
Software and Systems Modeling
https://doi.org/10.1007/s10270-021-00904-y

EXPERT VOICE

Towards a model-driven approach for multiexperience AI-based user
interfaces

Elena Planas1 · Gwendal Daniel1 ·Marco Brambilla2 · Jordi Cabot3

Received: 2 June 2021 / Accepted: 14 June 2021
© The Author(s) 2021

Abstract
Software systems start to include other types of interfaces beyond the “traditional” Graphical-User Interfaces (GUIs). In
particular, Conversational User Interfaces (CUIs) such as chat and voice are becoming more and more popular. These new
types of interfaces embed smart natural language processing components to understand user requests and respond to them.
To provide an integrated user experience all the user interfaces in the system should be aware of each other and be able to
collaborate. This is what is known as a multiexperience User Interface. Despite their many benefits, multiexperience UIs
are challenging to build. So far CUIs are created as standalone components using a platform-dependent set of libraries and
technologies. This raises significant integration, evolution and maintenance issues. This paper explores the application of
model-driven techniques to the development of software applications embedding a multiexperience User Interface. We will
discuss how raising the abstraction level at which these interfaces are defined enables a faster development and a better
deployment and integration of each interface with the rest of the software system and the other interfaces with whom it may
need to collaborate. In particular, we propose a new Domain Specific Language (DSL) for specifying several types of CUIs
and show how this DSL can be part of an integrated modeling environment able to describe the interactions between the
modeled CUIs and the other models of the system (including the models of the GUI). We will use the standard Interaction
Flow Modeling Language (IFML) as an example “host” language.

Keywords Multiexperience development platform (MXDP) ·Model-driven development (MDD) · bots · Conversational user
interface (CUI)

1 Introduction

The specification and the implementation of the User Inter-
face (UI) of a system is a key aspect in any software

Communicated by Iris Reinhartz-Berger.

B Elena Planas
eplanash@uoc.edu

Gwendal Daniel
gdaniel@uoc.edu

Marco Brambilla
marco.brambilla@polimi.it

Jordi Cabot
jordi.cabot@icrea.cat

1 Universitat Oberta de Catalunya, 08018 Barcelona, Spain

2 Politecnico di Milano, 20133 Milano, Italy

3 ICREA - Universitat Oberta de Catalunya, 08010 Barcelona,
Spain

development project. Inmost cases, thisUI takes the formof a
Graphical User Interface (GUIs) that encompasses a number
of visual components 1 [19] to offer rich interactions between
the user and the system. But nowadays, a new generation
of UIs which integrate more interaction modalities (such as
chat, voice and gesture) is gaining popularity [27]. More-
over, many of these newUIs are becoming complex software
artifacts themselves, for instance, through AI-enhanced soft-
ware components that enable even more natural interactions,
including the possibility to use Natural Language Processing
(NLP) via chatbots or voicebots. TheseNLP-based interfaces
are commonly referred as Conversational User Interfaces
(CUIs).

Even more, many times several types of UIs are com-
bined as part of the same application (e.g., a chatbot in a
web page), what it is known as Multiexperience User Inter-

1 www.usability.gov/how-to-and-tools/methods/user-interface-
elements.html.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00904-y&domain=pdf
www.usability.gov/how-to-and-tools/methods/user-interface-elements.html.
www.usability.gov/how-to-and-tools/methods/user-interface-elements.html.

E. Planas et al.

face. These multiexperience UIs may be built together in
the development environment provided by aMultiexperience
Development Platform (MXDP). According to Gartner2,
MXDPs serve to centralize life cycle activities—designing,
developing, testing, distributing, managing and analyzing
— for a portfolio of multiexperience apps. Multiexperience
refers to the various permutations of modalities (e.g., touch,
voice and gesture), devices and apps that users interact with
on their digital journey across the various touchpoints. Mul-
tiexperience development involves creating fit-for-purpose
apps based on touchpoint-specific modalities, while at the
same time ensuring a consistent user experience across
web, mobile, wearable, conversational and immersive touch-
points. According to Gartner, by 2023, more than 25% of the
mobile apps, progressive web apps, and conversational apps
at large enterprises will be built and/or run through a multi-
experience platform.

Despite the increasing popularity of these new types of
user interfaces, and the rich possibilities they offer when
combining among them or with preexisting GUIs, we are
still missing of dedicated software development methods and
techniques that facilitate their definition and implementa-
tion. The fragmented ecosystem of languages, libraries and
APIs for building them (many times, proprietary and vendor-
specific) add a new challenge to their development. Besides,
their development is often completely separated from that of
the rest of the system, as an ad hoc extension. This raises sig-
nificant integration, evolution and maintenance challenges.
Developers need to handle the coordination of the cognitive
services to build multiexperience UIs, integrate them with
external services, and worry about extensibility, scalability,
and maintenance.

We believe a model-driven approach for MXDP could be
an important first-step towards facilitating the specification
of rich UIs able to coordinate and collaborate to provide the
best experience for end-users. Indeed, most non-trivial sys-
tems adhere to some kind of model-based philosophy [8]
where software design models (including GUI models) are
transformed into the production code the system executes
at run-time. This transformation can be (semi)automated in
some cases. In this sense, the contribution of this paper is
twofold:

– We propose to raise the abstraction level used in the def-
inition of this new breed of conversational and smart
interfaces, facilitating their specification and implemen-
tation on a variety of platforms.

– We show how these interface models can be used in con-
junction with GUI models to combine the benefits of all
these different types of interfaces.

2 www.gartner.com.

The rest of the paper is structured as follows: Section
2 provides the background and introduces some prelimi-
nary concepts used through the paper; Section 3, which is
focused on Conversational User Interfaces (CUIs), presents
a newDomain Specific Language (DSL) for specifying these
interfaces; Section 4 shows an extension of the standard
Interaction FlowModeling Language (IFML) to describe the
links between themultiexperienceUIs and the other software
components; Section 5 reviews the related work; Section 6
outlines several lines for the further work; and finally Sect. 7
draws the conclusions.

2 Background and preliminary concepts

Before presenting our model-driven approach for multiex-
perience applications, we review in this section some basic
concepts on User Interfaces (UIs) and their evolution, with a
special focus on Conversational User Interfaces.

2.1 Evolution of user interfaces

The history of computer User Interfaces is that of the
improvement of the user experience. At the beginning, text-
based User Interfaces, such as Command-Line Interfaces
(CLIs) which evolved from batch computing, allowed to
process commands in the form of plain text. The next rel-
evant improvement was the introduction of Graphical User
Interfaces (GUIs), which allow interacting through graphi-
cal elements such as icons, cursors, and buttons. In the last
decades, GUIs evolved to a new paradigm known as Natu-
ral User Interfaces (NUIs), which integrate more interaction
modalities such as touch, voice or gestures to make the user
interactions with the software feel as natural as possible.

This naturalization process often implies embedding
some AI components in the UIs (for instance, for voice and
gesture recognition), what result in the Intelligent User Inter-
faces (IUI) [45]. A clear example of Intelligent UIs are the
smart Conversational User Interfaces (CUIs)3 [28], which
allow users to interact with computer-based applications via
natural language.

Note that an application may include more than one User
Interface as part of an integrated multiexperience User Inter-
face enabling the user to interact with the application in
multiple ways depending on the more convenient way to
accomplish a certain task in a given context. Even in parallel.
The development of this new type of multiple and complex

3 Not all CUIs rely on neural networks or otherAI techniques for under-
standing the user (e.g., you could use more grammar-like approaches to
parse the input text) but nowadays most CUIs do rely on an AI-based
NLP engine for better accuracy.

123

www.gartner.com

Towards a model-driven approach for multiexperience AI-based user interfaces…

Fig. 1 Bot working schema

UIs is precisely the goal of the new emerging Multiexperi-
ence Development Platforms (MXDP).

2.2 Conversational user interfaces

CUIs are becoming more and more popular every day. The
most relevant example is the rise of bots [27], which are
being increasingly adopted in various domains such as e-
commerce or customer service, as a direct communication
channel between companies and end-users. A bot wraps a
CUI as key component but complements it with a behavior
specification that defines how the bot should react to a given
user message.

Bots are classified in different types depending on the
channel employed to communicate with the user. For
instance, in chatbots the user interaction is through textual
messages, in voicebots is through speech, while in ges-
turebots is through interactive images. Note that in all cases
bots are the mechanism to implement a conversation, it just
changes the medium where this conversation takes place.
As such, bots always follow the similar working schema
depicted in Fig. 1.

As you can see in the Figure, the conversation capabilities
of a bot are usually designed as a set of intents, where each
intent represents a possible user’s goal when interacting with
the bot. The bot then waits for its CUI front-end to detect a
match of the user’s input text (called utterance) with one of
the intents the bot implements. The matching phase may rely
on external Intent Recognition Providers (e.g., DialogFlow,
AmazonLex, IBMWatson,...).When there is amatch, the bot
back-end executes the required behavior, optionally calling
external services for more complex responses; and finally,
the bot produces a response that it is returned to the user (via
text, voice or images, depending on the type of CUI).

As an example, we show in Fig. 2 a bot that gives the
weather forecast for any city in the world. Following the
working schema sketched in Fig. 1, this weather bot defines
several intents such as asking for weather forecast. When
a user writes (considering a chatbot) or says (considering
a voicebot) “What is the weather today in Barcelona?” or
“What is the forecast for today in Barcelona?”, the intent

Fig. 2 Screenshot of our example chatbot created with Xatkit [17]

asking for weather forecast is matched and “Barcelona” is
recognized as a city parameter (also called “entity”) to be
usedwhen building the response. Then, the bot calls an exter-
nal service (in this case, the REST API of OpenWeather4) to
look up this information and give it back to the user.

3 Modeling smart conversational user
interfaces

In this section we describe how the Model-Driven Develop-
ment approach may be applied to specify bots comprising
some type of Conversational User Interface (e.g., chatbots).
To this end, we present a new Domain Specific Language
(DSL), that generalizes the one discussed in [17] to cover
all types of CUIs and not just chatbots and follows a
state-machine semantics to facilitate the definition of more
complex flows and behaviors in the interactionwith the users.

A DSL is defined through two main components [26]: (i)
an abstract syntax (metamodel) which specifies the language
concepts and their relationships (in this context, generaliz-
ing the primitives provided by the major intent recognition
platforms used by bots such as [3,21,24]), and (ii) a con-
crete syntax which provides a specific (textual or graphical)

4 https://openweathermap.org.

123

https://openweathermap.org

E. Planas et al.

representation to specify models conforming to the abstract
syntax.

In the next subsections we provide the abstract syntax of
our language split into three packages in order to facilitate
its readability: the intent package metamodel (see Sect. 3.1),
the behavioral package metamodel (see Sect. 3.2), and the
runtime packagemetamodel (see Sect. 3.3). Besides, we pro-
vide a possible concrete syntax, to show how the concepts of
the metamodel are instantiated in our running example (see
Sect. 3.4).

3.1 Intent package

The Intent Package metamodel (see Fig. 3) describes the set
of concepts used for modeling the intent definitions at design
time.

It defines a top-level Library class containing a collection
of Events, representing occurrences that have some conse-
quence for the system [32]. Events, which are identified by
its name, are classified in a hierarchy according to the UML
[32] and the IFML [31] metamodels. There are two types
of Events: ThrowingEvents (events that are generated by the
UI) and CatchingEvents (events that are captured in the UI
and that trigger a subsequent change). In its turn, we classify
CatchingEvents into two sub-categories: UserEvents (events
produced by the user) and SystemEvents (events produced
by the system itself, usually provided by ExternalServices,
which represent a high-level abstraction of external platforms
and providers).

Intents, which in the context of CUIs are the most rel-
evant type of UserEvents, represent the user intentions or
requests that bots have to address. For each Intent we need to
store a set of training sentences (Text) in a specific language,
which are input examples used to detect the user intention
underlying a textual message. The Text of a training sentence
is split into several TextFragments representing input train-
ing sentence parts—typically words—to match. Note that
we assume voicebots (or other bots which are not dealing
with text) have an internal pre-processing which translates
all the interactions to text in order to be able to automatize its
treatment, as typically done in industrial practice. As a con-
sequence, in this package we can address all Intents directly
as text, just like it occurs in chatbots. Besides, Intents can
optionally haveParameters which have a name and an entity,
and allow to define specific characteristics of an Intent. We
define the EntityType enumeration to save the values that a
parameter may acquire. Note that, this enumeration includes
basic types (String, Integer, Boolean, etc) as well as other
more specific types (Date, Time, Location, City, etc) which
are supported by most natural language understanding plat-
forms such as dialogFlow5.

5 https://cloud.google.com/dialogflow.

Integer

City
Location

Any

String

Date

Real

Time

Boolean
UnlimitedNatural

Null

«enumeration»

EntityType

entity : EntityType
name : String

Parameter

ExternalService

ThrowingEvent

language : String
value : String

Text

CatchingEvent

value : String

TextFragment

SystemEvent

name : String

Library
name : String

Event

UserEvent

Intent
context

*

*

providedBy

0..1

*

trainingSentences *

*

*

0..1

0..1

Fig. 3 Intent package metamodel

3.2 Behavioral package

The Behavioral package metamodel (see Fig. 4) defines the
set of concepts used for modeling the execution logic of
the Intent package. For this aim, we reuse the UML state-
machine formalism [32]. Roughly, a state-machine is a graph
where vertices represent the States and arcs represent the
Transitions. State machine execution is triggered by appro-
priate Event occurrences. In the context of this paper, this
representation allows to express the valid (conversational or
event-driven) interaction flows between a user and a bot.

A Statemodels a situation in the execution of theBehavior
during which some invariant condition holds. A particular
state is the InitialState, which is, as its name indicates, the
initial state where the bot is when starting its execution. Each
State defines a body, which is the Behavior executed when
entering the state. All these Behaviors consist of a set of
Actions which specify, in a concrete language, the specific
functions performed. These Actions may be provided by an
ExternalService, such as platforms and providers.

Sates are connected throughTransitions. ATransition rep-
resents a single directed arc from a single source State and
terminating on a single target State.We distinguish two types
of Transitions: AutomaticTransitions (which are triggered
automatically) and GuardedTransitions (which are triggered
when a specific guard holds). A GuardedTransition may be
triggered by severalEvents (in our context, usually an Intent).
When multiple triggers are defined for a Transition, they are
logically disjunctive, that is, if any of them are enabled, the
Transition will be triggered. Besides, a GuardedTransition
may have an associated guardedConstraint, which allows a
fine-grained control over the firing of theTransition. The con-
straint is evaluated when an Event occurrence is dispatched

123

https://cloud.google.com/dialogflow.

Towards a model-driven approach for multiexperience AI-based user interfaces…

Fig. 4 Behavioral package
metamodel

AutomaticTransition GuardedTransition

name : String

State Behaviour

ExternalService
language : String
body : String

Constraint

body : String
language : String

Action

name : String

Event

InitialState

Transition

source

1

outgoing

*

incoming

*

target

1

localFallback
0..1*

*

defaultFallback
1

body

1*

0..1

triggeredBy*

*

guardedConstraint 0..1

* *
0..1
*

*

by the state-machine. If the constraint is true at that time, the
Transition may be enabled, otherwise, it is disabled.

When none of the output Transitions hold, the bot executes
the general defaultFallback behavior, or, if defined in the
state where the bot is on, the localFallback behavior to try to
recover from this unexpected situation (e.g., a matched intent
in a state where that intent was not supposed to be matched).

3.3 Runtime package

TheRuntime packagemetamodel (see Fig. 5) defines some of
the classes used during the runtime execution of the deployed
bot. This is useful to illustrate how the bot works but also to
describe some of the internal structures required to build a
bot engine that can be run CUIs as the ones described before.
We focus on the classes related with the Intent package and
we avoid the classes from the Behavioral package, since we
consider the former is the most relevant for the topic of this
paper and the later are similar to any proposal for enacting
state machines.

In this package, the UserInput metaclass represents the
user utterances. Depending on the type of UI we are dealing
with, the user input may be in the form of a SpokenInput (in
voicebots), a TextualInput (in chatbots) or a GestualInput (in
gestual interfaces). Each of these inputs represent Data in
form of Speech (for voicebots), Text (for chatbots) or Video
(for gestual interfaces). In all cases, these data is translated
into text (see the associations speechToText and videoToText).
To simplify, in this paper, we do not model the external AI
libraries that could be used to perform this translation, but
in practice, all these different input types are translated into
text (and later on converted back if necessary) for an homo-
geneous treatment by the CUI.

A UserInput may match with one or more Intents defined
in the Intent Package6.We assume there exist an intent recog-
nition provider (out of the scope of this paper) used to classify
UserInputs into one or more Intents. Each recognized intent

6 Classes from another packages are shown shaded.

is represented by the MatchedIntent class, which stores the
level of recognition confidence provided by the intent recog-
nition provider.

Finally, for each Parameter of an Intent, the correspond-
ing MatchedIntents keep its value in the association class
ParameterValue. Each of these ParameterValues correspond
to a specific TextFragment of the analogousUserInput which
has derived the MatchedInput.

3.4 Concrete syntax

In order to complete the definition of our DSL, in this section
we provide an example of textual concrete syntax based on
Xatkit [17]. The syntax is presented through examples using
the running case study introduced in Sect. 2.2. The complete
syntax of this language and its instantiation can be seen in
GitHub7.Alternative syntaxes (including graphical ones) can
be easily mapped to the abstract syntax presented so far8.

The first step is defining the asking for weather forecast
intent (see Listing 1). Note how as part of the intent, the bot
collects the name of the desired city.

Listing 1 Intent definition for the weather bot.

1 val howIsTheWeather = intent ("HowIsTheWeather")
2 . trainingSentence ("How is the weather today in CITY?")
3 . trainingSentence ("What is the forecast for today in CITY?")
4 .parameter("cityName") . fromFragment("CITY") . entity (city ()) ;

Then, the bot waits in an initial state of the state-machine
(awaitingInput) for the intent to match (see Listing 2).

Listing 2 Intent awaiting for the weather bot.

1 awaitingInput
2 . next ()
3 .when(intentIs (howIsTheWeather)) .moveTo(printWeather) ;

7 https://github.com/xatkit-bot-platform/xatkit-examples/tree/master/
WeatherBot.
8 Xatkit itself has drastically changed its concrete syntax moving from
an External DSL to a Java-based Fluent API while keeping the same
internal metamodel.

123

https://github.com/xatkit-bot-platform/xatkit-examples/tree/master/WeatherBot.
https://github.com/xatkit-bot-platform/xatkit-examples/tree/master/WeatherBot.

E. Planas et al.

Fig. 5 Runtime package
metamodel

recognitionConfidence : float

MatchedIntent

entity : EntityType
name : String

Parameter

language : String

Speech

value : String
language : String

Text

value : String

TextFragment

GestualInputSpokenInput TextualInput

UserInput

Gesture

Data

Intent

value : String

ParameterValue

*

*

context
*

gestureToText

1 0..1

speechToText

10..1

0..1

1
*

1..*

*

1..*

*

1..*

*

utterance 1

1

*

*

Once the intent is matched, the transition to the print-
Weather state is executed to actually process the request.
With this purpose, the bot calls an external service (in this
example, theRESTAPIOpenWeather) passing the requested
city as parameter (see Listing 3). To simplify, we have omit-
ted the code corresponding to the API call.

Listing 3 Intent resolution for the weather bot.

1 printWeather
2 .body(context −> {
3 String cityName = (String) context . getIntent () . getValue("cityName") ;
4 / / Call the OpenWeather REST API providing the cityName as a
5 / / parameter and return the proper message
6 . . .
7 })
8 . next ()
9 .moveTo(awaitingInput) ;

4 Modelingmultiexperience applications

A key element of multiexperience UIs is that every type of
interface communicates and collaborates with each other,
across different devices and applications, thus giving the user
the perception of a unified and shared experience across the
different modalities and interfaces. The expectation of users
when aiming at a given objective is that he can interact with
a variety of applications in different contexts in a seamless
way to reach the target.

For instance, Fig. 6 shows a typical scenario of multiexpe-
rience user interaction. Suppose that a customer on a Sunday
morning wants to buy a new technical product (a cell phone
or a home theater system). He first interacts with his home
assistant (like Alexa or Google assistant) to ask it to find the
best nearby tech store open on Sunday.With this information
in mind, he looks at the store web site on his PC and, being
satisfiedwith the kind of store, he asks the web site chatbot to
find the type of products he is looking for. After browsing the
various alternatives, he finds one item he likes, and sets the
place and the product as preferences on his mobile phone. He
reads the details of the product on the phone while walking to
his car. When he reaches the car, he transfers the information
about the place to the car navigation system and drives there.
Finally, in the stores he looks around, tries various items,
reads the reviews about them on a dedicated mobile app, and
finally picks up the product and pays for it.

This kind of dynamic and seamless interaction demands a
variety of complex design and implementation mechanisms
to be put in place. In the previous section, we have discussed
our approach for the specification of CUIs. In this section, we
will see how they can be integrated in other, more general,
languages to become part of a multiexperience development
project that are able to satisfy requirements like the ones
described in the above scenario.

123

Towards a model-driven approach for multiexperience AI-based user interfaces…

Fig. 6 Use case diagram representing a typical scenario of multiexpe-
rience user interaction

As before, given the cost and complexity of develop-
ing comprehensive multiexperience UIs, MDD can play an
important role in the specification and implementation of the
user interaction paradigms and of the respective UIs realiza-
tions.

In particular, for describing the integration of the DSL
presented in Sect. 3 within a broader-scope user interaction
design at the modeling level, we will make use of the Inter-
action FlowModeling Language (IFML) [31], one of several
existing modeling languages for UI design. We describe var-
ious levels of integration and we discuss the advantages of a
model-based MDXP approach in our context.

IFML is an international standard defined by the OMG
that aims at the platform-independent description of graphi-
cal user interfaces for applications accessed or deployed on
a variety of systems including computers, mobile phones,
tablets, and smart devices. It supports event-driven specifi-
cation of the interactions and it integrates seamlessly with
other languages for the specification of the business logic,
including UML and BPMN.

The focus of IFML is on the structure and behavior of
the application front-end as perceived by the end user, i.e.,
the view part of the application. Therefore, modeling the UI
and interaction with IFML amounts to addressing the follow-
ing aspects: The view structure and components that define
the interface shapes, and the contents visible in the UI; The
events specification, which consists of the definition of events

(coming from user’s interaction, application logic, or exter-
nal agents) that may affect the state of the UI; The reference
to actions triggered by the user’s events; The events triggered
in the user interaction and their effects in terms of action exe-
cution and on the state of the UI; And the parameter binding
between the elements of the UI and the triggered actions.

Furthermore, IFML can be complemented with external
models for connecting to any kind of content model (repre-
senting databases, ontologies, file systems or other resources)
and any kind of dynamicmodel (describing the business logic
behind the application front end). Various implementation
exist for this modeling languages, including WebRatio9 [1]
and IFMLedit.org 10 [6],which providemodeling, validation,
and code generation capabilities.

For granting a multiexperience UI featuring a new CUI
integration together with the GUI option already prede-
fined in IFML, we focus on extending the IFML language
with appropriate metamodel-level concepts, according to the
extensibility rules provided within the language itself. We
start from defining the different levels of integration that
might be of interest for a multiexperience UI, based on
increasing levels of complexity:

1. The first integration level consists in supporting the posi-
tioning of the chatbot within a specific page, window, or
screen of the GUI, so that it becomes visible and accessi-
ble from it, alongside the other interface elements;

2. The second integration level is that of data sharing
between the bot and the rest of the interface, thanks to
various data sharing mechanisms;

3. The third level of integration is that of interactive inte-
gration, where the chatbot and the other elements of the
UI are connected in a bi-directional way through interac-
tions on one side which can trigger effects on the other
and vice versa.

4. the fourth level of integration enables also event-triggered
side effects through execution of actions on both sides.

Thanks to the modular and appropriate design of both
the IFML metamodel and the chatbot metamodel, all the
integration levels can be achieved with a very simple exten-
sion strategy, namely the addition of just two concepts in
the IFML language, as described in the IFML metamodel
excerpts reported in Figs. 7 and 8. Figure 7 shows the inte-
gration of the Chatbot metaclass, which defines the presence
of the chatbot component. More precisely, Chatbot is defined
as a specification of the ViewComponent IFML metaclass,
exactly as any other typical component we usually add to
interfaces, including Lists, Forms, Details panels, and so

9 http://www.webratio.com.
10 https://ifmledit.org/.

123

http://www.webratio.com
https://ifmledit.org/

E. Planas et al.

Fig. 7 IFML metamodel
extension for the Chatbot,
allowing positioning and
interaction among components
in the UI

isModal : Boolean
isNewWindow : Boolean

IFML::Extensions::
Window

ChatbotExtension::
Chatbot

IFML::Extensions::
Form

IFML::Extensions::
Details

IFML::Extensions::
List

IFML::Extensions::
Menu IFML::Core::

ViewComponent

IFML::Core::
ViewContainer

IFML::Core::
ViewElement

viewElements *

viewContainer

0..1

UML Standard Profile:: UML2 Metamodel::
BehavioralFeature

IFML::Core::
BehavioralFeatureConcept

IFML::Core::
UMLBehavioralFeature

ChatbotExtension::
Action

umlBehavioralFeature 0..1
behavioralFeature 0..1

Fig. 8 IFML metamodel extension for the Chatbot Action, i.e., the
corresponding IFML concept of the Action metaclass defined in the
Chatbot metamodel, allowing invocation of actions in the chatbot from
any UI components

on. This allows the Chatbot to be positioned within View-
Containers such as Windows, as per the composite design
pattern specified in the metamodel. Thanks to the general
semantics of IFML, this also allows full support of the two
additional levels of integration, because the component can
send or receive data to/from other components, and can trig-
ger navigations of the interface. Figure 8 shows the IFML
metamodel extension for the chatbot Action metaclass, cor-
responding to the Action metaclass defined in the Chatbot
metamodel. This allows the invocation of actions in the chat-
bot from any UI component. And vice versa the bot behavior
definition can easily reuse and call IFML behaviors by work-
ing at the BehavioralFeatureConcept level when needed.

To demonstrate the advantages of this integration, Fig. 9
shows an example IFMLmodel featuring a chatbot integrated
within the UI of a tourism web site. The site includes a page
Touristic Offers, including a list of touristic Locations. The
user can select a location and thus see the details of the Cho-
sen Location. From there, the user can add the location to
the cart, for future purchase. The page also features a chat-

Fig. 9 IFML model example with chatbot integrated in the user navi-
gation of a tourism web site

bot component named Weather Explorer, which allows the
user to ask about the weather in specific locations. Besides
asking questions and interacting directly with the chatbot,
the user can also ask to perform specific tasks, such as add a
location to the cart, or start the checkout process. These two
requests are performed by the chatbot through the outgoing
arrows, which lead, respectively, to theAdd to cart action and
to the Payment Information page. Information is transferred
between IFML components according to the semantics of
the language. In particular, this can be achieved according to
two strategies: (i) by transferring parameter values along the
navigation flow, i.e., the arrows connecting the components,
which therefore carry incoming and outgoing parameters; (ii)
by defining a shared Context environment, which is available
as a global data space to all the components. These behaviors
automatically extend to the chatbot component too.

Finally, Fig. 10 shows a deeper level of integration
between the pieces of the user interface, where the chatbot is

123

Towards a model-driven approach for multiexperience AI-based user interfaces…

Fig. 10 IFML model example:
the chatbot receives a Location
Set event, which triggers a
change of state in the internal
bot state machine,
independently on where the user
triggered the event

directly solicited through event notifications. In IFML, any
component, possibly from multiple devices and interfaces,
can generate events (event generation is represented by black
circles in the models). Such events may be captured by other
components, which in turn may change their state or trigger
some action according to the event meaning (event capturing
is represented by a white circle). In the example, a Location
Set event may be generated by the user selecting a location
in the Web interface, or by a relocation of a smart watch or
another device,whichgenerates aGPSpositioning event. The
chatbot can capture these events and trigger a state change
in the internal state machine that determines the evolution of
the dialogue of the bot.

Thanks to this wide variety of integration options, a seam-
less multiexperience integration can be achieved. Indeed, the
flexibility of the proposed metamodel allows to integrate
blend interactionswith the chatbot, with interactions happen-
ing on other components of aWeb page, andwith interactions
happeningwith other interfaces (mobile apps, embedded sys-
tems, wearables, environmental sensors, and other devices),
provided that they are able to send and receive events accord-
ing to a classical event-driven architecture. The event-driven
approach allows a very general and light-weight integration
practice, which is widely supported. At the same time, it
allows for direct integration at the user interface level (by
sending around front-end events that trigger UI reactions),
and at the back-end level (where the events can directly trig-
ger changes in the state of the components or even on the
data layer).

5 Related work

In this section, we summarize a large corpus of previ-
ous works that address how the model-driven development
approach has been applied to model user interfaces, mainly
focusing on Conversational User Interfaces and their inte-
gration with other types of interfaces in a multiexperience
application.

Popularity of GUIs have resulted in a large number of GUI
definition languages and run-time libraries for any imag-
inable programming language. For instance, some model-
based proposals focusing on Web interfaces are W2000
(HDM) [4], OO-HDM [40], WebDSL [22], OOH-Method

[20], WebML [14], RUX-Model [42] and HERA [44]) while
others are focused on multi-device UI modeling (IFML [9],
TERESA [7], MARIA [34] , MBUE [29], UsiXML [43]
and UCP [38]. Among them, it is worth highlighting the
OMGstandard Interaction FlowModelingLanguage (IFML)
[9]. IFML has also been extended to cover other domains
[10,23,33]. Our own IFML extension for CUIs has been pre-
sented in Sect. 4.

Instead, there is much less work focusing on the current
emerging set of UIs, aiming at establishing more natural and
conversational experiences, supported by the AI. These new
type of UIs, which are hard to specify [37], test, verify and
debug [39] and require a different and specialized skillset [25]
could benefit as well from a model-based perspective. Right
now, most of the initiatives focus on CUIs and, in particu-
lar, chatbots, mainly lead by commercial companies offering
a kind of low-code/no-code [12] front-end to their specific
chatbot platform. Some examples are: Tock11, Engati12

or FlowXO13. With a more research perspective, we have
Xatkit [17] (formerly known as Jarvis [16]), a fully mod-
ular and extensible platform-independent chatbot modeling
language which provides a meta-model and a textual DSL
for defining all types of bots (which we have been used as
basis for the generalized metamodel in Sect. 3); CONGA
(ChatbOt modeliNg lanGuAge) [36] providing a unifying
DSL for specifying some types of chatbots that can then be
implemented on top of a couple of chatbot platforms (and
even migrated from one to the other); and Baudat et al. [5]
proposing wcs-OCaml, a new multi-tier chat-bot generator
library designed for use with the reactive language Reac-
tiveML. Some other works focus on voicebots. For example,
tortu14 which supports the visual creation of conversation
flows and VoiceFlow15 which facilitates a graphical DSL
to create voice-based conversation flows that can be deployed
on Google home or Alexa.

Nevertheless, all these initiatives focus on specific types of
CUIs and treat themas standalone components and not as part
of the more general systems in the context of MXDP. Some

11 https://doc.tock.ai/tock/.
12 https://www.engati.com.
13 https://flowxo.com.
14 https://tortu.io/.
15 https://www.voiceflow.com/.

123

https://doc.tock.ai/tock/.
https://www.engati.com
https://flowxo.com
https://tortu.io/.
https://www.voiceflow.com/.

E. Planas et al.

well-known low-code platforms like Mendix16, GeneXus17

or OutSystems18 start to include chatbots as part of their
system specification. But this support is rather limited and
mostly consisting in either simple chatbot templates or in
helping you to connect your application with an external
AI component defined with a separate tool (e.g., one of the
above).

To sumup, although there exist plenty of tools that provide
model-based environments to define CUIs they are limited
to specific types or bots or target only concrete technologies.
Moreover, none of the tools we have analyzed support the
MXDP approach as there is no way to link the CUI models
with those of other CUIs or with the software models to
provide richer multiexperience interactions.

6 Roadmap

We believe our proposal is a good first step towards this
model-based MXDP vision. But there is still plenty of work
to be done to advance in the model-driven development of
powerful smart Conversational User Interfaces, especially as
part of an integrated systems modeling process. In this sec-
tion, we discuss a few of them.

6.1 Modeling the training process of CUIs

AI-based CUIs must be trained before deploying them. In
some cases, the process is simple and fast but in others (e.g.,
CUIs for very specific domains, like themedical context [41])
we may need to reuse pre-trained language libraries and/or
performspecific curation tasks on the input training sentences
of the bot.

In order to able to completely define the end-to-end pro-
cess of specifying and generating a CUI, we should provide
new modeling primitives for specifying these tasks as part
of our CUI metamodel, potentially looking at existing lan-
guages for workflow modeling.

Thiswouldbeveryuseful also as away to trace and explain
the bot behavior. For instance, a voicebot can present acces-
sibility issues by only properly recognizing voice messages
from a certain set of English Speakers. Examining the train-
ing process could help as pinpoint the origin of the issue.

6.2 A repository of MXDPmodels and best practices

Many CUIs need to deal with a set of repetitive interaction
patterns. Some examples would be greeting users and other

16 https://www.mendix.com/.
17 https://www.genexus.com/en/.
18 https://www.outsystems.com/.

chit-chat conversation flows, providing contact information,
or detecting and stopping trolls. It would be ideal to have
a community-driven repository of partial models for these
repetitive tasks that we could easily import in new projects.

Similarly, we could also use this repository to share best
practices around CUI design. There is plenty of literature
around good design patterns for Graphical User Interfaces
but not so much for CUIs. Same applies to patterns and
best practices for combining several UIs part of a MXDP
approach.

6.3 Modeling extensions

Our proposal covers the core aspects of modeling multiex-
perience interfaces. But there are several other dimensions
of bots that could be added to the metamodel shown in Sect.
3. An example is role-based access control. We may need
to define bots that hide some intents from some users (e.g.,
non-authenticated ones) or that respond differently to them.
Integrating a RBAC metamodel (or any of its derivatives
[30]) in our proposal would allow for a joint definition of
the access-control policies together with the bot behavioral
aspects.

6.4 Testing of MXDPs

There are some efforts for testing bots (e.g., [11]) but they
focus on specific testings properties/techniques. Plenty of
new research should be conducted to bring CUI testing to
the same level of testing we have for regular interfaces.

This testing strategies should also cover system testing
scenarios, where we test the collaboration scenarios between
different CUIs part of a multiexperience application and not
just each individual CUI in isolation. A roadmap for bot test-
ing is also discussed in [13].

6.5 Automatic generation of MXDPs

For structured data sources, we can automatically derive
a (limited but useful) behavioral/interface mode providing
basic query and modification capabilities for the underlying
data [2]. The same idea is implemented in many web appli-
cation frameworks that offer scaffolding capabilities.

This same principle can be applied to CUIs. By looking
at the data structure we could derive potential conversations
users may want to have on top of that data. There are some
initial works in this direction [15,18,35] but results are still
preliminary. This generation can also take place at theMXDP
level by combining generators for specific types of UIs to
cover as well the glue code required to make them work as
an integrated multiexperience application.

123

https://www.mendix.com/.
https://www.genexus.com/en/.
https://www.outsystems.com/.

Towards a model-driven approach for multiexperience AI-based user interfaces…

6.6 CUIs for modeling editors

Modeling editors could also benefit from the same advan-
tages we get when adding CUIs to any other type of software
systems.Modeling tools are known to be a barrier to entry for
the adoption of modeling practices, CUIs could play a pos-
itive role here. For instance, a voicebot could help to create
models as part of a collaborative design meeting. Or enable
stakeholders to have amore direct participation in themodel-
ing process even if they don’t master the language notation.

7 Conclusions

The growing popularity of all kinds of intelligent Conver-
sational User Interfaces is undeniable. And these interfaces
are not isolated components. Instead, they are a core element
of the software system that embeds them. As described by
theMXDP initiative, CUIs must interact with the other inter-
faces of the system and have access to its functionality and
resources.

The large number of libraries, platforms and technologies
to develop CUIs complicates even more their development.
To facilitate a global, integrated and platform-independent
development process for CUIs, this paper has presented a
model-based approach for CUIs covering both the design
of each individual interface and the discussion of how such
design could be combined with other software models for a
complete software generation process.

This is a first step in this direction. As we discussed in the
previous section, there are plenty of research challenges and
potential improvements to advance towards this vision. We
plan to tackle them next, starting with the chatbot testing and
automatic generation aspects.

Acknowledgements This work has been partially funded by the Span-
ish government (PID2020-114615RBI00) and the AIDOaRt project,
which has received funding from the ECSEL Joint Undertaking (JU)
under grant agreementNo 101007350. The JU receives support from the
European Union‘s Horizon 2020 research and innovation programme
and Sweden, Austria, Czech Republic, Finland, France, Italy and Spain.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Acerbis, R., Bongio, A., Brambilla, M., Butti, S.: Model-driven
development based on omg’s IFML with webratio web and mobile
platform. In: Engineering the Web in the Big Data Era - 15th Inter-
national Conference, ICWE Proceedings, pp. 605–608 (2015)

2. Albert, M., Cabot, J., Gómez, C., Pelechano, V.: Automatic gener-
ation of basic behavior schemas from UML class diagrams. Softw.
Syst. Model. 9(1), 47–67 (2010)

3. Amazon: Amazon Lex Website (2018). https://aws.amazon.com/
lex/

4. Baresi, L., Garzotto, F., Paolini, P.: From web sites to web appli-
cations: New issues for conceptual modeling. In: Conceptual
Modeling for E-Business and theWeb, ERWorkshops, LNCS, vol.
1921, pp. 89–100. Springer (2000)

5. Baudart, G., Hirzel, M., Mandel, L., Shinnar, A., Siméon, J.:
Reactive chatbot programming. In: Proceedings of the 5th ACM
SIGPLAN International Workshop on Reactive and Event-Based
Languages and Systems, REBLS@SPLASH, pp. 21–30. ACM
(2018)

6. Bernaschina, C., Comai, S., Fraternali, P.: Ifmledit.org: model
driven rapid prototyping of mobile apps. In: Proceedings of the
4th International Conference on Mobile Software Engineering and
Systems, pp. 207–208. IEEE Press (2017)

7. Berti, S., Correani, F., Mori, G., Paternò, F., Santoro, C.: TERESA:
a transformation-based environment for designing and developing
multi-device interfaces. In: Extended abstracts of the 2004 Confer-
ence on Human Factors in Computing Systems, CHI, pp. 793–794.
ACM (2004)

8. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software
Engineering in Practice. Synthesis Lectures on Software Engineer-
ing, 2nd edn. Morgan & Claypool Publishers (2017)

9. Brambilla, M., Fraternali, P.: Interaction flow modeling language:
Model-driven UI engineering of web and mobile apps with IFML.
Morgan Kaufmann (2014)

10. Brambilla, M., Mauri, A., Umuhoza, E.: Extending the interaction
flow modeling language (IFML) for model driven development
of mobile applications front end. In: Mobile Web Information
Systems—11th International Conference, MobiWIS, LNCS, vol.
8640, pp. 176–191. Springer (2014)

11. Bravo-Santos, S., Guerra, E., de Lara, J.: Testing chatbots with
charm. In: International Conference on the Quality of Information
and Communications Technology, pp. 426–438. Springer (2020)

12. Cabot, J.: Positioning of the low-code movement within the field
of model-driven engineering. In: MODELS ’20: ACM/IEEE 23rd
International Conference onModel Driven Engineering Languages
and Systems, pp. 76:1–76:3. ACM (2020)

13. Cabot, J., Burgueño, L., Clarisó, R., Daniel, G., Perianez-Pascual,
J., Rodríguez-Echeverría, R.: Testing nlp-intensive bots: challenges
and roadmap. In: 3rd International Workshop on Bots in Software
Engineering (BotSE’21), vol. to appear (2021)

14. Ceri, S., Matera, M., Rizzo, F., Demaldé, V.: Designing data-
intensive web applications for content accessibility using web
marts. Commun. ACM 50(4), 55–61 (2007)

15. Chittò, P., Báez, M., Daniel, F., Benatallah, B.: Automatic gener-
ation of chatbots for conversational web browsing. In: Conceptual
Modeling—39th International Conference, ER 2020, Vienna, Aus-
tria, November 3–6, 2020, Proceedings,Lecture Notes in Computer
Science, vol. 12400, pp. 239–249. Springer (2020)

16. Daniel, G., Cabot, J., Deruelle, L., Derras, M.: Multi-platform
chatbot modeling and deployment with the jarvis framework. In:

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://aws.amazon.com/lex/
https://aws.amazon.com/lex/

E. Planas et al.

Advanced Information Systems Engineering—31st International
Conference, CAiSE 2019 Proceedings, pp. 177–193 (2019)

17. Daniel, G., Cabot, J., Deruelle, L., Derras,M.: Xatkit: amultimodal
low-code chatbot development framework. IEEEAccess 8, 15332–
15346 (2020)

18. Ed-Douibi, H., Izquierdo, J.L.C., Daniel, G., Cabot, J.: A model-
based chatbot generation approach to converse with open data
sources. In: Proceedings of the 21st International Conference on
Web Engineering, to appear (2021)

19. Garrett, J.J.: Elements of User Experience. User-Centered Design
for the Web and Beyond. Pearson Education, The (2010)

20. Gómez, J., Cachero, C., Pastor, O.: Conceptualmodeling of device-
independent web applications. IEEE Multim. 8(2), 26–39 (2001)

21. Google: DialogFlow Website (2018). https://dialogflow.com/
22. Groenewegen, D.M., Hemel, Z., Kats, L.C.L., Visser, E.: Webdsl:

a domain-specific language for dynamic web applications. In:
Companion to the 23rd Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Appli-
cations, OOPSLA, pp. 779–780. ACM (2008)

23. Huang, A., Pan, M., Zhang, T., Li, X.: Static extraction of IFML
models for android apps. In: Proceedings of the 21st ACM/IEEE
Int. Conf. on Model Driven Engineering Languages and Systems:
Companion Proceedings, MODELS, pp. 53–54. ACM (2018)

24. IBM: Watson Assistant Website (2018). url: https://www.ibm.
com/watson/ai-assistant/

25. Kim, M., Zimmermann, T., DeLine, R., Begel, A.: Data scientists
in software teams: state of the art and challenges. IEEE Trans.
Software Eng. 44(11), 1024–1038 (2018)

26. Kleppe, A.: Software Language Engineering: Creating Domain-
Specific Languages Using Metamodels. Pearson Education (2008)

27. Klopfenstein, L.C., Delpriori, S., Malatini, S., Bogliolo, A.: The
rise of bots: A survey of conversational interfaces, patterns, and
paradigms. In: Proceedings of the 2017 Conference on Designing
Interactive Systems, DIS, pp. 555–565. ACM (2017)

28. McTear, M.F.: Spoken dialogue technology: enabling the conver-
sational user interface. ACM Comput. Surv. 34(1), 90–169 (2002)

29. Meixner, G., Seissler, M., Breiner, K.: Model-driven useware engi-
neering. Model-Driven Develop Adv User Interfaces Stud Comput
Intell 340, 1–26 (2011)

30. Mouelhi, T., Fleurey, F., Baudry, B., Le Traon, Y.: A model-based
framework for security policy specification, deployment and test-
ing. In: International Conference on Model Driven Engineering
Languages and Systems, pp. 537–552. Springer (2008)

31. OMG: Interaction Flow Modeling Language (IFML) specifica-
tion. Version 1.0 (2015). https://www.omg.org/spec/IFML/About-
IFML/

32. OMG: Unified Modeling Language (UML) specification. Version
2.5.1 (2017). https://www.omg.org/spec/UML/About-UML/

33. Pan, M., Lu, Y., Pei, Y., Zhang, T., Zhai, J., Li, X.: Effective test-
ing of android apps using extended IFML models. J. Syst. Softw.
159,(2020)

34. Paternò, F., Santoro, C., Spano, L.D.: MARIA:a universal, declara-
tive, multiple abstraction-level language for service-oriented appli-
cations in ubiquitous environments. ACM Trans. Comput. Hum.
Interact 16(4), 19:1–19:30 (2009)

35. Pérez-Soler, S., Daniel, G., Cabot, J., Guerra, E., de Lara, J.:
Towards automating the synthesis of chatbots for conversational
model query. In: Enterprise, Business-Process and Information
Systems Modeling - 21st International Conference, BPMDS 2020,
25th International Conference, EMMSAD 2020, Held at CAiSE
2020, Lecture Notes in Business Information Processing, vol. 387,
pp. 257–265. Springer (2020)

36. Pérez-Soler, S., Guerra, E., de Lara, J.:Model-driven chatbot devel-
opment. In: 39th Int. Conf. on Conceptual Modeling, ER, LNCS,
vol. 12400, pp. 207–222. Springer (2020)

37. Rahimi, M., Guo, J.L.C., Kokaly, S., Chechik, M.: Toward require-
ments specification for machine-learned components. In: 27th
IEEE International Requirements Engineering Conference Work-
shops, RE, pp. 241–244. IEEE (2019)

38. Raneburger, D., Popp, R., Kavaldjian, S., Kaindl, H., Falb, J.: Opti-
mized GUI generation for small screens. Model-Driven Develop
Adv User Interfaces StudComput Intell 340, 107–122 (2011)

39. Riccio, V., Jahangirova, G., Stocco, A., Humbatova, N., Weiss, M.,
Tonella, P.: Testing machine learning based systems: a systematic
mapping. Empir. Softw. Eng. 25(6), 5193–5254 (2020)

40. Schwabe, D., Rossi, G., Barbosa, S.D.J.: Systematic hypermedia
application design with OOHDM. In: The Seventh ACM Confer-
ence on Hypertext, pp. 116–128. ACM (1996)

41. Soysal, E., Wang, J., Jiang, M., Wu, Y., Pakhomov, S., Liu, H.,
Xu, H.: Clamp-a toolkit for efficiently building customized clinical
natural language processing pipelines. J AmMed Inf Assoc 25(3),
331–336 (2018)

42. Trigueros, M.L., Preciado, J.C., Sánchez-Figueroa, F.: A method
for model based design of rich internet application interactive
user interfaces. In:Web Engineering, 7th International Conference,
ICWE, LNCS, vol. 4607, pp. 226–241. Springer (2007)

43. Vanderdonckt, J.: A MDA-compliant environment for developing
user interfaces of information systems. In: Advanced Informa-
tion Systems Engineering, 17th International Conference, CAiSE,
LNCS, vol. 3520, pp. 16–31. Springer (2005)

44. Vdovjak, R., Frasincar, F., Houben, G., Barna, P.: Engineering
semantic web information systems in hera. J. Web Eng. 2(1–2),
3–26 (2003)

45. Völkel, S.T., Schneegass, C., Eiband, M., Buschek, D.: What is
“intelligent” in intelligent user interfaces?: a meta-analysis of 25
years of IUI. In: 25th International Conference on Intelligent User
Interfaces, pp. 477–487. ACM (2020)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Elena Planas received the B.Sc.,
M.Sc. and Ph.D. degrees in com-
puter science from the Univer-
sitat Politècnica de Catalunya–
BarcelonaTech (UPC). Since
2007, she combines her activity as
a lecturer on software engineering
courses with the research activ-
ity at the Universitat Oberta de
Catalunya (UOC). Her research
interests mainly focus on the area
of model-driven engineering
(MDE) and its application in soft-
ware development. Some of her
current research topics include the

extension of modeling languages to cover new types of multi-modal
intelligent UIs and their integration and interaction with the rest of
the system; the development of verification techniques to assess the
quality of software models; and the empirical research on the use of
modeling tools in e-learning environments.

123

https://dialogflow.com/
https://www.ibm.com/watson/ai-assistant/
https://www.ibm.com/watson/ai-assistant/
https://www.omg.org/spec/IFML/About-IFML/
https://www.omg.org/spec/IFML/About-IFML/
https://www.omg.org/spec/UML/About-UML/

Towards a model-driven approach for multiexperience AI-based user interfaces…

GwendalDaniel received the Ph.D.
degree with the AtlanMod Team,
Ecole des Mines de Nantes,
France, in 2017. He is currently
a Postdoctoral Fellow with the
SOM Research Lab, Internet Inter-
disciplinary Institute (IN3), a
Research Center of the Universitat
Oberta de Catalunya (UOC). His
research interests include model-
driven engineering, model persis-
tence, query, transformation tech-
niques, domain-specific lang-
uages, and applying model-based
techniques for large-scale data

applications. He received the Best Thesis Award from the GDR-GPL
and the INFORSID Association, in 2018. Gwendal is also the co-
founder of Xatkit, a low code platform for building smart chatbots.

Marco Brambilla is a full profes-
sor at Politecnico di Milano. He
is active in research and innova-
tion, at both industrial and aca-
demic levels. His research inter-
ests include data science, software
modeling languages and design
patterns, crowdsourcing, social
media monitoring, and big data
analysis. He has been visiting
researcher at CISCO, San Josè,
and UCSD, and visiting professor
at Dauphine University, Paris. He
is co-founder of three startups. He
co-authored over 250 papers and

books. He was awarded various best paper prizes and gave keynotes
and speeches at many conferences and organisations. He runs research
projects on data science and industrial projects on data-driven innova-
tion and big data. He is the main author of the OMG standard IFML.
He is editor of Journal of Web Engineering, and Advances in Human-
Computer Interactions.

Jordi Cabot received the B.Sc. and
Ph.D. degrees in computer sci-
ence from the Universitat Politèc-
nica de Catalunya–BarcelonaTech
(UPC). He was a Leader of an
INRIA and LINA Research Group
at Ecole des Mines de Nantes,
France, a Post-Doctoral Fellow
with the University of Toronto,
a Senior Lecturer with the Open
University of Catalonia, and a Vis-
iting Scholar with the Politecnico
di Milano. He is currently an
ICREA Research Professor at
Internet Interdisciplinary Institute.

His research interests include software and systems modeling, formal
verification and the role AI can play in software development (and vice
versa). He has published over 200 peer-reviewed conference and jour-
nal papers on these topics. Apart from his scientific publications, he
writes and blogs about all these topics in several sites like modeling-
languages.com and livablesoftware.com. He is also the co-founder and
CEO of Xatkit, an open-source chatbot development framework.

123

	Towards a model-driven approach for multiexperience AI-based user interfaces
	Abstract
	1 Introduction
	2 Background and preliminary concepts
	2.1 Evolution of user interfaces
	2.2 Conversational user interfaces

	3 Modeling smart conversational user interfaces
	3.1 Intent package
	3.2 Behavioral package
	3.3 Runtime package
	3.4 Concrete syntax

	4 Modeling multiexperience applications
	5 Related work
	6 Roadmap
	6.1 Modeling the training process of CUIs
	6.2 A repository of MXDP models and best practices
	6.3 Modeling extensions
	6.4 Testing of MXDPs
	6.5 Automatic generation of MXDPs
	6.6 CUIs for modeling editors

	7 Conclusions
	Acknowledgements
	References

