
Software and Systems Modeling (2021) 20:1713–1734
https://doi.org/10.1007/s10270-021-00884-z

REGULAR PAPER

Automated generation of consistent, diverse and structurally realistic
graphmodels

Oszkár Semeráth1 · Aren A. Babikian2 · Boqi Chen2 · Chuning Li2 · Kristóf Marussy1 · Gábor Szárnyas1 ·
Dániel Varró1,2

Received: 26 January 2020 / Revised: 16 November 2020 / Accepted: 22 February 2021 / Published online: 29 May 2021
© The Author(s) 2021

Abstract
In this paper, we present a novel technique to automatically synthesize consistent, diverse and structurally realistic domain-
specific graph models. A graph model is (1) consistent if it is metamodel-compliant and it satisfies the well-formedness
constraints of the domain; (2) it is diverse if local neighborhoods of nodes are highly different; and (1) it is structurally
realistic if a synthetic graph is at a close distance to a representative real model according to various graph metrics used
in network science, databases or software engineering. Our approach grows models by model extension operators using a
hill-climbing strategy in a way that (A) ensures that there are no constraint violation in the models (for consistency reasons),
while (B) more realistic candidates are selected to minimize a target metric value (wrt. the representative real model). We
evaluate the effectiveness of the approach for generating realistic models using multiple metrics for guidance heuristics and
compared to other model generators in the context of three case studies with a large set of real human models. We also
highlight that our technique is able to generate a diverse set of models, which is a requirement in many testing scenarios.

Keywords Model generation · Domain-specific languages · Test generation · Graph metrics

Communicated by Andy Schürr.

B Oszkár Semeráth
semerath@mit.bme.hu

Aren A. Babikian
aren.babikian@mail.mcgill.ca

Boqi Chen
boqi.chen@mail.mcgill.ca

Chuning Li
chuning.li@mail.mcgill.ca

Kristóf Marussy
marussy@mit.bme.hu

Gábor Szárnyas
szarnyas@mit.bme.hu

Dániel Varró
varro@mit.bme.hu

1 MTA-BME Lendület Cyber-Physical Systems Res. Grp.
Department of Measurement and Information Systems,
Budapest University of Technology and Economics, Magyar
tudósok krt. 2, Budapest 1117, Hungary

2 Department of Electrical and Computer Engineering, McGill
University, 3480 Rue University, Montréal H3A 0E9, QC,
Canada

1 Introduction

1.1 Motivation

Automated graph model generation has recently become
a key research component in many areas of software and
systems engineering. As object-oriented programs are fre-
quently represented as graphs (with objects as nodes and
pointers as edges), automatically generated models may
serve as complex test stubs [38,48]. In the assurance of smart
cyber-physical systems (CPS), prototypical test contexts are
synthesized in the form of graph models [1,30,47]. Auto-
generated graphs can also help the testing of graph databases
[10].

In testing scenarios, synthetic graph models frequently
need to be consistent to satisfy the complex constraints of the
target domain (captured by OCL constraints [55] or graph
patterns [81,82]). Consistent model generators like Alloy
[32,80], Formula [33,36], SDG [75,76] and Viatra Solver
[65,67] are able to automatically derive well-formed mod-
els for a given domain specification. These generators either
use an underlying logic solver (like SAT solvers [19,42] or

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00884-z&domain=pdf

1714 O. Semeráth et al.

SMT solvers [51]), or use logic reasoning or search-based
techniques directly on the level of graphs [69,75,76].

The diversity of a synthetic graph model is also of high
importance in testing. Unfortunately, real models created by
domain experts fail to provide sufficient diversity for test-
ing purposes [70]. Furthermore, only very recent consistent
model generation approaches [68] managed to successfully
demonstrate the diversity of automatically derived set of
models. In fact, past research [35] has shown that diversity
is very problematic for logic solver-based approaches.

1.2 Problem statement

Realistic syntheticmodels havebeenused in testing software-
intensive cyber-physical systems in [1,3,18,30,75,76] as well
as testing software tools (e.g., design or analysis tools) used
for engineering safety-critical systems [14,22,33,37,56,74,
90]. For example, realistic test models used for autonomous
cars represent test environments [1,30] where unrealistic
test cases (e.g., obscure traffic situations) are considered
false positives. Failures caused by realistic models are more
severe, as they have more chance to happen on real work-
load. Moreover, it is easier for a test engineer to evaluate the
outcome of test on a realistic model. Furthermore, real engi-
neering models may not be available for testing purposes due
to the protection of intellectual property rights.

The key challenge addressed in the paper is to auto-
matically synthesize domain-specific graph models that are
simultaneously consistent, diverse and realistic.

However, there is no guarantee that consistent or diverse
synthetic models are also realistic at the same time. In
fact, as measured in [3,35,70], solver-based test generators
tend to generate simple, highly symmetric models (e.g. iso-
lated nodes with the same type). Advanced search-based
approaches [75,76] can incorporate the realistic distribution
of node types, but the distribution of node types or attribute
values is still only one factor of the realistic nature for a graph
model.

1.3 Characterization of structurally realistic graph
models

Realistic models are domain-specific, i.e., graphs of biomed-
ical systems can be very different from graphs of social
networks or software models. An engineer can easily dis-
tinguish an auto-generated model from a manually designed
model by inspecting key attributes (e.g. names), but the same
task becomes more challenging if one can only inspect the
(typed) graph structure but none of the attributes. In fact, the
problem of providing realistic attribute values in a model is
orthogonal to ensuring that a model is structurally realistic.

The characterization of structurally realistic graphs has
been studied in different domains (including network sci-

ence, databases, or software engineering [11,12,31,54]), and
it is frequently based on the use of various graph metrics,
many of which were systematically collected in [78]. Infor-
mally, a graph model is considered to be structurally realistic
if the values of various graph metrics are at close distance
to the values of the same metrics for a representative real
(human) model in a given domain.

1.4 Contributions

In this paper, we propose a novel technique to generate
consistent, diverse and structurally realistic domain-specific
graph models. In particular:

• We measure various structural graph metrics used in
[75,76,78] for a large set of real graph models in three
domains of industrial relevance.

• We use statistical distance metrics to domain-
independently measure the similarity between the values
of graph metrics for a pair of models.

• Weprecisely characterize anddifferentiate the consistent,
diverse and realistic nature of graph models.

• We propose a consistent, diverse and realistic graph gen-
erator by extending an open-source graph solver to guide
the generation toward more realistic models along vari-
ous graph metrics.

• We conduct experimental evaluation in three domains
with real data to evaluate various guidance strategies.

• We also compare the realistic nature and the diversity of
graphs derived by using our approach with other model
generators.

1.5 Added value

In each application domain, the realistic nature ofmodels can
possibly be characterized by different graph metrics, or the
judgment of domain experts. To make our approach domain-
customizable, we only assume that (relevant statistics of) a
representative real model is provided to the generator (e.g.,
elected by domain experts or obtained by some combination
of statistical and clustering techniques). Then, the realistic
nature of synthetic models is evaluated by measuring statis-
tical distance from this representativemodel by using generic
or domain-specific graph metrics.

Our paper is the first approach to generate complex (con-
nected) graphs that are simultaneously consistent (i.e., satisfy
first-order logic constraints), diverse (wrt. various diversity
metrics) and structurally realistic (i.e., similar to representa-
tive real models wrt. some target graph metrics).

In order to achieve this, our approachbuilds on and extends
[67,84] (where a consistent graph solver was presented) and
[68] (where the diversity of the generatedmodels were evalu-
ated in various testing scenarios). Thanks to themathematical

123

Automated generation of consistent, diverse and structurally... 1715

Fig. 1 Yakindu Statechart metamodel

proofs of consistency and diversity in those papers (which are
not repeated here), we can still enforce that the derived mod-
els are consistent and structurally diverse, while the current
paper also ensures reasonably high statistical resemblance to
real models. In fact, our experimental evaluation investigates
to what extent the derivedmodels are consistent, realistic and
diverse.

2 Preliminaries

First, we provide an overview of some core concepts, such
as metamodels and (graph) models, graph predicates, graph
shapes and various distance metrics.

2.1 Models andmetamodels

In domain-specific modeling tools, like Capella, Artop,
Yakindu, or Papyrus, a domain specification (DS) typically
contains a metamodel and a set of well-formedness (WF)
constraints. Ametamodel defines themain concepts and rela-
tions in a domain and specifies the underlying graph structure
of the models. This paper uses Eclipse Modeling Framework
(EMF) [79] for metamodeling, which is widely used in the
industrial modeling tools above. In EMF, concepts of the
metamodels are defined with a set of EClasses (or simply
classes, denoted with CMM = {C1, . . . ,Cn}) and ERefer-
ences (references, denoted with RMM = {R1, . . . ,Rm}).

Example 1 Core domain modeling concepts will be illus-
trated in the context of Yakindu Statecharts [88], which is
an industrial DSL for developing reactive, event-driven sys-
tems. A simplified metamodel for Yakindu state machines is
illustrated in Fig. 1. A Statechart consists of Regions,
which in turn contain states (called Vertexes) and
Transitions. The abstract stateVertex is further refined
into RegularStates (like State or FinalState) and
PseudoStates (like Entry, Exit or Choice).

Fig. 2 Sample instance models

An instance model can be represented as a logic structure
M = 〈OM , IM 〉of ametamodelMM = {C1, . . . ,Cn,R1, . . . ,Rm},
where OM is the finite set of individuals in the model (i.e.,
the objects) and IM : MM → (O∗

M → {1,0}) provides an
interpretation for all Ci classes and R j references. In the con-
text of a model M , we use Ci (o) to denote the truth value of
whether an object o is an instance of a classCi , andR j (o1, o2)
to denote the truth value of whether there is a reference R j

from o1 to o2 (o, o1, o2 ∈ OM). Let MMM denote the set of
all (instance) models of a metamodel MM.

Example 2 Figure 2 illustrates two example (partial)
statecharts M1 and M2. First, M1 contains a simple model
with a single State s1 in a Region r with a loop
Transition t1wheretarget(t1, s1) andsource(t1, s1).
For the sake of clarity, references incoming- and
outgoingTransitions are omitted from Fig. 2. Model
M2 extends M1 with an additional State, Entry, and two
Transitions.

123

1716 O. Semeráth et al.

Fig. 3 Inductive semantics of graph predicates

2.2 Graph predicates

Graph predicates are widely used to query different proper-
ties of a model [83]. In many industrial modeling tools, WF
constraints are captured either by OCL constraints [55] or
graph patterns (GP) [81] where the latter captures errors as
structural conditions over an instance model as paths in a
graph. To have a unified and precise handling of evaluating
WF constraints, we use a tool-independent logic representa-
tion (which was influenced by [61,66,69]) that covers the key
features of concrete graph pattern languages and a first-order
fragment of OCL. In our current implementation, we used
the graph pattern language of Viatra [81,82], where error
patterns describe malformedness of the model, and derived
logic predicates in accordance with [66].

2.2.1 Syntax

A first-order logic (FOL) graph predicate ϕ(v1, . . . , vn)

over (object) variables v1, . . . , vn (called formal parameters,
abbreviated as v̄) can be inductively constructed by using
class and relation predicates C(v) and R(v1, v2) (as literals),
equality check =, standard FOL connectives ¬, ∨, ∧, and
quantifiers ∃ and ∀.

2.2.2 Semantics

A graph predicate ϕ(v1, . . . , vn) with formal parameters
v1, . . . , vn can be evaluated on model M along a variable
binding Z : {v1, . . . , vn} → OM from variables to objects
in M . The truth value of ϕ can be evaluated over model
M along the mapping Z (denoted by [[ϕ(v1, . . . , vn)]]MZ) in
accordance with the semantic rules defined in Fig. 3.

A variable binding Z where the predicate ϕ is evaluated
to 1 over M (i.e., [[ϕ]]MZ = 1) is called a match. Other-
wise, if there are no bindings Z to satisfy a predicate, i.e.,
[[ϕ]]MZ = 0 for all Z , then the predicate ϕ is evaluated to
0 over M . Graph query engines like [81] can retrieve (one
or all) matches of a graph predicate over a model. In our
current work, such graph predicates will be used uniformly
when capturing consistency constraints as well as diversity
and realistic metrics.

2.3 Graph shapes for diversity

Graph shaping [60,61] is an abstraction technique that
extracts structural properties of graphs. As such, shaping
techniques can be used to measure structural similarity
between graphs [65,68,70]: if two graphs have the same
shape, then they are considered structurally similar; other-
wise, they are considered different.

In this paper, we use neighborhood shapes [60] to charac-
terize local structural properties of objects for a range of size
r . More precisely, the neighborhood of an object describes
all unary (class) and binary (reference) relations of objects
within the given range r . Neighborhood shapes can also be
interpreted as refined types where the original classes are
split into multiple subclasses based on the difference in the
incoming and outgoing references.

In neighborhood shapes, each node is characterized with
a predicate Sr (v) (for a range r), which has three compo-
nents: (i) the shape of v for one less range Sr−1(v), (ii)
the neighborhoods of objects o1, . . . , on via outgoing ref-
erences Ro1 , . . . ,Ron , and (iii) the neighborhoods of objects
i1, . . . , im via incoming references Ri1 , . . . ,Rim .

Formally, a neighborhood shape for range r is defined as
a node predicate Nr (v) in the following format:

Sr (v) =Sr−1(v)∧[
∃o1, . . . , on : ∧

0≤k≤n Rok (v, ok) ∧ Sr−1
ok (ok)

]

∧
[
∃i1, . . . , im : ∧

0≤l≤m Ril (ol , v) ∧ Sr−1
il

(il)
]

Semantically, neighborhood predicates entail (imply) a
wide range of literals (elementary predicates):

Sr (v) |� P+
1 (v), P+

2 (v), . . . , P+
p (v),

and the negation of some other literals:

Sr (v) |� ¬P−
1 (v),¬P−

2 (v), . . . ,¬P−
n (v).

Therefore, we can estimate the number of predicates that can
differentiate two models by using neighborhood predicates.
In this paper, we will use neighborhood shapes to evaluate
the diversity ofmodels, which is shown to be a good diversity
metric in mutation testing scenarios [68,70].

2.4 Metric distances over distributions

A generic graph metric takes a graph model and calculates
a value (either a single numeric value or a complex distribu-
tion).

Definition 1 A graph metricwith range of set V is a function
m : MMM → V .

123

Automated generation of consistent, diverse and structurally... 1717

Themost simple form ofmetric is a scalarmetric function,
which maps graphs to real numbers:

Definition 2 A scalar metric is a model function ms :
MMM → R.

Next, a categorical distribution maps each node in the
graph a value from a given category for each object.

Definition 3 A categorical distribution metric of a function
f : OM → C over the objects of a model M with categories
C = {c1, ..., cn} is a graph metric:

pmf Mf (ci) =
∣∣∣{o | o ∈ OM , f (o) = ci }

∣∣∣/
∣∣∣OM

∣∣∣

And finally, a cumulative distribution maps a numerical
value to each node.

Definition 4 A cumulative distribution function of an object
function f : OM → R over the objects of a model M is a
graph metric:

cdf Mf (x) =
∣∣∣{o |o ∈ OM , f (o) ≤ x}

∣∣∣/
∣∣∣OM

∣∣∣

In this paper, a graph model is considered to be more
realistic if it is closer to real graph models with respect to
some distance function, which measures how significant the
difference is between two graphs [5]. Note that we require the
use of pseudo-distance functions; otherwise, a model at zero
distance would reveal the original graph model. Moreover,
we further require that the distance function should also be
continuous.

Definition 5 (Metric distance) A metric distance between
two distributions over a domain V is a function d : V ×V →
R that satisfies the following properties:

1. d(v1, v2) ≥ 0,
2. d(v, v) = 0,
3. d(v1, v2) = 0 ⇒ v1 = v2,
4. d(v1, v2) = d(v2, v1), and
5. d(v1, v2) + d(v2, v3) ≥ d(v1, v3).

Without 3. d is a pseudo-distance.

As a mathematical consequence, a distance d over
a graph metric m with values in range V also serves
as a pseudo-distance for models, and it is calculated as
d(m(M1),m(M2)). In the paper, we use (a) theKolmogorov–
Smirnov (KS) distance (as proposed in [78]) between contin-
uousmetrics defined as cumulative distribution functions, (b)
theManhattan distance for categorical distributions, and (c)
absolute deviation for scalar metrics.

Fig. 4 Sample cumulative distributions of out-degree

Definition 6 The Kolmogorov–Smirnov (KS) distance mea-
sures the maximal difference between two cumulative dis-
tributions. Formally, the KS distance between two functions
f : R → R and g : R → R is

KS(f , g) = maxx∈R| f (x) − g(x)|.

Wecompare cumulative distributions cdf Mf (x) and cdf Nf (x)
of a graph property f betweenmodelsM and N . Those func-
tions are monotonically increasing step functions, and they
can change value only between 0 and 1, and only between
steps of 1/|OM | and 1/|ON |. Therefore, the KS distance
can be calculated by comparing the values of cdf Mf (x) and

cdf Nf (x) at every step.

Example 3 The left part of Fig. 4 compares the models M1

and M2 to a representative human model using their KS dis-
tances. Since K S(OD(Hum), OD(M1)) = 0.2904 while
K S(OD(Hum), OD(M2)) = 0.2211, we will consider M2

to be structurally more realistic (wrt. the human model) than
M1.

The right side of Fig. 4 illustrates the cumulative distri-
butions of the out-degree metric of three models: Hum is a
human statechart of an engineer, while M1 and M2 are the
models from Fig. 2. The horizontal axis lists the out-degree
of nodes (from 0 to 14), and the vertical axis shows the pro-
portion of nodes that have less or equal out degree (measured
from 0 to 1). To compareM1 andM2, one can say that the dis-
tribution ofM2 follows the distribution of Hummore closely
than M1, so it is considered to be more realistic. Note that
the (single) median of out-degree is 2 for Hum, M1 and M2;
thus, it cannot distinguish those models.

Definition 7 Manhattan distance (MD) between two cate-
gorical distributions is measured as the sum of differences
between the proportions for each category. Formally, for cat-
egories C = {c1, ..., cn}, categorical distributions pmf Mf and

pmf Nf of a graph property f the Manhattan distance between

models M and N is MD(M, N , f) = ∑
c∈C |pmf Mf (c) −

pmf Nf (c)|.
Definition 8 Absolute deviation (AD) of a scalar metric ms :
MMM → R between two models M and N is calculated as

123

1718 O. Semeráth et al.

the difference between the metric values: AD(M, N ,ms) =
|ms(M) − ms(N)|.

3 Model metrics by graph predicates

We assume that various metrics for structural properties (i.e.,
consistency, diversity, realistic nature) of graph models can
be expressed by using graph predicates. Table 1 collects some
graph metrics found to be relevant in [75,76,78] that we use
in the paper. In general, we make the following assumptions
about graph metrics:

– Structural-only: Metrics should only use structural
properties of graph elements, but not their actual val-
ues, e.g., the equality of attributes can be checked, but
the actual values should be hidden.

– Confidentiality: Metrics should not reveal any confi-
dential information stored in actual graph models. This
implies that model generation cannot use values stored in
a real model, only some statistics computed from a real
model, so no one should be able to reconstruct the real
model from the metrics.

– Domain-agnostic: As a specific graph metric is not
equally relevant in different domains [78], we only
assume that graph metrics can be computed in a domain-
independent waywhen evaluating the realistic nature of a
graphmodel. However, the actual distribution of the met-
ric value may differ very much from domain to domain.

– Continuous: Metrics should be continuous in the sense
that changing a single graph element should result in a
small change in the metric’s value as the size of a model
grows. Thus, one can use the continuity assumption to
guide the search. Most graph metrics in [62] are continu-
ous by default, i.e., adding a new node or edge to a large
graph only does not have a major impact on the value of
the metric.

3.1 Consistencymetrics as graph predicates

A domain specification contains well-formedness (WF) con-
straints to restrict the range of consistent models. Without
loss of generality, we assume that WF constraints are for-
malized as error predicates. Let ϕ(v̄) be a first-order logic
(error) predicate with formal parameters v̄. When ϕ(v̄) has a
match in model M , i.e., [[ϕ(v̄)]]Mv̄ �→ō = 1 along some objects
ō, then it represents a violation of theWF constraint. The goal
of consistent graph generation is to generate models where
all error predicates evaluate to0 (i.e., there are no violations).

However, consistency can also be handled as a soft con-
straint when model generation aims to minimize the number
of violating matches, as discussed in [41]. To evaluate the
level of consistency in real models, we define two consis-

tency metrics (see Table 1). Under closed world assumption,
we count the total number of violations (VIO) and the num-
ber of repairable violations (MVIO), which is currently a
violation but it can potentially be repaired by extending the
graph with new elements. Both VIO and MVIO are scalar
metrics, and distances between two models wrt. these met-
rics are measured as absolute deviation (AD).

Example 4 A WF constraint for statecharts prescribes that
each region needs to have an entry state:

noEntry(r) := ¬∃e : vertices(r , e) ∧ Entry(e)

This error predicate has amatch inM1 (in Fig. 2) for Region
r , so M1 is inconsistent. But in the extended model M2, the
match of the constraint disappears after adding the missing
Entry e. This illustrates the concept of a repairable viola-
tion.

3.2 Characterization of realistic models

To objectively measure and compare the realistic nature of
graph models, we use a generalized formalization of various
graph metrics proposed in [75,76,78] in the form of (cumu-
lative or regular) distribution functions. As noted in [84], the
cumulative distribution function of an object property con-
tains more representative information than simply the mean
or the average. Moreover, [45,57,62,90] also use cumulative
distributions for comparing various graph properties.

Table 1 contains various graph metrics to capture the real-
istic nature of models, such as out-degree, node activity,
dimensional degree, multiplex participation coefficient (all
widely used in network science). The realistic nature of mod-
els was measured by various node type distributions (NTD)
in [76] (see also in Table 1), which is a specific kind of cate-
gorical distribution metric that counts the number of objects
for each type (f (o)).

Given a set of human real models {M1, . . . , Mk} and a set
of synthetic models {S1, . . . Sl} derived by a model generator
Gen, we aim at characterizing the realistic nature of a single
synthetic model or a set of synthetic models. Informally, one
syntheticmodel is considered to be realisticwrt. a givengraph
metric m, if one cannot distinguish it from a real human
model by evaluating that metric. In other terms, a realistic
model is as close to some human model as another human
model.

We calculate the minimum distance dmin(Mi) =
min1≤ j≤k,i �= j d(Mi , Mj) between each human model Mi

and its nearest neighbor M j from the set of real models
(so called 1-nearest neighbor [28]). Note that distance cal-
culation can be different for each metrics of interest, e.g.,
MD is used for node type distribution, KS is used for all
cumulative metrics. As human models may have outliers, we

123

Automated generation of consistent, diverse and structurally... 1719

Table 1 Selected distributions used as graph metrics

Cumulative Out-degreeOD# outgoing edges from an object o [20] OD(o) = |{o′ | ∃R : R(o, o′)}|
Node activityNA# of reference types in which node o has at
least one edge

NA (o) = |{R | ∃o′ : R(o, o′) ∨ R(o′, o)}|

Dimensional degree (DD): # of neighbors through a set of
references R

DD (o, R) = |{〈o′,R〉 | R ∈ R, R(o, o′) ∨ R(o′, o)}|

Multiplex participation coefficientMPCmeasures whether the
connections of o are uniformly distributed among all
R = {R1, . . . ,Rm} references.

MPC (o) = |R|
|R|−1

[
1 − ∑

Ri∈R

(
DD(o,{Ri })
DD(o,R)

)2]

Categorical Node type distributionNTDthe type combination of an object NTD (o) = {C | C(o)}

Node neighborhood shapeSrPredicate characterizing the
neighborhood of an object v for all unary (class) and binary
(reference) relations of within the given range r

Sr (v) = Sr−1(v)∧[
∃o1, . . . , on : ∧

0≤k≤n Rok (v, ok) ∧ Sr−1
ok (ok)

]

∧
[
∃i1, . . . , im : ∧

0≤l≤m Ril (ol , v) ∧ Sr−1
il

(il)
]

Scalar ViolationsVIO# of violations of an error predicate ϕ(v̄) in the
model M .

V I O(M) = |{ō | [[ϕ(v̄)]]Mv̄ �→ō = 1}|

May-violationsMVIO# of violations of an error predicate
ϕ(v1, . . . , vn) in the model M that can be potentially repaired
in an extension N

MVIO (M) = |{ō | [[ϕ(v̄)]]Mv̄ �→ō = 1, [[ϕ(v̄)]]Nv̄ �→ō =
0, M ⊂ N }|

consider only the first t percentile of such distances (i.e., we
exclude 1 − t percentage of human models), and define a
threshold of realisticness T as the largest distance within the
first t-percentile.

Definition 9 A synthetic model Si is defined as realistic if
it is closer to the human models than threshold T , i.e., if
dmin(Si) = min1≤ j≤k(d(Si , Mj)) < T .

To characterize the quality of an auto-generated set of
models, we calculate the percentage of realistic synthetic
models. Furthermore, we calculate the average minimal dis-
tance of a synthetic models from its closest human model,
i.e., davg = mean1≤i≤l(dmin(Si)).

3.3 Characterization of diversemodels

Model diversity has been studied extensively in [68]. Here,
we revisit twometrics defined formodel diversity based upon
neighborhood shapes. Internal diversity captures the diver-
sity of a single model, i.e., it can be evaluated individually
for each generatedmodel. As neighborhood shapes introduce
extra subtypes for objects, this model diversity metric mea-
sures the number of neighborhood types used in the model
withwrt. the size of themodel.External diversity captures the
distance between pairs of models. Informally, this diversity
distance between two models is proportional to the number
of different neighborhoods covered in one model but not the
other.

Definition 10 For a range i of neighborhood shapes for
model M , internal diversity of M is the number of different
shapes wrt. the size of the model: dinti (M) = |Si (M)|/|M |.

The range of this internal diversity metric dinti (M) is
[0..1], and a model M with dint1 (M) = 1 (and |M | ≥ |MM |)
guarantees full metamodel coverage [85], i.e., it surely con-
tains all elements from a metamodel as types. As such, it
is an appropriate diversity metric for a model in the sense
of [84]. Furthermore, given a specific range i , the number
of potential neighborhood shapes within that range is finite,
but it grows superexponentially. Therefore, for a small range
i , one can derive a model Mj with dinti (Mj) = 1, but for
larger models Mk (with |Mk | > |Mj |) we will likely have
dinti (Mj) ≥ dinti (Mk). However, due to the rapid growth of
the number of shapes for increasing range i , for most prac-
tical cases, dinti (Mj) will converge to 1 if Mj is sufficiently
diverse.

Definition 11 Given a range i of neighborhood shapes, the
external diversity of models Mj and Mk is the sum of dif-
ferences between the number of shapes contained in Mj

or Mk but not in the other, formally, dexti (Mj , Mk) =
|MD(Si (Mj), Si (Mk))| where MD denotes the Manhattan
distance of the categorical distribution of shapes.

External model diversity metrics allows to compare two
models. One can show that this metric is a (pseudo)-distance
in themathematical sense, and thus, it can serve as a diversity
metric for a model generator in accordance with [84].

3.4 Relation between consistency, realistic nature
and diversity

In our approach, graph predicates are uniformly used to cap-
ture the consistent, realistic and diverse nature of models.

123

1720 O. Semeráth et al.

Next, we summarize these concepts and highlight the funda-
mental differences between them.

• Consistency metrics (like VIO and MVIO) measure the
matches of a predefined set of selected predicates (i.e.,
the WF constraints) PWF

1 , . . . , PWF
w on the models. In a

consistent model, the number of such matches is strictly
zero.

• For a set of graph predicates P1, . . . , Pr , realistic met-
rics are some functions of the number of matches of the
predicates. In general, a model is considered realistic, if
the number of matches is statistically close to the number
of matches in a real model.

• For a set of graph predicates P1, . . . , Pd , diversity met-
rics are derived by counting the number of predicates
with non-zero matches. In general, a model is consid-
ered diverse if many different predicates have at least
one match.

Using this interpretation, consistency can be also consid-
ered as a special subclass of realistic metric, which has a
constant zero value on real models. Note that this is also in
line with one of our major empirical findings that real mod-
els are dominantly consistent, or equivalently, inconsistent
models cannot be realistic.

Example 5 Table 2 illustrates four models (M1,…,M4) with
different realistic and diversitymetrics in a simplified setting.
Each model consists of only four objects with different ratios
of Entry and State objects.

For the sake of this example, let us assume that the realistic
ratio of Entrys and States is 7:1, so 12.5% of Vertices
should be Entry in a realistic model. Therefore, models M3

andM4 could be considered themost realisticmodels, as both
of them are equally close to a realistic ratio of 12.5%.

Additionally, we calculated the internal diversity of the
models for range r = 1, which is presented in the third line
of the table. Informally, models containing both Entry and
State objects are more diverse than those that contain only
one type of object. According to this, models M2 and M3 are
the most diverse.

Therefore, Table 2 illustrates all four potential combina-
tions for diverse and realistic nature.

4 Generation of consistent, realistic and
diverse graphmodels

4.1 Black-box view of model generation

We propose a model generation approach to derive graphs
which are simultaneously realistic, consistent and diverse.
As input (see Fig. 5), our approach takes

1. a designated graph metric m with a metric distance d to
measure the realistic nature of models;

2. a target metric value vR = m(R) calculated from some
representative real model R;

3. a set of error predicates ϕ1, . . . , ϕk of the domain derived
from the metamodel MM and the WF constraints.

The output of a generator is a set of synthetic models
S1, . . . , Sn which are

– consistent: each Si is an instance of the metamodel Si ∈
MMM and no error predicate ϕ j is violated [[ϕ j]]Si = 0,

– diverse: there is a minimal difference between any pair
of models, i.e., for each generated model Mj and Mk

dexti (Mj , Mk) > 1.
– realistic: the distance d(m(Si), vr) from the target metric

is minimized.

Conceptually, our model generation approach is separated
into two phases:

I. Selection of representative models: First, we select or
derive one or more representative models from the avail-
able set of real models, and we calculate the target metric
values for those representative models.

II. Generation of realisticmodels: Next, we generatemodels
with respect to the target metric and the domain specifi-
cation to obtain realistic consistent, and diverse synthetic
models.

4.2 Selection of representative models

Toguide the generation toward realisticmodels, our approach
relies upon the selection of one or more representative real
models as a first step. Model synthesis will then be guided
toward the values of various graph metrics measured on the
representative model by disregarding the actual contents of
the representative model. Naturally, there are various ways
to identify a representative model.

1. Manual selection. A domain expert can select a model,
and evaluate the relevant graph metrics on it. If there are
multiple groups of models (i.e., along different modeling
styles or conventions), the domain expert needs to select
a representative from each group. This approach requires
the most amount of human interaction, but it exposes the
least amount of undesired information about the model.

2. Deriving representatives with mutations. Model muta-
tions can be applied onmodels to derivemodelswith small
differences [25,26,50]. This could be used to automati-
cally derive models similar to selected representative, but
the provider of the mutation operators need to ensure that
themutation operators do not hinder the realistic nature or

123

Automated generation of consistent, diverse and structurally... 1721

Table 2 Example combination
of realistic and diverse models

M1 M2 M3 M4

Model 4 × Entry 3 × Entry 1 × Entry 0 × Entry

0 × State 1 × State 3 × State 4 × State

% of Entry 100% 75% 25% 0%

Realistic? No No Yes Yes

Internal div. 0.25 0.5 0.5 0.25

Diverse? No Yes Yes No

Fig. 5 Inputs and outputs of model generation

the consistency of the model. It is rarely the case though
since mutations may insert model changes that violate
consistency, for instance. On the other hand, model muta-
tions can be potentially used to enrich the set of available
models (as a data augmentation technique frequently used
in few shot learning techniques [86]) as a post-processing
step.

3. Statistical selection. Finally, standard statistical methods
can be applied to automatically select representativemod-
els from a group of real models. In this paper, we used
an automated selection of representative models using
medoids for evaluation, which is detailed in the sequel.

For a sufficiently large set of real models, a representative
model can be selected automatically (illustrated in Fig. 6).
First, we calculate the metric values on each real model. The
metric distance can be used to detect clusters of models, and
some central elements can be used as representatives. In this
paper, we use the statistical concepts of medoids as a poten-
tialway to select a central element (withmaximum likelihood
decision) to demonstrate the feasibility of automated selec-
tion. But identifying the best statistical selection technique is
outside the scope of the paper; hence, medoids are only one
of the possible techniques that could be used.

Definition 12 (Medoid) A medoid of a model set S =
{M1, . . . , Mn} wrt. a distance d is a model Mi ∈ S which
minimizes

∑
Mj∈S d(Mi , Mj).

Based on the triangle inequality of distance metrics, if
a real model M is at a certain distance d(M, R) from the
selected representative R, and a generated synthetic model
S is at a distance d(S, R) to R, then the distance d(M, S) ≤
d(M, R)+d(S, R). Thus, a synthetic model S that is close to

the representative R cannot be far from the set of real models
M (if the set of real models is clustered).

4.3 Model generation as state space exploration

Our model generation approach is implemented as a state
space exploration technique implemented in the Viatra
Solver framework [67] (see Fig. 7), where states are par-
tial graph models, transitions between states are triggered
by executing model extension operations (which add new
objects and references as decision and unit propagation rules
implemented by graph transformation rules). As such, the
size of partial models is continuously growing up to the des-
ignated model size, while the consistency of the model and
the designated graph metric are continuously evaluated. The
generation follows a customized hill-climbing strategy (with
potential back-jumps) guided by the selected graph metric
m and target metric value vR = m(R) of the representative
model.

A synthetic model S is accepted as a (consistent) solution
if it reaches a designated size and it satisfies all WF con-
straints. One could introduce some acceptance criteria for
the realistic nature of models (e.g., d(m(R),m(S)) < ε), but
we rather treat the target metric m as a soft constraint for
optimization.

The steps of model generation are the following:

(0) By default, the model generation is initialized with an
empty model (model without any objects). Optionally,
the generation can be with a partial snapshots, which
can serve as the seed for model generation. In that case,
each generated model will be the extension of the partial
model, i.e., each generated model will contain the partial
model as a submodel.

123

1722 O. Semeráth et al.

Fig. 6 Selection of a
representative model element

Fig. 7 Exploration process for model generation

(1) Anunexplored partialmodel P closest to the targetmetric
value vR is selected from the search space for exploration.

(2) Next, all potential applications of the model extension
operations are applied on the selected partial model P .
This results in a set of extended partial solutions for the
graph generation Front = {P1, . . . , Pn}.

(3) To prevent traversing the same state (graph) twice, a state
code is calculated and stored for the new partial mod-
els P1, . . . , Pn by using graph isomorphism checks over
graph shapes [58].Graph shapes abstract fromnode iden-
tities, but they efficiently identifywhether two graphs can
be distinguished by the neighborhood (i.e., incoming and
outgoing edges) of a node.Had the new state been already
explored, the partial model is dropped from Front.

(4) For all models in Front = {P1, . . . , Pn}, we check if
Pi satisfies all under-approximated (must) constraints
by partial evaluation of these constraints [69] using
an incremental graph query engine [81]. If an under-
approximated constraint is violated by the partial model
then an inconsistency is detected, thus the partial model
can never be refined into a consistent instance model, so
it can be dropped from Front.

(5) If Front still has consistent model candidates, the desig-
nated graph metricm and distance d is evaluated on each
model in Front, and the best model Pi is selected wrt. to
its distance d(m(Pi), vR) to the target metric value vR of
the representative model. Otherwise, if Front is empty,
the generation process continues to explore a new partial
solution in 1.

(6) Finally, the consistency of the selected partial model Pi
is checked. If the model is consistent as no violation of
error predicates is found (for each ϕ j : [[ϕ j]]Pi = 0) and
a designated model size is reached, Pi is accepted as a
solution. Note that checking the original WF constraints
on the final solution candidates guarantees the correct-
ness of our approach. Otherwise, if the model has some

violations, or the requested size is not reached, explo-
ration continues from 2 with Pi as the selected model.
If more than one realistic model is requested, the explo-
ration continues at 1.

When the exploration process stops as the requested num-
ber of models has been reached, the unfinished models of
the search space are dropped, and the search restarts from
scratch. However, if the generator fails to derive sufficient
number of consistent models (e.g. due to performance limi-
tations), the intermediate solutions in the search space could
be used as best-effort partial solutions. This way, the solver
provides graceful degradation [84]. Moreover, in theory, the
solver can reuse the search space betweenmodel generations,
but based on our experience, this can dramatically decrease
model diversity since the solver tends to select the same par-
tial solutions for subsequent exploration [68].

4.4 Guidance heuristic for model metrics

In practice, a combinationofmultiple graphmetricsm1, . . . ,mn

and distances d1, . . . , dn can be used to characterize the real-
istic models in a domain and to guide model generation. In
this combination, a distance between a partial model P and
the representative model Mr is measured as a linear combi-
nation of some distances:

dcomb =
∑

1≤i≤n

wi · di (mi (P),mi (Mr)).

We used the following principles to combine metrics at
Step 5:

– Since our approach operates on strongly typed models
[79], node type distribution (NTD) is a critical metric.
Without realisticNTD distributions, different edge-based

123

Automated generation of consistent, diverse and structurally... 1723

distributions cannot be enforced, as reference multiplic-
ities and reference type compliance strictly control the
potential references added to the model during genera-
tion. Thus, we prioritized the NTDmetric in combination
with other metrics.

– The number of may-violations (MVIO) is very important
for consistency reasons. This metric guides the search
toward models where the number of violations is rela-
tively low (thus, the model can be easily finished). This
also increased the realistic nature of models, as dur-
ing the manual construction of real models, modelers
keep the number of violations low (in order to com-
mit intermediate solutions, or to test partially finished
features).

– To guide the generation more efficiently, we maintain a
linear regression model to extrapolate the effect of each
model extension operation on the final solution. A regres-
sion coefficient is trained and maintained for each model
extension operation (i.e., adding an object of class Ci or a
reference R j) based on observed changes in the distances
upon the previous applications of the same operation.
When guiding the generation, the metric values extrapo-
lated to the final size of the model are used.

– In early stages of generation, a weight function w is fur-
ther applied to the results of the linear regression to ensure
that graph generation is correctly guided toward a realis-
tic model. This step is necessary because the regression
model is not yet properly trained at an early stage.

4.5 Semantic guarantees and limitations

This model generation is compliant with the refinement
calculus of [84] to provide theoretical guarantees for the
correctness and completeness of the generation (i.e., all
consistent models can be derived). However, if no con-
sistent solution can be found, no unsatisfiable cores are
provided.

As a practical limitation of our approach, we focused on
the realistic nature of the underlying graph structure and
excluded the handling of realistic attribute values ([64] elab-
orates the handling of attribute values in our framework.). In
fact, we intentionally exclude to use specific values to com-
ply with confidentiality of real models. Thus, our approach is
complementary to [75] which provides support for attributes,
but derives very simple graphs.

As a further limitation, while each synthetic model is
realistic wrt. a representative human model (on a best-effort
basis), the set of synthetic models does not necessarily fol-
low the statistical properties of the set of human models.
However, this limitation can be mitigated by using several
representative models.

5 Evaluation

5.1 Research questions

Weconducted severalmeasurements to address the following
research questions:

RQ1: What graph metrics are effective for guiding model
generators toward realistic graph models?

RQ2: How realistic are the models generated by our
approach compared to other generators?

RQ3: How diverse are the models derived by our approach
compared to other model generators?

RQ4: How does our approach scale when generating mod-
els with increasing size?

5.2 Target domains

To answer these questions, we executed model generation
campaigns in three complex case studies with a large set of
real models.
Stc: Yakindu Statecharts [88] is an industrial modeling envi-
ronment. We used the metamodel extract of Figure 1 which
captures the state hierarchy and transitions of statecharts
(with 12 classes and 6 references). Moreover, we formalized
10 constraints as graph predicates that restrict the transitions
based on the built-in validation of Yakindu. For real human
models, we collected 304 statechart models with a size rang-
ing from 90 to 110 objects. The models were created by
undergraduate students as solutions for similar (but not iden-
tical) statechart modeling homework assignments.
Met: Eclipse Modeling Framework [79] is a widely used
DSL environment. We used an effective metamodel of EMF
(which consisted of 13 classes excluding EAnnotations
and 45 references), and formalized 3 additional constraints.
For realistic models, we gathered the recently updated EMF
models fromGitHub by querying code using GitHub API (as
of 31/07/2019). We selected models ranging from 30 to 500
objects in size, and filtered out models that are not manually
created (e.g., derived from an XML schema) resulting in 198
human models.
Scm: Finally, we gathered and generated software config-
uration models of GitHub projects [24] representing the
connection between the developers, commits and issues of a
projectwithin a timewindow.Themetamodel is derived from
the data model of [24] consisting of 6 relevant classes and 10
references. We also formalized 4 constraints regulating the
commits. The human data is collected from GHTorrent [24],
from repositories created between 1/1/2017 and 1/1/2018.
We gathered the commits and issues and active users created
within 8 months from the day of repository creation. Finally,
we kept 70 models ranging from 30 to 200 objects.

123

1724 O. Semeráth et al.

5.3 Compared approaches andmetrics

We compared different model generation approaches to eval-
uate how realistic are the generated models.

1. As a reference, a large set of real models were collected
for each domain (denoted as Hum).

2. We generated consistent models with Alloy Analyzer
[32,80] (All), a well-known SAT solver-based model
finder by using known mappings [13,66]. We used the
latest stable version of Alloy (v4.2) with the default back-
ground solver configuration [42]. For enabling statistical
analysis, we added a random amount of extra true state-
ments (as used in [70]) to prevent the solver from running
deterministically.

3. We implemented a simple black-box search-based model
generator, which (1) repeatedly calls a back-end model
generator until a time limit (1h), and (2) it continuously
maintains a population of the best N = 100 models with
respect to a target metric of interest (Comb). We instanti-
ated this framework with two existing model generators:

(a) We generated random models for each domain using
EMF random instantiator [9] (Rand), which does not
supportWF constraints; thus, themodels are not guar-
anteed to be consistent. To provide a fair comparison
with other approaches, we implemented a feature in
Rand to specify the root element of the model.

(b) We generated consistent models with the Viatra
Solver [65,67] (GS) using the latest version of
the graph solver algorithm. Model generation was
restarted from scratch when deriving a new model
(i.e., the search space was not preserved).

4. We evaluated our realistic graph generator (Real) guided
with the graph metrics OD, NA,MPC, NTD and VIO (see
Table 1) using the appropriate distances (KS, MD, AD).
Moreover, we used a combined metric Comb that mea-
sures all these metrics simultaneously, with or without
the number of violations (Comb + V vs. Comb − V).

The generated and collected models are available on a
publication page1 dedicated to this paper.

5.4 RQ1: Effectiveness of metrics in guidance

Setup To compare the effectiveness of various metrics used
for guiding our approach (Real) in realistic model synthesis,
we generated models using metricsOD, NA,MPC, NTD and
VIO and the combined metric Comb (subsection 4.4) with

1 https://github.com/ftsrg/publication-pages/wiki/Automated-
Generation-of-Consistent,-Diverse-and-Structurally-Realistic-
Graph-Models.

and without VIO (Comb + V and Comb − V). In this mea-
surement setup, we used VIO only as a guidance metric for
the hill-climbing approach (i.e., a soft constraint subject to
optimization); thus, the consistency of models is not guaran-
teed.

For each domain (Stc, Met and Scm), we generated 100
models with 100 objects using each metric separately. As a
representative model, we selected the medoid of the human
models (Hum) in each domain. Then, we measured the
distance of each model from the representative model by
evaluating all metrics (i.e. one metric to guide, all metrics to
evaluate). If the distance between a synthetic graph and the
representative model is close to zero, then the metric is better
at guiding the synthetic model generator toward a represen-
tative model wrt. the given metric.
Analysis of results Table 3 presents the metric values mea-
sured on the graphs generated using different guidancemetric
in a 5 × 3 layout. Each column represents a target domain,
while each row corresponds to a graph metric from Table 1.
For any cell in Table 3, we consider the graphs produced
using the seven different guiding strategies for a given target
domain. We measure the metric values corresponding to the
row of the cell on the seven sets of generated graphs and on
the real graphs. As a result, in each cell, we obtain eight dis-
tributions, which are represented as box plots. The median
value in each box plot is highlighted in orange.

We performed statistical analysis to find the dominating
guidancemetric in each case, i.e., the onewhere themedianof
respective measurements is closest to zero. We conclude that
the combined guidance metricComb+V produced the most
realistic set of models, by dominating all other approaches
in 6/15 cases, and producing similar results as the best one in
3/15 other cases. Interestingly, the combined metric strategy
Comb + V often produced more realistic results than using
the target metric as a guidance strategy. This means that the
combined metric can help avoid local optima by considering
many different aspects of the model. For example, in a com-
bined metric, node-type distribution (NTD) can guide the
exploration process to place the right amount of objects by
type (e.g., a large number of States in a Statechart),
which can enable the satisfaction of Out Degree (OD) metric
(e.g., with the addition of Transitions). On the other
hand, if the exploration process focuses only on the Out
Degree metric, it may fail to place the right amount States
early on.

Another key observation is that all human models have
a very low number of constraint violations, i.e., they are
dominantly consistent. This provides empirical evidence
that a realistic model also needs to be consistent. As such,
addressing the generation of models which are simultane-
ously consistent and realistic is a relevant challenge.

123

https://github.com/ftsrg/publication-pages/wiki/Automated-Generation-of-Consistent,-Diverse-and-Structurally-Realistic-Graph-Models
https://github.com/ftsrg/publication-pages/wiki/Automated-Generation-of-Consistent,-Diverse-and-Structurally-Realistic-Graph-Models
https://github.com/ftsrg/publication-pages/wiki/Automated-Generation-of-Consistent,-Diverse-and-Structurally-Realistic-Graph-Models

Automated generation of consistent, diverse and structurally... 1725

Table 3 Evaluating the effectiveness of various metrics as guidance strategy

Yakindu Statechart (Stc) Ecore metamodels (Met) GitHub graph (Scm)

M
P
C

N
A

O
D

N
T
D

V
IO

RQ1: To generate realistic graphs, multiple graph met-
rics need to be integrated in a guidance strategy. Since
a synthetic graph model cannot be realistic unless it is
dominantly consistent, guidance should incorporate the
violations of WF constraints.

We use Comb + V for guidance in the subsequent measure-
ments as this strategy was the most efficient.

5.5 RQ2: Realistic nature of models

Setup We compared the realistic nature of models gener-
ated with various approaches. Consistent model generators
included our approach Real (using Comb + V as guidance
metric toward themedoid), the Viatra Solver (GS), andAlloy
(All).Moreover,weused the best 100 randommodels (Rand)

as a baseline (which may violate WF constraints). We also
included all the human models in the comparison (Hum) as
a reference.

For this measurement, we generated the first 100 models
with Real and All and the best 100 models with Rand and
GS with a timeout of 1 hour. This timeout was determined
by the approximate generation time of the first 100 models
usingReal. Target model size was limited to 30 objects using
each approach (as All failed to generate larger models). We
measured the distance between each pair with metrics OD,
NA, MPC and NTD. Moreover, we evaluated the percentage
of consistent models for Hum and Randmodels to measure
VIO.
Analysis of results The measured distances between any pair
of graphs are depicted in Table 4 in a 5 × 3 layout. Each
column corresponds to a target domain, while each row is

123

1726 O. Semeráth et al.

Table 4 Comparison of various model generation approaches using
multidimensional scalingdiagrams [23]. Eachmodel is representedwith
a dot, the geometric distance between the dots is proportional to themet-

ric distance, and the axes represent the scaling between the geometric
distance and the measured distance

Yakindu Statechart (Stc) Ecore metamodel (Met) GitHub graph (Scm)

M
P
C

All: 0.32/4% Rand: 0.11/0%
GS: 0.19/0% Real: 0.06/39%

All: 0.50/4% Rand: 0.16/18%
GS: 0.14/26% Real: 0.13/41%

All: 0.14/100% Rand: 0.09/100%
GS: 0.23/100% Real: 0.11/100%

N
A

All: 0.30/1% Rand: 0.06/1%
GS: 0.15/0% Real: 0.04/3%

All: 0.46/3% Rand: 0.11/28%
GS: 0.11/30% Real: 0.06/98%

All: 0.17/0% Rand: 0.04/82%
GS: 0.23/0% Real: 0.07/13%

O
D

All: 0.28/7% Rand: 0.05/30%
GS: 0.13/0% Real: 0.03/73%

All: 0.47/2% Rand: 0.14/11%
GS: 0.14/9% Real: 0.05/99%

All: 0.08/100% Rand: 0.05/100%
GS: 0.17/51% Real: 0.09/100%

N
T
D

All: 0.83/5% Rand: 0.18/5%
GS: 0.35/0% Real: 0.12/25%

All: 1.55/0% Rand: 0.67/20%
GS: 0.83/9% Real: 0.26/100%

All: 0.38/0% Rand: 0.14/100%
GS: 0.99/0% Real: 0.27/55%

V
IO Hum:90.13% Rand:0%

(All, GS, Real:100%)
Hum:98.98% Rand:0%
(All, GS, Real:100%)

Hum:100% Rand:16%
(All, GS, Real:100%)

associated with a metric. For any cell in the first four rows of
Table 4, we consider the graphs generated using the different
approaches for a target domain. We measure the pairwise
distance between the generated graphs wrt. the metric in the
row of the cell.

The distances betweenmodels are depicted as scatter-plots
in Table 4 usingmultidimensional scaling [23]. According to
this technique, the distance between two points in the scatter-
plot is proportional to the distance between the two graphs
(i.e., metric values measured on the graphs). For instance,
if two points are close to each other in the scatter-plot, then
the distance between the metric values measured on the cor-
responding graphs is small. The axes represent the scaling
unit for interpreting the geometric distance. For instance, if
the distance between two dots is 2 unit long, then the metric

distance between the models is 2. However, the exact values
on the x and y-axis are irrelevant.

To identify the best model generation approach for each
case, visual data analytics can be used: a synthetic model
can be considered to be realistic if it lies within the cluster of
human models, i.e., it cannot be distinguished from human
models by the given metric. For a more formal treatment,
we calculated the average minimal distance (of a generated
model from the closest humanmodel) for each generator. We
underline the best performing generator in each case. More-
over, we calculated the percentage of realistic models using
the t = 97% percentile of the nearest neighbor distances
between human models as the threshold of realisticness T
(Definition 9).

123

Automated generation of consistent, diverse and structurally... 1727

Concerning the average minimal distance, Real provided
the most realistic models for all 8/12 cases (once in a tie with
All and GS for MPC in Stc). Moreover, Real derived the
largest percentage of realistic models in 10 out of 12 cases
(twice in tie with Rand in Stc with 100%). In general,Rand
performed better than All and GS wrt. the realistic nature of
models. As an outlier in Scm, all 100 models derived by All
were isomorphic so they are plotted as a single model.

RQ2: Graph models generated by Real are structurally
more realistic compared to models derived by other con-
sistent model generators All, GS and random model
generator Rand. On average, over 56% of all generated
models byRealwere realistic. While models generated by
Rand were realistic wrt. the metrics for one case study,
random generation fails to derive consistent models, i.e.,
due to the high number of constraint violations such mod-
els are not realistic.

5.6 RQ3: Diversity of models

To evaluate the diversity [70,84] of the generated models,
we measured structural distance between the models using
the internal and external diversity metrics.Moreover, we also
adopted the exploration process of [70] as a baseline tech-
nique to ensure the diversity of models. As such, we expect
that our realistic models are structurally different from each
other.
Setup

We compared diversity of models generated with various
approaches for each domain (Stc,Met and Scm).Weused the
same set ofmodels andmodel generators (All,All,GS,Real)
as in RQ2, and we also human models in the comparison
(Hum).

In separate measurements, we calculated the internal and
external diversity metrics for each approach to evaluate how
symmetric the derived models are (see [68,70] and subsec-
tion 3.3 for technical details).

– High internal diversity of a model shows that the model
contains a large number of different structures (wrt. to its
size), and a low internal diversity implies that the models
are highly symmetric.

– High external diversity between two models denotes a
high number of structural differences, and low external
diversity means that the models are structurally similar.

In this paper, wemeasured the distribution of both internal
and external diversities using range 5, and used Manhattan
distance to measure external diversity [68].
Analysis of results Table 5 illustrates the distribution of inter-
nal diversity of models for each approach in each domain.

– In all domains, humanmodelsHum showed lowdiversity
(from 0.45 to 0.8) but with high variance.

– Real generated models with highest diversity inMet and
Scm, and the second highest diversity in Stc.

– GS showed high internal diversity in Stc and Met, but
provided highly symmetric models in with low internal
diversity values in Scm. Since the same solver previously
provided consistently high diversity in [68], this result
must be a side-effect ofmaintaining the 100most realistic
models, which may negatively influence diversity.

– Rand provided reasonably high internal diversity in Stc
and Scm domains but not in Met.

– All only provided high internal diversity in Stc.

Table 6 illustrates the distribution of external diversity
between each model pair of the same approaches. In each
domain, the external diversity of Hum was high, compared
to the other approaches, and varied greatly. Real outper-
formed all other generators in Met and Scm, and became
close second behind GS in Stc. Rand consistently achieved
better diversity than All, but worse diversity than graph
solver-based approaches. There were two notable outliers
in the Scm case: GS showed low diversity, while all mod-
els derived by All were isomorphic (thus zero diversity).

RQ3: The proposed Real approach generated more
diverse models than any other generators in 4/6 cases
and scored high in the remaining 2 cases. In 5/6 cases, the
models were more diverse than manually created models
(Hum).

Note that the realistic nature and the diversity of models
may differ drastically. For example, in domain Met, models
generated with Real were statistically similar, but the exter-
nal diversity was one of the highest (in contrast toAll, which
provided models with different realistic metric values but
low external diversity). These differences provide empirical
evidence that diversity and realistic nature are two different
properties of models, which is also a key finding.

5.7 RQ4: Scalability evaluation

SetupWemeasured the runtime ofmodel generation to derive
consistent and realistic graphs with increasing size. We set
up a timeout of 1 hour for each generation run. To account for
the variability of execution times due to randomized explo-
ration, model generation was executed 10 times for each
measurement point and the median of the runs was taken.
Warm-up effects and memory handling of the Java 11 VM
were accounted for by calling the garbage collector explicitly
between runs. We measured the runtime of the main compo-
nents of the approach separately on a virtual server2.

2 12 × 2.2GHz CPU, 64GiB RAM, Java 11.0.7, 12GiB heap

123

1728 O. Semeráth et al.

Table 5 Internal diversity measurement (#Neighborhoods/#Nodes)

Yakindu Statechart (Stc) Ecore metamodels (Met) GitHub graph (Scm)

0

0.2

0.4

0.6

0.8

1

Hum All Rand GS Real
0

0.2

0.4

0.6

0.8

1

Hum All Rand GS Real
0

0.2

0.4

0.6

0.8

1

Hum All Rand GS Real

Table 6 External diversity measurement (|Norm. Neigh. vector 1 - Norm. Neigh. vector 2|)
Yakindu Statechart (Stc) Ecore metamodels (Met) GitHub graph (Scm)

0

2

4

6

8

10

12

14

16

Hum All Rand GS Real
0

10

20

30

40

50

Hum All Rand GS Real
0

2

4

6

8

10

12

14

Hum All Rand GS Real

Table 7 Scalability measurement

Yakindu statecharts (Sct) Ecore metamodels (Met) Github graphs (Scm)

100 200 300 400 500 600 50 75 100 125 150 100 200 300 400 500 600
0

500

1000

1500

2000

0
100
200
300
400
500

0

200

400

600

Model Size (# nodes)

R
un

tim
e

(s
) Metric calculation

Exploration

State coding

Transformation

Preprocessing

Analysis of results Execution times for the Stc,Met and Scm
domains for measurements with 100% success rate, i.e., all
10 runs managing to generate a model within an hour, are
shown in Table 8. The largest models had 600, 150, and 600
objects, respectively. We managed to generate even larger
models, albeit with a lower success rate: 1000 objects for Stc
(10% success rate), 300 for Met (30% success rate) and 900
for Scm (40% success rate). As a comparison, [70] reported
models forMet with 2000 objects for GS, and 28 objects for
All within 5 minutes.

Notice that most generation time is spent in state coding,
i.e., testing for graph isomorphism between the states being
traversed [59]. This implies that the hill-climbing strategy
traverses a large number of states (which is significantlymore
thanbest-first search traversed in consistentmodel generation
[67]).

ForMet, the runtime jumps after 125 model element, and
it has very high variance for larger cases, which is due to the
handling of constraints regarding eOpposite references
as WF constraints instead of metamodel constraints. This
reduced the ability of the generator to apply propagation rules
and caused it to spuriously explore a significant fraction of
the state space which contained no consistent solutions.

RQ4: Our generator can derive realistic and consistent
models up to 300–1000 objects within an hour. The hill-
climbing strategy is less scalable than generating only
consistent models with best-first search. The calculation
time of graph metrics is a minor overhead when generat-
ing consistent and realistic graphs.

123

Automated generation of consistent, diverse and structurally... 1729

Similar scalability has been reported when generating
realistic models with machine learning [89].

5.8 Threats to validity and limitations

Internal validity To increase internal validity for measur-
ing graph metrics (for realisticness), we considered human
and synthetic models of similar size. As a data cleansing
step for human models, we removed corrupt model instances
or instances with too few objects. Moreover, we manually
checked that medoids are not outliers in the given domain.
In case of the scalability measurements, we mitigated warm-
up effects and garbage collection. We selected graph metrics
based on [78] to distinguish real models from synthetic ones.
External validity To identify representative models, we used
the medoid of a domain, which is a standard statistical
approach, but its usefulness to characterize realistic mod-
els is not yet empirically justified. However, our approach
does not depend on the use of medoids, only the existence of
a selected representative model in a domain; thus, the use of
other selection techniques can be easily incorporated. Other-
wise, the medoid of a set of real models is a typical technique
to select a statistically well-founded representative. If there
are multiple representatives in a set of models (i.e., there
are a cluster of models), we can generate models similar
to a representative of each cluster separately. The statisti-
cal properties of the selected graph metrics ensure that the
size of the representative model does not affect the respec-
tive metric. Moreover, since our model generator performed
well for all graph metrics we used to characterize realistic
models, we expect advantageous behavior for other graph
metrics of similar complexity. Finally, while we used three
case studies of different size and complexity, wemight obtain
different results for other domains, e.g., when real models are
not human-made but reverse-engineered.
Construct validity We used the 97% as t to calculate the
threshold of realistic nature (considering 3%of Hummodels
unrealistic),which roughly followed the number of outliers in
the distances. Selecting other t value would change the num-
ber (and percentage) of real models for each approach, but
without changing the average minimal distance or the rank-
ing of the approaches. Thus, our approach remains superior
to the compared approaches. To measure diversity, we used
a neighborhood range of 5 to compare the number of struc-
tures in the models (based on [68]). For greater ranges, the
diversity values changed only slightly.

6 Related work

First, we overview graph metrics that could have poten-
tially included in our experiments to characterize the realistic
nature of graph models. Then, we overview various graph

Table 8 Comparison of approaches for graph generation

generation approaches that claim to derive realistic graphs,
summarized in Table 8. We evaluate whether the generated
models are (a) consistent wrt. WF constraints and meta-
model constraints, (b) realistic, i.e., similar to real models
and (e) multidimensional if multiple types exist in the gener-
ated nodes. We also check whether the generation approach
is (c) scalable whether very large graphs can be generated
and (d) domain-customizable, i.e., if they can be used for
various domains.
Graph metrics A wide range of graph metrics have been
used to characterize real graphs.Unidimensionalmetrics also
include joint degree distribution [18], orbit counting [29,89]
and eigenvalues of adjacency matrices [2,18,40,43,44,71].
These metrics have been measured on domains such as grid
graphs, proteins, social networks, actors in movies and links
between web pages.

Some studies use other multidimensional graph metrics
to characterize realistic nature. For example, [12] proposes a
method to extend unidimensional metrics to handle multiple
dimensions. Nevertheless, purely multidimensional metrics
do exist, such as node and edge dimension connectivity [12],
node and pair D-Correlation [12], layer activity [54], edge
overlap and overlapping degree [11]. These metrics have
been measured on real-life networks, e.g., transportation,
social (Flickr), co-authorship (DBLP), utility, terrorists.

Other research suggests the use of global metrics such as
graph diameter [43,44], number of connected components
and K-Core decomposition [18] for checking the realistic
nature of graphs. The realistic nature of graph models can
be checked wrt. domain-specific criteria (ex. if a gener-
atedmolecule is chemically valid [46,74]) or domain-specific
metrics (ex. the PageRank distribution for web pages [18]).
Those metrics, in general, cannot be directly applied on cus-
tom domains.
Learning-based graph generation Learning-based model
generation approaches require a training set of models to
derive new models with similar features as the training set.
Approaches like GraphVAE [74] and VGAE [39] may use

123

1730 O. Semeráth et al.

variational autoencoders, which are based on the adjacency
matrix representation of graphs, for learning and generating
graphs. Another approach [46] considers the graph genera-
tion process as a sequence of node or edge addition operations
where decisions on which elements to add are made accord-
ing to training models. GraphRNN [89] is a framework that
uses deep autoregressive models for graph generation.

As a common limitation, the scalability of learning-based
graph generation approaches is limited. Moreover, the gen-
eration process can be only partially controlled by the input
data provided by users. As a result, consistency of WF con-
straints or metamodel compliance is not guaranteed for these
approaches. While learning-based approaches are domain-
customizable, they are typically limited to unidimensional
(untyped) graphs.

Some of these limitations are avoided by an approach
based on learning from the editing histories of models pro-
posed in [72,73]. This approach generates models using
realistic editing sequences and performs consistency checks
after every edit operation. However, the proposed papers do
not assess the structural realisticness of the models them-
selves and do not provide any scalability analysis.
Matrix-based generators.Graphs can be represented by their
adjacency matrices, and matrix operations can be used for
graph generation. For example, authors of [37,43,44] use
Kronecker graphs (i.e., adjacency matrices obtained by Kro-
necker operations). Furthermore, a matrix-based recursive
approach is used in [15] to distribute edges in within graph
partitions. Random typing is used in a matrix-based algo-
rithm to generate realistic graphs in [2].

Matrix-based graph generation provides good scalability
and they are domain-customizable, but the realistic nature of
graphs is restricted to unidimensional graph metrics. More-
over, there is no evidence of consistency or multidimensional
support in the papers.
Template-basedgenerators.Other graphgeneration approaches
may use custom graph representations and a template or
iteration-based algorithm. gMark [10] uses a schema-based
representation and algorithm to generate multidimensional
graphs and queries, but only with schema-level consistency
guarantees and the realistic nature of generated graphs is lim-
ited. GSCALER [90] and ReCoN [77] focus purely on graph
scalability: given an input graph, these tools generate a simi-
lar graphwith a certain number of nodes and edges. Similarly,
[53] proposes a rule-based approach for scalable model gen-
eration which evaluates diversity and ensures adherence to
metamodel constraints, but it does not handle extra additional
WF constraints and excludes analysis of realistic nature.
S3G2 [56] uses a MapReduce-based iterative algorithm to
generate realistic and scalable multidimensional graphs, but
it is demonstrated for a single domain (social networks) with-
out consistency constraints.

Results proposed in [18,40,71] involve building up realis-
tic and scalable graphs by interconnecting smaller Erdős-
Rényi models [20]. [62] uses a property graph model to
generate scalable multidimensional graphs and compares the
degree distribution of the generated graph with that of the
ground truth to ensure realistic nature, but it lacks consistency
guarantees.Authors of [6] propose a custommethodology for
generating realistic and large social graphs within the con-
text of a Facebook database benchmark, but the approach is
domain-specific and unidimensional.
Logic solver-basedgenerators.Logic solver-based approaches
translate graphs and WF constraints into logic formulas
and using a logic solver to generate graphs that satisfy the
formulas. EMF2CSP/UML2CSP [14,22] translates model
generation to a constraint programing problem, and solves it
by an underlying CSP solver. [27] reports class-diagram gen-
erationwith EMF2CSP,wheremodel generation is guided by
class diagram-specific metrics (like LCOM and Class Cohe-
sion [16]). ASMIG [87] uses the Z3 SMT solver [52] to
generate typed and attributed graphs with inheritance. An
advanced model generation approach was presented in the
Formula Framework [34] also using the Z3 SMT solver.
Paper [35] applies stochastic randomsampling to increase the
diversity of models generated by Formula, but it is not aimed
to generate realistic models. [17] extends the Kodkod rela-
tional model finder [80] to generate models that are similar to
a provided target model. Finally, AutoGraph [63] generates
consistent attributed multidimensional graphs by separating
the generation of the graph structure and the attributes. Graph
generation is driven by a tableau approach, while attribute
handling uses the Z3 SMT-solver.

Logic-solver based generators are domain-customizable
andmultidimensional, and ensure consistency. But their scal-
ability is limited and there is no guarantee for the realistic
nature of models.
Search-based generators. SDG [75] proposes an approach
that uses a search-based custom OCL solver to generate
synthetic data for statistical testing. Generated models are
multidimensional, consistent (for local constraints) and real-
istic. The study demonstrates scalability by generating a large
set of small (unconnected) models. Since the search-based
approach handles WF constraints as soft constraints, the
chance of deriving consistent models decreases with model
size. Our paper significantly improves on handling the core
aspects of graph structure, but it does not provide the same
guarantees for attributes. Thus, approaches of [75] and our
paper are complementary.

Research in [76] proposes a hybrid approach that uses
both a meta-heuristic search-based OCL solver [4] for struc-
tural constraints and an SMT solver for attribute constraints,
based on the snapshot generator of the USE framework [21].
Generated models are multidimensional, (locally) consistent

123

Automated generation of consistent, diverse and structurally... 1731

and large. The realistic nature of the models is limited to type
and attribute distributions.

Cartesian genetic programming (CGP) [49] encodes
graphs with linear or grid-based genotypes and produces new
ones by evolving the initial graph, originally used produce
electronic circuits. A recent line of work [7,8] introduced
evolving graphs by graph programming, CGP’s generaliza-
tion to arbitrary graphs.

7 Conclusion and future work

In this paper, we addressed to characterize structurally real-
istic nature of synthetic graph models by using a variety of
graphmetrics proposed in various branches of science. Given
a set of real (human) models, and using appropriate distance
functions for a specificmetric, we can statisticallymeasure in
a domain-independent way how far a given synthetic model
is from a (representative) real model, or what is the mini-
mal distance from the closest real model. We also proposed
an approach based on a hill-climbing strategy to automati-
cally generate synthetic graphmodels that are simultaneously
consistent, realistic and more diverse than other approaches,
which was justified in a series of experiments carried out in
the context of three case studies3.

As future work, we aim to extend our experiments by
incorporating more complex graph metrics (e.g., triangle
counts, subgraph-based metrics).

Acknowledgements Wewould like to thank all three reviewers for their
detailed and insightful feedback. This paper was partially supported by
the NSERC RGPIN-04573-16 project, the NSERC PGSD3-546810-
2020 scholarship, theMcGill Grad Excellence Award-90025, the Fonds
de recherche du Québec - Nature et technologies (FRQNT) B1X schol-
arship (file number: 272709), theÚNKP-20-4NewNational Excellence
Program of theMinistry for Innovation and Technology from the source
of theNational Research, Development and Innovation Fund, and by the
NRDI Fund based on the charter of bolster issued by the NRDI Office
under the auspices of the Ministry for Innovation and Technology. We
would like to thank the Department of Electrical and Computer Engi-
neering, and the School of Computer Science of McGill University for
providing resources to run our measurements. During the development
of the achievements, we took into consideration the goals set by the
Balatonfüred System Science Innovation Cluster and the plans of the
“BMEBalatonfüred Knowledge Center,” supported by EFOP 4.2.1-16-
2017-00021.

Funding Open access funding provided by Budapest University of
Technology and Economics.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as

3 The domain specification of the case studies, the human and synthetic
models as XMI documents, and the measured metrics and distances are
made available for the reviewers in the supplementarymaterial uploaded
with the paper.

long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abdessalem, R.B., Nejati, S., Briand, L.C., Stifter, T.: Testing
vision-based control systems using learnable evolutionary algo-
rithms. In: ICSE, pp. 1016–1026. ACM (2018). https://doi.org/10.
1145/3180155.3180160

2. Akoglu, L., Faloutsos, C.: RTG: a recursive realistic graph genera-
tor using random typing. DataMin. Knowl. Discov. 19(2), 194–209
(2009). https://doi.org/10.1007/s10618-009-0140-7

3. Al-Refai,M., Cazzola,W.,Ghosh, S.:A fuzzy logic based approach
for model-based regression test selection. In:MoDELS, pp. 55–62.
IEEE (2017)

4. Ali, S., Iqbal, M.Z., Khalid, M., Arcuri, A.: Improving the perfor-
mance of OCL constraint solving with novel heuristics for logical
operations: a search-based approach. Empir. Softw. Eng. 21(6),
2459–2502 (2016). https://doi.org/10.1007/s10664-015-9392-6

5. Arkhangel’skii, A., Fedorchuk, V.: General topology I: basic con-
cepts and constructions dimension theory, vol. 17. Springer (2012)

6. Armstrong, T.G., Ponnekanti, V., Borthakur, D., Callaghan, M.:
Linkbench: a database benchmark based on the Facebook social
graph. In: SIGMOD, pp. 1185–1196 (2013). https://doi.org/10.
1145/2463676.2465296

7. Atkinson, T., Plump, D., Stepney, S.: Evolving graphs by graph
programming. In: EuroGP, pp. 35–51. Springer (2018). https://doi.
org/10.1007/978-3-319-77553-1_3

8. Atkinson,T., Plump,D., Stepney, S.: Evolvinggraphswith horizon-
tal gene transfer. In: GECCO, pp. 968–976. ACM (2019). https://
doi.org/10.1145/3321707.3321788

9. AtlanMod Team (Inria, Mines-Nantes, Lina): EMF random
instantiator (2019). https://github.com/atlanmod/mondo-atlzoo-
benchmark/tree/master/fr.inria.atlanmod.instantiator

10. Bagan, G., Bonifati, A., Ciucanu, R., Fletcher, G.H.L., Lemay,
A., Advokaat, N.: gMark: schema-driven generation of graphs and
queries. IEEE Trans. Knowl. Data Eng. 29(4), 856–869 (2017).
https://doi.org/10.1109/TKDE.2016.2633993

11. Battiston, F., Nicosia, V., Latora, V.: Structural measures for mul-
tiplex networks. Phys. Rev. E 89, 032,804 (2014). https://doi.org/
10.1103/PhysRevE.89.032804

12. Berlingerio,M., Coscia,M., Giannotti, F.,Monreale, A., Pedreschi,
D.: Multidimensional networks: foundations of structural analy-
sis. World Wide Web 16(5–6), 567–593 (2013). https://doi.org/10.
1007/s11280-012-0190-4

13. Büttner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of ATL
transformations using transformation models and model finders.
In: ICFEM, pp. 198–213. Springer (2012). https://doi.org/10.1007/
978-3-642-34281-3_16

14. Cabot, J., Clarisó, R., Riera, D.: On the verification of UML/OCL
class diagrams using constraint programming. J. Syst. Softw.
(2014). https://doi.org/10.1016/j.jss.2014.03.023

15. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: A recursive
model for graph mining. In: SDM, pp. 442–446. SIAM (2004).
https://doi.org/10.1137/1.9781611972740.43

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3180155.3180160
https://doi.org/10.1145/3180155.3180160
https://doi.org/10.1007/s10618-009-0140-7
https://doi.org/10.1007/s10664-015-9392-6
https://doi.org/10.1145/2463676.2465296
https://doi.org/10.1145/2463676.2465296
https://doi.org/10.1007/978-3-319-77553-1_3
https://doi.org/10.1007/978-3-319-77553-1_3
https://doi.org/10.1145/3321707.3321788
https://doi.org/10.1145/3321707.3321788
https://github.com/atlanmod/mondo-atlzoo-benchmark/tree/master/fr.inria.atlanmod.instantiator
https://github.com/atlanmod/mondo-atlzoo-benchmark/tree/master/fr.inria.atlanmod.instantiator
https://doi.org/10.1109/TKDE.2016.2633993
https://doi.org/10.1103/PhysRevE.89.032804
https://doi.org/10.1103/PhysRevE.89.032804
https://doi.org/10.1007/s11280-012-0190-4
https://doi.org/10.1007/s11280-012-0190-4
https://doi.org/10.1007/978-3-642-34281-3_16
https://doi.org/10.1007/978-3-642-34281-3_16
https://doi.org/10.1016/j.jss.2014.03.023
https://doi.org/10.1137/1.9781611972740.43

1732 O. Semeráth et al.

16. Chidamber, S.R., Kemerer, C.F.: Ametrics suite for object oriented
design. IEEE Trans. Softw. Eng. 20(6), 476–493 (1994)

17. Cunha, A., Macedo, N., Guimarães, T.: Target oriented relational
model finding. In: Proceedings of the 17th international conference
on fundamental approaches to software engineering -Volume8411,
p. 1731. Springer-Verlag, Berlin, Heidelberg (2014). https://doi.
org/10.1007/978-3-642-54804-8_2

18. Edunov, S., Logothetis, D., Wang, C., Ching, A., Kabiljo, M.:
Generating synthetic social graphs with darwini. In: ICDCS, pp.
567–577. IEEEComputer Society (2018). https://doi.org/10.1109/
ICDCS.2018.00062

19. Eén, N., Sörensson, N.: An extensible SAT-solver. In: SAT, pp.
502–518. Springer (2003)

20. Erdős, P., Rényi, A.: On the evolution of random graphs. In: Pub-
lication of the Mathematical Institute of the Hungarian Academy
of Sciences, pp. 17–61 (1960)

21. Gogolla, M., Bttner, F., Richters, M.: USE: A UML-based spec-
ification environment for validating UML and OCL. Science of
Computer Programming 69(1), 27 – 34 (2007). https://doi.org/10.
1016/j.scico.2007.01.013. Special issue on Experimental Software
and Toolkits

22. González Pérez, C.A., Buettner, F., Clarisó, R., Cabot, J.:
EMFtoCSP: A tool for the lightweight verification of emf models.
In: Formal methods in software engineering: rigorous and agile
approaches (FormSERA). Zurich, Switzerland (2012). https://hal.
inria.fr/hal-00688039

23. Gordon, A.: The user’s guide to multidimensional scaling, with
special reference to the Mds (X) library of computer programs. J.
Royal Stat. Soc. Series D (The Statistician) 32(3), 355–356 (1983)

24. Gousios, G.: The GHTorrent dataset and tool suite. In: Proceedings
of the 10th working conference on mining software repositories,
MSR ’13, pp. 233–236. IEEE Press, Piscataway, NJ, USA (2013).
http://dl.acm.org/citation.cfm?id=2487085.2487132

25. Guerra, E., Cuadrado, J.S., de Lara, J.: Towards effective mutation
testing for atl. In: 2019 ACM/IEEE 22nd International conference
on model driven engineering languages and systems (MODELS),
pp. 78–88. IEEE (2019)

26. Gmez-Abajo, P., Guerra, E., Lara, J., Merayo, M.: A tool for
domain-independent model mutation. Sci. Comput. Program.
(2018). https://doi.org/10.1016/j.scico.2018.01.008

27. Hao, W.: Automated metamodel instance generation satisfying
quantitative constraints. Ph.D. thesis, National University of Ire-
land Maynooth (2013)

28. Hautamaki, V., Karkkainen, I., Franti, P.: Outlier detection using
k-nearest neighbour graph. In: Proceedings of the 17th Inter-
national conference on pattern recognition, 2004. ICPR 2004.,
vol. 3, pp. 430–433 Vol.3 (2004). https://doi.org/10.1109/ICPR.
2004.1334558

29. Hocevar, T., Demsar, J.: A combinatorial approach to graphlet
counting. Bioinformatics 30(4), 559–565 (2014). https://doi.org/
10.1093/bioinformatics/btt717

30. Iqbal, M.Z.Z., Arcuri, A., Briand, L.C.: Environment modeling
and simulation for automated testing of soft real-time embedded
software. Softw. Syst. Model. 14(1), 483–524 (2015). https://doi.
org/10.1007/s10270-013-0328-6

31. Izsó, B., Szatmári, Z., Bergmann,G.,Horváth,Á., Ráth, I.: Towards
precise metrics for predicting graph query performance. In: ASE,
pp. 421–431 (2013). https://doi.org/10.1109/ASE.2013.6693100

32. Jackson, D.: Alloy: a lightweight object modelling notation. Trans.
Softw. Eng. Methodol. 11(2), 256–290 (2002). https://doi.org/10.
1145/505145.505149

33. Jackson, E.K., Levendovszky, T., Balasubramanian, D.: Reason-
ing about metamodeling with formal specifications and automatic
proofs. In: MODELS, pp. 653–667. Springer (2011). https://doi.
org/10.1007/978-3-642-24485-8_48

34. Jackson, E.K., Levendovszky, T., Balasubramanian, D.: Reason-
ing about metamodeling with formal specifications and automatic
proofs. In: Model driven engineering languages and systems, pp.
653–667. Springer (2011)

35. Jackson, E.K., Simko, G., Sztipanovits, J.: Diversely enumerating
system-level architectures. In: Proceedings of the 11th ACM Int.
Conf. on Embedded Software, p. 11. IEEE Press (2013)

36. Jackson, E.K., Sztipanovits, J.: Towards a formal foundation for
domain specific modeling languages. In: EMSOFT, pp. 53–62.
ACM, New York, NY, USA (2006)

37. Kepner, J., et al.: Design, generation, and validation of extreme
scale power-law graphs. In: GABB at IPDPS, pp. 279–286 (2018).
https://doi.org/10.1109/IPDPSW.2018.00055

38. Khurshid, S., Marinov, D.: TestEra: specification-based testing of
java programs using SAT. Autom. Softw. Eng. 11(4), 403–434
(2004). https://doi.org/10.1023/B:AUSE.0000038938.10589.b9

39. Kipf, T.N., Welling, M.: Variational graph auto-encoders. CoRR
arXiv:1611.07308 (2016)

40. Kolda, T.G., Pinar, A., Plantenga, T.D., Seshadhri, C.: A scalable
generative graph model with community structure. SIAM J. Sci.
Comput. (2014). https://doi.org/10.1137/130914218

41. Kosiol, J., Strüber, D., Taentzer, G., Zschaler, S.: Graph consis-
tency as a graduated property. In: Gadducci, F., Kehrer, T. (eds.)
Graph Transormation, pp. 239–256. Springer International Pub-
lishing, Cham (2020)

42. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. Journal
on Satisfiability, BooleanModeling and Computation (2-3), 59–64
(2010)

43. Leskovec, J., Chakrabarti, D., Kleinberg, J.M., Faloutsos, C.: Real-
istic, mathematically tractable graph generation and evolution,
using kronecker multiplication. In: KDD, pp. 133–145 (2005).
https://doi.org/10.1007/11564126_17

44. Leskovec, J., Chakrabarti, D., Kleinberg, J.M., Faloutsos, C.,
Ghahramani, Z.: Kronecker graphs: an approach to modeling net-
works. J. Mach. Learn. Res. 11, 985–1042 (2010)

45. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In:
T. Eliassi-Rad, L.H. Ungar, M. Craven, D. Gunopulos (eds.) Pro-
ceedings of theTwelfthACMSIGKDDInternational conference on
knowledge discovery and data mining, pp. 631–636. ACM (2006).
https://doi.org/10.1145/1150402.1150479

46. Li, Y., Vinyals, O., Dyer, C., Pascanu, R., Battaglia, P.W.: Learning
deep generativemodels of graphs. CoRR arXiv:1803.03324 (2018)

47. Micskei, Z., Szatmári, Z., Oláh, J., Majzik, I.: A concept for
testing robustness and safety of the context-aware behaviour of
autonomous systems. In: KES-AMSTA, pp. 504–513. Springer
(2012). https://doi.org/10.1007/978-3-642-30947-2_55

48. Milicevic, A., Misailovic, S., Marinov, D., Khurshid, S.: Korat: A
tool for generating structurally complex test inputs. In: ICSE, pp.
771–774. IEEEComputer Society (2007). https://doi.org/10.1109/
ICSE.2007.48

49. Miller, J.F.: Cartesian genetic programming: its status and future.
Genet. Program. Evol. Mach. (2019). https://doi.org/10.1007/
s10710-019-09360-6

50. Mottu, J.M., Baudry, B., Le Traon, Y.:Mutation analysis testing for
model transformations. In: Rensink, A., Warmer, J. (eds.) Model
driven architecture - foundations and applications, pp. 376–390.
Springer, Berlin Heidelberg, Berlin, Heidelberg (2006)

51. deMoura, L., Bjørner, N.: Z3:An efficient SMT solver. In: TACAS,
pp. 337–340. Springer (2008)

52. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In:
TACAS, pp. 337–340 (2008). https://doi.org/10.1007/978-3-540-
78800-3_24

53. Nassar, N., Kosiol, J., Kehrer, T., Taentzer, G.: Generating large
EMF models efficiently: A rule-based, configurable approach. In:
Lecture notes in computer science (including subseries Lecture
Notes in artificial intelligence and lecture notes in bioinformatics),

123

https://doi.org/10.1007/978-3-642-54804-8_2
https://doi.org/10.1007/978-3-642-54804-8_2
https://doi.org/10.1109/ICDCS.2018.00062
https://doi.org/10.1109/ICDCS.2018.00062
https://doi.org/10.1016/j.scico.2007.01.013
https://doi.org/10.1016/j.scico.2007.01.013
https://hal.inria.fr/hal-00688039
https://hal.inria.fr/hal-00688039
http://dl.acm.org/citation.cfm?id=2487085.2487132
https://doi.org/10.1016/j.scico.2018.01.008
https://doi.org/10.1109/ICPR.2004.1334558
https://doi.org/10.1109/ICPR.2004.1334558
https://doi.org/10.1093/bioinformatics/btt717
https://doi.org/10.1093/bioinformatics/btt717
https://doi.org/10.1007/s10270-013-0328-6
https://doi.org/10.1007/s10270-013-0328-6
https://doi.org/10.1109/ASE.2013.6693100
https://doi.org/10.1145/505145.505149
https://doi.org/10.1145/505145.505149
https://doi.org/10.1007/978-3-642-24485-8_48
https://doi.org/10.1007/978-3-642-24485-8_48
https://doi.org/10.1109/IPDPSW.2018.00055
https://doi.org/10.1023/B:AUSE.0000038938.10589.b9
http://arxiv.org/abs/1611.07308
https://doi.org/10.1137/130914218
https://doi.org/10.1007/11564126_17
https://doi.org/10.1145/1150402.1150479
http://arxiv.org/abs/1803.03324
https://doi.org/10.1007/978-3-642-30947-2_55
https://doi.org/10.1109/ICSE.2007.48
https://doi.org/10.1109/ICSE.2007.48
https://doi.org/10.1007/s10710-019-09360-6
https://doi.org/10.1007/s10710-019-09360-6
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24

Automated generation of consistent, diverse and structurally... 1733

vol. 12076 LNCS, pp. 224–244. Springer (2020). https://doi.org/
10.1007/978-3-030-45234-6_11

54. Nicosia, V., Latora, V.: Measuring and modeling correlations in
multiplex networks. Phys. Rev. E (2015). https://doi.org/10.1103/
PhysRevE.92.032805

55. The object management group: object constraint language, v2.4
(2014)

56. Pham, M., Boncz, P.A., Erling, O.: S3G2: A scalable structure-
correlated social graph generator. In: TPCTC, pp. 156–172.
Springer (2012). https://doi.org/10.1007/978-3-642-36727-4_11

57. Prat-Pérez, A., Guisado-Gámez, J., Salas, X.F., Koupy, P., Depner,
S., Bartolini, D.B.: Towards a property graph generator for bench-
marking. In: GRADES at SIGMOD, pp. 6:1–6:6 (2017). https://
doi.org/10.1145/3078447.3078453

58. Rensink, A.: Canonical graph shapes. In: ESOP, pp. 401–415.
Springer (2004). https://doi.org/10.1007/978-3-540-24725-8_28

59. Rensink, A.: Isomorphism checking in GROOVE. Electron. Com-
mun. Eur. Assoc. Softw. Sci. Technol. (2006). https://doi.org/10.
14279/tuj.eceasst.1.77

60. Rensink, A., Distefano, D.: Abstract graph transformation. Electr.
Notes Theor. Comput. Sci. 157(1), 39–59 (2006)

61. Reps, T.W., Sagiv, M., Wilhelm, R.: Static program analysis via
3-valued logic. In: International Conference on Computer Aided
Verification, pp. 15–30 (2004)

62. Sathanur, A.V., Choudhury, S., Joslyn, C., Purohit, S.: When labels
fall short: Property graph simulation via blending of network struc-
ture and vertex attributes. CoRR arXiv:1709.02339 (2017)

63. Schneider, S., Lambers, L., Orejas, F.: Automated reasoning for
attributed graph properties. STTT 20(6), 705–737 (2018). https://
doi.org/10.1007/s10009-018-0496-3

64. Semeráth, O., Babikian, A.A., Li, A.,Marussy, K., Varró, D.: Auto-
mated generation of consistent models with structural and attribute
constraints. In: Proceedings of the 23rd ACM/IEEE International
conference on model driven engineering languages and systems,
pp. 187–199 (2020)

65. Semeráth, O., Babikian, A.A., Pilarski, S., Varró, D.: VIATRA
Solver: a framework for the automated generation of consistent
domain-specific models. In: ICSE, pp. 43–46 (2019)

66. Semeráth, O., Barta, Á., Horváth, Á., Szatmári, Z., Varró, D.: For-
mal validation of domain-specific languages with derived features
and well-formedness constraints. Software and systems modeling
pp. 357–392 (2017). https://doi.org/10.1016/j.entcs.2008.04.038

67. Semeráth, O., Nagy, A.S., Varró, D.: A graph solver for
the automated generation of consistent domain-specific models.
In: ICSE, pp. 969–980. ACM (2018). https://doi.org/10.1145/
3180155.3180186

68. Semeráth, O., Rebeka, F., Bergmann, G., Varró, D.: Diversity
of graph models and graph generators in mutation testing. Int.
J. Softw. Tools Technol. Trans. (2019). https://doi.org/10.1007/
s10009-019-00530-6

69. Semeráth, O., Varró, D.: Graph Constraint Evaluation over Partial
Models by Constraint Rewriting. In: ICMT, pp. 138–154 (2017).
https://doi.org/10.1007/978-3-319-61473-1_10

70. Semeráth, O., Varró, D.: Iterative generation of diverse models
for testing specifications of DSL tools. In: FASE, pp. 227–245.
Springer (2018). https://doi.org/10.1007/978-3-319-89363-1_13

71. Seshadhri, C., Kolda, T.G., Pinar, A.: Community struc-
ture and scale-free collections of Erdős-Rényi graphs. CoRR
arXiv:1112.3644 (2011)

72. Shariat Yazdi, H., Angelis, L., Kehrer, T., Kelter, U.: A framework
for capturing, statistically modeling and analyzing the evolution of
software models. J. Syst. Softw. 118, 176–207 (2016). https://doi.
org/10.1016/j.jss.2016.05.010

73. Shariat Yazdi, H., Pietsch, P., Kehrer, T., Kelter, U.: Synthesizing
realistic test models. Comput. Sci. Res. Dev. 30(3–4), 231–253
(2015). https://doi.org/10.1007/s00450-014-0255-y

74. Simonovsky, M., Komodakis, N.: GraphVAE: Towards genera-
tion of small graphs using variational autoencoders. In: ICANN,
pp. 412–422. Springer (2018). https://doi.org/10.1007/978-3-030-
01418-6_41

75. Soltana, G., Sabetzadeh, M., Briand, L.C.: Synthetic data gener-
ation for statistical testing. In: ASE, pp. 872–882 (2017). https://
doi.org/10.1109/ASE.2017.8115698

76. Soltana, G., Sabetzadeh, M., Briand, L.C.: Practical model-driven
data generation for system testing. CoRRarXiv:1902.00397 (2019)

77. Staudt, C.L., Hamann, M., Gutfraind, A., Safro, I., Meyerhenke,
H.: Generating realistic scaled complex networks. Appl. Netw. Sci.
2(1), 1–29 (2017). https://doi.org/10.1007/s41109-017-0054-z

78. Szárnyas, G., Kővári, Z., Salánki, Á., Varró, D.: Towards the char-
acterization of realistic models: evaluation of multidisciplinary
graph metrics. In: MODELS, pp. 87–94. ACM (2016)

79. The Eclipse Project: Eclipse Modeling Framework (2019). http://
www.eclipse.org/emf

80. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In:
TACAS, pp. 632–647. Springer (2007). https://doi.org/10.1007/
978-3-540-71209-1_49

81. Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B.,
Ráth, I., Szatmári, Z., Varró, D.: EMF-IncQuery: an integrated
development environment for live model queries. Sci. Comput.
Program. 98, 80–99 (2015). https://doi.org/10.1016/j.scico.2014.
01.004

82. Varró, D., Balogh, A.: The model transformation language of
the VIATRA2 framework. Sci. Comput. Program. 68(3), 214–234
(2007). https://doi.org/10.1016/j.scico.2007.05.004

83. Varró, D., Bergmann, G., Hegedüs, Á., Horváth, Á., Ráth, I., Ujhe-
lyi, Z.: Road to a reactive and incremental model transformation
platform: three generations of the viatra framework. Softw. Syst.
Model. 15(3), 609–629 (2016)

84. Varró, D., Semeráth, O., Szárnyas, G., Horváth, Á.: Towards the
automated generation of consistent, diverse, scalable and realistic
graph models. In: Graph transformation, specifications, and nets
- In Memory of Hartmut Ehrig, pp. 285–312. Springer (2018).
https://doi.org/10.1007/978-3-319-75396-6_16

85. Wang, J.,Kim,S.,Carrington,D.A.:Verifyingmetamodel coverage
of model transformations. In: ASWEC, pp. 270–282. IEEE (2006)

86. Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Generalizing from a
few examples: a survey on few-shot learning. ACM Comput. Surv.
(CSUR) 53(3), 1–34 (2020)

87. Wu,H.,Monahan, R., Power, J.F.: Exploiting attributed type graphs
to generate metamodel instances using an SMT solver. In: TASE,
pp. 175–182 (2013). https://doi.org/10.1109/TASE.2013.31

88. Yakindu Statechart Tools: Yakindu (2019). http://statecharts.org/
89. You, J., Ying, R., Ren, X., Hamilton, W.L., Leskovec, J.:

GraphRNN: Generating realistic graphs with deep auto-regressive
models. In: ICML, pp. 5694–5703 (2018)

90. Zhang, J.W., Tay, Y.C.: GSCALER: synthetically scaling a given
graph. In: EDBT, pp. 53–64 (2016). https://doi.org/10.5441/002/
edbt.2016.08

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/978-3-030-45234-6_11
https://doi.org/10.1007/978-3-030-45234-6_11
https://doi.org/10.1103/PhysRevE.92.032805
https://doi.org/10.1103/PhysRevE.92.032805
https://doi.org/10.1007/978-3-642-36727-4_11
https://doi.org/10.1145/3078447.3078453
https://doi.org/10.1145/3078447.3078453
https://doi.org/10.1007/978-3-540-24725-8_28
https://doi.org/10.14279/tuj.eceasst.1.77
https://doi.org/10.14279/tuj.eceasst.1.77
http://arxiv.org/abs/1709.02339
https://doi.org/10.1007/s10009-018-0496-3
https://doi.org/10.1007/s10009-018-0496-3
https://doi.org/10.1016/j.entcs.2008.04.038
https://doi.org/10.1145/3180155.3180186
https://doi.org/10.1145/3180155.3180186
https://doi.org/10.1007/s10009-019-00530-6
https://doi.org/10.1007/s10009-019-00530-6
https://doi.org/10.1007/978-3-319-61473-1_10
https://doi.org/10.1007/978-3-319-89363-1_13
http://arxiv.org/abs/1112.3644
https://doi.org/10.1016/j.jss.2016.05.010
https://doi.org/10.1016/j.jss.2016.05.010
https://doi.org/10.1007/s00450-014-0255-y
https://doi.org/10.1007/978-3-030-01418-6_41
https://doi.org/10.1007/978-3-030-01418-6_41
https://doi.org/10.1109/ASE.2017.8115698
https://doi.org/10.1109/ASE.2017.8115698
http://arxiv.org/abs/1902.00397
https://doi.org/10.1007/s41109-017-0054-z
http://www.eclipse.org/emf
http://www.eclipse.org/emf
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1016/j.scico.2014.01.004
https://doi.org/10.1016/j.scico.2014.01.004
https://doi.org/10.1016/j.scico.2007.05.004
https://doi.org/10.1007/978-3-319-75396-6_16
https://doi.org/10.1109/TASE.2013.31
http://statecharts.org/
https://doi.org/10.5441/002/edbt.2016.08
https://doi.org/10.5441/002/edbt.2016.08

1734 O. Semeráth et al.

Oszkár Semeráth is a research
fellow at the Department of Mea-
surement and Information Systems
at Budapest University of Tech-
nology. His research focuses on
modeling technologies, and the
application and development of
specialized logic solvers for graph
generation. He is the lead devel-
oper of the VIATRA Solver graph
generator framework. Hi is a co-
author of a book chapter, five jour-
nal papers with impact factor, 17
conference papers, and won
IEEE/ACM best paper award at

the MODELS 2013 conference.

Aren A. Babikian is a PhD student
at McGill University. His research
focuses on using model gener-
ation techniques for the safety assur-
ance of autonomous cyber-physial
systems. He has published a related
research paper at the international
FASE 2020 conference.

Boqi Chen is a PhD student
in the ECE department at McGill
University. His research interest
includes certification of systems
involving deep learning compo-
nents and reliability of artificial
intelligence systems.

Chuning Li is a Master’s stu-
dent under the supervision of pro-
fessor Brett Meyer in the ECE
department at McGill University.
Her current research interests cen-
ter around machine learning on
resource constrained edge devices,
hardware software co-design for
machine learning algorithms.

Kristóf Marussy is a PhD student
at the Department of Measure-
ment and Information Systems at
Budapest University of Technol-
ogy and Economics. His research
interest includes the modeling and
analysis of extra-functional prop-
erties of cyber-physical systems,
and the synthesis of reliable archi-
tectures.

Gábor Szárnyas is a postdoc-
toral researcher. He obtained his
PhD in software engineering in
2019, focusing on the intersection
of object-oriented graph models
and property graphs. He currently
works on efficient graph process-
ing techniques, including formu-
lating graph algorithms in the lan-
guage of linear algebra (Graph-
BLAS, LAGraph), implementing
property graph query engines
(openCypher, SQL/PGQ), and
designing graph benchmarks. He
serves on the steering committee

of the Linked Data Benchmark Council.

Dániel Varró Daniel Varro is a
full professor at McGill Univer-
sity and at Budapest University of
Technology and Economics. He is
a co-author of more than 170 sci-
entific papers with seven Distin-
guished Paper Awards, and three
Most Influential Paper Awards. He
serves on the editorial board of
Software and Systems Modeling
and Journal of Object Technology
periodicals, and served as a pro-
gram co-chair of MODELS 2021,
SLE 2016, ICMT 2014, FASE
2013 conferences. He delivered

keynote talks at numerous conferences (incl. CSMR, SOFSEM and
SAM) and international summer schools. He is a co-founder of the
VIATRA open-source model query and transformation framework,
and IncQuery Labs, a technology-intensive Hungarian company.

123

	Automated generation of consistent, diverse and structurally realistic graph models
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Characterization of structurally realistic graph models
	1.4 Contributions
	1.5 Added value

	2 Preliminaries
	2.1 Models and metamodels
	2.2 Graph predicates
	2.2.1 Syntax
	2.2.2 Semantics

	2.3 Graph shapes for diversity
	2.4 Metric distances over distributions

	3 Model metrics by graph predicates
	3.1 Consistency metrics as graph predicates
	3.2 Characterization of realistic models
	3.3 Characterization of diverse models
	3.4 Relation between consistency, realistic nature and diversity

	4 Generation of consistent, realistic and diverse graph models
	4.1 Black-box view of model generation
	4.2 Selection of representative models
	4.3 Model generation as state space exploration
	4.4 Guidance heuristic for model metrics
	4.5 Semantic guarantees and limitations

	5 Evaluation
	5.1 Research questions
	5.2 Target domains
	5.3 Compared approaches and metrics
	5.4 RQ1: Effectiveness of metrics in guidance
	5.5 RQ2: Realistic nature of models
	5.6 RQ3: Diversity of models
	5.7 RQ4: Scalability evaluation
	5.8 Threats to validity and limitations

	6 Related work
	7 Conclusion and future work
	Acknowledgements
	References

