
Software and Systems Modeling (2021) 20:1919–1943
https://doi.org/10.1007/s10270-021-00872-3

SPEC IAL SECT ION PAPER

Applying MDD in the content management system domain

Scenarios, tooling, and a mixed-method empirical assessment

Dennis Priefer1 ·Wolf Rost1 · Daniel Strüber2 · Gabriele Taentzer3 · Peter Kneisel1

Received: 1 March 2020 / Revised: 19 January 2021 / Accepted: 1 February 2021 / Published online: 25 February 2021
© The Author(s) 2021

Abstract
Content management systems (CMSs) such as Joomla and WordPress dominate today’s web. Enabled by standardized
extensions, administrators can build powerful web applications for diverse customer demands. However, developing CMS
extensions requires sophisticated technical knowledge, and the complex code structure of an extension gives rise to errors
during typical development and migration scenarios. Model-driven development (MDD) seems to be a promising paradigm
to address these challenges; however, it has not found adoption in the CMS domain yet. Systematic evidence of the benefit of
applyingMDD in this domain could facilitate its adoption; however, an empirical investigation of this benefit is currently lack-
ing. In this paper, we present a mixed-method empirical investigation of applying MDD in the CMS domain, based on an
interview suite, a controlled experiment, a field experiment, and case studies. During the experiments, we used JooMDD,
an MDD infrastructure instantiation for CMS extensions. This infrastructure, which is also presented in this work, consists
of a DSL with model editors, code generators, and reverse engineering facilities. We consider three scenarios of developing
new (both independent and dependent) CMS extensions and of migrating existing ones to a new major platform version.
The experienced developers in our interviews acknowledge the relevance of these scenarios and report on experiences that
render them suitable candidates for a successful application of MDD. We found a particularly high relevance of the migration
scenario. Our experiments largely confirm the potentials and limits of MDD as identified for other domains. In particular,
we found a productivity increase up to factor 11.7 and a quality increase up to factor 2.4 during the development of CMS
extensions. Furthermore, our observations highlight the importance of good tooling that seamlessly integrates with already
used tool environments and processes.

Keywords Model-driven development · Content management systems · Empirical assessment

Communicated by Tao Yue, Man Zhang, and Silvia Abrahao.

B Dennis Priefer
Dennis.Priefer@mni.thm.de

Wolf Rost
Wolf.Rost@mni.thm.de

Daniel Strüber
d.strueber@cs.ru.nl

Gabriele Taentzer
taentzer@informatik.uni-marburg.de

Peter Kneisel
Peter.Kneisel@mni.thm.de

1 Institute for Information Sciences, Technische Hochschule
Mittelhessen, Gießen, Germany

2 Radboud University, Nijmegen, the Netherlands

3 Philipps-Universität Marburg, Marburg, Germany

1 Introduction

Model-driven development (MDD, [54]) has been conceived
as a development paradigm that aims to increase developer
productivity and software quality by raising the abstraction
level via the use of models. For over 15 years, many efforts
have been made to empirically investigate this proposed
benefit in various software domains, including telecommu-
nications [2], finance [16], embedded systems [18], and
conventional web applications [36]. A domain that has
received little attention so far, despite its large-scale prac-
tical importance, are content management systems (CMSs).

CMSs [3,31] are an important cornerstone for today’sweb.
In fact, around 59.5% of all websites use one of the various
CMSplatforms [64] such asWordPress, Joomla, Shopify, and
Drupal. From the top CMS platforms, WordPress holds the
largest market share (63.5% of all CMS-based websites), fol-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00872-3&domain=pdf

1920 D. Priefer et al.

lowed byShopify (4.5%), Joomla (3.9%), andDrupal (2.6%).
A CMS platform aims to provide certain core functionality
such as management of users, content, sites, media, tem-
plates, and languages. If additional functionality is required,
the CMS instance at hand has to be extended. To this end, all
major CMS platforms support software extensions. Exam-
ple extensions include web shops, image galleries, or the
management of domain-specific data, such as customer infor-
mation. An extension can be deployed to a running CMS
instance without changing the platform itself. This ensures
many benefits: leaving the platform unchanged ensures con-
sistency of the system, even after version updates of the
platform. Encapsulating feature as extensions supports reuse
and free distribution of functionality.

While the plugin mechanisms ofWordPress, Shopify, and
Drupal are simple, they lack support for complex extensions,
such as datamanagement and event triggers. Therefore, plug-
ins for these platforms are often developed asmonolithic arte-
facts. A more sophisticated extension mechanism is offered
by Joomla, which provides a variety of extension types to
facilitate the development of feature-rich extensions. The
extension types represent functional requirements. Compo-
nents provide full data management capabilities. Modules
provide presentation tools for data managed by a compo-
nent, allowing the development of new extensions using data
of existing ones, e.g. a module presenting data of a third-
party component. Joomla’s extension mechanism is based
on an API and naming conventions: For a consistent deploy-
ment to the core platform, an extension must conform to a
standard file and code structure. To support a clean separa-
tion between logic and representation, Joomla components
follow a model–view–controller (MVC) pattern on file and
code level. If these artefacts are named correctly, most tasks
are done by the underlying API. Yet, a mistake during devel-
opment can break the whole extension.

Developers of extensions face similar challenges during
development and maintenance like most web application
developers, namely: (i) To ensure compliance with the
structure and coding standards, comprehensive technical
knowledge is required. A typical procedure during extension
development is to create a clone of an existing extension
and to modify it to satisfy the new requirements. This pro-
cedure, however, shows a high susceptibility to errors (e.g.
unintended mismatches between class identifiers and file
names). (ii)Whenever the underlying platformevolves, exist-
ing extensions have to be updated or migrated to adapt to the
new platform. The required effort for updating or migrat-
ing the extensions increases tremendously if the amount of
extensions tomigrate grows. One contribution of this paper is
an interview study with practitioners from the CMS domain,
who confirmed the role of these challenges in practice.

Since extensions in popular CMSs such as Joomla rely
on standardized file and code structures, they largely consist

of generic and schematically recurring fragments. Therefore,
they represent a technical space that may largely benefit from
the application of MDD.

In this work, we investigate the practical applicability of
MDD during the development of CMS extensions. From our
experiences of developing extensions for the Joomla CMS
for over 10 years, we introduce three development scenarios
(Sect. 2) we deem as particularly important: Developing an
independent extension, developing a dependent extension,
and migrating an extension to a new platform version.

We present the following contributions:

– An interview study (Sect. 3) based on semi-structured
expert interviewswith eight individual practitioners from
the Joomla community. We studied the relevance of our
scenarios in practice, and the significance of MDD as a
solution approach to address the associated challenges.

– An MDD infrastructure (Sect. 4) called JooMDD for
developing CMS extensions for the Joomla platform. It
comprises a DSL with model editors, a code generator,
and a model extraction tool. The DSL and respective
model editors can be used for CMS extension devel-
opment in general, whereas the code generator, model
extraction, and extension extraction tools are instanti-
ated for the Joomla CMS. We discuss how we extended
an earlier version of JooMDD to precisely address the
requirements arising from our scenarios.

– A controlled experiment (Sect. 5) conducted with 14
developers on comparing conventional extension devel-
opment with MDD, focusing on the first two scenarios.
The experiment follows a within-groups design and was
conducted based on JooMDD. All developers had expe-
rience with Joomla extension development, but little
knowledge of MDD.

– A field experiment (Sect. 6) conducted with four expe-
rienced developers from the Joomla community. To gain
insights about the usefulness, acceptance, and open chal-
lenges of an MDD approach, we asked the developers
to use JooMDD during representative tasks covering all
three development scenarios.

– Three case studies (Sect. 7) showing the application of
JooMDD in real-world settings. They represent heteroge-
neous extensions that are actively used in administrative,
software development, and teaching activities.

This paper extends our earlier conference paper [39],
where we first present the interview study and the two exper-
iments (corresponding to Sects. 3, 5, and 6 of this paper). Our
present paper includes three main extensions: (i) in Sect. 4, a
detailed description of JooMDD, which extends the high-
level overview of an earlier version given in [41], and a
discussion of how we extended it to address all requirements
arising from the scenarios; (ii) in Sect. 5, additional results

123

Applying MDD in the content management system domain 1921

from the controlled experiment addressing the effect ofMDD
on the quality of the developed extensions as well as a more
rigorous statistical analysis of our data; and (iii) in Sect. 7,
the three case studies, showing the practical application of
Joomla extensions developed.

We share lessons learned (Sect. 8) and discuss threats to
validity (Sect. 9). In Sects. 10 and 11,we discuss relatedwork
and conclude this work.

As we discuss in Sect. 10, to our knowledge, JooMDD is
the only tool with full support for all scenarios.

2 Development scenarios

From our experience in developing CMS extensions, we
identify three frequently occurring development scenarios:
the development of independent and dependent extensions
and the migration of extensions to new CMS platform ver-
sions.
Scenario 1: Development of Independent Extensions This
scenario addresses the development of independent exten-
sions to be used in a running CMS instance. Independent
extensions are particularly desirable during evolution: If a
developer changes the extension, no side effects due to depen-
dencies occur. Yet, it is fundamental to comply with the
development guidelines to ensure a correct interplay between
the extension and underlying platform. Even subtle errors can
lead to crashes that are not discovered until runtime.

Examples for independent extensions are WordPress plu-
gins, Joomla components, or Drupal modules which have no
dependencies to other extensions. During evolution of other
installed extensions, the extension should not show any side
effects. The only dependency of such extensions is the use of
the CMS core API. So, a CMS instance can be augmented by,
for example, web shop functionality which can be installed
and used independently.

The scenario occurs in two variants: First, the initial devel-
opment of an extension and, second, its iterative improve-
ment (evolution). Both are addressed in this scenario, with
the initial development as the first iteration (see Fig. 1).
Scenario 2: Development of Dependent Extensions This sce-
nario involves the development of extensions that depend on
other extensions, byusing someof their artefacts—acommon
practice to prevent multiple implementations of the same
functionality.

We discuss examples for such extensions in Joomla and
WordPress. In Joomla, relevant components are those that
reuse data access objects (DAO) or view templates fromother
components, and modules which use the database of existing
components. The latter is commonly implemented to allow
the flexible representation of component data without the
need of extending the existing component. For example, one
may add a shopping cart module for an existing web shop

Fig. 1 Development of independent extensions

Fig. 2 Development of dependent extensions

component. InWordPress, pluginsmay refer to other plugins.
This allows developers to augment existing extensions (e.g.
third-party extensions) without changing their code base (see
Fig. 2).

LikeScenario 1, this scenario comprises two subscenarios:
initial development and evolution of a dependent extension.
Scenario 3: Migration of a Legacy Extension to a new Plat-
form Version This scenario addresses the migration of a
legacy extension to a new version of the underlying CMS
platform. Particularly, major version changes are character-
ized by excessive changes of the platform which usually
break existing extensions. So, every new platform version
forces extension developers to migrate their legacy exten-
sions to the new API to ensure their operability within
updated CMS instances.

In the last decade, the popular CMSs like WordPress,
Joomla, andDrupalwere subject to several platform improve-
ments in form of new major version releases. Most of them
included excessive API changes which had to be considered
during extension migration, for example, from Joomla ver-
sion 1.5 to 2.5.

As experience has shown, missing documentation and
required effort often led to dying extensions since develop-
ers were not able to migrate their software in a reasonable
amount of time. In this case, administrators have to replace
the extension which, in turn, is associated with additional
effort (see Fig. 3). If no alternative extension exists, admin-

123

1922 D. Priefer et al.

Fig. 3 Migration of an extension to a new platform version

istrators are often forced to keep their CMS instance running
with older platform versions until the required extensions are
operable on it.

3 Semi-structured expert interviews

To validate the relevance of the previously defined three
development scenarios (Sect. 2), we conducted a set of semi-
structured expert interviews with 8 industrial practitioners
from the Joomla CMS community in 2018. With the inter-
views we address the following research questions:

– RQ1: How relevant are our scenarios to industrial prac-
titioners from the CMS domain?

– RQ2: Which challenges faced by industrial practition-
ers from the CMS domain are of a kind where an MDD
approach could help?

RQ1 seeks to explore the industrial relevance of the sce-
narios that we faced in our own experiences. RQ2 is an
exploratory question that seeks possible tasks where MDD
can be beneficial. The answer to RQ2 yields a hypothesis
which we later aim to validate with our experiments.

3.1 Set-up

To obtain insights into the experiences of the Joomla devel-
opers, we design an interview guide (provided as part of our
online Appendix [42]). The interview guide contained ques-
tions from eight question categories:

– Years of development experience in Joomla (Q1)
– Experience in different Joomla versions (Q2)
– Experience with different extension types (Q3)
– Amount of use of standard CRUD views (Q4)
– Amount of extensions developed (Q5)
– Applied procedure to implement extensions (Q6)
– Amount of extensions migrated (Q7)
– Used migration approach (Q8)

Fig. 4 Standard viewwith CRUD functionality within CMS extensions

The first questions (Q1, Q2, Q3), were asked to determine
the experience of the interviewees. Q3, Q5, and Q7 aimed to
determine the relevance of scenarios 1–3 (RQ1). Q4, Q6 and
Q8 aimed to study the potential for a successful application
of an MDD approach (RQ2).

Q4 is based on our experience that most Joomla compo-
nents comprise a large amount of standard views with CRUD
functionality. CRUD (Create, Read, Update, Delete) are the
most basic operations that can be applied to an entity. As
shown in Fig. 4, such views comprise a list to present the
entities, a toolbar of buttons to provide CRUD functionality,
and a detail page to create or edit an entity.

Questions Q5 and Q6 allow obtaining information about
the extension development procedure of the interviewees and
potential pitfalls during the process. To this end, we asked
questions in the following form: “What is your procedure to
implement a new component?”, “What is your procedure to
augment a component?”, and “What kind of extension did
you develop?”.

Q7 and Q8 aim to obtain information about currently used
approaches tomigrate an extensionwhen the underlying plat-
form changes. The following extract of the interview guide
shows the approximate questions: “Did you ever try to use
parts of a third party component in your own extension?”,
“Did you migrate an extension from one Joomla version to
another?”, and “Did you ever experience that the Joomla
conventions lead to errors in your extensions?”. The answers
help to identify the relevance of the scenarios and possible
problems faced during extension development, which con-
cerns RQ1 and RQ2.

In a prestudy to provide further context, specifically for
Q4, we investigated the amount of views in publicly avail-
able projects, based on the official Joomla extension directory
[34], to which we applied a structured process to obtain
unique Joomla extensions with components and available
source code. We adjusted the filter criteria to only search
for extensions that are components for Joomla 3 and free to
download, which resulted in 751 extensions. Using a crawler
we downloaded 92 associated extensions (other download
links lead to individual download pages which we could
not handle automatically). We added the top 50 extensions,
ordered by overall user rating, and removed duplicates, mis-
labelled extensions, and extensions with installation prob-

123

Applying MDD in the content management system domain 1923

Table 1 Experience of the interviewees

Interviewees Years (Q1) Versions (Q2) Types (Q3) Amount of CRUD (Q4)

I1 6 2.5–3.8 M n.a.

I2 5 2.5–3.8 C,M,P “few standard views.”

I3 13 1.0–3.8 P “I try to use the Joomla API wherever I can.”

I4 13 1.0–3.8 C,M,P,L 90%

I5 13 1.0–3.8 C,M,P 100%

I6 13 1.0–3.8 M,P 80–90%

I7 4 3.0–3.8 C,M 60–65%

I8 10 1.5–3.8 C,M,P,L 100%

Abbreviations: Component (C), Module (M), Plugin (P), Library (L)

Table 2 Development procedure and migration approach

Interviewees Development Migration
extensions (Q5) Procedure (Q6) # extensions (Q7) Approach (Q8)

I1 1 Clone-and-Own 2 n.a.

I2 3 Boilerplate – –

I3 2 Clone-and-Own 2 –

I4 10–15 Boilerplate 10–15 “Rewrite and fix errors until it works.”

I5 100 Clone-and-Own 15–20 “Rewrite most of the extensions

to get rid of old stuff.”T

I6 20 Clone-and-Own n.a. “Iterative until it works.”T

I7 2 Clone-and-Own – “Read changelog then iter-

ative until it worked again.”T

I8 40 Clone-and-Own 15 “Read a migration guide (if it exists)

and then fix errors until it works.”T

lems. In total, we considered 50 extensions with 592 views.
We found that 212 views were standard list views, while 191
were standard detail views. In short, 68.07% of the inspected
views are standard views with CRUD functionality. To gain
further insight, in Q4, we asked the interviewees for the
amount of such standard views in their extensions.

All interviews were recorded and transcribed; we provide
all transcripts in our online Appendix [42]. In average an
interview took 20 minutes which led to a total time of around
3 hours of conversations, transcribed to 11050 words. When
we quote from the transcripts, these are given in italicized and
quotation marks. Citations are taken verbatim from the tran-
scripts. In some cases, we translated citations from German
to English; these are marked with a capitalized T.

3.2 Scenario evaluation

Tables 1 and 2 summarize the interviewees’ answers. The
names of the interviewees were anonymized and abbrevi-
ated to I1-8. Each cell contains the interviewee’s answer
mapped to the corresponding question. We discuss our three

development scenarios along the answers, citing individual
statements from the interviews where appropriate.
Scenario 1 (Development of Independent Extensions) The
interviewees stated that it would take 2 to 8 hours to have
an independent installable component with no business logic
following their usual (mostly clone-and-own) procedure: “it
takes us, I think, two hours to set up everything. So, two hours
for a component.” Another interviewee said: “it’s between
four to eight hours and that of course is still quite a bit more
work.” and “in an hour I can make a frontend view and back-
end view, but that’s a very basic.” All interviewees typically
follow either a clone-and-own procedure or use a boilerplate
generator to develop a new extension. Relevant statements
include: “Copy&Paste and adapt what is necessary”T , “We
also have now our own boilerplate we use just to create a
component”, and “If I need to start a new component I now
would start with the boilerplate”.

In accordance to our findings concerning the amount of
standard viewswithCRUDfunctionality, they stated:“I think
that ninety percent at least are standard list views.”, which
we address within this scenario. Other interviewees stated

123

1924 D. Priefer et al.

around the same amount. Generally, the percentage of stan-
dard views was given as 60 up to 100 percent.
Scenario 2 (Development of Dependent Extensions) The
interviewees augment third-party and core components with
own modules: “I have done that. I’m still doing it. The
example here’s in my extension I’m exporting prices from
a webshop and the whole logic of price calculation - I don’t
want to recover that - so I’m using the model from the third-
party component that has the logic in it.” Another typical
scenario is the augmentation of an existing component by a
new view. Even though one of the interviewee had no expe-
rience in this scenario, he still sees the relevance of it: “it
would be a nice case, but not one I use. But it’s a use case!”
Scenario 3: Migration of a Legacy Extension to a new Plat-
form Version Depending on the number and complexity of
their extensions, migrating legacy extensions takes our inter-
viewees at least a couple of days, mostly months: “migrating
to the next version took maybe a couple days.”, “You should
take a year. I think so if you want to do it well.. . .The daily
business goes on. Maybe without any interruptions, it still
will take a couple of months.” and “It took me 6 months
to migrate 10 extensions.”. An interesting finding is that
no interviewee uses a tool for migrating extensions (Q8).
Their approach is mostly “fix errors until it works.”. I5 even
rewrites his extensions completely. Considering the amount
and types of his extensions he put high effort into the migra-
tion even though all his views are standard views with CRUD
functionality. This statement was confirmed by almost every
other interviewee for their extensions. This shows that the
interviewees have to put tremendous effort into the migra-
tion.

3.3 Interpretation

As shown in Table 1 and 2, we interviewed industrial prac-
titioners with many years of experience (Q1 and Q2) in
developing and migrating all kinds of Joomla extensions
(Q3, Q5 and Q7). Addressing RQ1, the relevance of our
development scenarios presented in Sect. 2 is confirmed
by the industrial practitioners’ statements. During the last
decade the practitioners had to face the same recurring chal-
lenges like implementing requirementswith a high amount of
redundant code. Additionally, they had to go through major
platform changes with the corresponding migrations of their
extensions. In both cases, extension maintenance and evo-
lution required large effort. We conclude the relevance of
our scenarios is high. Considering RQ2, in line with our
own investigation, the amount of standard views is so high
that most of the migration steps can be performed auto-
matically. This is also true for the case of developing new
extensions. Although some developers use boilerplate code
to create new extensions, most of them use the clone-and-
own approach, which takes them at least hours to have an

Fig. 5 JooMDD facilities as MDD infrastructure

installable extension. These issues can be directly addressed
by MDD, since decreasing development effort for such sce-
narios is an acknowledged strength of MDD.

In conclusion, we hypothesize that the practitioners can
significantly benefit from applying MDD during the devel-
opment and migration of CMS extensions.

4 JooMDD: Amodel-driven infrastructure for
developing Joomla extensions

Our interview study shows that there is potential for using
MDD to develop and migrate CMS extensions for saving
time and improving quality. In this paper, we investigate this
hypothesiswith ourMDD infrastructure JooMDD[40,41]. In
what follows, first, we give an overview of JooMDD. Second,
we present the core tool set in more detail. Third, we intro-
duce two new extensions that we developed to provide full
support for all three scenarios. Based on the extensions, to our
knowledge, JooMDD is the only available MDD infrastruc-
ture addressing all three described scenarios (see Sect. 10).

4.1 Overview

JooMDD supports Joomla extension developers with a set
of MDD tools: a text-based DSL with editors for modelling
extensions, a code generator for generating implementations,

123

Applying MDD in the content management system domain 1925

Fig. 7 Web IDE comprising the eJSL model editor

a package extractor for deployed extensions, and a model
extractor for extracting models from legacy code. Figure 5
shows the provided artefacts of JooMDD in the context of
MDD. The facilities can be used for applying forward and
reverse engineering steps in a model-driven manner. This
includes the extraction of deployed extensions,model extrac-
tion, code generation, and extension evolution.

The JooMDD project and usage instructions are publicly
available: https://github.com/thm-mni-ii/JooMDD.

The infrastructure can be deployed to the most com-
monly used development environments in the CMS domain,
that is, IntelliJ IDEA, PhpStorm, and Eclipse. JooMDD’s
editor plugin is customized for integration with each of
these environments. The plugin provides an Xtext-based
textual editor with syntax highlighting, error messages,
dependency checks, and auto completion support for key-
words and references betweenmodel elements. In addition, a
platform-independent web IDE, depicted in Fig. 7, compris-
ing the whole tool set is publicly available at https://tinyurl.
com/joomdd-web. The web IDE allows developers to use
JooMDD’s full functionality without installing it locally.

To generalize JooMDD to other CMSs than Joomla
requires the implementation of platform-specific generator
templates for code generation. Furthermore, the implemen-
tation of platform-specific model discoverers can extend
JooMDD for model extraction using extensions from other
CMSs.

4.2 Core tool set

DSL for CMS extensionsThe text-based DSL consists of three
parts: a part to model the data management of an extension
(entities), a part for the definition of a page flow and interac-
tion of extension views (pages), and a part for the description
of an extension structure (extensions). The language can be
used to describeCMS extensions in general incorporating the
overall extension features of popular CMSs like WordPress,
Joomla, and Drupal. The language syntax is inspired by the
available Xtext examples and documentation that illustrate
the intended use of Xtext. Figure 6 shows an excerpt of the
mentioned parts for a simple conference component. Fig-
ure 6a illustrates the entity part, in which data entities are
defined, for instance a participant entity with its attributes.
Pages describe the representation of data entities. Figure 6b
presents a list view definition for the representation of all
existing participants, whereas a detail page is specified for
the representation the details of one participant. Links spec-
ify an interaction between both views. Besides some meta
information, the extensions part contains references to the
previously defined pages, and includes them as component
views as shown in Fig. 6c. A more detailed language docu-
mentation can be found at the abovementioned GitHub page.
Code generator for Joomla extensions The code genera-
tor is tailored to the two main Joomla versions actively

Fig. 6 DSL instance example: excerpt of a simple conference model

123

https://github.com/thm-mni-ii/JooMDD
https://tinyurl.com/joomdd-web
https://tinyurl.com/joomdd-web

1926 D. Priefer et al.

used, Joomla 3 (the current stable release) and Joomla 4
(the upcoming release). It supports extension developers
during the development of independent extensions such as
components (Scenario 1), and dependent extensions such as
modules that use data of existing components (Scenario 2). If
an independent extension is to be newly developed, the gen-
erator creates the full extension code.When using an existing
extension as reference within a new extension, the relation-
ship between the old and new extension can be specified in
the model. The generator then generates the new extension,
and not the existing one anew. This scenario is presented
within Sect. 6.1 (Scenario 2). To support iterative refinements
of existing extensions in scenarios 1 and 2, the code genera-
tor generates complete installable extension packages, which
can be deployed to a running Joomla instance by Joomla’s
update mechanism.
Model extractor for Joomla 3 extensions The model extrac-
tor provided by JooMDD supports developers during the
reengineering or migration of a legacy extension (scenario
3). It discovers model features from legacy code of existing
Joomla 3 extensions, comprising PHP, HTML, JavaScript,
and SQL files, creates an extension model based on the pro-
vided DSL with the main elements types entity, page, and
extension. The extraction tool prerequisites installable exten-
sion packages as input. The model extractor is also useful in
Scenario 2: Typically, an existing extension must be mod-
elled manually to support model-level references. This step
can be automated by using the model extraction tool. The
extracted model contains all information needed to model
(and generate) new extensions based on the existing one.

4.3 Extensions for scenarios 2 and 3

To support the evaluation of MDD during our addressed sce-
narios, we developed two extensions of JooMDD: First, we
extended the existing code generator to support both con-
sidered Joomla versions 3 and 4 (previously only 3), which
is especially relevant for platform migration in Scenario 3.
Second, to support model extraction in Scenarios 2 and 3, we
developed a package extraction tool.
Code generation for Joomla 4 Interoperability between the
Joomla framework and deployed components requires that
the components implement MVC architecture on code and
file base. Even though the same architecture is supported
by both considered major platform versions 3 and 4 (Alpha
12 [35]), the file and code structure of components differ a
lot. Therefore, we provide respective generator templates for
both versions which adhere to the respective file and code
architecture (cf. Fig. 8).
Extension Extractor To make an existing extension avail-
able for augmenting or migrating it, it needs to be available
as self-contained installable extension package. This makes
all required files available in one place. Whereas CMSs like

Fig. 8 File structure in Joomla 3 (left) versus Joomla 4 (right)

Fig. 9 Separation of a deployed Joomla component

WordPress or Drupal maintain installed extensions within
a specific extension folder, Joomla uncompresses exten-
sions and keeps their files separately. The files of Joomla
components are subdivided into different folders during the
extension installation routine (cf. Fig. 9).

An extraction of extension information from installed
Joomla components can therefore be a challenging task.

123

Applying MDD in the content management system domain 1927

Often, third-party extensions are typically available as instal-
lable extension package, e.g. within extension repositories.
However, if this is not the case and an installed extension has
to be used during our addressed development scenarios 2 or 3,
developers have to extract it from the running CMS instance.
The same applies to core extensions, which are typically
not available as installable extension packages. Therefore,
we provide the ExtPorter tool, it supports the extraction of
files and database schemes of Joomla components which are
deployed to a running Joomla instance.

The tool itself is realized as a Joomla component andmust
be installed to the system where extraction activities have
to be performed. This decision has two advantages. First,
information of installed extensions can be accessed by using
functions of the Joomla framework. So, the implementation
effort can be reduced and direct access to the file system or
the database is not necessary. Second, developers can use the
tool within their well-known environment.

5 Controlled experiment

To study the effect of MDD to productivity and software
quality, we conducted a controlled experiment, in which the
participants were asked to complete development tasks with
conventional programming and MDD. We researched the
effect of JooMDDduring Scenario 1 and 2 using the example
of Joomla CMS to answer the following research questions:

– RQ3: CanMDD increase the productivity of CMS exten-
sion development for Scenario 1 and 2?

– RQ4: Can MDD affect the software quality of developed
CMS extensions?

5.1 Set-up

By our experimental investigation, we aim to validate the
effect of MDD in a systematic, disciplined, controlled and
computable manner [37]. To ensure methodological correct-
ness, we follow empirical guidelines as presented in [47],
[21], and [66]. Moreover, we incorporate the ideas of the
experimental design which is presented by Panach et al. in
[36], since it also addresses the investigation of quality and
productivity effects of MDD.

These guidelines propose the formulation of hypotheses
which can be tested to answer the addressed research ques-
tions. Therefore, we formulate null hypotheses (H0) about
the effect of our selected treatments, addressing RQ3 (pro-
ductivity) and RQ4 (quality):

H01: The developer productivity during Joomla extension
development applying MDD is similar to productivity
following a traditional development method.

H02: The software quality of Joomla extensions developed by
applying MDD is similar to software quality following a
traditional development method.

Falsifying the null hypotheses in our experiments would
allow us to conclude that productivity and software quality
are indeed improved when applying MDD in the considered
scenarios.
Subjects We recruited 14 developers with significant exper-
tise in Joomla extension development. Five participants are
experienced Joomla extension developers with a high level
(2–10 years) of experience; two of them were also subjects
of our interviews presented in Sect. 3. Nine participants
were students from an intensive course on Joomla program-
ming; five of themalsowork as Joomla developers for Joomla
extensions used in production in a university website context.
We justify the selection of student participants with their
comparable performance to professionals when using new
software development tools [44].

To ensure sufficient knowledge in extension development
for the Joomla CMS, we conducted an external knowledge
assessment at the beginning of the experiment, based on a
multiple-choice test. We found that all participants have rel-
evant knowledge in extension development. However, two
participants showed a knowledge deficit in detailed extension
development (MVC interaction). Additionally, we assessed
the modelling experience of the participants with the result
that all participants had average to high experience (mainly
with UML).

Additionally, we asked questions to get an impression of
the open-mindedness towards MDD. To this end, using a
five-point Likert scale, we asked for an estimation of the need
for a tool or method for the transformation of requirement
documents into models and implementations. 29% estimated
an average need, whereas 50% estimated a high and 21% a
very high need for such tools and methods. Moreover, 71%
of the participants made use of a generator approach before.
This shows that none of the participants was disinclined from
the outset.
Design We applied a within-groups design (paired design
blocked by experimental objects [21,36]). The participants
were assigned randomly to two equally sized groups of
7 people. Both groups started with conventional program-
ming followed by amodel-driven development session. Each
development session had a maximum duration of 3 hours. To
encounter a possible learning effect, each participant solved
different tasks with both development methods (cf. Table 3).
To avoid bias due to one of the tasks being more compli-
cated,we randomized the assignment of tasks to development
methodologies between participants.

The tasks, based on two different requirements of similar
complexity, were handed out during the development ses-
sions. The requirements were concerned with implementing

123

1928 D. Priefer et al.

Table 3 Study design

Session Factor Requirement A Requirement B

1 Traditional Group 1 Group 2

2 MDD Group 2 Group 1

Fig. 10 Entity model of possible solution for CRM requirement

extensions for a university management system (requirement
A) and a customer-relationshipmanagement system (require-
ment B). To exemplify the complexity of the requirements,
Fig. 10 illustrates a possible solution model with the enti-
ties of requirement B. These kinds of requirements are in
accordance to the common requirements addressed by exten-
sion developers in the community. Based on the popular
extensions of the Joomla extension directory and statements
of industrial practitioners (see Sect. 3), data management
extensions are common in the domain. Group 1 had to imple-
ment the first requirement by hand and the second one with
MDD, whereas group 2 started with the second requirement
followed with the first one with MDD. Both requirements
consisted of an independent Joomla component (Scenario 1)
with 14 views in total. In particular, 6 list and 6 edit views for
the management of each entity in the administration section
(backend), as well as 1 list and 1 details view for the end-
user (frontend). Each view consist of an representation part
as well as a CRUD implementation in the backend section.
In addition, the subjects were asked to implement a depen-
dentmodule (Scenario 2) illustrating data of the implemented
component. In total, we had 28 test items for the subsequent
evaluation of the results. After each of both sessions, the
subjects submitted their solutions.
Instrumentation In the conventional programming session,
the participants were free to use a development environment
of their choice. For the model-driven development session,
they were asked to use the JooMDDweb editor for extension
development. This allowed us to minimize technical noise
regarding the installation of IDE plugins.

Procedure Before the actual development session, a pre-
sentation about the experiment and the requirements for a
complete solution was given, based on a different example
than the one used in the experiments. To ensure anonymous
handling of the results and eliminate possible biases, the sub-
jects were identified by a subject ID they had to write on each
artefact they filled out during the experiment. The subjects
used their own notebooks with their familiar development
set-up of choice.

The experiment began with the completion of a demo-
graphic questionnaire. Afterwards, the subjects had to com-
plete a knowledge assessment questionnaire (development,
Joomla, MDD). Afterwards, the two programming sessions
followed. At the start of the first session, a requirements spec-
ification was given to all subjects. As previously described,
group 1 had to implement Joomla extensions (1 independent
component and 1 dependent module) for university man-
agement, group 2 for customer relationship management.
In a presentation before the second session, an overview
of the domain-specific language, the code generator, and
the web editor was given. In the second session, the sub-
jects had to implement the second requirement specification
using these tools. Since there was no explicit JooMDD train-
ing beforehand, the subjects had to follow the infrastructure
documentation to fulfil the given requirements. The experi-
menters gave support considering the infrastructure features.
No help for achieving the development results was provided.
In each session, the participants had to check the fulfilled
requirements in the specification list. After each session the
subjects had to answer questions considering the develop-
ment method as well as the quantity and quality of the
development results.

At the end, a closing questionnaire was conducted to get
insight to the acceptance of the tools. The complete experi-
ment took 9 hours per participant.
Measurement To address the RQ3 and RQ4, stated in the
beginning of this section, each RQ needs to be operational-
ized in terms of a response variable. These variables are the
observed subjects of change based on the effects of the treat-
ments.

RQ3 requires a response variable for measuring the effect
ofMDD to developer productivity. Productivity is oftenmea-
sured as amount of fulfilled requirements to effort ratio [36].
In our experiments, the invested time effort is constant, since
all subjects used the maximum session duration of 3 hours
during both sessions. Therefore,we canmeasure productivity
in terms of the amount of fulfilled requirements. We manu-
ally determined the amount of fulfilled requirements, using
the requirements description handed out to the participants
as a checklist (provided as part of our online Appendix [42]).
In contrast to the productivity measurement in [39], we per-
formed a more detailed analysis: instead of just counting the

123

Applying MDD in the content management system domain 1929

number of implemented requirement groups, we checked for
each individual test case if it was implemented.

RQ4 requires a response variable for the effect of MDD to
the quality of developed CMS extensions.We used a variable
tailored to the quality requirements of the domain:At the time
of the experiment, the general coding standard for PHP-based
web application developmentwas PSR-2 [38]. PSR-2 aims to
“reduce cognitive friction when scanning code from different
authors” [38], thus contributing tomaintainability, one of the
quality characteristics in the ISO25010 standard [19]. As part
of the task description, we asked our participants to adhere to
PSR-2 while implementing the requirements. We measured
quality in terms of the amount of code style violations to LoC
ratio for each requirement. We used PHP_CodeSniffer [53]
for violation detection and PHPLOC [4] for measuring lines
of code in each view. Both are standard tools in the PHP
community.
Statistical analysis To analyse our results statistically, we
tested the two null hypotheses H01 and H02 using a standard
hypothesis testing approach. First, to select an appropri-
ate test, we first checked whether our measurement data
are normally distributed, using the Shapiro–Wilk test [46].
According to this test, the data were not normally distributed,
rendering tests that rely on normally distributed data (e.g.
t test [21,33]) inapplicable to our data. Instead, we used a
nonparametric Mann–Whitney U test [17], which is liberal
in its assumptions in the input data. This test yields a p-value,
which allows to reject the null hypothesis in case that p is
smaller than an upfront-defined significance threshold. We
used a standard significance threshold of α = 0.05. Further-
more, we considered the effect sizes for the comparisons,
using Vargha and Delaney’s A12 score [58], which measures
effects on a scale between 0 and 1. Vargha and Delaney sug-
gest to interpret the A12 score using the following reference
values: 0.56 = small; 0.64 = medium; 0.71 = large [58].

5.2 Results

Below, we present the test results of the submitted solutions
based on the observed dependent variables (productivity and
quality). To gain insight about the effects of MDD on the
development of different requirement groups.
Productivity Table 4 summarizes the results of the controlled
experiment based on the amount of fulfilled requirements
per development session (3 h each). To gain insight about
the productivity gain, we count the number of passed test
cases and build the average percentage of requirement fulfil-
ment for each requirement group (A and B) and calculated
the respective mean and median productivity coefficient as
well as the standard deviation (SD) for both development ses-
sions (baseline, MDD). As Table 4 shows, the overall mean
coefficient between the baseline session and the session with

Table 4 Productivity results: overview

Requirement Baseline (%) MDD (%) Coefficient

A Mean 7.8 91.3 11.7

Median 6.3 90.9 14.4

SD 6.9 4.4

B Mean 9.6 56 5.8

Median 3.6 59.7 16.6

SD 10.3 34.4

Overall Mean 8.7 73.7 8.5

Median 4.9 89.2 18.2

SD 8.5 29.9

Fig. 11 Passed test case ratio (overview)

MDD varies between 5.9 and 11.7 and the overall median
coefficient varies between 14.6 and 18.2.

Figure 11 illustrates the box plot for the overall pro-
ductivity result to visualize the productivity differences
and variances. The productivity variance of requirement
A is quite small for both treatments, whereas MDD of
requirement B shows a wide range of productivity amounts.
However, this result is based on two outliers (8% and 13%)
which were not removed due to the small sample size. Never-
theless, the median of the overall MDD productivity ratio is
30% lower for requirement B. This indicates an effect based
on the complexity of the requirement.

Table 5 presents more detailed results for our productivity
measurements. For each subject we measured the percent-
age of passed tests and summarized the results based on
relevant requirement groups in each development session.
For each requirement group, we calculated the mean and the
median. The Component Structure row indicates the over-
all percentage of functional completeness by all participants
considering a component that is installable, supports multi-

123

1930 D. Priefer et al.

Table 5 Productivity results: detailed insights

Requirement group Scenario Requirement A Requirement B Overall

Baseline (%) MDD (%) Coeff. Baseline (%) MDD (%) Coeff. Baseline (%) MDD (%) Coeff.

Component Structure 1 Mean 53.6 100 1.9 67.9 71.4 1.1 60.7 85.7 1.4

Median 50 100 2 75 100 1.3 75 100 1.3

SD 22.5 0 31.3 48.8 27.2 36.3

Component Views 1 Mean 5.7 88 15.4 5.61 55.6 9.9 5.7 71.8 12.6

Median 5.4 90.2 16.7 0 61.3 N/A 2.7 87.7 32.5

SD 6.4 6.3 7 35.1 6.5 29.5

Component CRUD 1 Mean 7.1 97.6 13.8 10.1 57.4 5.7 8.6 77.5 9

Median 4.2 100 23.8 0 66.7 N/A 2.1 91.7 43.7

SD 7.9 6.3 15.6 33 12 30.9

Module 2 Mean 0 52.4 N/A 0 28.6 N/A 0 40.5 N/A

Median 0 66.7 N/A 0 0 N/A 0 0 N/A

SD 0 50.4 0 48.8 0 49.2

language ability (by language files) and provides update
scripts. The Component Views row specifies the overall per-
centage of implemented view features (e.g. table columns,
filters, orderings, correct fields and HTML field types).
In the Component CRUD row the overall percentage of
implemented CRUD functionality for each view, includ-
ing the required buttons and a correct implementation of
the associated actions, are collected. The Module row pro-
vides the overall percentage of fulfilled requirements based
on a module that is installable, uses the data of the imple-
mented component, and illustrates the data in a module
position. Requirement groups Component Structure, Com-
ponent Views, and Component CRUD in union represent
our Scenario 1 (development of an independent component),
whereas requirement group Module represents our Scenario
2 (development of a dependent module).

The previously presented results show a pronounced pos-
itive effect of MDD during Joomla extension development.
To verify these results statistically, the corresponding null
hypothesis H01 has to be rejected. As previously described,
we applied a nonparametric Mann–Whitney U test, compar-
ing the mean of two data sets (traditional, MDD).

According to this test, there is a statistically significant
difference in the productivity results of both treatments with
U = 11, Z = − 4.318, and p = 1.58 · 10−5. Considering
effect size based on the A12 measure yields a score of 0.944.
Consequently, we can quantify the effect of using MDD to
productivity as large.
Quality The results of our quality measurements are pre-
sented in Table 6, showing the measured ratios between code
style violations and LoC.

To compare the views in session 1 and session 2,we started
by analysing the views from session 1 and then we analysed
the exact same views from session 2 only even there might

Table 6 Quality results: overview

Requirement Baseline (%) MDD (%) Coefficient

A Mean 1.42 0.66 0.47

Median 1.6 0.67 0.42

SD 0.48 0.04

B Mean 1.77 0.75 0.42

Median 1.58 0.67 0.42

SD 1.58 0.21

Overall Mean 1.59 0.71 0.45

Median 1.59 0.67 0.42

SD 1.11 0.15

be more views. Thus, for requirement A the compared views
are 4 and 12 for requirement B. As Table 6 shows, the overall
mean coefficient between the baseline session and the session
with MDD varies between 0.42 and 0.47 times less violation
and the overall median coefficient varies between 0.42 and
0.43 times less violations. This equates to a quality increase
of factor 2.4.

To use as many artefacts as possible for our quality
assessment, we considered all implemented views from both
sessions, even if they did not fulfil all requirements. Doing
so may potentially provide an advantage to traditional devel-
opment, since fewer solutions were handed in for the more
complex extension types (cf. the results for RQ3). To miti-
gate bias, we present the quality results itemized by different
extension types (which avoids bias especially in the simpler
cases). Bias in the complex cases is mitigated by the fact that,
in the worst case, the bias is negative against our approach—
the reported quality benefit presents a lower bound.

In Fig. 12, the corresponding box plot for the overall
result of the violation to LoC ratio is presented. As previ-

123

Applying MDD in the content management system domain 1931

Fig. 12 Code style violations to LoC ratio (overview)

ously described, one outlier (4.42%) led to a higher mean
value for the ratio of requirement B in the first session. How-
ever, the median of both requirements is quite similar for the
respective development method. This indicates that the con-
sidered requirements had no explicit effect on the observed
code quality.

Table 7 presents more detailed results of our quality mea-
surements. For each requirement group, we calculated the
mean and the median code style violations to LoC ratio. The
Component Views: List row presents the overall percentage
for a list view including CRUD functionality. In average a list
view consists of around 435 LoC in 5 files. Similar to this, the
Component Views: Edit row provides the overall percentage
for a detail view including the required input fields, buttons,
and associated actions. In average a detail view consists of
570 LoC in 5 files. The Module row shows the overall per-

centage for a module. It should be noted that no participant
was able to implement amodule in the baseline session, so no
coefficient can be calculated. Based on our code generator,
a module usually consists of 3 files with an average of 255
LoC.

Similar to the productivity result, the previously presented
results show a positive effect on the quality of the devel-
oped Joomla extension by applying MDD. To evaluate the
corresponding null hypothesis H02 we also applied the non-
parametric Mann–Whitney U test. For this test, we only
considered the subjects which submitted code and rejected
all subjects with 0% productivity amount. This led to 10 sub-
jects for session 1. During the second session, all subjects
submitted code for the views which were compared. Hav-
ing different group sizes is permissible for our test method,
which is geared towards unpaired groups.

According to the applied test, there is a statistically sig-
nificant difference in the quality results of both treatments
withU = 29, Z = − 2.593, and p = 0.01 which is below α.
Based on the A12 score of 0.793, we can quantify the effect
of using MDD to the quality measurement as large.

5.3 Interpretation

With the results of the experiment, we can answer our
research questions. Regarding RQ3 (productivity), even the
lowest measured mean coefficient is higher than 5, which
shows that the subjects were significantly more productive
with MDD during the implementation of each requirement.
Regarding RQ4 (quality), the subjects improved the code
quality by reducing the amount of code style violations in
average at least by the factor 0.42. The latter result is espe-
cially remarkable due to the initial advantage for traditional
development, for which a larger portion of participants did
not hand in any implementations for the more complicated
extension types.

Table 7 Quality results: detailed insights

Requirement group Scen. Requirement A Requirement B Overall

Baseline (%) MDD (%) Coeff. Baseline (%) MDD (%) Coeff. Baseline (%) MDD (%) Coeff.

Component Views: List 1 Mean 1.55 0.60 0.39 1.46 0.63 0.43 1.51 0.61 0.4

Median 1.83 0.54 0.30 1.43 0.54 0.38 1.63 0.54 0.33

SD 0.68 0.12 0.74 0.19 0.67 0.15

Component Views: Edit 1 Mean 1.32 0.74 0.56 2.84 0.87 0.31 2.08 0.81 0.39

Median 1.27 0.81 0.64 1.23 0.80 0.65 1.25 0.81 0.65

SD 0.46 0.12 4.05 0.26 2.83 0.21

Module 2 Mean 0 0.38 N/A 0 0.40 N/A 0 0.38 N/A

Median 0 0.38 N/A 0 0.40 N/A 0 0.39 N/A

SD 0 0.02 0 0 0 0.02

123

1932 D. Priefer et al.

Both results correspond to the interview statements and
our previous research, according to which a large amount
of extensions consists of generic code for standard views
with CRUD functionality. By applying MDD, these exten-
sion parts can be developed faster with better quality. This
supports our hypothesis that MDD can substantially enhance
the software quality of CMS extensions and increase the
developer productivity. The same applies to the develop-
ment of dependent extensions, whereas the significance of
the module requirement should be interpreted with caution.

The experiment design did not allow to conduct a separate
module development session. Therefore, only one subject
decided to implement the module in the first development
session but with no result. The others focused on component
development within the sessions time slot. Due to the fact
that all subjects were faster during the second session, more
of them were able to develop the required module.

6 Field experiment

In the controlled experiment, due to the high effort for under-
standing and implementing requirements with two different
development methodologies, we focused on the first two
scenarios anddid not address Scenario 3 (migration). To com-
plement the results with more qualitative insights regarding
the usefulness, acceptance, and open challenges of MDD in
all three scenarios, we conducted a field experiment with four
extension developers of the Joomla community who were
also subjects of our conducted interview (see Sect. 3) but did
not attend the controlled experiment (see Sect. 5). All devel-
opers had a high level of experience (5–13 years), leading
to a good knowledge of the processes and problems during
extension development and migration.

6.1 Set-up

After an introduction to our MDD tool JooMDD, we
observed the developers during the three development sce-
narios within a total time of 6 hours. To obtain feedback,
we subsequently conducted interviews with the participants
addressing theMDD approach during the scenarios. Tomini-
mize technical noise, the scenarios were applied by using the
JooMDD web IDE since it integrates all infrastructure com-
ponents homogeneously. Additionally, we provided a Joomla
installation of the latest available version (3.8) at that time to
ensure equal conditions for all participants.

In this section we describe the set-up for the field experi-
ment. For each scenario we define the requirements and the
procedure.
Development of an Independent Component (Scenario 1)
In Joomla, components are the most commonly developed
type of independent extensions. Therefore, we set the task to

(a)

(b)

Fig. 13 Standard views with CRUD functionality

develop a conference management component as an exten-
sion to the Joomla core. To stipulate the requirements, we
specified a class model (cf. [40]) for the management of a
conference. In the first scenario, the goal was to develop a
component for the management of conference data by stan-
dardviewswithCRUDfunctionality. Specifically, each entity
should be displayable in a standard list and details view, such
as those shown in Fig. 13a.

The figure shows these views from the perspective of a
Joomla administrator who can make the same views visible
to site visitors using a menu entry. The resulting component
must at least consist of 4 list views and 4 edit views for the
management in the backend and 8 views for the frontend
representation of the entities. For every view the respective
MVC and CRUD code has to be generated as well. Our ref-
erence extension model for this scenario has a total of 230
LoC. This includes 4 data entities and 8 different pageswhich
are used for both the frontend and backend. The generated
component, including 16 views, consists of 17k LoC.

We started the first part of the development session with
the developers by introducing JooMDD and the JooMDD
web IDE. Subsequently, we introduced the requirements for
the conference component and proposed a possible develop-
ment procedure using JooMDD. This procedure comprises
the use of an examplemodel in theweb IDEand to change it to
the required conference structure. In the next step the devel-
opers had to generate a component based on their specified
model. As part of the introduction we explained the struc-
ture of the generated code and how the generated component
should look like if the code generation worked properly. Pro-
vided that a validmodel is used as input, the generator creates
a full installable conference component. So, no individual
code had to be added. As a next step, the developers had

123

Applying MDD in the content management system domain 1933

Fig. 14 Development of an independent component (scenario 1)

to install the component to a Joomla-based web site, which
we provided. The developers then had to check if the exten-
sion was installed properly and if it worked as homogeneous
part of the web site. To this end, they had to create some
conference data and try the common CRUD functionality. In
addition, they had to create frontend menu entries, to check
if the frontend representation works as well.

As next step, the developers had to refine their existing
model. They had to add a new data entity and pages to display
andmanage this entity. After the refinement of themodel, the
developers had to generate the component anew and reinstall
it to theweb site. After that, the developers had to check again
if the extension works properly. If everything was done cor-
rectly, the existing conference data should be still available
in the system. The whole process of the first use case is also
illustrated in Fig. 14.
Development of a Dependent Module (Scenario 2) In the sec-
ond part of the experiment, the task was to add a newmodule
to the existing conference component using its DAO, to pro-
vide a new representation of the conference talks within a
Joomla site which has the conference component installed.
Once installed, the module should work together with the
already installed conference component by using the compo-
nent’sMVCmodel for the data access, thus allowing to show
a presentation of the obtained data—in our case conference
talks which are managed by the component. Figure 13b illus-
trates a Joomla instance which already has the conference
component installed (1) and the new module which uses its
data (2) for a different representation. Therefore, an existing
extension package of a conference management component
is required in this scenario. The participants could use the
already downloaded extension package from Scenario 1.

As next step, they had to upload the extension package to
the JooMDDweb IDE and use the JooMDDmodel extractor
to extract a domain model from the conference component
package. We decided for this component to make sure that
the input extensionmatches the Joomla standard file and code
schemes to ensure that the extracted models are as complete
as possible. If the resulting model contains some validation

Fig. 15 Development of a dependent module (scenario 2)

errors (e.g. illegal identifiers), the participants had to refactor
these model elements.

As a further step of this scenario, the participants had to
augment the model by new elements to define a new Joomla
module with references to the extracted component-specific
model elements. Then, using the new model as input, the
participants had to use the code generator of the web IDE to
create an installable extension package of the new module.

To complete this scenario, the developers were asked to
install the module to our provided Joomla installation and, if
it has been installed properly, create amodule instance,which
has to be placed on the frontend section of the website. If
everything worked properly, the module had to illustrate the
data of the already installed component similar to Fig. 13b.
See Fig. 15 for an overview of the procedure.
Migration of a Legacy Component from Joomla 3 to 4
(Scenario 3) For the third scenario, we required the code
migration of a component from Joomla platform version 3
to 4. The release of the stable Joomla 4 version is planned
for late 2020. Even though the new major release of Joomla
requires a completely new extension structure (cf. Fig. 8),
the migrated component should include the same features as
for the old Joomla version. So, the whole extension structure
of an existing Joomla 3 component has to be migrated to
the required Joomla 4 structure. Once installed to a Joomla
4 instance, the component views should also be displayed
homogeneously and work properly.

The first steps of the procedure, depicted in Fig. 16, were
similar to the ones described for Scenario 2. The participants
had to use an installable extension package of a Joomla 3
component, upload it to the web IDE, extract a model, and
refactor that model. Again, we decided to use the conference
component to ensure a full model extraction.

After themodel refinements, the participants had to gener-
ate the component by choosing J4 as generator option (part of
the web IDE) and download the resulting extension package.
During the experiment back in 2018 the code generator did
not generate fully operable components but created the cor-
rect new file structure with the main code changes for Joomla

123

1934 D. Priefer et al.

Fig. 16 Migration of a legacy component from Joomla 3 to Joomla 4
(scenario 3)

4. Thus, the participants had to inspect the new components
to get an overview of the new component structure.

6.2 Observations

In the field experiment we made the following observations:
Development of an Independent Component (Scenario 1)
Before the procedure started, we observed some reservations
against the use of MDD approaches. This also applied to
JooMDD. After the first session, however, they were sur-
prised that the tools worked so well. By using the example
models as a reference, the developers were able to quickly
learn the use of the tools provided by JooMDD. Several edi-
tor features were well received, like the auto completion, the
error validation, and the syntactical sugar like curly brackets
in the DSL, which clarified the structure and model hierar-
chy. However, one participants had problems with keywords
of theDSL. Particularly, the page keyword in themodelmade
some problems. The participant expected the keyword view,
since pages in the model represent views in actual compo-
nents. Another technical aversion we observed relates the
usability of the web IDE. While three of the participants
liked the platform-independent editor, the functions of the
buttons have not been clear enough. One of the participants
disliked the platform-independent solution and preferred to
use the available PhpStorm plugin. After 20 minutes all par-
ticipants had installed their first generated component to the
provided Joomla installation. We did not observe different
results between participants with more or less technological
knowledge.
Development of a Dependent Module (Scenario 2)During the
second scenario we observed that 2 of the participants had
problems with the resulting model after the model extraction
step. Since the model was not completely free of validation
errors, the developers found it hard to orient themselves, due
to the mass of unfamiliar generated model code. However,
with some help, they were able to create and test the new
modules in minutes.
Migration of a Legacy Component from Joomla 3 to 4 (Sce-
nario 3) The first observation we made in the third scenario

was that, except for one participant, the group had no experi-
ence in extension development for the new Joomla 4 version.
However, by using JooMDD and following the predefined
steps, the group was able to create their first Joomla 4
components, based on the previously generated conference
component for Joomla 3. The participants were fascinated by
the scenario, since the whole process did not require more
than 5minutes and 4 clicks for the example component. Since
nomigration steps are defined in any documentation, the par-
ticipants were grateful to use the generated extension as first
reference for their future extension development.
Concluding remark While some of these observations high-
light specific issues of JooMDD, they can be used to inform
both future versions of JooMDD, and other MDD infrastruc-
tures in this domain.

6.3 Developer feedback

During and after the field experiment the developers gave us
feedback regarding MDD approaches in general.

The overall observations were positive. One participant
stated: “I think this is really useful to speed up the process
and actually when you have to create a standard component
which has to do something really easy you can make one
really quick. So it’s can be a time saver. Yes I’m sure it can.”
Another participant observed: “If I now look at JooMDD
what we did today, if I add a new view in the model file, I
would still copy&paste a view from there because the struc-
tures mostly going to be the same. But there’s less to change
because there’s only one single file where I need to change
maybe two names or three names then the rest will be gener-
ated. So, it’s less error prone then what we’re doing now.”

The Joomla experts also pointed out the importance of
good naming, especially in the case of name clashes. For
instance, in the web IDE, the button for our model extraction
tool is labelled “Model Extraction”. For MDD infrastructure
developer, it is clear that thiswill extract amodel from a given
extension. But the Joomla developers first thought about a
model in the MVC pattern, which components follow. The
same goes for the page part in the DSL. A page in Joomla is
called a view, so the developers mentioned, why not name it
like that. This is due to the fact that the DSL should also be
applicable for other CMSs. It might be a good approach to
create a dialect for the DSL to support various CMS-specific
language parts. This will enable the domain experts to use
their common terms. However, the CMS-specific terms will
then be mapped to general terms in the background.

The developers also expressed what they expect from
an MDD infrastructure. Concerning the capabilities regard-
ing data management, one participant notes: “A generator
approach has to take care of the database as well, the tables,
entities, keys, constraints and also create the database access
object.”T One point often mentioned by the developers was

123

Applying MDD in the content management system domain 1935

that they want something like a wizard, which guides them
through the extension creation process: “I was talking about
the wizards which can even speed up to the process even
more.” One of the developer stated that he would like to
have a command line tool to be able to create the model file
with predefined model features, so that he does not have to
create it by hand: “With commands, like ’build view x,y,z’
and then it asks for the details.”T

Developers want support for the whole development life
cycle, beyond the initial steps: “I expect that the generator is
not a generator once and change never option. I expect that
it’s meant to be part of a continuous developing situation.”

They see the need of versionmanagement for the involved
textual models [25]: “If it appears to be a bug in my compo-
nent after six months and I want to be able to go back to the
last one that was generated or the last one before that.” and
“at least have a history.”

Additionally, they expect the generator to be always up to
date: “What I would expect is that if I have my logic inside
the code generator it would spit out a component in the new
style that I put in a different engine and the engine gives
me different code to be doing with Joomla 3, Joomla 4, or
whatever platform it’s supposed to be running on.” and “I
expect the code generator to always be up to date to the
newest Joomla version.”T

Finally, regarding future directions of MDD in the CMS
domain, a participant stated: “The focus should be on what
you do should be good and it should be able to hook into your
own custom code.. . .You’re not restricted to just the gener-
ated part and you’re not forced to hack into the generated
code but to just have enough possibilities to do at your own
stuff.” and “Not try to cover too much. Because then I think
you’ll be working eighty percent of the time on twenty percent
of the functionality.”

7 Case studies

In this sectionwe present three case studies, featuring Joomla
extensions that have been developed using JooMDD as the
primary development tool. The case studies were conducted
at the Institute for Information Sciences1 in Gießen, Ger-
many, where extensions for the CMS Joomla have been
developed for over a decade. These extensions are deployed
to several Joomla installations which represent the websites
for the Technische Hochschule Mittelhessen (THM) and its
departments.

The first two case studies show the use of JooMDD for
the initial development of components in administrative and

1 Institute at the computer science department at the Technis-
che Hochschule Mittelhessen, http://thm.de/mni/forschung/institute-
gruppen/ii

development activities, demonstrating that JooMDD is ready
for being used in real-world projects. Whereas in the past
most of such extensions have been developed in the conven-
tional way, we used JooMDD for the development of new
extensions or the augmentation of existing ones. The third
case study is on our use of JooMDD for teaching in web
development lectures.

7.1 Precourse management for students

At THM, students can attend a precourse before their regular
studies. This allows them to prepare for their study pro-
gramme. The management of precourse students has been
done by a now-outdated external website, which was not
part of the university’s official website pool. Therefore, the
requirement was to incorporate the precourse management
into the main Joomla installation of the university.

To this end, JooMDDwas used to develop a Joomla exten-
sion for managing precourses and their attendees. The main
developer in this project was a student, who developed the
extension as part of his thesis work. The student had experi-
ence in generalwebdevelopment but no experience in Joomla
andMDD.However, with an introduction to both systems, by
the first and second author of this paper, the student was able
to perform the required steps. The extension developed in this
project is made up by a component with CRUD views for the
management of courses and registered attendees. It works
together with the user management of the Joomla core. The
component was eventually deployed and used productively
at THM’s website.

The defined model consisted of 9 data entities and 18
pages,whereas the generated component comprised 30 pages
in form of MVC combinations. Since these combinations
require the largest amount of code, the high number of
pages in the model led to 25k LoC for the whole compo-
nent with only 347 LoC in the corresponding model. The
generated extension was refined by individual functionality
(approximately 2.5k LoC) before it was installed and used
productively. Thus, more than 90% of the component could
be created in a model-driven manner. Only the missing 10%
were custom business logic which had to be incorporated by
hand. However, this was easily done by adding new functions
to the controller and model as well as changing HTML in a
view.

After its deployment, the features of the component
became incorporated to another Joomla component which is
used for thewhole resourcemanagement like rooms, courses,
and schedules of the university within a separate Joomla
instance. We included the model created during this case
study as a showcase example into JooMDD.

The added value of this case study is to show that an inex-
perienced user in both the domain and MDD was able to
generate an Joomla extension with just a little help. In addi-

123

http://thm.de/mni/forschung/institute-gruppen/ii
http://thm.de/mni/forschung/institute-gruppen/ii

1936 D. Priefer et al.

tion, the used MDD tool was able to generate 90% of the
extension and the student was able to hook into the gener-
ated code to implement the missing custom logic.

7.2 Joomla extension extractor

In Joomla, the code for a deployed extension is spread over
many folders in the Joomla instance at hand. If the original
installation package is not available, it is a challenging task to
get all the relevant extension information from the installed
Joomla component. It becomes necessary to collect all files,
folders, and the database schema related to one component.
When evolving our code generator, we needed to perform
this task repeatedly.

To avoid manual effort during this task, a developer who
was experienced in Joomla andMDDdeveloped a component
called ExtPorter for automating it. The goal of ExtPorter is
to retrieve an installable extension package from an existing
extension deployed to an Joomla instance. Even though some
parts contain individual code, the component’smain structure
and the management views have been fully generated by the
JooMDD code generator. Our defined model, consisting of
one data entity and two pages, comprised a total amount of
83 LoC. The code of the component, largely consisting of
four views (respective frontend and backend views for each
page), comprised 5 KLoC.

Beyond the productive use during the enhancement of
our generator, ExtPorter is also useful for other developers,
as they can create installable packages for legacy compo-
nents, e.g. to use them as input for our model extraction tool.
Therefore, we made ExtPorter publicly available as part of
the JooMDD infrastructure (see the description in Sect. 4).
ExtPorter was also used by the participants during the field
experiment and benefits from their feedback (see Sect. 6).

The added value of this case study is to show that the
MDD infrastructure JooMDD has reached a maturity level
where it can handle complex requirements that significantly
go beyond the CRUD functionalities of basic data manage-
ment applications.

7.3 Use of JooMDD in teaching

Besides the use of JooMDD in development projects, we
use the tools within web development classes to teach the
development of PHP-based applications. The students have
to (further) develop extensions for Joomla or create new fea-
tures and patches for the Joomla core. In the first years, the
students required most of the time for learning the structure
of Joomla extensions and how to implement them. By using
JooMDDwewere able to reduce the learning effort. By using
the DSL and code generator, the students get a better under-
standing for the required file and code structure, since they

can easily change some abstract parts in the model, generate
anew and inspect the changes.

The added value of this case study is to show that MDD
can be used to teach a complex new technology to learners.
At the beginning, students can use theMDD infrastructure to
quickly generate artefacts and do changes to them on a high
abstraction level. The students can investigate the generated
artefacts and observe the changes to get familiar with the
new technology. In the further learning process, the students
inspect the structure and generated code to get a profound
understanding. Using anMDD infrastructure is a straightfor-
ward procedure to generate the artefacts anew and observe
the changes on different abstraction levels.

8 Lessons learned

In this section we address the lessons learned of our con-
ducted studies among CMS extension developers. Most of
them are consistent to the ones presented by Whittle et al. in
[65]. This applies especially to the following ones:

Finding the right problem is crucial. All three develop-
ment scenarios we presented have proven to be significant.
The migration scenario, however, is considered as especially
pressing and got most attention.

Match tools to people, not the other way around. Devel-
opers refused working with Eclipse. For potential reasons
see [22]. Instead, they are used to IDEs by JetBrains or web
IDEs and await corresponding tool support. In this context,
as developers pointed out, MDD has the potential to reduce
error susceptibility in contrast to clone-and-own approaches.
Additionally, we found three specific sublessons:

1. Integrate MDD tooling seamlessly into already used tool
environments Developers also asked to consider possibil-
ities for custom code integration into generated code.

2. Use domain terminology as much as possible A DSL
dialectmay better reflect the developer’s understanding of
a specific domain (such as CMS extension development
with Joomla).

3. Handle models as usual development artefacts Develop-
ers specifically asked for version management support to
consider model histories.

More focus on processes, not only on tools Developers
ask for wizards supporting them in following predefined pro-
cesses as they occurred in selected application scenarios.

In addition, we have found further lessons learned which
are in accordance to existing MDD adoptions like [5,9,55]:

Apply MDD to develop components instead of whole sys-
tems While certain kinds of system components are well
suited for MDD others may be not. The developers shall
be guided to the promising applications.

123

Applying MDD in the content management system domain 1937

MDD for learning new platform versions By automati-
cally migrating a vast part of a CMS extension, developers
can learn how a new platform version (here Joomla 4) shall
be used. It also becomes easier to add individual code where
needed.

MDD for teaching activitiesTeaching a complex system to
inexperienced developers can be overwhelming for them due
to technical hurdles (cf. [55]). Using an MDD infrastructure
obfuscates technical details and producing high-quality soft-
ware components encourages students to become acquainted
with a new technology. Furthermore, they can do changes
on a high abstraction level in the model and re-generate the
software artefact on demand. This supports inexperienced
developers during the familiarization process with the tech-
nology.

MDD for rapid prototyping. Since MDD enables rapid
development of software artefacts that cover high amount of
domain standards, it can also be used for rapid prototyping
within an iterative development process (cf. [5]). The proto-
type can be successively refined to the final product or even
be completely discarded in an early iteration if it does not
fulfil the stakeholders’ requirements.

9 Threats to validity

Despite the promising results of all presented studies in the
previous sections, our work is subject to a number of threats
to validity. These are presented by following the classification
which is discussed by Wohlin et al. in [66].
Construct Validity We study practical applicability by focus-
ing on three development scenarios that we consider as
common in the domain. While the expert interviews con-
firm the crucial role of these scenarios, the participants also
pointed us to an additional scenario that we did not consider
yet. In particular, the abstraction of shared functionality into
libraries. This threatens construct validity, since we aim to
study the development of extensions in general, independent
of their type. We aim to study this case in future work.

Even though our interviews confirm that iteratively refin-
ing already existing extensions (extension evolution) is a
challenge, our interview guide did not contain explicit ques-
tions considering the related subscenarios. Since these are
part of Scenario 1 and 2, this is a threat to construct validity.
Further interview iterations should incorporate such ques-
tions to get the interviewees opinion of this subscenario.

Our measurement of productivity relies on a checklist
of requirements which was handed out to our participants
as a specification to fulfil their tasks. To avoid the risk of
imprecise values in the checklists, we have independently
checked the solutions and completed the checklists our-
selves. Our measure of quality only focuses on adherence
to coding guidelines, which is positively correlated with

maintainability [15]. However, software quality is a compre-
hensive construct with further concerns such as performance,
usability, and security. Measuring these concerns requires
additional experiments.

To address evaluation apprehension by the subjects, we
only choose volunteer participants from academia and indus-
try during the experiment and only industrial practitioners
during the workshop. Additionally, all documents and devel-
opment results of the experiment were submitted in an
anonymized form to reduce biases based on relationship
between the experimenters and the subjects.
Internal Validity Based on our decision of using different
requirements during the two sessions, we address the threat
of learning effects during the experiment. Besides affecting
the outcome based on the requirements, a learning effect
could also affect the choice of the development approach
during the traditional development session. This effect is
avoided by our study design: traditional in the first session,
MDD in the second. Another design would have affected
the outcome, as some of the subjects would have used other
boilerplate generators, if we had exchanged the treatments
between the groups during the sessions. This also concerns
subject motivation which was guaranteed due to the chosen
study design. Otherwise, subjects might find it frustrating to
realize the given requirement following a traditional devel-
opment method after applyingMDD.Additionally, our study
design avoids the compensatory rivalry threat, since all sub-
jects applied the same treatment.
Conclusion Validity The reliability of the results relies on
the quality of the artefacts provided to the participants, in
particular, the tasks and examples. To mitigate the associated
threat, we worked with examples and tasks that are already
well proven from use in teaching and measured the results
with objective metrics. A severe threat to conclusion validity
is based on the statistical significance due to our small sample
size. To address this threat in the experiment, we applied
the blocked within groups design. So, we could collect date
from all subjects during both sessions, which wewere able to
directly compare. However, the sample size during the field
experiment was too small to make any reliable conclusion.

To avoid that a heterogeneous knowledge of the sub-
jects affect the outcome, we applied external knowledge
assessments at the beginning of the experiment (multiple-
choice tests). So, we assured that all subjects exhibit an
adequate background in extension development and mod-
elling required to apply both development methods.

During the measurements, we used the complete data sets
without removing the outliers. So we avoided the threat of
data fishing, which is often applied to mine data to get a
specific result, but may lead to incorrect conclusion. Our
results, however, may be distorted due to the outliers we
included during measurement. However, there is no effect
on the conclusion validity, since they lead to an advantage

123

1938 D. Priefer et al.

for traditional development. Removing the outliers would
only strengthen our conclusion.

Our studies suffer from the threat of random irrelevancies,
since we cannot ensure that all subjects spend the com-
plete timewith extension development. Again, the significant
experiment result would not be different, if we could avoid
this threat.
External Validity The five main threats to external validity
are: First, we only considered extensions of the Joomla CMS.
It yet has to be examined if MDD for the selected require-
ments and case studies is also suitable for other CMSs, in
particularWordPress, themost frequently used system. Since
Joomla has the most complex extension mechanism, it is
likely that the positive results for Joomla may also gener-
alize to other CMSs like WordPress. However, a new code
generator and model extractor is required for the specific
needs of each given CMS.

Second, while we involved experts from the domain as
participants, the sample size is still relatively small. Our
methodology applied to study productivity in scenarios 1 and
2 is qualitative and quantitative.

Third, our experiments rely on specific tooling, namely,
our JooMDD infrastructure. We chose JooMDD since it was
the only tool available fully supporting our three considered
scenarios. However, it would be worthwhile to compare the
ability of different tools to support developers during a subset
of the scenarios.

Fourth, our DSL has a particular textual syntax, whose
design was informed by available examples from the Xtext
framework developers, rather than a user study. While varia-
tions in the textual syntax could affect the productivity, there
are some inherent trade-offs. For example, while our syn-
tax for entity definition could be more concise, we consider
the use of keywords such as “Attribute” as beneficial to non-
expert users due to their explanatory value.

Fifth, our experimental setting prohibited the use of indus-
trial large-scale example applications, due to the required
effort for understanding a large-scale system. We argue that
applications of the considered size are still representative for
many applications in the field.

10 Related work

Our consideration of related work is twofold: On the one
hand, we survey existing MDD approaches being applied in
the CMS domain. On the other hand, we relate our field study
to other empirical works on MDD in practice.

10.1 MDD in the CMS domain

Several related works propose platform-independent meta-
models for the development of specific CMS instances

[29,56,63]. Code generation for concrete CMS instances was
firstly investigated by Saraiva et al. in [51]. However, none
of these works addresses extensibility scenarios of CMSs
through standardized extension types taking their interde-
pendencies into account.

The ReLiS framework by Bigendako et al. [6] could be
considered a specialized CMS with extension capabilities.
It supports researchers during the collaborative conduction
of systematic review (SR) projects. The authors present a
DSL, a web-based editor, and tool support to automatically
build, install, and (re-)configure individual SR projects as
extensions to the ReLiS platform. Particularly, the automatic
deployment of generated extensions is a promising feature
which could be a supportive feature of our proposed infras-
tructure. However, the presented approach deals on actual
extension instances in a running application, whereas our
approach addresses extension packages on a higher abstrac-
tion level.

Only the XIS-CMS framework presented in [14] has been
applied to model and develop CMS modules addressing the
CMS DotNetNuke. As this CMS has a limited extension
mechanism like WordPress, JooMDD is the first one pro-
viding suitable abstractions and automation facilities for a
more sophisticated extension mechanism.

Trias et al. introduce a reengineeringmethod and a reverse
engineering tool for the migration of complete CMS-based
applications in [57]. So, migrations of an instance from one
CMS to another CMS can be realized. Even though this
approach could potentially be used improve themodel extrac-
tion component, it is currently tailored to WordPress, a CMS
with limited extensibility features. The usefulness for other
CMSs with a more sophisticated extension mechanism, such
as Joomla, has yet to be investigated. In [62], Vermolen et
al. present an approach for the evolution of data models.
This approach provides a well-defined strategy to deal with
changes to existing data entities. Incorporating it into our
work in future will help us to improve the extensibility dur-
ing the (partial) augmentation of existing legacy extensions
(Scenario 2).

Existing model-driven reverse engineering approaches in
the web context are tailored to a specific framework, mod-
elling language, or aspect such as the approaches described in
[24] and [45]. The authors of [24] consider automatic model
extraction based on ASP.net applications and a transforma-
tion to WebML [11,12], whereas the proposed extraction
process in [45] addresses the examination of graphical user
interfaces to extract model information. These works are not
suitable in our specific domain, even though the latter work
is relevant for our future work, since we have to retrieve UI
information from legacy extensions such as extension view
or widget representations (Scenarios 2 and 3).

In Table 8, we collect existing tool support for MDD of
Joomla extensions available online. The considered tools can

123

Applying MDD in the content management system domain 1939

Table 8 Tool support for scenario 1–3

Tool Joomla Version S.1 S.2 S.3

Component Generator [52] 3 � × ×
Component Builder [59] 3 � × ×
Component Creator [20] 3 � � ×
Component Architect [48] 3 � � ×
JCCreator [1] 3 � � ×
JooMDD [40,41] 3, 4 � � �

be used to define extension information in an abstract manner
and use it for code generation. However, all of these tools
are limited to the development of independent components
(Scenario 1) or dependent modules (Scenario 2). Therefore,
JooMDD stands out due to its unique migration support. We
excluded [49,67] and [7] due to a lack of functionality. They
generate a very basic scaffold only.

In [43], the authors examine the CRUD aspect in web
applications rigorously and propose an approach for the auto-
matic extension of CRUD operations in IFML [8] models.
However, since we decided to keep the DSL for CMSs as
abstract as possible, explicit CRUD definitions are not pro-
vided on model level. Therefore, in contrast to this work, we
presuppose that according code generators implement this
feature to implicitly generate CRUD operations based on a
representation kind in the instance model. The automatic
generation of code for CRUD-intensive web applications
has been addressed by various works, mostly in form of
scaffolding generators. These generators can be used during
early stages in development, but do rarely adopt an MDD
approach to support developers throughout the whole devel-
opment life cycle. Typically, these approaches operate at a
low abstraction level and require manual adaptions of gener-
ated artefacts.

General MDD approaches for the web domain such as the
ones in [8,12,26] can be used to create complete websites in
a model-driven way but are not suitable for the use cases we
considered in this paper since they do not address CMSs and
the model-driven development of their extensions.

10.2 Empirical studies onMDD in practice

There have been several efforts to investigate various aspects
of MDD in practice. Practical adoption of MDD has been
the focus of various studies [10,27,28,50,60,61,65] that gen-
erally focus on the embedded system or mobile development
domain. Sousa et al. present the adoptionofMDDin an indus-
trial modernization scenario in [50], whereas in [65],Whittle
et al. develop a taxonomyof tool-related considerations based
on empirical data stemming from industry. This taxonomy
distinguishes technical factors (concerning technical aspects

of MDD tools) from organizational and social ones (focus-
ing on tool use and application within working processes).
This taxonomywas used to analyse interviews from industry,
mainly at companies such as Ericsson and Volvo. Although
developed for empirical studies in other domains, most of
their lessons learned are confirmed by our studies among
CMS extension developers as stated in Sect. 8.

Mohagheghi et al. [32] reflect the use of MDD in four
cases from companies in different domains (enterprise appli-
cations, telecommunication, aerospace crisis management
systems and geological systems) based on interview and
questionnaire studies, focusing on the practical motivation
for using MDD and subjective usability aspects. In [23],
the adoption of MDD in the openETCS project (railway
domain) is analysed based on practical experience, surveys
and interviews. The authors of both studies state that MDD
can generally be applied successfully, while methodologies
and tools are a main inhibiting factor.

The study in [13] investigates the usability of web appli-
cations being developed in a model-driven way. The closest
studies are probably presented in [30,36], and [37]. In
[30], the authors investigate the effect of model-driven
development on the maintainability of web applications in
comparison to code-centric development. They conducted
an experiment where 27 graduated students had to perform
a set of maintainability tasks in two groups. Specifically,
they investigated the effectiveness, efficiency, usefulness, and
ease of use of the development approaches w.r.t. changeabil-
ity. As result of that study, the authors found a perceived loss
of control with MDD approaches, that model-driven devel-
opment is slightly more learnable and less complex than
code-centric development, and that developers are not as
satisfied with the MDD approach as expected. Panach et al.
research the impact of MDD on quality, effort, productiv-
ity, and developer satisfaction in comparison to conventional
development of web applications in [36]. The authors con-
ducted a controlled experiment with 26 students as part of an
MDDcourse. The same applies to the presented study in [37],
where the authors compare the performance of conventional
development with MDD of web applications by conducting
a controlled experiment with 29 senior students. Both studies
observed a positive effect on the researched variables during
MDD adoption (e.g. 90% reduced development time [37]).

In contrast to these studies, we performed our studies with
experienced developers in addition to students. Experienced
developers are usually confronted with the development and
evolution of much larger projects. Specifically, they need
to develop and integrate new software components and to
migrate code, tasks that are not covered by these studies.

To the best of our knowledge, there is no other empirical
study on the use of MDD in the CMS domain.

123

1940 D. Priefer et al.

11 Conclusion and future work

Using an instance of an open source CMS as dynamic web
application, developers can add additional features by imple-
menting installable extensions. However, developing these
extensions can be a time-consuming and complex task, even
for experienced extension developers. Therefore, we propose
the use of MDD during the development as efficient alterna-
tive to conventional programming.

In this work, we share the results of a mixed method
empirical investigation of applyingMDDduringCMS exten-
sion development. All conducted studies refer to three major
development scenarios we identified beforehand: develop-
ment of both dependent and independent extensions and
migration of an extension to a new platform version.

First, we conducted semi-structured expert interviews
with extension developers coming directly from the CMS
domain. This allowed us to study the representativeness of
these scenarios. Second, by conducting a controlled experi-
ment, we compared the conventional extension development
method with MDD. During the experiment we focused on
the first two scenarios. The results showed a clear gain in
productivity and quality when an MDD infrastructure is
used for extension development. Third, we conducted a field
experiment with the goal of obtaining direct feedback about
acceptance, usefulness, and open challenges of the adopted
MDD approach. To this end, we asked four experienced
extension developers from the Joomla domain to use the
MDD infrastructure during all three development scenarios.
Fourth, we presented three case studies from the practical use
of JooMDD in the context of administrative and development
tasks as well as teaching.

Conclusively, we share the lessons learned from our work.
Generally, the slogan focus more on processes and people,
not only on tools from Whittle et al.’s work [65], applies to
our domain as well. Since there is still little data about appli-
cation scenarios whereMDD can be applied successfully, we
tried to identify three relevant scenarios. W.r.t. these scenar-
ios we can conclude that MDD-based migration support was
particularly welcomed.

Considering possible directions for future work, we out-
line two main directions. First, we like to conduct more
qualitative studies of CMS development for other CMS plat-
forms, likeWordPress, Shopify, orDrupal.Due to the positive
findings of our Scenario 3 and the significant difference
between Joomla version 3 and 4, we see the potential to use
JooMDD as the MDD infrastructure in these studies. Sec-
ond, our selection of considered scenarios is potentially not
exhaustive. Additional scenarios which includemore sophis-
ticated tasks have to be identified. In particular, one of our
participants pointed out the abstraction of shared functional-
ity into libraries as a viable scenario.

Moreover, from our experience, the following situations
may present further application scenarios for model-driven
development: First, the augmentation of existing extensions
with custom features. New features may be added directly to
the existing extensions in form of new views, new or refined
database structures, or overwrites. This is a subscenario of
Scenario 2 (development of dependent extensions) since the
new feature is an augmentation to an existing, deployed
extension and usually depends on the original code or data.
Second, the reengineering of a legacy extension in the context
of quality assurance. Extension developers have to discover
the structure of the legacy code to reengineer the extension
to the new desired structure. Then, after the reengineering
process, the resulting extension can be reinstalled to running
CMS instances or provided as new version, e.g. in an exten-
sion directory.

To support additional scenarios in a model-driven man-
ner, an extension of the current existing MDD infrastructure
JooMDD is required. Otherwise, MDD cannot be researched
as viable alternative to conventional extension development
in these scenarios.

In this context, a functional refinement of theMDD infras-
tructure should be considered to handle individual business
logic during common development scenarios. Examples for
such business logic may be data processing and the integra-
tion of custom web services. While the current version of
the DSL allows the specification of custom business logic,
e.g. as part of page actions (used in Joomla components and
modules) or OO-based definitions which can be wrapped by
(Joomla) plugins, the current realization of the transforma-
tion tools cannot handle more individual business logic.

With the exception of one comment during the field exper-
iment, we generally did not receive negative feedback about
the syntax of the text-based DSL. However, the trade-off
between conciseness and explanatory value of using more
keywords could be addressed in an additional user study in
the future.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Applying MDD in the content management system domain 1941

References

1. Alnasser, M.: JCCreator (2019). https://jc-creator.com
2. Baker, P., Loh, S., Weil, F.: Model-driven engineering in a large

industrial context—Motorola case study. In: International Confer-
ence on Model-Driven Engineering Languages and Systems, pp.
476–491. Springer (2005)

3. Barker,D.:WebContentManagement: Systems, Features, andBest
Practices. O’Reilly, Beijing and Boston (2016)

4. Bergmann, S.: PHPLOC (2020). https://github.com/
sebastianbergmann/phploc

5. Bernardi, M.L., Lucca, G.A.D., Distante, D.: Model-driven fast
prototyping of RIAs: from conceptual models to running appli-
cations. In: International Conference on Advances in Computing,
Communications and Informatics, pp. 250–258 (2014)

6. Bigendako, B., Syriani, E.: Modeling a tool for conducting system-
atic reviews iteratively. In: International Conference on Model-
Driven Engineering and Software Development, pp. 552–559.
Scitepress–Science and Technology Publications, Lda, Setubal,
PRT (2018)

7. Boilerplate Contributers: Boilerplate files for Joomla! extensions
(2019). https://github.com/joomla-extensions/boilerplate

8. Brambilla,M., Fraternali, P.: Interaction FlowModelingLanguage:
Model-Driven UI Engineering of Web and Mobile Apps with
IFML. Morgan Kaufmann, Waltham, MA (2015)

9. Bunse, C., Gross, H., Peper, C.: Embedded system construction—
evaluation of model-driven and component-based development
approaches. In: Models in Software Engineering, pp. 66–77.
Springer, Berlin, Heidelberg (2009)

10. Burden, H., Heldal, R., Whittle, J.: Comparing and contrasting
model-driven engineering at three large companies. In: Inter-
national Symposium on Empirical Software Engineering and
Measurement, pp. 1–10. ACM, New York, NY, USA (2014)

11. Ceri, S.: Designing Data-Intensive Web Applications. Morgan
Kaufmann Publishers, Amsterdam and Boston (2010)

12. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language
(WebML): a modeling language for designing web sites. Comput.
Netw. 33(1–6), 137–157 (2000)

13. Fernandez, A., Abrahão, S., Insfran, E.: Empirical validation of a
usability inspection method for model-driven web development. J.
Syst. Softw. 86(1), 161–186 (2013)

14. Filipe, P., Ribeiro, A., Silva, A.R.: XIS-CMS: Towards a model-
driven approach for developing platform-independent CMS-
specific modules. In: International Conference on Model-Driven
Engineering and Software Development, pp. 535–543 (2016)

15. Hegedus, P.: Revealing the effect of coding practices on software
maintainability. In: International Conference on Software Mainte-
nance, pp. 578–581. IEEE (2013)

16. Heijstek,W.,Chaudron,M.: Empirical investigations ofmodel size,
complexity and effort in a large scale, distributed model driven
development process. In: Conference on Software Engineering and
Advanced Applications, pp. 113–120. IEEE (2009)

17. Hettmansperger, T., McKean, J.: Robust Nonparametric Statistical
Methods. CRC Press, Boca Raton (2010)

18. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.:
Empirical assessment of MDE in industry. In: International Con-
ference on Software Engineering, pp. 471–480. ACM (2011)

19. ISO/IEC 25010: ISO/IEC 25010:2011, systems and software
engineering—systems and software quality requirements and eval-
uation (square)—system and software quality models (2011)

20. Jensen Technologies SL: Component Creator (2019). https://www.
component-creator.com

21. Juristo, N., Moreno, A.M.: Basics of Software Engineering Exper-
imentation, 1st edn. Springer, Berlin (2010)

22. Kahani, N., Bagherzadeh,M.,Dingel, J., Cordy, J.R.: The problems
with cclipse modeling tools: a topic analysis of eclipse forums.
In: International Conference on Model-Driven Engineering Lan-
guages and Systems, pp. 227–237. ACM, New York, NY, USA
(2016)

23. Karg, S., Raschke, A., Tichy, M., Liebel, G.: Model-driven soft-
ware engineering in the OpenETCS project: project experiences
and lessons learned. In: International Conference onModel-Driven
Engineering Languages and Systems, p. 238–248. ACM, New
York, NY, USA (2016)

24. Katsimpa, T., Panagis, Y., Sakkopoulos, E., Tzimas, G., Tsakalidis,
A.: Applicationmodeling using reverse engineering techniques. In:
Symposium on Applied computing, p. 1250. ACM, NewYork, NY
(2006)

25. Kehrer, T., Pietsch, C., Kelter, U., Strüber, D., Vaupel, S.: An adapt-
able tool environment for high-level differencing of textualmodels.
In: InternationalWorkshop on OCL and TextualModeling, pp. 62–
72 (2015)

26. Kraus, A., Knapp, A., Koch, N.: Model-driven generation of web
applications inUWE. In: InternationalWorkshop onModel-Driven
Web Engineering (2007)

27. Krogmann, K., Becker, S.: A case study on model-driven and con-
ventional software development: The Palladio editor. In: Software
Engineering 2007—Beiträge zu den Workshops—Fachtagung des
GI-Fachbereichs Softwaretechnik, pp. 169–175. Gesellschaft für
Informatik e. V., Bonn (2007)

28. Liebel, G., Marko, N., Tichy, M., Leitner, A., Hansson, J.: Model-
based engineering in the embedded systems domain: an industrial
survey on the state-of-practice. Softw. Syst. Model. 17(1), 91–113
(2018)

29. Martínez, S.,Garcia-Alfaro, J., Cuppens, F.,Cuppens-Boulahia,N.,
Cabot, J.: Towards an access-control metamodel for web content
management systems. In: Sheng, Q.Z., Kjeldskov, J. (eds.) Cur-
rent Trends in Web Engineering, vol. 8295, pp. 148–155. Springer
International Publishing, Cham (2013)

30. Martinez, Y., Cachero, C., Meliá, S.: Empirical study on the main-
tainability of web applications: model-driven engineering versus
code-centric. Empir. Softw. Eng. 19(6), 1887–1920 (2014)

31. McKeever, S.: Understanding web content management systems:
evolution, lifecycle and market. Ind. Manag. Data Syst. 103(9),
686–692 (2003)

32. Mohagheghi, P., Gilani, W., Stefanescu, A., Fernandez, M.A.: An
empirical study of the state of the practice and acceptance ofmodel-
driven engineering in four industrial cases. Empir. Softw. Eng.
18(1), 89–116 (2013)

33. Montgomery, D.C.: Design and Analysis of Experiments, 5th edn.
Wiley, New York / Chichester (2001)

34. Open Source Matters Inc.: Joomla! Extensions directory (2018).
https://extensions.joomla.org/

35. Open Source Matters Inc.: Joomla 4 is on the horizon ...
Alpha 12 (2019). https://developer.joomla.org/news/793-joomla-
4-is-on-the-horizon-alpha-12.html

36. Panach, J.I., España, S., Dieste, O., Pastor, O., Juristo, N.: In search
of evidence for model-driven development claims: an experiment
on quality, effort, productivity and satisfaction. Inf. Softw. Technol.
62, 164–186 (2015)

37. Papotti, P.E., Prado, A.F., Souza, W.L., Cirilo, C.E., Pires, L.F.:
A quantitative analysis of model-driven code generation through
software e. In: Advanced Information Systems Engineering, pp.
321–337. Springer, Berlin, Heidelberg (2013)

38. PHPFramework InteropGroup: PSR-2: Coding style guide (2020).
https://www.php-fig.org/psr/psr-2/

39. Priefer, D., Kneisel, P., Rost, W., Strüber, D., Taentzer, G.: Apply-
ing MDD in the content management system domain: scenarios
and empirical assessment. In: International Conference on Model-
Driven Engineering Languages and Systems, pp. 56–66 (2019)

123

https://jc-creator.com
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://github.com/joomla-extensions/boilerplate
https://www.component-creator.com
https://www.component-creator.com
https://extensions.joomla.org/
https://developer.joomla.org/news/793-joomla-4-is-on-the-horizon-alpha-12.html
https://developer.joomla.org/news/793-joomla-4-is-on-the-horizon-alpha-12.html
https://www.php-fig.org/psr/psr-2/

1942 D. Priefer et al.

40. Priefer, D., Kneisel, P., Strüber, D.: Iterativemodel-driven develop-
ment of software extensions for web content management systems.
In: European Conference on Modelling Foundations and Appli-
cations, pp. 142–157. Springer International Publishing, Cham
(2017)

41. Priefer, D., Kneisel, P., Taentzer, G.: JooMDD: A model-driven
development environment for web content management system
extensions. In: International Conference on Software Engineering,
pp. 633–636. ACM, New York, NY, USA (2016)

42. Priefer, D., Rost, W., Strüber, D., Taentzer, G., Kneisel, P.: Online
Appendix: model-driven development in the content management
system domain: empirical assessment during common devel-
opment scenarios (2020). https://figshare.com/articles/journal_
contribution/Model-Driven_Development_in_the_Content_
Management_System_Domain_Empirical_Assessment_during_
Common_Development_Scenarios/12661538

43. Rodriguez-Echeverria, R., Preciado, J., Sierra, J., Conejero Man-
zano, J.M., Sánchez-Figueroa, F.: AutoCRUD: automatic gen-
eration of CRUD specifications in interaction flow modelling
language. Sci. Comput. Program. 168, 165–168 (2018)

44. Salman, I., Misirli, A.T., Juristo, N.: Are students representatives
of professionals in software engineering experiments?. In: IEEE
International Conference on Software Engineering, vol. 1, pp. 666–
676 (2015)

45. Sánchez Ramón, Ó., Sánchez Cuadrado, J., García Molina, J.:
Model-driven reverse engineering of legacy graphical user inter-
faces. Autom. Softw. Eng. 21(2), 147–186 (2014)

46. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normal-
ity. Biometrika 52(3–4), 591–611 (1965)

47. Shull, F., Sjøberg, D.I.K., Singer, J.: Guide to Advanced Empirical
Software Engineering. Springer, London (2008)

48. Simply Open Source: Component Architect (2019). https://www.
componentarchitect.com

49. Skyline Software: Module-Creator (2019). https://extstore.com/
tools/module-creator

50. Sousa, V., Syriani, E., Paquin,M.: Feedback on howMDE tools are
used prior to academic collaboration. In: Symposium on Applied
Computing, pp. 1190–1197. ACM, New York, NY, USA (2017)

51. Sousa Saraiva, J.: Development of CMS-based web applications
with a multi-language model-driven approach. (PhD Thesis), Uni-
versidade Técinica de Lisboa, Lisbon, Portugal (2013)

52. Spacedog ApS: Component Generator (2019). https://www.
componentgenerator.com/

53. Squiz Labs: PHP_CodeSniffer (2020). https://github.com/
squizlabs/PHP_CodeSniffer

54. Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven Software
Development: Technology, Engineering, Management. Wiley,
Hoboken, NJ, USA (2006)

55. Torres, J., Resendiz, J., Aedo, I., Dodero, J.M.: A model-driven
development approach for learning design using the LPCEL editor.
J. King Saud Univ. Comput. Inf. Sci. 26(1), 17–27 (2014)

56. Trias, F.: Building CMS-based web applications using a model-
driven approach. In: International Conference on Research Chal-
lenges in Information Science, pp. 1–6. IEEE, Piscataway, NJ
(2012)

57. Trias, F., de Castro, V., López-Sanz, M., Marcos, E.: RE-CMS:
A reverse engineering toolkit for the migration to CMS-based web
applications. In: Symposium on Applied Computing, pp. 810–812.
ACM, New York, NY, USA (2015)

58. Vargha, A., Delaney, H.D.: A critique and improvement of the CL
common language effect size statistics of McGraw and Wong. J.
Educ. Behav. Stat. 25(2), 101–132 (2000)

59. Vast Development Method: Joomla Component Builder (2019).
https://www.joomlacomponentbuilder.com/

60. Vaupel, S., Strüber, D., Rieger, F., Taentzer, G.: Agile bottom–up
development of domain-specific IDEs for model-driven devel-

opment. In: International Workshop on Flexible Model Driven
Engineering, pp. 12–21 (2015)

61. Vaupel, S., Taentzer, G., Gerlach, R., Guckert, M.: Model-driven
development ofmobile applications for android and iOS supporting
role-based app variability. Softw. Syst.Model. 17(1), 35–63 (2018)

62. Vermolen, S.D., Wachsmuth, G., Visser, E.: Generating database
migrations for evolving web applications. SIGPLAN Not. 47(3),
83–92 (2011)

63. Vlaanderen, K., Valverde, F., Pastor, O.: Model-driven web engi-
neering in the CMS domain: a preliminary research applying SME.
In: Enterprise Information Systems, vol. 19, pp. 226–237. Springer,
Berlin, Heidelberg (2009)

64. W3Techs: Usage statistics and market share of content manage-
ment systems for websites, August 2020 (2020). https://w3techs.
com/technologies/overview/content_management

65. Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H., Heldal,
R.: Industrial adoption of model-driven engineering: Are the tools
really the problem? In: International Conference on Model-Driven
EngineeringLanguages andSystems, vol. 8107, pp. 1–17. Springer,
Berlin/Heidelberg (2013)

66. Wohlin, C., Runeson, P., Hst, M., Ohlsson, M.C., Regnell, B.,
Wessln, A.: Experimentation in Software Engineering. Springer,
Berlin (2012)

67. xdsoft: Joomla Module Generator (2019). https://xdsoft.net/
joomla-module-generator/

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Dennis Priefer is a PhD student
at the Philipps University in Mar-
burg, Germany. He works as a lec-
turer and research assistant at the
Institute for Information Sciences
at the Technische Hochschule Mit-
telhessen in Gießen, Germany. His
interests in research and teaching
are in model-driven engineering,
web-based systems, content man-
agement systems, and agile soft-
ware development principles. He
is currently finishing his doctor-
ate which focuses specifically on
researching the effect of model-

driven engineering in the context of web content management systems.

Wolf Rost is a PhD student at the
Philipps University in Marburg,
Germany. He works as a research
assistant at the Institute for Infor-
mation Sciences at the Technis-
che Hochschule Mittelhessen in
Gießen, Germany. His research inter-
ests are model-driven engineering
and information extraction, which
he focuses on in his PhD thesis
titled “Mining of DSLs and Gen-
erator Templates from Reference
Applications”.

123

https://figshare.com/articles/journal_contribution/Model-Driven_Development_in_the_Content_Management_System_Domain_Empirical_Assessment_during_Common_Development_Scenarios/12661538
https://figshare.com/articles/journal_contribution/Model-Driven_Development_in_the_Content_Management_System_Domain_Empirical_Assessment_during_Common_Development_Scenarios/12661538
https://figshare.com/articles/journal_contribution/Model-Driven_Development_in_the_Content_Management_System_Domain_Empirical_Assessment_during_Common_Development_Scenarios/12661538
https://figshare.com/articles/journal_contribution/Model-Driven_Development_in_the_Content_Management_System_Domain_Empirical_Assessment_during_Common_Development_Scenarios/12661538
https://www.componentarchitect.com
https://www.componentarchitect.com
https://extstore.com/tools/module-creator
https://extstore.com/tools/module-creator
https://www.componentgenerator.com/
https://www.componentgenerator.com/
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://www.joomlacomponentbuilder.com/
https://w3techs.com/technologies/overview/content_management
https://w3techs.com/technologies/overview/content_management
https://xdsoft.net/joomla-module-generator/
https://xdsoft.net/joomla-module-generator/

Applying MDD in the content management system domain 1943

Daniel Strüber is an assistant
professor in the software science
group at Radboud University in
Nijmegen, the Netherlands. His
research interests are in model-
driven engineering, AI engineer-
ing, variant-rich systems, search-
based software engineering and
software security. He was awarded
his doctoral degree from Philipps
University Marburg, Germany, in
2015 and worked as a post-doctoral
researcher at University of Koblenz
and Landau, Germany, and Gothen-
burg University, Sweden. He is a

coauthor of over 70 papers with six Best Paper Awards. He has been
an Organizing Committee member of MISE’19, MODELS’18 and
STAF’17, and a Program Committee member of several leading con-
ferences, including FASE, MODELS and SPLC. He is the lead devel-
oper of Henshin, a model transformation language used by groups in
Germany, Canada, UK, Norway and Luxembourg.

Gabriele Taentzer is professor
for Software Engineering at the
Philipps-Universität Marburg, Ger-
many. Her current interests in
research and teaching are con-
cerned with model-driven software
development, especially domain-
specific languages and model trans-
formations, and software quality
assurance. She considers open prob-
lems in software development from
both the theoretical and practical
viewpoints. She draws a bow from
the formal foundation of concepts
and methods based on graph trans-

formation to the implementation of supporting tools as Eclipse plug-
ins and their applications.

Peter Kneisel is a professor at
the Technische Hochschule Mit-
telhessen, associate dean of the
department Mathematics, Natural
and Computer Science and head
of the Institute of Information Sci-
ences. His main research inter-
ests, which he represents mainly
in teaching, are in the areas of
web-based systems and interdis-
ciplinary studies, mainly in digi-
tal humanities, where he founded
and is leading the study program
“Social Media Systems”, combin-
ing management, communication

sciences and IT. He is coauthor of several papers in the area of model-
driven development and its application to web-based systems.

123

	Applying MDD in the content management system domain
	Scenarios, tooling, and a mixed-method empirical assessment
	Abstract
	1 Introduction
	2 Development scenarios
	3 Semi-structured expert interviews
	3.1 Set-up
	3.2 Scenario evaluation
	3.3 Interpretation

	4 JooMDD: A model-driven infrastructure for developing Joomla extensions
	4.1 Overview
	4.2 Core tool set
	4.3 Extensions for scenarios 2 and 3

	5 Controlled experiment
	5.1 Set-up
	5.2 Results
	5.3 Interpretation

	6 Field experiment
	6.1 Set-up
	6.2 Observations
	6.3 Developer feedback

	7 Case studies
	7.1 Precourse management for students
	7.2 Joomla extension extractor
	7.3 Use of JooMDD in teaching

	8 Lessons learned
	9 Threats to validity
	10 Related work
	10.1 MDD in the CMS domain
	10.2 Empirical studies on MDD in practice

	11 Conclusion and future work
	References

