
Software and Systems Modeling (2021) 20:291–292
https://doi.org/10.1007/s10270-021-00874-1

GUEST EDITORIAL

Software engineering and formal methods: SEFM 2019 special section

Peter Csaba Ölveczky1 · Gwen Salaün2

Received: 6 February 2021 / Accepted: 8 February 2021 / Published online: 12 March 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

This special section of Software and Systems Modeling con-
tains extended versions of selected papers from the 17th
International Conference on Software Engineering and For-
mal Methods (SEFM), which was held in Oslo, Norway,
in September 2019. SEFM 2019 was the seventeenth edi-
tion of an annual series of conferences that aims at bringing
together leading researchers and practitioners from academia
and industry to advance the state of the art in formal meth-
ods, to facilitate their uptake in the software industry, and
to encourage their integration within practical software engi-
neering methods and tools.

SEFM 2019 received 89 paper submissions, from which
the program committee accepted 27 papers for inclusion in
the proceedings of SEFM 2019 that was published as vol-
ume 11724 in Springer’s Lecture Notes in Computer Science
series. The conference also featured invited talks by Wil van
der Aalst, David Basin, and Koushik Sen. Out of those 27
accepted papers, we invited the authors of eight papers to
submit to this special section. After an extensive and rigor-
ous reviewing process, in which each paper was reviewed by
at least three expert reviewers, we decided to include six of
them in this special section.

With the increasing use of machine learning methods in
critical applications, such as self-driving cars, there is a need
to reason formally about machine learning. The paper “An
epistemic approach to the formal specification of statistical
machine learning” by Yusuke Kawamoto presents a logical
formalization of statistical properties of machine learning.
The author proposes a formalization of supervised learning
models and test datasets using a distributional Kripke model.
An extension of statistical epistemic logic is then intro-
duced as a formal language to describe various properties
of machine learning models. This formalization also shows

B Peter Csaba Ölveczky
peterol@ifi.uio.no

Gwen Salaün
gwen.salaun@univ-grenoble-alpes.fr

1 Department of Informatics, University of Oslo, Oslo, Norway

2 University Grenoble Alpes, Grenoble, France

some relationships among properties of classifiers, such as
different levels of robustness, and relationships between clas-
sification performance and robustness.

Session types are a syntax-based approach and behav-
ioral contracts are an operational approach for describing the
communication behavior of processes. The correspondence
between these two approaches has previously been studied
for synchronous communication. In their paper “Asyn-
chronous session subtyping as communicating automata
refinement,” Mario Bravetti and Gianluigi Zavattaro study
the relationship between session types and behavioral con-
tracts, formalized as communicating finite state machines
(CFSMs), when processes communicate asynchronously.
This paper provides a new theory of asynchronous behavioral
contracts that coincide with CFSMs and includes the notions
of contract compliance and contract refinement. Bravetti and
Zavattaro show under what conditions refinement coincides
with asynchronous session subtyping, and also provide an
operational interpretation of session types and asynchronous
subtyping thanks to a mapping to behavioral contracts and
refinement.

Runtimeverification is a lightweight formalmethodwhich
aims to check whether the current system execution satisfies
a property that is being monitored. Monitorability deals with
classifying which properties can be monitored by observ-
ing finite (prefixes) of an execution. There are a number
of different notions and definitions of monitorability, which
differ in their specification formalisms, operational models,
and semantic domains. In their paper “An operational guide
to monitorability with applications to regular properties,”
Adrian Francalanza, Luca Aceto, Antonis Achilleos, Anna
Ingolfsdottir, andKaroliinaLehtinen therefore propose a uni-
fied, operational view on existing notions of monitorability.
In particular, they study different notions of monitorability,
define them in an uniform operational view, and characterize
these monitorability notions with their corresponding mon-
itorable syntactic fragments of recursive Hennessy-Milner
logic.

Verifying, say, C and C++ programs which interact heav-
ilywith their execution environments (e.g., operating system)

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00874-1&domain=pdf


292 P. C. Ölveczky, G. Salaün

is hard, also because results may not be reproducible due to
the side effects of running the program in the first place.
The paper “Reproducible execution of POSIX programs
with DiOS” by Petr Rockai, Zuzana Baranová, Jan Mrázek,
Katarína Kejstová, and Jiri Barnat therefore presents DiOS,
a POSIX-compatible operating system designed to offer
reproducible execution, with special focus on applications
in program verification. DiOS is modular, extensible, and
implemented mostly in portable C and C++, although its
primary platform is DiVM, a verification-oriented virtual
machine. DiOS was evaluated in different ways, as a com-
ponent of a program verification platform based on DiVM,
by combining it with the symbolic executor KLEE, and as a
standalone user-mode kernel.

In model-based testing, a model describing the intended
behavior of the system is used to guide the testing, to sys-
tematically explore and test the system’s states. When the
model is nondeterministic, it may be impossible to know
which states in the model have been visited by a series of
tests. Calculating the probability of covering a given cover-
age goal (where each nondeterministic choice in the model
is annotated with probabilities) is the topic of the paper
“Test model coverage analysis under uncertainty” byWishnu
Prasetya and RickKlomp, which introduces a notion of prob-
abilistic coverage to express the coverage of a test suite in
this setting. This paper also presents an algorithm to effi-
ciently calculate the probabilistic coverage of both aggregate
and non-aggregate coverage goals. Experiments show that in
most cases the algorithm is very efficient compared to the
brute force approach.

Model-based testing is also the topic of the final paper in
this special section. A mutant is a small modification of the
description of the system under test, and the aim of mutation-
based test generation is to construct tests that reveal these
modifications. The goal of the paper “Mutation testing with
hyperproperties” by Andreas Fellner, Georg Weissenbacher,
and Mitra Tabaei Befrouei is to automatically generate high
quality test suites, for which they present a method by solv-
ing mutation-based test generation via hyperproperty model
checking, where hyperproperties allow us to express proper-
ties over multiple executions. The authors formalize several
notions of mutation killing for both deterministic and nonde-
terministic models. In addition to reusing an existing model
checking tool to generate test cases for hyperproperties, the
authors also propose an alternative approach to obtain such
test cases for nondeterministic models.

Acknowledgements We would like to express our most sincere thanks
to all the people who have made this special section possible: to the
authors for writing the papers and incorporating all the corrections and
improvements required by a thorough reviewing process; to the review-
ers for kindly contributing their time and effort to ensure the highest
quality of each paper; and to Martin Schindler for agreeing to publish
this special section in Software and Systems Modeling and for his very
valuable and friendly assistance in bringing it to publication.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Peter Csaba Ölveczky is a pro-
fessor in computer science at the
University of Oslo. He obtained
his Dr. Scient. degree at the Uni-
versity of Bergen in 2000. He was
an International Fellow at SRI Inter-
national between 1996 and 2000
and a visiting researcher at the
University of Illinois, Urbana-
Champaign, between 2002 and
2018. He became associate pro-
fessor at the University of Oslo
in 2004 and a full professor there
in 2008. Ölveczky’s research
focuses on the use of formal meth-

ods, in particular based on rewriting logic, for the formal modeling and
analysis of real-time systems, and he is the developer of the Real-Time
Maude language and analysis tool. Ölveczky has also chaired 13 inter-
national academic conferences and workshops.

Gwen Salaün received a PhD
degree in Computer Science from
the University of Nantes in 2003.
He was associate professor at
Grenoble INP from 2009 to 2016.
He is currently full professor at
the Université Grenoble Alpes. He
is interested in formal methods,
automated verification, distributed
systems and software engineering.

123


	Software engineering and formal methods: SEFM 2019 special section
	Acknowledgements




