards deployable OCCI configurations,

– we provide TOSCA Studio, a model-driven environ-
ment for graphically designing and verifying cloud
applications using TOSCA concepts,

– and we provide an integrated plugin that ensures
a concrete deployment and runtime management of
these applications using an OCCI API.

Our contribution targets several audiences. It is use-
ful for TOSCA users since we provide an additional tool
for designing and deploying TOSCA topologies, and for
the developers of orchestrators since we provide a tech-
nical contribution that could inspire them to build their
own tool and easily map TOSCA topologies towards a
uniform cloud API. Finally, our approach shows that
the mapping between two cloud standards is real, which
is interesting, in terms of knowledge, for researchers and
educators working in this field.

The remainder of this paper is structured as follows.
First, we briefly introduce the models of TOSCA and
OCCI in Section 2. Then we provide a conceptual com-
parison, a mapping between the two models and prelim-
inaries about model-driven orchestration in Section 3.
In Section 4, we implement our approach and provide a
model-driven environment, called TOSCA Studio where
the cloud user can design, verify and deploy cloud con-
figurations. These configurations are deployed and main-
tained via the OCCI Orchestrator. Three feasibility stud-

7https://github.com/occiware/TOSCA-Studio

https://www.oasis-open.org
https://github.com/occiware/TOSCA-Studio


Model-Based Cloud Resource Management with TOSCA and OCCI 3

ies are discussed in Section 5. Section 6 presents the
learned lessons from combining the two standards and
providing a standard-based and model-driven environ-
ment for managing cloud applications. We compare our
contribution to related work in Section 7. Finally, we
draw our conclusions and give an outlook on future
work in Section 8.

2 TOSCA and OCCI

Both TOSCA and OCCI define languages for model-
ing cloud resources. Since they hence provide a model
for modeling they can be seen as metamodels [9]. We
introduce these metamodels in the following.

2.1 TOSCA

According to its specification [10], TOSCA is “a lan-
guage to describe service components and their rela-
tionships using a service topology, and it provides for
describing the management procedures that create or
modify services using orchestration processes”. There-
fore, it is able to describe both the service structure as
well as the management processes. As the time of this
writing, two versions of TOSCA exist. The first is based
on XML [10], and the second is based on YAML [11].
While for TOSCA XML aXML Schema Definition (XSD)
schema exists, the TOSCA YAML version lacks of a for-
mal metamodel. A simplified metamodel of TOSCA is
depicted in Fig. 1.

Service_template captures the structure and the life
cycle operations of the application. It consists of a Topol-
ogy_template and a Plan. Plans define how the cloud
application is managed and deployed. Topology_templa-

tes contain Entity_templates, which areNode_templates
that define e.g., the virtual machines or application
components, Relationship_templates that encode the
relationships between the Node_templates, e.g., that
a certain application component is deployed on a cer-
tain virtual machine, or Group_templates8 that allow
to define groups of Node_templates, which e.g. should
be scaled together. Additionally, TOSCA defines the
Entity_templates Capability and Requirement. Capa-
bilities are used to define that a Node_template has a
certain ability, e.g., providing a container for running
applications, and Requirements are used to define that
a certain Node_template requires a certain Capability
of another Node_template. All Entity_templates can

8Group_templates and Group_types are currently part of
the TOSCA YAML rendering, but not part of the TOSCA XML
specification.

have Properties, e.g., an IP address for a virtual ma-
chine, and a certain type that references an Entity_type.
The Entity_type defines the allowed Properties through
Property_definitions, and have Interfaces, which define
the Operations that can be executed on instances im-
plementing the type, e.g., the termination of a certain
application component, or the restart of a virtual ma-
chine. Operations have Parameters that define their
input and output. In addition to parameters for op-
erations, TOSCA also allows to define input param-
eters for Plans. Many types inherit from Entity_type
such as Node_type and Relationship_type. The former
is a reusable entity that defines the type of one or
more Node Templates and the latter defines the connec-
tion between the node types. We provide more informa-
tion in Section 3. Besides this abstract metamodel, the
TOSCA YAML specification defines normative types
that should be supported by each TOSCA conform-
ing cloud orchestrator. These normative types include
e.g., base types for cloud services and virtual machines.
More details on the model elements can be found in [11]
and [10].

2.2 OCCI

According to the OGF, “OCCI is a Protocol and API
for all kinds of Management tasks. It was originally ini-
tiated to create a remote management API for IaaS
model based services, allowing for the development of
interoperable tools for common tasks including deploy-
ment, autonomic scaling and monitoring”9. The OCCI
specification comprises several parts: OCCI Core model,
OCCI Extensions, OCCI Renderings and OCCI Proto-
cols. The OCCI Core Model [12] defines a model for
cloud resources and their dependencies. In addition to
the OCCI Core Model, OCCI Extensions define exten-
sions of the core model to be used for a specific do-
main. Several extensions are already standardized, e.g.,
the OCCI Infrastructure Extension [13], which defines
compute, network and storage resources for IaaS clouds,
and the OCCI Platform Extension for the Platform-
as-a-Service (PaaS) domain, that defines additional re-
sources for the Platform Service level. The extensions
also define the links that can be established between the
resources, for instance StorageLink, which connects a
compute resource to a storage resource and NetworkIn-
terface and IPNetworkInterface which connects a com-
pute resource to a network resource. Finally, OCCI Ren-
derings define how the OCCI Core Model can be inter-
acted with, e.g., the OCCI HTTP Protocol [14] that
defines how OCCI resources can be managed over the

9http://occi-wg.org

http://occi-wg.org


4 Stéphanie Challita et al.

Service_Template	

Boundary_Defini.ons	

Topology_Template	

En#ty_Type

name:	String

Proper.es_Defini.on

element:	String	[0..*]
type:	String	[0..*]

0..1

Capability_Type

Requirement_Type

Group_TypeNode_Type

Rela.onship_Type

En#ty_Template

name:	String	[0..1]

Ar.fact_Type

Capability

Proper.es

element:	String	[1..*]
value:	String	[1..*]

Ar.fact_Template

0..*
valid_Member

validSourceType

validTargetType

1

type

Rela.onship_Template

Group_TemplateNode_Template

target

source

0..*

0..*

0..1

member

Capability_Defini.on

Requirement_Defini.on

templates

types

type

0..*

0..*

0..*

Requirement

type

derived_From

1

Templates	of	a	specific	kind	are	
constrained	to	be	linked	to	Types	
of	the	same	kind,	e.g.,	an	instance	
of	Node_Template	can	only	be	linked	
to	an	instance	of	Node_Type,	etc.

Fig. 1 TOSCA metamodel.

HTTP protocol. The OGF does not provide a formal
metamodel for OCCI. This gap has been addressed by
the OCCIware approach [5,6] and we adopt the OC-
CIware metamodel in the scope of this work. The OC-
CIware metamodel defines precise semantics of OCCI
Core which is composed of eight elements that are rep-
resented in the grey boxes of Fig. 2. The Category is
the base type for all other classes and provides the nec-
essary identification mechanisms. Categories have At-
tributes that are used to define the properties of a cer-
tain class, e.g., the IP address of a virtual machine.
Three classes are derived from Category: Kind, Action,
and Mixin. Kind defines the type of a cloud entity, e.g.,
a compute resource and Mixins define how an entity
can be extended. Both have Actions that define which
actions can be executed on an entity. The cloud enti-
ties themselves are modeled by the class Entity, which
provides the base class for cloud Resources, e.g., vir-
tual machines, and Links that define how the resources
are connected. Moreover, the OCCIware metamodel ex-
plicitly introduces, among others, the two key concepts:
Extension and Configuration as represented in the blue
boxes of Fig. 2. An OCCI Extension represents a spe-
cific domain such as infrastructure, platform, security,
etc. and an OCCI Configuration defines a running sys-

tem, i.e., an instance model . It represents an instan-
tiation of one or several OCCI extensions. The yellow
boxes of the metamodel represent the DataType con-
cepts that define exact types of the attributes such as
StringType, RecordType, ArrayType, etc. In addition,
the OCCIware metamodel introduces the Constraint
notion (pink box in Fig. 2) allowing the cloud architect
to express business constraints related to each cloud
computing domain. The constraints can be imposed on
OCCI Kinds and Mixins.

We provide Fig. 3 to better understand the corre-
spondence between the two standards. First, we pro-
vide a simple TOSCA topology example, presented as a
YAML file (1). This topology is composed of a tosca.nodes
.Compute node named my_server and a
tosca.nodes.BlockStorage node namedmy_storage. There
is a relationship tosca.relationships.AttachesTo that con-
nects these two nodes. Later on, we use Winery10 to
model this topology (2). Winery implements the visu-
alization concept specified by Vino4TOSCA [15]. Even-
tually, we model the same topology in an OCCI di-
alect (3). One can see that the tosca.nodes.Compute is
translated into an OCCI Mixin that is applied on an

10https://winery.readthedocs.io/en/latest/user/
getting-started.html

https://winery.readthedocs.io/en/latest/user/getting-started.html
https://winery.readthedocs.io/en/latest/user/getting-started.html


Model-Based Cloud Resource Management with TOSCA and OCCI 5

Fig. 2 A subset of OCCIware metamodel (adapted from [5]).

Fig. 3 TOSCA vs OCCI model.

OCCI Compute resource. An OCCI Mixin can be seen
as an interface that adds additional properties to a Re-
source, if required even at runtime. In this example, the
tosca_nodes
_Compute Mixin is applied to an OCCI Compute to
add TOSCA specific properties like the type, distribu-

tion, version and diskSize. Due to these extending ca-
pabilities of OCCI Mixins, we choose them to represent
TOSCA concepts.



6 Stéphanie Challita et al.

TOSCA 
Metamodel

TOSCA

Topologies

instantiate

defines
Cloud 
user

IaaS Cloud

OCCI
Orchestrator

deploys on

mapped to

OCCIware

Configurations feed

OCCIware
Metamodelmapped to

instantiate

Fig. 4 Approach overview.

3 A Standard-based and Model-driven
Approach for Managing Cloud Applications

In this section, we present our contribution that allows
cloud application management by relying on TOSCA
and OCCI. First, we give an overview of the proposed
architecture and then we present how TOSCA concepts
can be mapped to those of OCCI. We also describe how
the automated generation of appropriate deployment
artifacts can be achieved.

3.1 Overview

Our contribution ensures a standard-based approach to
handle cloud applications in production environments.
An overview of the proposed architecture is shown in
Fig. 4. The architecture is composed of three parts: (1)
The TOSCA Metamodel that is mapped to the OC-
CIware Metamodel, (2) the TOSCA Topologies
that are mapped to OCCIware Configurations and
(3) the OCCI Orchestrator. The TOSCA Meta-
model provides an expressive model for cloud appli-
cations by relying on an appropriate formalization of
TOSCA concepts. The concepts of this model are mapped
to OCCIware concepts (cf. Sections 3.2.1 and 3.2.2
for more details). The TOSCA Topologies describe
the structure of cloud applications. They instantiate the
concepts of the TOSCA metamodel. These topologies
are mapped to OCCI configurations that can be de-
signed, edited, validated and deployed as cloud appli-
cations. Further information about TOSCA topologies
can be found in Section 3.2.3. Finally, OCCI Orches-
trator provides means to generate necessary OCCI
artifacts and to deploy, via appropriate OCCI requests,
the generated artifacts in the executing environment.
Every artifact is handled in a seamless way thanks to
the homogeneity provided by modeling principles.

To sum up, our approach uses MDE techniques in
order to design, verify and deploy cloud applications at
a high level of abstraction. In fact, our TOSCA Model
describes explicitly concerns of a cloud application that
can be instantiated and deployed in an executing envi-
ronment, i.e., a IaaS Cloud.

3.2 Mapping the two standards

While both standards define a metamodel for cloud re-
sources, their focuses are different. The focus of OCCI
is to provide a standardized API and it does not define
concepts to address reusability, composability, and scal-
ability. Instances of OCCI are not meant to be stored
persistently and to be reused later on as it is the goal
of TOSCA. TOSCA on the other side does not define
how the defined topology is deployed by means of API
calls to the cloud provider as it is done with the OCCI
HTTP rendering. Hence, both approaches have their
strengths and weaknesses and it is worthwhile to in-
vestigate how to integrate them. The mapping between
the two standards is possible and is done through three
stages: (1) mapping of TOSCA normative types to the
OCCIware metamodel, (2) mapping of TOSCA custom
types to OCCIware mixins and (3) mapping of TOSCA
instantiation concepts to OCCIware instantiation con-
cepts. This mapping is proposed after a deep reading
and understanding of both TOSCA and OCCI specifi-
cations. Each of the mapping stages will be detailed in
the following subsections.

3.2.1 TOSCA metamodel & normative types to
OCCIware metamodel

We base our mapping on the TOSCA YAML specifica-
tion [10] that defines the TOSCA normative types, and
on the OCCIware metamodel [6]. We chose the TOSCA
YAML specification since it has a more concise syntax,
is easier to read and is widely adopted by the com-
munity comparing to the TOSCA XML specification.
TOSCA normative types model several types of com-
ponents, called nodes, that interact through relation-
ships. In the following, we present the main concepts of
TOSCA and how they can be related to OCCI concepts.
The entirety of this mapping is presented in Table 1.

– Entity_type is an abstract concept used to define
reusable elements in TOSCA, such as Node_type,
Requirement_type, Relationship_type, Pol-
icy_type and Capability_type. This matches
the purpose of attributes of OCCI Kinds or Mix-
ins. Each Entity_type may have a description field
that provides a description of the entity and a de-
rived_from field that defines the parent this new
entity derives from. They match the concepts of de-
scription and parent in OCCI, respectively. Each
Entity_type may also have properties or attributes
that define the properties that a certain entity is al-
lowed to have. In our approach, we can map all the
elements that inherit from Entity_types, namely



Model-Based Cloud Resource Management with TOSCA and OCCI 7

Table 1 TOSCA2OCCI mapping: metamodeling level

TOSCA metamodel & normative types OCCIware metamodel

Entity_type Mixin
description description
derived_from parent

Property & Attribute Attribute
default default
required required
type DataType
constraints regular expressions
valid_values EnumerationType
greater_or_equal minInclusive
min_length minLength

Node_type Mixin applied to Resource
nodes.BlockStorage Mixin applied to Storage Resource
nodes.ObjectStorage Mixin applied to Storage Resource
nodes.Compute Mixin applied to Compute Resource
nodes.SoftwareComponent Mixin applied to Component Resource
nodes.WebServer Mixin that depends on nodes.SoftwareComponent Mixin
nodes.WebApplication Mixin applied to Component Resource
nodes.DBMS Mixin that depends on nodes.SoftwareComponent Mixin and on Database Mixin
nodes.Database Mixin applied to Component Resource
nodes.LoadBalancer Mixin applied to Resource
nodes.container.Runtime Mixin that depends on nodes.SoftwareComponent Mixin
nodes.container.Application Mixin applied to Component Resource

Requirement_type OCL Constraint

Relationship_type Mixin applied to Link
relationships.AttachesTo Mixin applied to StorageLink Link
relationships.ConnectsTo Mixin applied to ComponentLink Link
relationships.DependsOn Mixin applied to ComponentLink Link
relationships.HostedOn Mixin applied to ComponentLink Link
relationships.RoutesTo Mixin that depends on relationships.ConnectsTo Mixin

Datatype_type RecordType
datatypes.Credential CredentialRecordType
datatypes.network.NetworkInfo NetworkInfoRecordType
datatypes.network.PortDef PortDefRecordType
datatypes.network.PortInfo PortInfoRecordType
datatypes.network.PortSpec SHORT

Interface_type Mixin (with 0 attribute and only actions)
interfaces.node.lifecycle.Standard Mixin applied to Resource
interfaces.node.lifecycle.Standard/start() Component/start() or Storage/online() or Compute/start()
interfaces.node.lifecycle.Standard/stop() Component/stop() or Storage/offline() or Compute/stop()
interfaces.relationship.Configure Configure Mixin applied to Link
Operation Action

Capability_type Mixin applied to Resource or Link

Node_types and Relationship_types to OCCI mix-
ins. Their properties become attributes in OCCI.

– Property & Attribute define the properties that
a certain Entity_type is allowed to have. This
matches the purpose of OCCI Attributes. A prop-
erty definition should have a type, which matches
the DataType concept in OCCI. Constraints can be
applied to the attribute type, like the valid_values
constraint that limits the property value to values
declared in a list, and the greater_or_equal con-

straint indicating the number of an attribute. For
example, CPU that represents a characteristic of an
entity, e.g., Compute, is greater_or_equal than 2.
These two constraints (valid_values and greater_or
_equal) become an EnumerationType declaration
and a minInclusive value in OCCI, respectively. A
property may have several optional fields, for exam-
ple the required field that indicates if a property is
required or not can be matched to the required con-
cept in OCCI.



8 Stéphanie Challita et al.

– Node_type defines the possible types of building
blocks for constructing a cloud application, e.g., vir-
tual machines, network, middleware, etc.. The node
types are separately defined for reusability purpose.
In fact, the defined node types can be reused when
a developer or an application architect wants to de-
fine the topology of a cloud application. Further in-
formation about the instantiation of the node types
are given in Section 3.2.3. The Node_type concept
matches a Mixin applied to a Kind Resource in
OCCI. For example,
tosca.nodes.BlockStorage becomes a mixin applied
to Storage kind in OCCI. tosca.nodes.WebServer be-
comes a mixin that depends on
tosca.nodes.SoftwareComponent mixin. The latter is
in turn applied to Component kind in OCCI.

– Requirement_type defines that a certain
Node_type requires a certain capability of an-
other Node_type. This is encoded as Object Con-
straint Language (OCL) [16] constraints in OCCI
mixins.

– Capability_type extends an Entity_type with
a certain ability, e.g., providing an operating sys-
tem for a processor or a container for a server. This
concept complies to the concept of an OCCI Mixin.
For example, tosca.capabilities.OperatingSystem be-
comes a mixin that represents the operating system
of a certain node. It defines information regarding
of the operating system such as its type, distribution
and version.

– Relationship_type encodes the relationships be-
tween the Node_types, e.g., it encodes that a spe-
cific application component is deployed on a spe-
cific virtual machine. This becomes a Mixin applied
to a Kind Link in OCCI. For example, tosca.rel-
ationships.AttachesTo becomes a mixin applied to
StorageLink in the OCCI Infrastructure extension.

– Data_type defines complex data types of TOSCA
properties. This concept matches the OCCIware
RecordType concept which is used to define struc-
tures. For example, NetworkInfo becomes a record
type which contains data about the network at-
tribute. Each RecordType has at least one Record-
Field which represents a field of the record. In our
example, networkid and networkname are record
fields of the network attribute and expect a string
type value.

– Interface_type defines the allowed Operations
that can be executed on Node_type or on a Rela-
tionship_type. This becomes a Mixin that con-
tains only Actions in OCCI. For example,
tosca.interfaces.node.lifecycle.Standard becomes a
mixin that contains information which operations
can be performed on a node type, e.g., create, con-
figure and delete.

We can map all the elements that inherit from En-
tity_types, namely Node_types, Requirement_types,
Relationship_types, , Datatype_types, Interface_types
and Capability_types to OCCI mixins. However, TOSCA
introduces some additional concepts, such as Group_types,
Policy_types , and Artifact_types, that have no one-
to-one correspondents in OCCI. This issue is out of the
scope of this article.

3.2.2 TOSCA custom types to OCCIware mixins

The TOSCA specification defines basic root types called
TOSCA normative types. These are default types for
describing the cloud infrastructure and application. We
showed in Section 3.2.1 how we mapped these con-
cepts to the OCCIware metamodel. However, most of
the application components are not part of the nor-
mative types but extend the TOSCA normative types.
These are the custom types. They are defined in sev-
eral YAML files that are scattered over the internet
in GitHub repositories. In fact, during our study, we
observed that the community around TOSCA is quite
active. Several projects, such as Alien4Cloud11, Cloud-
ify12, CELAR13, SeaClouds14, DICER15 and INDIGO-
DataCloud16 have raised. Each project has been defin-
ing new TOSCA custom types or modifying existing
types according to its need. In our approach, we parse
these projects and we automatically map TOSCA cus-
tom types to OCCIware mixins, since custom types in-
herit from TOSCA normatives types. However, some of
these custom types appear to be duplicated but with
different names. In fact, there is no centralized reposi-
tory for all these types, which leads to an inconsistent
use of TOSCA types across organizations. For exam-
ple,tosca.nodes.Mysql17 and tosca.nodes.Database.

11http://alien4cloud.github.io
12https://cloudify.co
13https://github.com/CELAR/c-Eclipse
14http://www.seaclouds-project.eu/
15https://github.com/dice-project/DICER
16https://www.indigo-datacloud.eu
17https://github.com/alien4cloud/samples/blob/master/

mysql/mysql-type.yml#L24

http://alien4cloud.github.io
https://cloudify.co
https://github.com/CELAR/c-Eclipse
http://www.seaclouds-project.eu/
https://github.com/dice-project/DICER
https://www.indigo-datacloud.eu
https://github.com/alien4cloud/samples/blob/master/mysql/mysql-type.yml#L24
https://github.com/alien4cloud/samples/blob/master/mysql/mysql-type.yml#L24


Model-Based Cloud Resource Management with TOSCA and OCCI 9

MySQL18, tosca.Rsyslog19 and tosca.nodes.
SoftwareComponent.Rsyslog20 are two couples of redun-
dant node types that are semantically equivalent but
differently defined. In our approach, we collected 30
custom TOSCA types defined in TOSCA projects and
mapped them automatically and exhaustively to OC-
CIware mixins. We show in Table 2 a subset of the
TOSCA custom types automatically mapped to OC-
CIware mixins. In order to add new custom types, a
Cloud developer has to provide a YAML file that con-
tains the definition of his/her own types. These types
must inherit from the TOSCA normative types using
the clause “derived_from”. Then, within TOSCA Stu-
dio, he/she can parse the YAML file to automatically
generate the corresponding OCCIware mixins that are
usable by TOSCA-Studio to design and deploy cloud
applications.

By mapping TOSCA normative types, defined in
the YAML specification, and the diverse added custom
types, to those of OCCIware metamodel, we designed
a TOSCA Model which conforms to the OCCIware
metamodel.

3.2.3 TOSCA instantiation concepts to OCCIware
instantiation concepts

The TOSCA specification allows the definition of a cloud
application by reusing a set of nodes that are connected
to other nodes using relationships. For the definition of
provisionable elements, TOSCA defines some ready-to-
use topologies that represent popular cloud applications
and describe their deployment. A topology is a compo-
sition of multiple nodes that may be connected through
relationships. Hence, topologies use the concepts of En-
tity_templates, namely Node_templates, Rela-
tionship_templates and Group_templates. We
explain in the following, how TOSCA topologies can be
mapped to OCCIware configurations and we provide a
summary in Table 3.

– A Topology_template defines a reusable and
portable representation of the structure of an appli-
cation to facilitate understanding of its functional
components and eliminating unnecessary details. It
consists of a set of Node_templates and Rela-
tionship_templates. Each Topology_template

18http://docs.oasis-open.org/tosca/
TOSCA-Simple-Profile-YAML/v1.0/
TOSCA-Simple-Profile-YAML-v1.0.html

19https://github.com/openstack/tosca-parser/blob/
master/toscaparser/tests/data/custom_types/nested_
rsyslog.yaml

20https://github.com/openstack/tosca-parser/blob/
master/toscaparser/tests/data/custom_types/rsyslog.yaml

is mapped into a Configuration in OCCI.

– A Node_template specifies the occurrence of a
node in a topology template. Each Node_template
refers to a Node_type and instantiates the seman-
tics of its properties, attributes, requirements, ca-
pabilities and interfaces. It gets to be transformed
into a Resource with a MixinBase in an OCCI
Configuration. A MixinBase refers to a Mixin and
instantiates the attributes of the referenced mixin
outside the owner entity in order to separate the
entity attributes from the mixin ones.

– A Relationship_template specifies the occur-
rence of a relationship between nodes in a topology
template. Each Relationship_template refers to
a Relationship_type and instantiates the seman-
tics of its properties, attributes, interfaces, etc. It
can be transformed into a Link with a MixinBase
in an OCCI Configuration.

– A Group_template defines a group of nodes that
share some semantics, e.g. an autoscaling group is
a group of Virtual Machines (VMs) that would be
scaled together. It can be transformed into a number
of Resources and Links in OCCI.

The mapping detailed above is used to propose a
fully model-driven cloud orchestrator which we define
in the next subsection.

3.3 Model-driven cloud orchestration

To deploy the cloud application specified in the TOSCA
topology, we use a combined approach of TOSCA and
OCCI, as shown in Fig. 4. By utilizing both standards
we benefit from their individual advantages while ne-
glecting their drawbacks. Namely the matured design
time capabilities of TOSCA topologies combined with
the uniform interface provided by OCCI allowing to
instantiate the desired cloud application using the pro-
cess depicted in Fig. 5. Based on the modeled TOSCA
topology, an OCCI Platform Independent Model (PIM)
is generated, i.e., a (PIM) OCCIware Configura-
tion. The resulting configuration, containing the mod-
eled TOSCA resources as OCCI elements, then serves
as input for the OCCI Orchestration process ini-
tially described in [17]. In general, the concept resem-
bles a models@run.time approach [8] which derives im-
perative steps from a declarative description in order to
adapt the running system. In the following the trans-
formation, as well as the derivation of required OCCI

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html
https://github.com/openstack/tosca-parser/blob/master/toscaparser/tests/data/custom_types/nested_rsyslog.yaml
https://github.com/openstack/tosca-parser/blob/master/toscaparser/tests/data/custom_types/nested_rsyslog.yaml
https://github.com/openstack/tosca-parser/blob/master/toscaparser/tests/data/custom_types/nested_rsyslog.yaml
https://github.com/openstack/tosca-parser/blob/master/toscaparser/tests/data/custom_types/rsyslog.yaml
https://github.com/openstack/tosca-parser/blob/master/toscaparser/tests/data/custom_types/rsyslog.yaml


10 Stéphanie Challita et al.

Table 2 Subset of TOSCA2OCCI mapping: metamodeling level

TOSCA custom types OCCIware mixins

nodes.Apache Mixin that depends on nodes.WebServer Mixin
nodes.SoftwareComponent.Collectd Mixin that depends on nodes.SoftwareComponent Mixin
nodes.HACompute Mixin that depends on nodes.Compute Mixin
nodes.Database.Mysql Mixin that depends on nodes.Database Mixin
nodes.DBMS.MySQL Mixin that depends on nodes.DBMS Mixin
nodes.Container.Application.Docker Mixin that depends on nodes.container.Application Mixin
nodes.SoftwareComponent.Elasticsearch Mixin that depends on nodes.SoftwareComponent Mixin
nodes.SoftwareComponent.Logstash Mixin that depends on nodes.SoftwareComponent Mixin
nodes.SoftwareComponent.Kibana Mixin that depends on nodes.SoftwareComponent Mixin
nodes.AbstractMysql Mixin that depends on nodes.Database Mixin
nodes.network.Network Mixin applied to Network Resource
nodes.network.Port Mixin applied to Network Resource
nodes.Nodejs Mixin that depends on nodes.WebServer Mixin
nodes.WebApplication.PayPalPizzaStore Mixin that depends on nodes.WebApplication Mixin
nodes.PHP Mixin that depends on nodes.SoftwareComponent Mixin
nodes.SoftwareComponent.Rsyslog Mixin that depends on nodes.SoftwareComponent Mixin
nodes.Wordpress Mixin that depends on nodes.WebApplication Mixin
nodes.Nodecellar Mixin that depends on nodes.WebApplication Mixin
nodes.MongoD Mixin that depends on nodes.DBMS Mixin

Table 3 TOSCA2OCCI mapping: modeling level

TOSCA instantiation
concepts OCCIware metamodel

Topology_template Configuration
Node_template Resource with a MixinBase
Relationship_template Link with a MixinBase

requests to reach the state of the designed cloud con-
figuration are described in more detail.

3.3.1 PIM to PSM Transformation

To allow for an automated deployment of the OCCI
configuration on the target environment, a Platform
Specific Model (PSM) is generated from the (PIM)
OCCIware Configuration that contains all infor-
mation required for the deployment. To generate the
(PSM) OCCIware Configuration, aModel-to-Model
transformation (M2M) transformation is applied that
can be configured to add cloud provider specific infor-
mation. The information to be added largely depends
on the elements introduced within the OCCI extensions
used to handle cloud provider specifics. For example, in
the extension of Paraiso et al. [18] specialized Com-

OCCI Orchestration

Compare

OCCIware
Runtime Configuration

Provisioning and
Deployment Plan

(PIM) OCCIware
Configuration

validate
extract

IaaS Cloud

M2M

OCCI 
interface

(PSM) OCCIware
Configuration

M2M

Fig. 5 Model-driven cloud orchestration process.

pute entities are designed offering attributes that can
be filled to provision VMs on individual cloud providers.
In the presented approach, the transformation is mainly
used to ensure a correct functionality of the orchestra-
tion process. This comprises the addition of a mixin to
each infrastructural resource which relates the OCCI
id to the id assigned by the cloud provider allowing for
a concrete mapping between the modeled and actual
resource running in the cloud. Additionally, the trans-
formation adds a management network to the OCCI
configuration that serves two purposes. Firstly, it en-
sures a connection between the OCCI interface and
each modeled VM which is needed to deploy the mod-
eled OCCI components via configuration management
scripts. Secondly, it fulfills the requirement of specific
cloud providers, such as Openstack, to declare a net-
work to which a newly provisioned VM gets connected.
It should be noted that the transformation may be used
to incorporate further provider specifics, e.g., by adding
OCCI Resource and Operating system templates [13]
describing available sizes and images for VMs by the
target environment over OCCI terms and schemes. Fi-
nally, the resulting OCCI configuration serves as input
for the orchestration process as described in the follow-
ing.

After the transformation, the orchestration process
extracts the current cloud deployment in form of an
OCCI Runtime Configuration, and compares it to
the desired cloud deployment. Based on this compari-
son a M2M is triggered that generates a Provision-
ing and Deployment Plan (see e.g., [17], [19] or
[20] for automatic deployment and provisioning work-
flow generation). Within this plan the OCCI requests



Model-Based Cloud Resource Management with TOSCA and OCCI 11

required to manage cloud resources are sequenced in or-
der to bring the cloud resources into the desired state.
It should be noted that the OCCI requests are gener-
ated from the elements contained within the (PSM)
OCCIware Configuration. Finally, the provisioned
and deployed OCCI model can be again extracted and
synchronized to validate whether the design time con-
cepts and constraints, specified in the TOSCA model,
are met. We exemplify the proposed orchestration pro-
cess in Section 5.

3.3.2 Orchestration Process

To derive required adaptive steps, the current and de-
sired cloud deployment need to be investigated. As a
first step the orchestration process extracts the cur-
rent cloud deployment in form of an OCCI Runtime
Configuration, and compares it to the desired one.
During the comparison each individual resource of the
new and actual deployment are matched to each other
based on their identity, i.e. their id and kind. Based
on the match, each entity is identified as already exist-
ing, to be deleted, updated or added resulting in the
corresponding instructions that need to be send to the
OCCI interface. While entities marked as to be updated
get their values adjusted in the runtime model and re-
sources marked as to be deleted get undeployed and
deprovisioned, the resources to be added need to be
provisioned in the correct order.
To sequence the provisioning requests, a M2M is per-
formed on the input model generating a Provisioning
and Deployment Plan. As a first step within this
transformation, a provisioning order graph [21] is gen-
erated. This graph describes the dependencies between
modeled cloud resources based on the kind of links be-
tween them. Thereafter, we remove the updated and
existing resources from the graph, as they are already
present in the currently deployed runtime model [17].
As a final step, this graph is transformed into an UML
activity diagram containing a sequence of provisioning
actions to follow. Hereby, each action in the diagram
refers to an OCCI entity from which the requests are
formed. The resulting activity diagram is interpreted by
the orchestration process which is responsible for send-
ing the provisioning requests to the OCCI interface.
After the activity diagram has been interpreted success-
fully, the runtime model has reached the new desired
state with the infrastructural resources being started.
Then the deploy, configure and start action is triggered
on each application within the runtime model resulting
in the deployment of the individual application compo-
nents. The provisioned and deployed OCCI model can
be subsequently extracted and synchronized to validate

whether the design time concepts and constraints, spec-
ified in the TOSCA model, are met. We exemplify the
proposed orchestration process in Section 5.

4 Implementation: TOSCA Studio

Our approach for managing cloud applications by re-
lying on TOSCA topologies and the OCCIware frame-
work and API is implemented through TOSCA Stu-
dio. TOSCA Studio is a model-driven tool chain for
modeling and deploying cloud application topologies
encoded by the TOSCA standard based on the OCCI-
ware approach. It relies on a metamodel, calledTOSCA
Extension, defining the static semantics for the TOSCA
standard in Ecore and OCL [16] and conforming to the
OCCIware Metamodel. More specifically, TOSCA Stu-
dio is implemented as a set of Eclipse plugins that are
publicly available21. It mainly contains a TOSCA De-
signer that provides users facilities for designing, edit-
ing, validating TOSCA-based cloud applications, and
an OCCI Orchestrator that allows users to deploy
and manage these applications. In this section, we de-
tail each of our solution main components: TOSCA
Extension, TOSCA Designer, and OCCI Orches-
trator.

4.1 TOSCA Extension

The mapping between the original TOSCA metamodel
(in YAML) and OCCIware metamodel, detailed in Sec-
tion 3.2, is encoded as an OCCI extension for TOSCA
(called the TOSCA Extension), as depicted in the
purple box in Fig. 6. TOSCA Extension captures all
the necessary information related to the characteristics
and management of TOSCA-based cloud applications.
TOSCA Extension is represented in the form of a dia-
gram in Fig. 7. This diagram was designed with OC-
CIware Studio, our open source model-driven devel-
opment environment dedicated to OCCI [5,6]. TOSCA
Extension is conceptually divided into three levels.

The top level represents the OCCI Core model, en-
coded with the Eclipse Modeling Framework (EMF).
The middle level contains OCCI standardized exten-
sions, which are OCCI Infrastructure, OCCI Platform
and OCCI SLA. It also contains Model-Driven Config-
uration Management of cloud Applications with OCCI
(MoDMaCAO) [22], which is an enhanced version of
the standardized OCCI Platform extension. The bot-
tom level represents TOSCA concepts, which extend
the Infrastructure, MoDMaCAO and SLA extensions,

21https://github.com/occiware/TOSCA-Studio

https://github.com/occiware/TOSCA-Studio


12 Stéphanie Challita et al.

0 OCCI 
Protocols

OCCI Core

OCCI 
Renderings

OCCI 
Extensions

HTTP

00Text JSON

0Core

0

0

0CRTP

Infrastructure

Platform

0MoDMaCAO

0SLA

0TOSCA

Fig. 6 OCCI specifications.

in the form of mixins. TOSCA Extension is quite rich in
concepts. It contains 68 mixins, 10 of which extend the
Infrastructure extension, 33 extend the MoDMaCAO
extension and 4 extend the SLA extension. The re-
maining concepts extend the generic Resource and Link
types from the OCCI Core model. Fig. 7 illustrates how
TOSCA mixins extend already existing OCCI exten-
sions, and shows the graphical output of a subset of the
TOSCA Extension. For example, tosca_nodes_Compute
extends OCCI Infrastructure. It contains an OCL con-
straint SourceMustBeSoftwareComponent which
enforces that the Compute instance cannot run if it is
not linked to a SoftwareComponent instance. It also de-
pends on three other mixins tosca_capabilities_Container,
tosca_capabilities_OperatingSystem and
tosca_capabilities_Endpoint, and therefore inherits their
attributes. TOSCA Extension also defines exact types
thanks to the DataType system provided by the OCCI-
ware metamodel. The EMF validator then checks the
type constraints that are attached to the attribute. For
example, scalarSizeMinOneMB is translated into a
NumericType, especially an Integer, containing the
following constraint: minInclusive = 1.

To implement TOSCA Extension, we implemented
a YAML parser in Java, using yamlbeans22 library. In
fact, we provide an algorithm that infers TOSCA Ex-
tension from YAML specifications. This automated ex-
traction allows a better modeling of TOSCA concepts.
So far, existing models are manually designed, which
is prohibitively labor intensive, time consuming and
error-prone. To address this issue, we propose a novel
approach to automatically infer model-driven specifica-
tion from YAML specification files of TOSCA standard.
First, using the OCCI API, we create a model, i.e., an
OCCI extension. Then, the algorithm loads the con-
tent of the YAML specification files using yamlbeans
library. The types in these YAML file are grouped se-

22https://github.com/EsotericSoftware/yamlbeans

OCCI Core

OCCI Extension

TOSCA Extension

Fig. 7 A subset of TOSCA Extension.

mantically: nodes, relationships, capabilities, data, etc.
The algorithm runs through each of this group, then for
each TOSCA type it builds the corresponding OCCI
mixin. For each type, the algorithm matches its infor-
mation (derived_from, description, attributes, require-
ments, etc.) to corresponding OCCI concepts. If an at-
tribute requires a type that has not been defined yet,
the algorithm keeps the name of this type in memory.
When defined, the latter will be assigned to this at-
tribute. Eventually, we add the new mixin to the model
under construction and so on. This model represents
our TOSCA Extension.

Readers can find the parser code as well as our pre-
cise TOSCA Extension on GitHub23.

4.2 TOSCA Designer

Our approach allows cloud architects to visualize, edit
and verify configured instances of cloud applications
using TOSCA types defined in TOSCA Extension. To
do so, we provide TOSCA Designer, which is a spe-
cific graphical modeler of both OCCI extensions and
configurations for TOSCA. This tool is implemented
on top of the Eclipse Sirius framework. A screenshot
of our TOSCA Designer is depicted in Fig. 8. Frame
(1) shows the Eclipse Model Explorer used to navi-
gate through a TOSCA project containing a TOSCA

23https://github.com/occiware/TOSCA-Studio

https://github.com/EsotericSoftware/yamlbeans
https://github.com/occiware/TOSCA-Studio


Model-Based Cloud Resource Management with TOSCA and OCCI 13

Fig. 8 TOSCA Designer.

Model. Frame (2) gives a perspective or a global view of
the modeled topologies. Frame (3) contains the topol-
ogy elements. Frame (4) contains the Eclipse proper-
ties editor for visualizing and modifying attributes of
a selected modeling element. All TOSCA elements dis-
played in Frame (3) can be set through their properties.
Frame (5) displays the configuration pallet that repre-
sents the TOSCA types (normative and custom) such
as: tosca_nodes_WebApplication, tosca_nodes_
SoftwareComponent, tosca_nodes_WebServer, tosca_
nodes_Apache, etc.

This tool can be used in two ways:

1. It can take as input any existing TOSCA topology,
translate it into an OCCI configuration for TOSCA
and graphically represent it. To do so, we imple-
mented a config-generator, which parses any ex-
isting TOSCA topology_template written in YAML
and transforms it into an OCCI configuration that
conforms to the TOSCA Extension. More specifi-
cally, OCCI configuration instantiates the norma-
tive and custom types defined in TOSCA Extension.

2. It can design cloud applications from scratch using
TOSCA types from the palette of TOSCA Designer.

Finally, TOSCA Designer checks the validity of cloud
application configurations by checking all the constraints
defined by used TOSCA mixins. If a constraint is false,
the cloud architect must correct its cloud application
configuration. When all the constraints are true, the
TOSCA-based cloud application can be deployed using
OCCI Orchestrator.

4.3 OCCI Orchestrator

To provision and deploy the transformed TOSCA ap-
plication over an OCCI interface, either the required
OCCI requests can be generated using TOSCA Studio
and manually sequenced or the presented OCCI Or-
chestration process can be used. An implementation
of the orchestration process is publicly available 24.
While the presented orchestration process can be gen-
erally applied on any kind of OCCI API, such as the
OpenStack OCCI Interface (OOI) used in [17], the im-
plementation got enhanced to focus on the OCCI API
provided by the OCCIware Runtime25. The OCCIware
Runtime is a server that maintains a runtime model of
the currently deployed cloud system which is utilized
by the orchestrator. Moreover, the OCCIware Runtime
server follows a plugin-based architecture for OCCI ex-
tensions modeled with OCCIware, such as the TOSCA
extension. Based on these extensions, connector skele-
tons can be generated that can be filled to interpret in-
coming OCCI requests. Among others, this mechanism
is used to translate incoming OCCI infrastructure re-
quests to the proprietary interface of the cloud provider.
While our implementation provides a connector to an
OpenStack Cloud, connector skeletons to further cloud
providers can be easily modeled and generated within
TOSCA Studio. Moreover, to address multi-cloud de-
ployments, extensions such as the one presented in [18]

24https://gitlab.gwdg.de/rwm/de.ugoe.cs.rwm.docci
25https://github.com/occiware/MartServer

https://gitlab.gwdg.de/rwm/de.ugoe.cs.rwm.docci
https://github.com/occiware/MartServer


14 Stéphanie Challita et al.

can be created to model on which specific cloud provider
a VM should be provisioned including required attributes.

To perform the deployment of modeled components,
the MoDMaCAO framework [22] is used, providing a
connector which implements lifecycle operations for OCCI
Applications and Components. These operations trig-
ger the execution of configuration management scripts
to deploy applications on top of VMs as specified within
the generated OCCI configuration. Therefore, the frame-
work provides a generic component mixin that can be
extended. Each specialized component mixin is linked
to the configuration management script to be executed
which is deposited on the OCCIWare Runtime server
making them reusable for multiple cloud deployments.
In addition to typical configuration management fea-
tures, the framework allows to use modeled attributes
as well as runtime information, e.g., attributes of linked
components and machines, within the configuration man-
agement scripts. It should be noted that the special-
ized component mixins, such as the ones shown in Ta-
ble 2 are automatically generated during the TOSCA
to OCCI transformation. To perform the tasks speci-
fied within the configuration management scripts, the
OCCIware Runtime server needs to be connected to
the VMs to be configured which is ensured by the PIM
to PSM transformation. In general, for the application
deployment process the orchestrator only sends a re-
quest to the OCCI API triggering the start action of
the applications to be deployed. The execution of the
management scripts to deploy the modeled application
is then handled by the MoDMaCAO framework. To en-
sure that all infrastructure requirements of the cloud
topology to be deployed are met, the application de-
ployment is only performed when the provisioned in-
frastructure, reflected in the runtime model, conforms
to the designed state of the OCCIware configuration to
be deployed.

Within TOSCA-Studio, the transformation, as well
as the deployment process can be directly enacted on
top of modeled or generated OCCI Configurations which
allows to easily model, manage and deploy cloud re-
sources.

5 Case Studies

To evaluate the proposed approach, we selected three
case studies that represent popular distributed cloud
applications: a WordPress application26, a Node Cellar
application27 and a Multi-Tier application with Elas-

26https://fr.wordpress.com
27http://nodecellar.coenraets.org

ticsearch Logstash Kibana (ELK) stack28. We chose
the first two case studies because they are medium
size which proves that our approach is able to han-
dle real applications and allow us to present them in
a clear manner. Moreover, these two case studies are
widely used in the community. WordPress is one of
the most adopted Content Management System (CMS)
in industry and it is used as an example in TOSCA
official specification [10], and NodeCellar is a promi-
nent and interactive LAMP stack application that is
used in Alien4Cloud and Cloudify projects. In order to
prove that our approach can support larger systems, we
chose the Multi-Tier use case which represents a com-
plex system composed of ELK stack together with a
NodeCellar application. We relied on existing TOSCA
YAML topologies for WordPress29 and Node Cellar30.
For our third use case, we adapted the Multi-Tier exam-
ple presented in TOSCA official specification [10]. We
only replaced the PaypalPizzaStore web application by
the NodeCellar application since the former is not avail-
able anymore. We demonstrate how our approach can
design, validate and deploy these applications, and we
provide a configuration model for each.

To provision and deploy the modeled cloud config-
urations, we used the presented model-driven cloud or-
chestration process. Hereby, we connected the OCCI
Orchestrator to a private Openstack cloud to provi-
sion modeled infrastructure resources. To perform the
deployment of the individual components, the MoD-
MaCAO framework is used. The latter executes scripts
of Ansible31,for which we utilized and updated already
existing deployment artifacts used in the TOSCA topolo-
gies to deploy, configure, and start modeled application
components.

5.1 WordPress

WordPress is an open source CMS that allows to build
custom web applications based on Apache as the web
server, MySQL as the relational database management
system and PHP as the object-oriented scripting lan-
guage. TOSCA allows to define such types, and there-
fore it allows to define aWordPress application. A screen-
shot of the WordPress topology as defined in TOSCA
YAML file is depicted in Fig. 9.

To validate our approach, the config-generator reuses
the mixin types defined by the TOSCA Extension to be

28https://www.elastic.co/fr/elastic-stack
29https://github.com/alien4cloud/samples/tree/master/

topology-wordpress
30https://github.com/alien4cloud/samples/tree/master/

topology-nodecellar
31https://www.ansible.com/

https://fr.wordpress.com
http://nodecellar.coenraets.org
https://www.elastic.co/fr/elastic-stack
https://github.com/alien4cloud/samples/tree/master/topology-wordpress
https://github.com/alien4cloud/samples/tree/master/topology-wordpress
https://github.com/alien4cloud/samples/tree/master/topology-nodecellar
https://github.com/alien4cloud/samples/tree/master/topology-nodecellar
https://www.ansible.com/


Model-Based Cloud Resource Management with TOSCA and OCCI 15

Fig. 9 WordPress YAML Topology.

able to model a WordPress system. It is done with the
help of the following mixins:

– The tosca.nodes.WordPressmixin type abstracts
the notion of a WordPress CMS and depends on the
tosca.nodes.WebApplication mixin type, which de-
pends on the MoDMaCAO Component mixin type.
It is hosted on an Apache WebServer and connected
to a MySQL database and a PHP SoftwareCompo-
nent.

– The tosca.nodes.Apachemixin type abstracts the
notion of an Apache server. It depends on the tosca.
nodes.WebServer mixin type, which depends on the
tosca.nodes.
SoftwareComponent mixin type and therefore also
on the MoDMaCAO Component mixin type.

– The tosca.nodes.Mysql mixin type abstracts the
notion of a Mysql database. It depends on the tosca.
nodes.Database mixin type, which depends on the
MoDMaCAO Component mixin type.

– The tosca.nodes.PHP mixin type abstracts the
notion of PHP scripting language used to develop a
WordPress application. It depends on the tosca.nodes.
SoftwareComponent mixin type, which depends on
the MoDMaCAO Component mixin type.

– The tosca.nodes.Compute mixin type abstracts
the notion of real or abstract processors of software

applications such as VMs. It is applied on the Com-
pute resource type.

Fig. 10 shows the model of a WordPress application
that corresponds to the topology in Fig. 9. It is com-
posed of four components (wordpress, php, apache
and mysql) deployed on two VMs
(ComputeWww and ComputeDb). OCCI resources
and links are represented by boxes in green and or-
ange color, respectively. The application resource is con-
nected to the four Component resources via Compo-
nentLinks (c1 to c4). The WordPress component is
connected to the PhP and MySQL components via Con-
nectsTo links (c5 and c7). The WordPress is hosted
on the Apache component via a HostedOn link (c6).
Each component is placed on one VM via a Place-
mentLink (p1 to p4). Finally, the properties of all the
components and VMs are configured. For the sake of
brevity, we omit the depiction of Attributes of the
components in this model. For illustration, we only keep
the attributes of ComputeWww. We can notice that
its properties declared in the YAML file of Fig. 9, i.e.,
the architecture, the number of cores, the speed, the
memory, the protocol, the type, the distribution and
the disk size, have been correctly automatically set in
the model.



16 Stéphanie Challita et al.

Fig. 10 WordPress Configuration.

5.2 Node Cellar

The Node Cellar application is a sample JavaScript ap-
plication that allows to manage (retrieve, create, up-
date, delete) the wines in a wine cellar database. A
Node Cellar application can be described using TOSCA
types, as depicted in the TOSCA YAML file is depicted
of Fig. 11.

This topology is automatically transformed into a
Node Cellar Configuration using the following mixins
defined in TOSCA Extension:

– The tosca.nodes.Nodecellarmixin type abstracts
the notion of a Node Cellar application and depends
on the tosca.nodes.WebApplication mixin type which
depends on the MoDMaCAO Component mixin type.
It is hosted on a Nodejs server and connected to a
MongoDB database.

– The tosca.nodes.MongoDB mixin type abstracts
the notion of a MongoDB database. It depends on
the tosca.nodes.DBMS mixin type, which depends
on the MoDMaCAO Component mixin type.

– The tosca.nodes.Nodejs mixin type abstracts the
notion of a JavaScript running environment. It de-
pends on the tosca.nodes.WebServer mixin type, which
depends on the MoDMaCAO Component mixin type.

– The tosca.nodes.Compute mixin type abstracts
the notion of real or abstract processors of software
applications such as VMs. It is applied on the Com-
pute resource type.

Fig. 12 shows the model of a Node Cellar application
that corresponds to the topology in Fig. 11. It is com-
posed of three components (nodecellar, nodejs and
mongodb) deployed on two VMs (NodejsHost and

MongoHost). OCCI resources and links are repre-
sented by boxes in green and orange color, respectively.
The application resource is connected to the three com-
ponent resources via ComponentLinks (c1 to c3).
The Nodecellar component is connected to the Mon-
goDB component via a ConnectsTo link (c4). The
NodeCellar is hosted on the Nodejs component via
a HostedOn link (c5). Each component is placed on
one VM via a PlacementLink (p1 to p3). Finally,
the properties of all the components and VMs are con-
figured. For the sake of brevity, we omit the depiction
of Attributes of the components in this model. For
illustration, we only keep the attributes regarding the
ports used by MongoD and Nodecellar. We can
notice that the ports values declared in the YAML file
of Fig. 11 have been correctly automatically set in the
model.

5.3 Multi-Tier

This use case shows the ELK stack being used in a
typical manner to collect, search and monitor/visualize
data from a running application. This use case builds
upon our NodeCellar application (cf. Section 5.2) as the
one being monitored. We successfully describe a Multi-
Tier application using TOSCA types, as depicted in the
TOSCA YAML file of Fig. 13.

Besides the mixins used to describe a NodeCellar
Configuration (cf. Section 5.2), the Multi-Tier Config-
uration encompasses the following mixins:

– The tosca.nodes.SoftwareComponent.Elastic-
search mixin type abstracts the notion of an Elas-
ticsearch search and analytics engine.

– The tosca.nodes.SoftwareComponent.Logstash
mixin type abstracts the notion of a Logstash data
collection engine.

– The tosca.nodes.SoftwareComponent.Kibana
mixin type abstracts the notion of a Kibana data
visualization dashboard.

– The tosca.nodes.SoftwareComponent.Collectd
mixin type abstracts the notion of a Collectd dae-
mon which collects system and application perfor-
mance stats.

– The tosca.nodes.SoftwareComponent.Rsyslog
mixin type abstracts the notion of a an Rsyslog pro-
gram which transfers log messages over an IP net-
work.

All the five mixins defined above depend on the
tosca.nodes.SoftwareComponent mixin type which de-
pends on the MoDMaCAO Component mixin type.

We show in Fig. 14 the Multi-Tier configuration
that corresponds to the YAML topology in Fig. 13. It is



Model-Based Cloud Resource Management with TOSCA and OCCI 17

Fig. 11 Node Cellar YAML Topology.

Fig. 12 Node Cellar Configuration.

composed of nine components (nodecellar, elastic-
search, logstash, kibana, app_collectd, app_
rsyslog, nodejs, mongo_db, mongo_dbms) deployed
on six VMs (elastic_server, logstash_server, ki
bana_server, NodejsHost, app_server, mongo_
server). Similarly to the two previous use cases, OCCI
resources and links are represented by boxes in green
and orange color, respectively. The application resource
is connected to the nine component resources via Com-
ponentLinks (c1 to c9). Each component is placed on

one VM via a PlacementLink (p1 to p9). app_collectd
and app_rsyslog share the same VM, as well as mongo_db
and mongo_dbms. For brevity, we omit the Attributes
of the components in this model.

5.4 Orchestration

The presented use case topologies are deployed in the
cloud using the model-driven cloud orchestration pro-
cess. Before the service requests for the individual OCCI
resources and links are send to the OCCIware Runtime,
the PIM to PSM transformation is performed on the
input configuration, i.e, the WordPress , Multi-Tier or
Node Cellar configuration. This transformation ensures
that the requirements of the MoDMaCAO framework
are fulfilled by adding a management network resource
to the OCCI configuration. This network ensures, that
the MoDMaCAO framework has access to each indi-
vidual Compute node to manage the lifecycle of each
modeled component placed on them. Moreover, in case
of the WordPress example, this network also connects
the Compute nodes computeWww and computeDb
to each other, while in the Node Cellar topology the
MongoHost and the NodejsHost are linked. Also
in the Multi-Tier-Deployment the individual Compute
nodes are linked to each other. Thus, in each use case
the infrastructure required to connect the web server
component of (WordPress and Nodecellar) to its
database component (mysql and Mongod) is present,
as well the connection between the ELK components.
It should be noted, that instead of the management net-
work a designated network may be modeled that con-
nects the individual Compute nodes. In addition to the



18 Stéphanie Challita et al.

Fig. 13 Multi-Tier YAML Topology.

Fig. 14 Multi-Tier Configuration.



Model-Based Cloud Resource Management with TOSCA and OCCI 19

management network, the transformation adds general
information to the model, e.g., default SSH keys, user
data, flavor and images to be used by the VMs to be
spawned, which eases the modeling process.

After the transformation, the current cloud deploy-
ment is extracted in form of an OCCI model from the
OCCIware runtime. Based on the current and desired
topology, a provisioning plan is generated [17] that se-
quences the OCCI requests required to provision and
deploy the depicted model. Hereby, the requests are se-
quenced in such a manner that each Resource is pro-
visioned first, i.e., Compute, Network, Application, and
Component. Thereafter, link requests are performed con-
necting the individual resources with each other. While
resources of the platform layer can be immediately linked,
Compute nodes have to be in an active state before they
can be connected to networks or storage. These states,
amongst others, are reflected in the runtime model and
used by the orchestration process. Once the infrastruc-
ture has been completely provisioned, i.e., every Com-
pute node being active and connected to the manage-
ment network, the modeled Applications are deployed.
At this point in time, each application including its
components are in an undeployed state. Then, depend-
ing on the use case, the orchestration process triggers
the start action on the WordPress, Multi-Tier or Node
Cellar application. This lifecycle management action
is implemented by the MoDMaCAO framework and
triggers the execution of a set of configuration man-
agement scripts using the management network pro-
vided by the PIM to PSM transformation. Within these
scripts, it is described how to deploy, configure, and
start the individual configuration management scripts
of the WordPress, and Node Cellar components. In case
of the WordPress use case this comprises wordpress,
php, apache, and mysql, while in the Node Cellar use
case, configuration management scripts describing the
management of mongod, nodecellar and nodejs
are used. Additionally, in the Multi-Tier use case, the
components elasticsearch, logstash, and kibana
are employed. Within this deployment process, the in-
stallation and execution dependency are respected as
modeled within the OCCI model describing the depen-
dencies of the individual components to be deployed,
and thus the order in which they get started. A visual
documentation of the deployment process of each use
case is available in the GitHub repository32.

32https://github.com/occiware/TOSCA-Studio

6 Lessons Learned

Based on our experience with TOSCA and OCCI, we
identified two major feedback:

Compatibility between TOSCA & OCCI. Rely-
ing a cloud solution on standards is quite advantageous
since the latter result of a collective agreement, which
means they are accepted in the community, and they
also are good in defining the key actions and charac-
teristics of cloud providers. With the implementation
of TOSCA Studio and our two case studies we have
successfully demonstrated that both standards can be
used orthogonally to implement a model-driven cloud
orchestration process. We have seen that both provide
a similar extension strategy, which can be exploited to
achieve their compatibility. The two standards have a
different focus: TOSCA provides higher level concepts
such as the grouping of elements, the definition of poli-
cies, and capabilities and requirements, while OCCI
provides concepts that mimic runtime behavior, e.g.,
Mixins that allow to adapt model elements at runtime
and a uniform API that allows to create the defined
elements on the target cloud infrastructure. TOSCA
provides a richer set of modeling elements, while OCCI
is build around a core model which is easier to under-
stand and extend. In this work, we have successfully
demonstrated that the two standards can complement
each other, using the strength of TOSCA at design time
to model cloud applications and the strengths of OCCI
to actually render API calls from the model to actually
provision and deploy the defined cloud resources in a
cloud environment.

Model-driven design and orchestration of exist-
ing cloud applications. Using MDE principles, we
provided TOSCA Studio, a complete standard-based
framework for modeling cloud applications as resources
and then concretely provisioning these resources from
the cloud. For this, we exploited several assets of MDE
such as model transformation when we map TOSCA to
OCCI and when we transform the PIM to PSM, model
verification when we define structural constraints on
TOSCA Extension, tooling when we provide TOSCA
Studio to have a graphical support of the configura-
tions, and artifacts generation when we generate scripts
that provision the necessary resources from the cloud.
The cherry on the top is the ability of our approach
to reuse existing TOSCA topologies and seamlessly en-
sure their deployment using OCCI API, without any
required changes. This does prove the compatibility of
our approach with TOSCA and OCCI. This framework
was successfully tested on three existing applications

https://github.com/occiware/TOSCA-Studio


20 Stéphanie Challita et al.

WordPress, Node Cellar and Multi-Tier . We believe
it can handle every existing TOSCA topology, even it
may require sometimes to enrich TOSCA Extension by
adding new TOSCA types.

7 Related Work

Besides TOSCA, several other orchestration template
formats exist, which have been developed by different
cloud providers or communities, e.g., OpenStacks Heat
Orchestration Template Language33 and the Amazon’s
CloudFormation template format34. They are not con-
sidered in this paper, since our focus is on interoperabil-
ity of TOSCA and OCCI. We detail in the following the
state-of-the-art of the works around TOSCA and those
around OCCI, as well as the works that tackle the in-
tegration of standards.

Around TOSCA Andrikopoulos et al. define the GEn-
eralized Topology Language (GENTL) [23] with the
aim to provide a generic modeling language that can
easily be mapped to other concrete, e.g., provider-specific
modeling languages that subsequently allow for auto-
mated provisioning of the defined resources including
TOSCA. They use this language to support the cost-
efficient design of application distribution across dif-
ferent cloud provider offerings [24]. Also Wurster et
al. [25] propose an Essential Deployment Metamodel
(EDMM) which is inspired by TOSCA to provide a
generic language for declarative cloud deployment mod-
els. Cloudify35 is an open source orchestration and man-
agement framework for cloud applications lifecycle. It is
also based on TOSCA and provides a commercial Web
Interface that enables the developer to create deploy-
ments and execute workflows. Furthermore, web based
modeling tools for TOSCA like Winery [26] exist that
visualizes topology models using the Vino4TOSCA lan-
guage [15] that can be provisioned and deployed using
OpenTOSCA [27]. Within OpenTOSCA, a uniform in-
terface is defined providing an invocation mechanism
for management operations offered by node types [28].
While this approach addresses the issue of handling a
multitude of proprietary interfaces in TOSCA, OCCI
provides a uniform interface by design. Hirmer et al. [29]
proposed an approach that completes automatically par-
tial TOSCA topologies in order to make them deploy-
able. The goal is to let the user to be focus on the
business-logic and not on technical details. The auto-
matic completion of an uncomplete TOSCA topology

33https://wiki.openstack.org/wiki/Heat
34https://aws.amazon.com/cloudformation
35https://cloudify.co/

is done in two steps: First, it fullfills the requirements.
Then it checks the completness of the topology by try-
ing to automatically provision it. If it is not provision-
able, the TOSCA runtime returns a TOSCA topology
with missing templates. These missing templates are
added to the topology and the first step is repeated,
since there are new requirements. Brabra et al. [30] pro-
pose a model-driven approach based on TOSCA to de-
sign resource-related artifacts regardless of specific De-
vOps tools. The approach enables a new model-driven
translation technique that serves to translate the de-
signed artifacts using TOSCA into DevOps specific ar-
tifacts and provides connectors that intend to estab-
lish the bridge between DevOps-specific artifacts and
the DevOps tools. While a multitude of approaches are
based on TOSCA, non of the named approaches con-
sider a connection to OCCI that allows models to be
executable inside a Models@run.time interpreter frame-
work. With the Eclipse Incubation Project Cloud Ap-
plication Management Framework (CAMF) [31], Loul-
loudes et al. attempt to build a whole IDE to man-
age cloud applications with the help of TOSCA. In the
scope of the project different adapters have been devel-
oped to deploy the defined TOSCA topology on mul-
tiple clouds. However, no model-driven mapping and
interaction with OCCI is provided. Regarding the mod-
eling of cloud applications, several extensions to UML
have been developed to capture cloud application specifics,
e.g., [32], [33], [34]. In addition, Bergmayr et al. [35]
show how to convert refined UML models to TOSCA
templates. Their approach is also based on an Ecore
metamodel generated from the TOSCA XSD. These
works consider the modeling of cloud applications, but
do not take the mapping to certain API calls into ac-
count.

Around OCCI Ametamodel for OCCI was defined with
help of EMF by [4], and enhanced by [6], to provide a
common basis for the generation and conformance test-
ing of OCCI tools. This metamodel is used by [18] to
model the deployment of applications with help of con-
tainers. It is also applied to define a unified metamodel
to manage elasticity in the cloud [36]. These works have
been published in scope of the OCCIware36 project,
that aims to provide a fully integrated IDE to support
the whole cloud application management life cycle on
multiple clouds based on OCCI. Apart from the OCCI-
ware project, approaches exist that utilize OCCI which,
e.g, focus on the PaaS layer [37]. Still, interoperability
with TOSCA is not considered.

36http://occiware.org

https://wiki.openstack.org/wiki/Heat
https://aws.amazon.com/cloudformation
https://cloudify.co/
http://occiware.org


Model-Based Cloud Resource Management with TOSCA and OCCI 21

Around standards integration Carrasco et al [38] aim
at improving the management and the deployment of
multi-cloud applications by combining two standards:
TOSCA and CAMP. Their approach is based on model
transformations and allows users to describe their cloud
applications according to the distribution of modules
and deploy these modules over different clouds. Their
approach is done in two phases: describing the multi-
cloud application using Winery and then they trans-
form the TOSCA topology into a CAMP-compliant YAML
file in order to deploy the application. Later on, Car-
rasco et al. [39] present an automated approach for the
migration of cloud applications components. This ap-
proach relies on the trans-cloud framework [40], which
is based on the TOSCA topology descriptions and the
API of Cloud Application Management for Platforms
(CAMP) standard [41]. The main difference between
TOSCA-Studio and their approach is the used stan-
dards. Similar to OCCI, CAMP provides a common
API for managing cloud providers. However, CAMP
targets the deployment of cloud applications on top
of PaaS resources, whereas OCCI is suitable for pro-
visioning IaaS, PaaS and SaaS resources. In contrast
to [39], we focus on the deployment and runtime re-
configuration of cloud applications and not on the mi-
gration of these applications. Moreover, we propose a
resource-based approach, whereas Carrasco et al. pro-
pose a component-based approach.

8 Conclusion

Many cloud standards have emerged to cope with the
diversity of cloud providers and the heterogeneity en-
countered in the cloud ecosystem. These standards have
different focus work at different levels. In this article,
we argued that TOSCA and OCCI standards are com-
plementary and we presented an approach to combine
TOSCA and OCCI for model and standard driven cloud
orchestration. We defined an exhaustive and automated
mapping between the metamodel elements of TOSCA
and OCCI and we adopted this mapping for gener-
ating a model for TOSCA that conforms to the OC-
CIware metamodel (TOSCA Extension). We also pro-
posed TOSCA Studio, a dedicated model-driven envi-
ronment for designing applications with TOSCA us-
ing TOSCA Designer, and for deploying these modeled
applications in production environments and adapting
them at runtime using OCCI Orchestrator. Further-
more, we used this approach to support the adapta-
tion of models at runtime to keep the model of the in-
frastructure and the application deployment consistent
with its actual state in the cloud. This will also allow
us to react to changes in the model or in the cloud.

We also provided three feasibility studies and showed
how WordPress, Node Cellar and Multi-Tier applica-
tions can be modeled and concretely deployed using our
approach.

For future work, we plan to support deployment on
PaaS by modifying the OCCI orchestrator in order to
make requests on a PaaS provider such as Force.com
or Cloud Foundry. We also aim to provide a formal
verification of TOSCA Extension by using formal spec-
ification languages such as Alloy [42]. Alloy allows to
specify TOSCA Extension using first order-logic and to
reason about this specification in order to verify desired
properties [43]. Moreover, by adopting a model-driven
approach and automation in our mapping process, it is
possible to incorporate changes to both evolving stan-
dards and to provide an extensible playground for new
concepts. Hence, we aim to extend our catalog of trans-
formation rules by continuously parsing new emerging
TOSCA types and adding them to TOSCA Extension.
We also aim to support more automated transformation
of predefined TOSCA topologies into OCCI configura-
tions. Finally, we plan to conduct a round-trip valida-
tion of the deployed application against the designed
model, i.e., the configuration.

Availability Readers can find TOSCA Studio including TOSCA
Extension, the model-driven designer and orchestrator at: https:
//github.com/occiware/TOSCA-Studio.

Acknowledgements This work is supported by the OCCIware
research and development project funded by French Programme
d’Investissements d’Avenir (PIA). We also thank the Simulation-
swissenschaftliches Zentrum Clausthal-Göttingen (SWZ) for fi-
nancial support.

References

1. Ralf Nyrén, Andy Edmonds, Alexander Papaspyrou, Thijs
Metsch, and Boris Parák. Open Cloud Computing Interface
- Core, September 2016. [Available online: http://ogf.org/
documents/GFD.221.pdf].

2. Gerd Breiter, Michael Behrendt, M Gupta, Simon Daniel
Moser, R Schulze, I Sippli, and Thomas Spatzier. Software
Defined Environments based on TOSCA in IBM Cloud Im-
plementations. IBM Journal of Research and Development,
58(2/3):9–1, 2014.

3. Fabian Glaser, Johannes Martin Erbel, and Jens Grabowski.
Model Driven Cloud Orchestration by Combining TOSCA
and OCCI. In 7th International Conference on Cloud Com-
puting and Services Science (CLOSER), pages 644–650.
SciTePress, 2017.

4. Philippe Merle, Olivier Barais, Jean Parpaillon, Noël
Plouzeau, and Samir Tata. A Precise Metamodel for Open
Cloud Computing Interface. In 8th IEEE International
Conference on Cloud Computing (CLOUD), pages 852–859.
IEEE, 2015.

https://github.com/occiware/TOSCA-Studio
https://github.com/occiware/TOSCA-Studio
http://ogf.org/documents/GFD.221.pdf
http://ogf.org/documents/GFD.221.pdf


22 Stéphanie Challita et al.

5. Faiez Zalila, Stéphanie Challita, and Philippe Merle. A
Model-Driven Tool Chain for OCCI. In 25th Interna-
tional Conference on COOPERATIVE INFORMATION
SYSTEMS (CoopIS), pages 389–409. Springer, Cham, 2017.

6. Faiez Zalila, Stéphanie Challita, and Philippe Merle. Model-
driven Cloud Resource Management with OCCIware. Future
Generation Computer Systems, 99:260–277, 2019.

7. Spencer Rugaber and Kurt Stirewalt. Model-Driven Reverse
Engineering. IEEE software, 21(4):45–53, 2004.

8. Gordon Blair, Nelly Bencomo, and Robert B France. Mod-
els@ run.time. Computer, 42(10), 2009.

9. OMG. MDA Guide rev. 2.0, 2014. OMG Document
ormsc/2014-06-01 [Available Online: http://www.omg.org/
cgi-bin/doc?ormsc/14-06-01.pdf].

10. OASIS. Topology and Orchestration Specification
for Cloud Applications (TOSCA) 1.2, December
2017. [Available online: http://docs.oasis-open.
org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csprd01/
TOSCA-Simple-Profile-YAML-v1.2-csprd01.pdf].

11. OASIS. TOSCA Simple Profile in YAML Version
1.0, February 2016. [Available online: http://docs.
oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/
TOSCA-Simple-Profile-YAML-v1.0.html].

12. Ralf Nyrén, Andy Edmonds, Alexander Papaspyrou, Thijs
Metsch, and Boris Parák. Open Cloud Computing Interface
- Core. Specification Document GFD.221, Open Grid Forum,
February 2016.

13. Thijs Metsch, Andy Edmonds, and Boris Parák. Open
Cloud Computing Interface - Infrastructure, September 2016.
[Available online: http://ogf.org/documents/GFD.224.pdf].

14. Ralf Nyrén, Andy Edmonds, Thijs Metsch, and Boris Parák.
Open Cloud Computing Interface - HTTP Protocol, Septem-
ber 2016. [Available online: http://ogf.org/documents/GFD.
223.pdf].

15. Uwe Breitenbücher, Tobias Binz, Oliver Kopp, Frank Ley-
mann, and David Schumm. Vino4TOSCA: A Visual No-
tation for Application Topologies based on TOSCA. In
OTM Confederated International Conferences" On the Move
to Meaningful Internet Systems", pages 416–424. Springer,
2012.

16. Jos B Warmer and Anneke G Kleppe. The Object Constraint
Language: getting your models ready for MDA. Addison-
Wesley Professional, 2003.

17. Johannes Erbel, Fabian Korte, and Jens Grabowski. Com-
parison and Runtime Adaptation of Cloud Application
Topologies based on OCCI. In Proceedings of the 8th In-
ternational Conference on Cloud Computing and Services
Science - Volume 1: CLOSER,, 2018.

18. Fawaz Paraiso, Stéphanie Challita, Yahya Al-Dhuraibi, and
Philippe Merle. Model-Driven Management of Docker Con-
tainers. In 9th IEEE International Conference on Cloud
Computing (CLOUD), pages 718–725. IEEE, 2016.

19. Uwe Breitenbücher, Tobias Binz, Kalman Kepes, Oliver
Kopp, Frank Leymann, and Johannes Wettinger. Combining
Declarative and Imperative Cloud Application Provisioning
Based on TOSCA. In IC2E, pages 87–96. IEEE Computer
Society, 2014.

20. Maksym Lushpenko, Nicolas Ferry, Hui Song, Franck Chau-
vel, and Arnor Solberg. Using Adaptation Plans to Control
the Behavior at Runtime. In Nelly Bencomo, Sebastian Götz,
and Hui Song, editors, CEUR Workshop Proceedings, volume
1474. CEUR, 2015.

21. U. Breitenbücher, T. Binz, K. Képes, O. Kopp, F. Leymann,
and J. Wettinger. Combining Declarative and Imperative
Cloud Application Provisioning Based on TOSCA. In 2014
IEEE International Conference on Cloud Engineering, pages
87–96, 2014.

22. Fabian Korte, Stéphanie Challita, Faiez Zalila, Philippe
Merle, and Jens Grabowski. Model-Driven Configuration
Management of Cloud Applications with OCCI. In 8th In-
ternational Conference on Cloud Computing and Services
Science (CLOSER), pages 100–111, 2018.

23. Vasilios Andrikopoulos, Anja Reuter, Santiago Gómez Sáez,
and Frank Leymann. A GENTL Approach for Cloud Ap-
plication Topologies. In European Conference on Service-
Oriented and Cloud Computing, pages 148–159. Springer,
2014.

24. Vasilios Andrikopoulos, Anja Reuter, Mingzhu Xiu, and
Frank Leymann. Design Support for Cost-Efficient Appli-
cation Distribution in the Cloud. In 2014 IEEE 7th Inter-
national Conference on Cloud Computing, pages 697–704.
IEEE, 2014.

25. Michael Wurster, Uwe Breitenbücher, Michael Falkenthal,
Christoph Krieger, Frank Leymann, Karoline Saatkamp, and
Jacopo Soldani. The Essential Deployment Metamodel: a
Systematic Review of Deployment Automation Technologies.
SICS Software-Intensive Cyber-Physical Systems, pages 1–
13, 2019.

26. Oliver Kopp, Tobias Binz, Uwe Breitenbücher, and Frank
Leymann. Winery–a modeling tool for tosca-based cloud ap-
plications. In International Conference on Service-Oriented
Computing, pages 700–704. Springer, 2013.

27. Uwe Breitenbücherand Christian Endresand Kálmán Képes,
Oliver Kopp, Frank Leymann, Sebastian Wagner, and Jo-
hannes Wettingerand Michael Zimmermann. The Open-
TOSCA Ecosystem –Concepts & Tools. European Space
project on Smart Systems, Big Data, Future Internet -
Towards Serving the Grand Societal Challenges -Volume 1:
EPS Rome 2016, pages 112–130, 2016.

28. Johannes Wettinger, Tobias Binz, Uwe Breitenbücher, Oliver
Kopp, Frank Leymann, and Michael Zimmermann. Uni-
fied Invocation of Scripts and Services for Provisioning, De-
ployment, and Management of Cloud Applications Based on
TOSCA. In CLOSER, pages 559–568, 2014.

29. Pascal Hirmer, Uwe Breitenbücher, Tobias Binz, Frank Ley-
mann, et al. Automatic Topology Completion of TOSCA-
based Cloud Applications. In GI-Jahrestagung, pages 247–
258, 2014.

30. H. Brabra, A. Mtibaa, W. Gaaloul, B. Benatallah, and
F. Gargouri. Model-driven orchestration for cloud resources.
In 2019 IEEE 12th International Conference on Cloud Com-
puting (CLOUD), pages 422–429, 2019.

31. N. Loulloudes, C. Sofokleous, D. Trihinas, M. D. Dikaiakos,
and G. Pallis. Enabling Interoperable Cloud Application
Management through an Open Source Ecosystem. IEEE In-
ternet Computing, 19(3):54–59, May 2015.

32. Alexander Bergmayr, Javier Troya, Patrick Neubauer,
Manuel Wimmer, and Gerti Kappel. UML-based Cloud Ap-
plication Modeling with Libraries, Profiles, and Templates.
In 3rd International Workshop on Model-Driven Engineering
on and for the Cloud (CloudMDE), pages 56–65, 2014.

33. Ali Kamali, Soheil Mohammadi, and Ahmad Abdollahzadeh
Barforoush. UCC: UML profile to cloud computing model-
ing: Using stereotypes and tag values. In 7th International
Symposium on Telecommunications (IST), pages 689–694.
IEEE, 2014.

34. Joaquín Guillén, Javier Miranda, Juan Manuel Murillo, and
Carlos Canal. A UML Profile for Modeling Multicloud Ap-
plications. In Service-Oriented and Cloud Computing, pages
180–187. Springer, 2013.

35. Alexander Bergmayr, Uwe Breitenbücher, Oliver Kopp,
Manuel Wimmer, Gerti Kappel, and Frank Leymann. From
Architecture Modeling to Application Provisioning for the

http://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csprd01/TOSCA-Simple-Profile-YAML-v1.2-csprd01.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csprd01/TOSCA-Simple-Profile-YAML-v1.2-csprd01.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csprd01/TOSCA-Simple-Profile-YAML-v1.2-csprd01.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html
http://ogf.org/documents/GFD.224.pdf
http://ogf.org/documents/GFD.223.pdf
http://ogf.org/documents/GFD.223.pdf


Model-Based Cloud Resource Management with TOSCA and OCCI 23

Cloud by Combining UML and TOSCA. In 6th Interna-
tional Conference on Cloud Computing and Services Science
(CLOSER), 2016.

36. Y. Al-Dhuraibi, F. Zalila, N. Djarallah, and P. Merle. Model-
driven elasticity management with occi. IEEE Transactions
on Cloud Computing, pages 1–1, 2019.

37. Sami Yangui and Samir Tata. An OCCI Compliant Model
for PaaS Resources Description and Provisioning. The Com-
puter Journal, 59(3):308–324, 2014.

38. Jose Carrasco, Javier Cubo, and Ernesto Pimentel. Towards
a Flexible Deployment of Multi-Cloud Applications Based on
TOSCA and CAMP. In European Conference on Service-
Oriented and Cloud Computing, pages 278–286. Springer,
2014.

39. Jose Carrasco, Javier Cubo, Ernesto Pimentel, and Francisco
Durán. Deployment over Heterogeneous Clouds with TOSCA
and CAMP. In CLOSER (1), pages 170–177, 2016.

40. Jose Carrasco, Francisco Durán, and Ernesto Pimentel.
Trans-cloud: CAMP/TOSCA-based Bidimensional Cross-
Cloud. Computer Standards & Interfaces, 58:167–179, 2018.

41. OASIS. Cloud Application Management for Plat-
forms (CAMP) 1.1, November 2014. [Available on-
line: http://docs.oasis-open.org/camp/camp-spec/v1.1/
camp-spec-v1.1.pdf].

42. Daniel Jackson. Software Abstractions: logic, language, and
analysis. MIT press, 2012.

43. Stéphanie Challita, Faiez Zalila, and Philippe Merle. Specify-
ing Semantic Interoperability between Heterogeneous Cloud
Resources with the FCLOUDS Formal Language. In 2018
IEEE 11th International Conference on Cloud Computing
(CLOUD), pages 367–374. IEEE, 2018.

http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.pdf
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.pdf

	1 Introduction
	2 TOSCA and OCCI
	3 A Standard-based and Model-driven Approach for Managing Cloud Applications
	4 Implementation: TOSCA Studio
	5 Case Studies
	6 Lessons Learned
	7 Related Work
	8 Conclusion

