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Abstract

Engineering projects involve a variety of artifacts such as requirements, design, or source code. These artifacts, many of
which tend to be interdependent, are often manipulated concurrently. To keep artifacts consistent, engineers must continuously
consider their work in relation to the work of multiple other engineers. Traditional consistency checking approaches reason
efficiently over artifact changes and their consistency implications. However, they do so solely within the boundaries of
specific tools and their specific artifacts (e.g., consistency checking between different UML models). This makes it difficult to
examine the consistency between different types of artifacts (e.g., consistency checking between UML models and the source
code). Global consistency checking can help addressing this problem. However, it usually requires a disruptive and time-
consuming merging process for artifacts. This article presents a novel, cloud-based approach to global consistency checking in
a multi-developer/-tool engineering environment. It allows for global consistency checking across all artifacts that engineers
work on concurrently. Moreover, it reasons over artifact changes immediately after the change happened, while keeping the
(memory/CPU) cost of consistency checking minimal. The feasibility and scalability of our approach were demonstrated by
a prototype implementation and through an empirical validation.

Keywords Consistency checking - Multi-developer environment - Model-driven engineering

1 Introduction

Software engineering is an inherently collaborative discipline
with engineers working concurrently on a wide range of engi-
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neering artifacts—requirements, use cases, design, code,
and more. To modify these engineering artifacts, an equally
diverse tool landscape exists—each tool usually specializing
in specific types of engineering artifacts (e.g., Intellij' spe-
cializes on source code or IBM Rational Software Architect?
on UML models). Each tool thus provides a partial view on a
software system, merely considering a subset of the involved
engineering artifacts [1]. After all, engineers often do not
necessarily need access to all engineering artifacts [2-5].
The software engineering landscape is characterized by
the distributed and concurrent modification of engineering
artifacts by multiple engineers. This follows a familiar pat-
tern: Typically, engineers download artifacts from a shared
repository to their workstations and modify them indepen-
dently there before finally uploading their changes back to
the repository for others to see. In doing so, engineers create a
local environment where they typically only have access to a
subset of artifacts—those that can be modified by the tool(s)

! Intellij: https://www.jetbrains.com/idea/.

2 IBM RSA: https://www.ibm.com/developerworks/rational/products/
rsa.

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-022-00984-4&domain=pdf
http://orcid.org/0000-0002-0008-2312
https://www.jetbrains.com/idea/
https://www.ibm.com/developerworks/rational/products/rsa
https://www.ibm.com/developerworks/rational/products/rsa

2490

A. Mashkoor et al.

they use. For example, the designer will use a modeling tool
to modify modeling artifacts while the programmer will use
a programming tool to modify code artifacts.

Inconsistencies arise if artifacts contradict one another.
It is particularly hard to spot inconsistencies in situations
where different engineers modify heterogeneous, interdepen-
dent engineering artifacts within different tools. For example,
the modification of a model may result in inconsistencies
with the code that represents it. Such inconsistencies might
go unnoticed and might exist within the project for a long
time, potentially resulting in severe and costly rework. The
detection of inconsistencies in a timely manner is still an
ongoing research topic [5]. While many consistency check-
ing approaches exist today (e.g., [1,4,6-12]), they do not
focus on heterogeneous artifacts and their interdependencies.

Existing approaches normally check engineering artifacts
in alocal environment, e.g., within an engineering tool. They
rarely operate on the merged sum of all engineering artifacts,
i.e., a global environment like a shared repository. The mod-
ifications within a local environment cannot be considered
with regard to the global environment unless the modifica-
tions are merged first. However, this is contradictory to the
typical circumstances of an engineer’s workflow. Engineers
typically store their artifact modifications locally first. Yet,
these modifications may have implications on the consistency
of heterogeneous, interdependent artifacts in the global envi-
ronment. We refer to the analysis of this consistency as global
consistency checking.

This article introduces a novel approach for global consis-
tency checking in a multi-developer, multi-tool engineering
environment. Our approach relies on a cloud infrastructure to
maintain i) a central, public space that contains the entirety
of engineering artifacts shared by all engineers (representing
the global environment of artifacts from different tools), and
i) individual work spaces for each tool used by each engi-
neer to reflect their individual, not yet merged modifications
(representing the local environments). Modifications that
engineers perform in their tools are instantly propagated (e.g.,
following a tool-internal change event) to their respective
individual work spaces in the cloud. There, these modifica-
tions are checked for their consistency with the public space,
thus enabling global consistency checking while consider-
ing each engineer’s local modifications. This happens before
merging any content of the individual work space with the
public space, meaning that global consistency information
can be provided without performing a time-consuming merg-
ing process. We designed our approach to systematically
reuse public and instant consistency checking knowledge to
increase our consistency checker’s performance.

In this study, we extend our previous work [13—18]. This
extension includes a discussion of the functionality of lay-
ering our platform considering both public and individual
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work spaces. This layering mechanism presents a technical
novelty as it deals with additional immediate perspectives on
the consistency data (see Sect. 4). This mechanism expands
our previous work [15], which only dealt with the concept
of public work spaces. Furthermore, we expand on the dis-
cussion and use of trace links among artifacts (see Sect. 4.8).
This linking process abstracts and expands concepts intro-
duced in our previous work [17]. Lastly, we describe the
role of change notifications including the technically related
discussion about how to handle different commit scenarios
(Sect. 5). These two discussions are essential to the current
solution and were not detailed in previous works.

The rest of this article is organized as follows: In Sect. 2,
we present a simple example to illustrate inconsistency
related problems arising during the collaborative develop-
ment. In Sect. 3, we outline the problem addressed by the
goals of this work. Section 4 discusses the architecture of
our approach, respectively, the cloud environment utilized
in it. Section 5 describes how we realize global consistency
checking. Section 6 discusses the applicability of the pro-
posed approach: we analyze its computational complexity
and memory consumption, and show its feasibility by devel-
oping a prototype. We also discuss limitations regarding our
approach and the future work planned for addressing them in
Sect. 7. The article is concluded after discussing the related
work in Sect. 8.

2 lllustrative example

In order to demonstrate the approach presented in this
paper, we use the model and code fragments of a video
on demand (VOD) system [19] as an illustrative example.
Let us assume that both model and code are concurrently
modified by two engineers: Alice, who writes the Java code,
and Bob, who provides the equivalent UML models. Note
that when referring to elements of the example, we will use
the syntax [UML: : <type>]<name>, where <type> is
a placeholder for a specific UML type and <name> for its
name. Likewise, [Java: : <type>]<name> will refer to
the same on the Java side.

2.1 Initial state

Figure 1 shows the UML model of the VOD system that
both Bob and Alice are familiar with. The UML model con-
sists of two diagrams: (a) a sequence diagram outlining the
interaction among those two classes, and (b) a class diagram
showing the entities Display and Streamer. Likewise,
Listings 1 and 2 show an excerpt of the current Java classes.
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I stream 1 1.11

I

I —_
! : 12,11

I

! - o 12.21
| drawil2] 1Spay Streamer
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(a) Sequence Diagram (b) Class Diagram

Fig.1 Current public UML diagrams

1 | Public class Display

2 {

3 Streamer streamer;
4 Void stop()

5 {

6 streamer. stop () ;
7 }

8

9 Void play ()

10 {

11 streamer . stream() ;
12 }

13

14 Void draw () {...}

15 |}

s

Listing 1 Excerpt of Java class “Display’

Public class Streamer

{
Display display;
Void stream ()

display .draw () ;
}

Void wait() {...}

SO0 I WA WN =

}

Listing 2 Excerpt of Java class “Streamer”

In the interest of a consistent final product, both the UML
diagrams and code must meet the following rules:

— Rule 1: The messages used in the sequence diagram must
be present as an operation in their respective receiver’s
class (e.g., [UML::Message] stream must be
presentin [UML: :Class] Streamer).

— Rule 2: All operations of a UML class must be present
in the respective java implementation (e.g., [UML: :
Operation] pause must be present as a method in
[Java::Class] Streamer).

The former rule expresses a circumstance mostly covered
by traditional, tool-centric consistency checking. Consis-
tency checking between different artifacts from the same
engineering discipline can often be performed by the tool
in which the artifacts were originally designed, e.g., a UML
tool can guarantee that only valid messages are added to
a sequence diagram. However, the latter rule requires a
more sophisticated approach toward consistency checking.

It considers the consistency between equivalent concepts of
different types of artifacts in unison (UML models and code).
Traditional, tool-centric consistency checking approaches
are normally not able to cover this. Consistency checking
between different types of engineering artifacts requires a
tool or a formalization that can define semantic equivalences
between them.

One way to formalize consistency rules is to express
them in Object Constraint Language (OCL) [20]. We will
refer to such expressions (and their respective representations
as engineering artifacts) as Consistency Rule Definitions
(CRD)—see CRD1 and CRD2 in Listings 3 and 4 .

1 |UML::Message m

2 | m.receiveEvent.covered—>forAll(Lifeline 1 |

3 1.represents. type .ownedOperation—>exists (Operation o |
4 0.name = m.name) )

Listing 3 (CRDI1) Message must be defined as an operation in the
receiver’s UML class

1 |UML :: Class ¢

2 | self.javaLink — notEmpty() implies

3 | self.operations — forAll(Operation o |

4 self .javaLink .methods — exists(Method m |
5 0.name = m.name) )

Listing 4 (CRD2) All operations in the UML class diagram must be
present in their linked Java implementation

As is typical in OCL, each consistency rule is written for
a specific context. The context describes the type of arti-
fact for which the rule must be evaluated. Since we focus
on UML and Java in this example, the context is either
a specific UML or Java artifact. CRD1 with the context
UML : : Message checks whether a given UML : : Message
is defined as an operation in the respective UML class. For
CRDI1 in the sequence diagram in Fig. 1, we find three
UML: :Message instances ([UML: :Message] stream,
[UML: :Message]drawand [UML: :Message]lwait),
and thus three evaluations of CRD1 are necessary—once for
each message. We will refer to such an evaluation (and its
representation as a concrete engineering artifact) as a con-
sistency rule evaluation (CRE) throughout the rest of the
article. Similarly, CRD2 checks whether operations in class
diagrams correspond to methods in the java classes. As there
are two such classes, we must evaluate CRD?2 five times—
once for each operation.

This way of formalization lets us consider both UML mod-
els and Java, provided that both types of artifacts are explicitly
linked through one of their defined properties. If we assume
that the consistency checker has access to both UML mod-
els and the source code then complete consistency checking
would be possible. In that case, a consistency checking ser-
vice would first identify all needed CREs by searching for
all UML model instances matching the context. Indeed, for
the VOD example, there are five CREs:

@ Springer



2492

A. Mashkoor et al.

— three instantiations of CRD1 corresponding to three mes-
sages in the sequence diagram: CRE. 1.1 for [UML: :
Message]stream,CRE.1.2for [UML: :Message]
draw and CRE.1.3 for [UML: :Messagelwailt;
(recall Fig. 1a), and

— two instantiations of CRD2 corresponding to the two
classes in the class diagram (recall Fig. 1b): CRE.2.1
for the class [UML: :Class]Displayand CRE. 2.2
for [UML: :Class]Streamer.

The only unusual part not normally found in consistency
rules are trace links between model and code—as needed
in CRD2. A trace link is a property added to an artifact,
where the value of this property is a reference to another
artifact, thus creating a trace between both artifacts. For
example, a trace link may reveal which Java class imple-
ments which UML class. Although this example uses the
same textual names for both, naming conventions can be
deceiving, as similarly named entities can refer to different
concepts in different engineering fields. Explicit links are
needed for a consistency checker to navigate among artifacts
from different tools. The OCL element javaLink thus links
the UML class Streamer to the same-named Java class. This
is a domain specific extension that our approach supports
and, as expected, can be customized to many different kinds
of links.

Except for CRE. 1. 3, all instances are consistent as they
adhere to the defined rules. CRE. 1 . 3 is inconsistent because
there exists no operation called “wait” in the class diagrams.

2.2 Multi-developer consistency checking

Consider now that Alice and Bob modify the UML model and
the Java code independently. Each engineer checks out the
respective engineering artifacts to his or her local workstation
and uses the corresponding tool. Let us first assume that each
tool has a separate consistency checker. In our illustration,
there must be at least two tools involved: Alice needs to use a
programming tool whereas Bob needs to use a modeling tool.
Thus, say, Alice has partial knowledge on the full state of the
project’s engineering artifacts. She merely sees the code with
no (immediate) knowledge of its UML representation.

Note that in the following, we append the starting letter of
the engineer’s name to the consistency rule evaluations to dis-
tinguish them (e.g., CRE.1.3.B is Bob’s consistency rule
evaluation of CRE. 1.3). We think of this as an evaluation
in Bob individual work space, as Bob may make changes
unknown to Alice. Thus, the consistency checking at this
point is instant, as it only considers the instant changes per-
formed by Bob. Inconsistencies between Bob and Alice’s
artifacts are only meaningful once Alice becomes aware of
Bob’s changes not earlier. Hence, once Bob’s changes are

@ Springer

global (global consistency checking). The instantiations of
individual CREs are illustrated in Fig. 2.

2.2.1 Adaptations by Bob

Bob modifies his individual working copy of the UML model
by adding a feature: in order to stream movies a user must
first connect to the [UML: :Class] Streamer. Bob thus
makes the following changes consecutively:

— an operation called “connect” is added to the [UML: :
Class] Streamer in the class diagram,

— aconnect message is added to the sequence diagram, and

— the operation [UML: : Operation]pauseintheclass
diagram is renamed to “wait.”

The new state of Bob’s working copy is depicted in Fig. 3.
These changes alter the state of the UML model and thus have
implications on the CREs. Incremental consistency checkers
are able to react to these changes in a fine-grained manner
without having to re-evaluate the entirety of the model. For
this we utilize the concept of scope [8]. A scope is a set of
model elements that is attached to a CRE. If one of these ele-
ments is changed, it triggers the re-evaluation of the scope’s
corresponding CRE. The scope is created automatically at
the first evaluation of the CRE and is a list of model ele-
ments accessed during the evaluation of the CRE on the UML
model. Only changes to these accessed elements can cause
the CRE state to change from consistent to inconsistent or
vice versa. A CRE is thus re-evaluated if an element in its
scope changes. Please see the work of Egyed [8] for further
details in this regard and also note that most incremental con-
sistency checkers have similar concepts (e.g., critical node
[21], or impact matrix [22]).

Bob’s first change requires a re-evaluation of CRE.2.2
because it affects its context [UML::Class]Streamer. A local
(tool-centric) consistency checking mechanism interpreting
CRD2 would be unable to assess whether the additional
method “connect” is also present in [Java::Class]Streamer,
as it has no knowledge of the respective Java class.

The second change Bob makes also impacts consis-
tency because it adds a new instance with regard to CRD1;
therefore, a new CRE is required. CRE.1.4.B evaluates
[UML::Message]connect. This CRE is consistent because
Bob added the corresponding operation to the Streamer class
with the first change.

Finally, with the third change, Bob intends to resolve the
previous inconsistency between the class and the sequence
diagram. By renaming [UML::Operation]wait to [UML::
Operation]pause CRE.1.3 is now consistent.
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Fig. 2 Consistency rules define CREs for specific engineering artifacts. Alice and Bob produce individual deltas on the state of these CREs by
adopting both Java and UML engineering artifacts according to their wishes
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(a) Sequence Diagram (b) Class Diagram

Fig.3 UML diagram version in Bob’s individual work space

2.2.2 Adaptations by Alice

Let us assume that Alice is aware of the inconsistency
with regard to CRE.2.2 between the Java class and the
UML class diagram. To resolve it (and unaware of Bob’s
changes), she decides to rename the [Java::Method] “stop”
to “pause”—hence ensuring that her code conforms to the
UML model. The state of her working copy is depicted in
Listing 5. This change resolves the inconsistency from her
perspective and would require the re-evaluation of CRE.2.2.
However, she would have to check this inconsistency manu-
ally because Alice’s programming tool does not have access
to the UML model. Even if she were to check out the model,
the two tools would not be capable of checking inconsis-
tencies between them. Much like Bob’s CRE.2.2.B, Alice’s
CRE.2.2.A remains non-computable. Alice also remains
unaware of the changes Bob made, most significantly of the
fact that her change conflicts with Bob’s change. If both Alice
and Bob committed their changes to the project’s main repos-
itory, they would find that CRE.2.2 remains inconsistent even
though both had the impression they resolved the inconsis-
tency before the commit. This realization may come hours,

days, or even weeks after Alice and Bob made these changes.

Public class Streamer

{
Display display;
Void stream()

{
display .draw () ;
}

Void pause() {...}

OO0 N B W=

}

Listing 5 Excerpt of Java class “Streamer” in Alice’s individual work
space

3 Problem statement

In this section, we describe the main challenges that moti-
vate our research, as well as the overall aim of this study. As
the traditional consistency checking tools like Model/Ana-
lyzer [23] or CLIME [1] have limited views on engineering
artifacts, this has negative consequences in a collaborative
engineering project. We relate these problems to the exam-
ple discussed in Sect. 2:

— Incomplete information Traditional approaches are capa-
ble of checking the individual working copies (artifacts
within tools) efficiently and incrementally. However, they
require all engineering artifacts to be available locally,
which is not often the case in multi-developer, multi-tool
development scenarios. No tool is capable of represent-
ing all engineering artifacts; nor does every engineer need
access to all artifacts. In relation to our illustrative exam-
ple: Alice’s renaming of her java method is inconsistent
because of her incomplete information regarding Bob’s
original refactoring of his operation.

@ Springer
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— No support for individual working copies Traditional
approaches that allow for incomplete local knowledge
(e.g., [4,6,7,24,25]) do not support the idea of individ-
ual adaptations (i.e., every change an engineer performs
must immediately be considered public). This limits
the applicability of those approaches because not every
engineer would like changes to be publicly visible imme-
diately (i.e., trial and error). It is inherently understood
that changes are individual until engineers explicitly
make them public. In relation to our illustrative exam-
ple: Both engineers work independently from each other
(i.e., individually). An (automated) exchange of consis-
tency information could therefore only happen if the
consistency checker could access both Alice’s and Bob’s
(individual) engineering artifacts.

— Late recognition Since engineers work separately on
their artifacts, their adaptions must be committed and
integrated into a single shared, public repository. At
this point, consistency checking could detect incon-
sistencies encompassing the engineering artifacts from
different engineering disciplines. However, depending on
the frequency of commits this can be late and irregular.
Moreover, not all engineers are expected or required to
commit at the same time; hence, continuously resulting
in a partially incomplete public repository. Merging con-
flicts and refactoring phases may introduce further errors.
In relation to our illustrative example: The inconsisten-
cies between Bob’s and Alice’s work would at best be
recognized during the merge process of their changes.
This would likely happen much later than the introduction
of the inconsistencies when the error may have spread
into other parts of their work.

To address these problems, our goal is to develop an envi-
ronment that is capable of instantly checking the global
impact of artifact changes even if these changes are per-
formed by engineers working with local, individual copies
(i.e., tools). The environment’s computational effort and
memory consumption should be scalable and its performance
should allow for quick, incremental consistency feedback,
even including in situations as discussed earlier.

4 Cloud environment

Our approach to scalable consistency checking in a multi-
developer, multi-tool environment combines the advantages
of version control systems, individual work spaces, instant
notification, and incremental consistency checking. Our solu-
tion systematically reuses computed consistency checking
knowledge and provides complete consistency checking for
all engineers at all times that is customized to their respective
individual spaces. Central to our approach is the utilization of
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the engineering cloud environment [13]. This environment is
crucial as it allows our approach to work as a generic collab-
orative engine [26]. Thus, allowing the communication and
collaboration between multiple tools, users, use of heteroge-
neous artifacts, and deploying and consuming customizable
services, such as the consistency checker. We describe the
functionality and architecture of this environment in the fol-
lowing. While doing so, we expand on certain concepts that
are critical to our way of consistency checking.

4.1 Overview

Figure 4 depicts an overview of our approach’s archi-
tecture, respectively, its workflow. With the help of tool
adapters (Sect. 4.2), engineering tools transform their inter-
nal engineering artifact structure into a fine-grained, uniform
representation (Sect. 4.3) and synchronize it with the cloud-
based artifact storage. There, the artifacts are stored in a
public space (Sect. 4.4). The version history is based on
atomic changes, similar to the version control of Resource
Description Framework (RDF) [27] or operation-based ver-
sion control of the Eclipse Modeling Framework (EMF) [28].
Changes on public artifacts—as synchronized by the tool
adapters—are stored in a separate individual work space for
each individual tool, respectively, tool adapter. A retrieval
of data, from the perspective of a tool, always considers the
individual changes first and layers them on top of the public
artifact. This way engineering artifacts are stored in different
tool-specific views, which represent the current work states of
engineers. This layering also avoids duplication. Merely arti-
fact changes are stored in individual work spaces and (as we
will see later) merely affected consistency rule evaluations
are stored there. When a change is stored in an individual
work space, a corresponding change notification (Sect. 4.6)
is fired. This notification triggers various services (Sect. 4.7)
such as the consistency checker. The consistency checker
then reacts depending on the nature of the change and rea-
sons over the linked artifact structure (Sect. 4.8) to compute
a new consistency state. Contrary to other version control
systems, our work maintains consistency checking artifacts
(Sect. 4.9) alongside regular engineering artifacts. Consis-
tency checking in our approach is always performed from an
individual perspective on the artifact storage, giving us the
possibility to provide individualized feedback (Sect. 4.10) to
the engineers.

In the following, we discuss the outlined concepts in fur-
ther detail.

4.2 Tool adapters
The tool adapters of Fig. 4 complement development tools

used by engineers. They are custom implementations using
the cloud environment’s API for both the transformation of
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Fig.4 Architecture of our approach

artifacts into the uniform representation and their synchro-
nization with the cloud environment. Their technical details
depend on the respective tool they are built for.

There are, however, a few requirements that these tool
adapters must support: i) the adapter must have access to
the artifacts created in the tool; ii) the adapter must deal
with change notifications happening within the tool; iii) the
adapter must connect to the server to provide communica-
tion between work spaces; and, iv) the adapter must listen
to changes from the server to make the required updates in
the local tool. For example, if we consider Eclipse Papyrus’>
tool adapter, it accesses the UML models created in the tool
and listen from change notifications in these models. These
notifications are triggered by Papyrus whenever a model is
changed. The tool adapter forwards these notifications to the
server as changes. In parallel to this process, the tool adapter
is also listening to notifications from the server. If notifica-
tions are identified, the tool adapter will send them to Papyrus
to update the models.

In addition to these tool-adapter requirements, the tools
must also satisfy some requirements [26]: 1) the tool must
allow the tool adapter to identify elements individually (e.g.,
using identifiers), ii) the tool must have a Software Devel-
opment Kit (SDK) that communicates with the tool adapter,

3 Eclipse Papyrus: https://www.eclipse.org/papyrus/.

and iii) the tool’s SKD should allow multi-threading for tool
adapter to work asynchronously.

As a proof of concept, our engineering environment
already supports a wide range of tools such as Papyrus,
Eclipse4, IntelliJ, Microsoft Excel®, Microsoft Visio®, Eplan7,
Creo Elements Prog, and others.

4.3 Unified representation

Before we discuss our approach further, we need to discuss
how engineering artifacts are stored in the cloud and how this
allows us to integrate development tools with our infrastruc-
ture. As previously mentioned, engineering artifacts (e.g.,
models and the source code) are translated to a uniform
representation. A simplified illustration for this uniform rep-
resentation is depicted in Fig. 5.

An artifact has a unique i1d. Furthermore, the Boolean
flag alive indicates whether the artifact is alive or not
(i.e., whether it has been deleted or not). Moreover, artifacts
may have a number of properties, which are key-value
pairs. A property has a unique name and is linked to a value,
which is stored in the form of a list of deltas, recording
every change that has been made on a property. Retrieving
a property always retrieves its latest value (the last entry on
the list of deltas). The contents of the delta list are either
basic data types such as Boolean, Integer, Float and
String, or references to other engineering artifacts. Vari-
ous lists are also supported but omitted for simplicity. Both an
artifact’s properties and their respective data types are defined
in the artifact’s referenced type. For example, Fig. 7 (dis-
cussed later in detail) shows a UML Class artifact type, a
Java Class artifact type and a Link artifact type. Every time
a new engineering artifact is synchronized with the cloud, a
corresponding artifact type is instantiated.

Any tool that stores its engineering artifact in a graph-like
structure of nodes and edges can easily be mapped to our uni-
form representation (e.g., ECore [29] structures or abstract
syntax trees). The semantics of the original representations
do not change; however, sometimes it makes sense to only
synchronize the essential parts of an engineering artifact with
the cloud. The respective translation of the original represen-
tation into the cloud’s uniform representation is done by the
respective tool adapters with the help of the cloud’s APIL.
However, the mapping between the original and the uniform
representation must be individually implemented for each
type of engineering artifact (e.g., the implementer of a UML

4 https://www.eclipse.org/.

3 https://www.microsoft.com/excel.

© https://www.microsoft.com/visio.

7 https://www.eplanusa.com/solutions/eplan-platform.

8 https://www.ptc.com/de/products/cad/creo.
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Fig.5 Structure of engineering
artifacts in the uniform
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tool adapter must decide how specific models and their ele-
ments are mapped to the uniform representation, i.e., they
must decide on the structure of the respective artifact type).
While designing the cloud environment, we considered the
application of EMF [29], more specifically Ecore, as a basis
for collaborative modeling. We decided to abandon this con-
cept in favor of a typed, more lightweight, uniform artifact
representation that is not tied to the Ecore/Eclipse frame-
work. One of the main reasons for not applying Ecore is to
simplify the model representation, including only elements
that would be needed for the communication between tools,
tool adapters, and the cloud environment. If we had decided
to use Ecore, our representation would contain properties and
elements that are not necessarily useful for our environment.
Another reason for creating our own representation is the
possibility to extend it based on the requirements related to
the services that communicate with the cloud environment.
Furthermore, we need to address the main benefits of using
a unified representation for the artifacts. As reported by Tor-
res et al. [30], the majority of consistency checker tools do
not provide support for identifying inconsistencies in mod-
els from different domains. The main reason for that is that
for checking the consistency of such models, their properties
and values must be represented using an equivalent structure.
Otherwise, we would be unable to compare their properties
and values. For instance, if we apply consistency check-
ing considering UML and Excel artifacts, as each tool has
a completely different representation, the way of accessing
properties and values from their artifacts is completely differ-
ent. Thus, model transformation techniques may be required.
Such techniques, however, may cause the loss of important
data [30] that can affect the result of the consistency checker.
The use of an intermediate representation allows our
approach to transform all models from different tools into
a single type of model that is equivalent independently of the
artifact being represented. Furthermore, as the tool adapters
are responsible for performing the transformation from the
original model into our unified representation, we can pre-
vent loss of important data as each tool adapter is developed
considering their respective tool. In this case, data loss may
happen with data that is not relevant for the collaborative
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environment, neither the consistency checker. Furthermore,
not all data provided by the tools need to be carried out when
conducting model transformation [31].

The main drawback for applying this strategy is the need
of developing tool adapters for each tool that will be included
in our collaborative engineering environment. As discussed
in the previous section, there are requirements that must be
fulfilled by the tools to allow a tool adapter to be constructed.
Currently, we have already included a variety of tools from
different domains that use different models evidencing the
potential for the extensibility of our cloud environment.

4.4 Public and individual work spaces

Akey aspect of our approach is the organization of the cloud’s
artifact storage into a Public Space (PS) and several indi-
vidual work spaces (IWS). We define these terms as follows:

— Public Space (PS) a PS represents an environment in
the artifact storage that is shared among all engineers
through their individual work spaces (Fig. 4). In the PS,
all artifacts only have one version/state. Hence, when
changes come from the individual work spaces, these
changes must be merged, and possible conflicts must be
resolved.

— Individual Work Space (IWS) IWSs are owned by the
engineers. As the name suggests, in this “space,” engi-
neers work individually in their respective tool(s). Hence,
each IWS is only accessible to a single engineer, and the
artifact’s version in this IWS represents this engineer cur-
rent work. As illustrated in Fig. 4, IWSs are connected
with each tool adapter. Each engineer may own multi-
ple IWSs, depending on how many tools the engineer is
working on.

This configuration allows the approach to capture the dif-
ferences between the engineering artifacts in the tools and
the shared, publicly accessible engineering artifacts in the
cloud. It is important to note that we do not expect develop-
ment tools to run within the cloud as engineers typically use
them on their local workstations. However, IWSs do reside in
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the cloud together with the public space. Each TWS reflects
the changes (deltas) between the artifacts in the given engi-
neer’s tool and the PS. This is achieved by the means of tool
adapters, that observe artifact changes in tools and forward
them to the corresponding IWS [13].

Tool adapters support a workflow that is typical for
development repositories such as SVN [32] (i.e., check-out,
modify, commit). Most importantly, they immediately for-
ward artifact changes to their respective IWSs. This ensure
that the IWSs are always up-to-date. Hence, the cloud’s IWSs
reflect tool artifact states. The cloud is thus fully aware of
all changes made by all engineers at all times (even though
these changes are treated individually unless engineers tell it
otherwise). A tool is typically only concerned with the engi-
neering artifacts that it can edit (e.g., a modeling tool edits
UML models but not the source code). Yet, to perform a com-
plete consistency check, a consistency checker needs access
to all engineering artifacts. By placing IWSs in the cloud,
a service has access to each engineer’s changes and the PS.
Therefore, by extension a consistency checker operating on
the IWSs can produce consistency feedback about each engi-
neer’s IWS with regard to the public PS—in short, complete
public knowledge superimposed with the engineers’ reflec-
tive individual changes.

During consistency checking, artifacts are retrieved from
their respective IWSs. In this process, the changes of the
IWS are layered on top of the respective public artifacts
in the PS. This is illustrated in Fig. 6. If an IWS does not
hold an artifact referenced by a consistency rule, then the
consistency checker automatically falls back onto the PS.
This way, all publicly available artifacts can be integrated
into the consistency checking mechanism, despite the fact,
that only parts of them may be relevant to the engineer’s
work. This organization of engineering artifacts allows for
global consistency checking, involving an engineer’s individ-
ual modifications. Since tool adapters immediately propagate
artifact changes from tools to IWSs and a change immedi-
ately triggers a consistency check, our approach avoids the
problem of late error recognition. Finally, engineers may
continue working “individually” while still receiving indi-
vidualized consistency feedback.

If we consider our illustrative example (Sect. 2), the cloud
environment contains all public UML models and the respec-
tive source code (See Fig. 1a and Listings 1 and 2 ). There
would be two IWSs (similar to Fig. 4)—one for Bob’s UML
designer tool and one for Alice’s source code tool; both ini-
tially empty. As Bob and Alice modify artifacts through their
respective tools, these changes are forwarded to their respec-
tive IWSs. Bob’s IWS eventually contains the changes Bob
made as described in Sect. 2.2.1 and Alice’s IWS contains
the changes she made as described in Sect. 2.2.2 (illustrated
as deltas (A) in Fig. 4). However, simply executing n copies
of a consistency checker—e.g., Model/Analyzer [23]—in the
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Fig.6 Retrieval of an artifact by a tool, where the connected individual
work space holds a change. The change is layered onto the public artifact

cloud would be inefficient. This would lead to unnecessary
CREs and memory consumption because each IWS would
replicate similar consistency information. Considering the
illustration again, if both IWSs of Alice and Bob have avail-
able separate consistency checkers, then both would maintain
CRE:s that, in part are identical.

To address this issue, each IWS not only maintains the
delta of the engineering artifacts with respect to the PS
(i.e., IWS. Aartifacts) but also its corresponding con-
sistency delta (i.e., the added/modified/removed CREs stored
in IWS. ACRE). Whenever an engineer modifies an engi-
neering artifact, the consistency checker re-evaluates the
affected CREs. When CREs change then they are stored
as CRE deltas in the IWS, which constitutes the difference
between the tool’s consistency state and public consistency
state. The version controlling of consistency data also avoids
expensive, initial batch consistency checking as the CRE can
be checked-out together with the artifacts. A single consis-
tency checker can take advantage of this by re-evaluating
consistency information from the perspective of an individ-
ual IWS.
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4.5 Exemplary artifact retrieval

To follow the illustrative example, Alice at first needs to
obtain (i.e., check-out) various Java classes. Alice thus uses
the check-out function in her programming IDE—provided
by the tool adapter—where she specifies the code artifacts
she wants to check out. Listing 6 describes the check-out
algorithm.

1 | checkOut(artifact)
2 IWS = create IndividualWorkingSpace ()
3 return IWS, getElements(artifact)

Listing 6 The checkOut function

The algorithm first creates an IWS for her tool. The IWS’s
A of the code is empty upon check-out because Alice has not
made any changes yet the algorithm returns a tuple of the IWS
and the checked-out code artifacts to the tool adapter. The
tool adapter then translates the model artifacts to her tool’s
internal language—which is tool-specific and therefore not
depicted.

4.6 Changes and change notifications

Whenever an engineer adapts an engineering artifact within
his or her tool, the tool adapter translates this adaptation into
one or many atomic changes on the uniform artifact represen-
tation of the said engineering artifact. These changes are then
forwarded to the cloud where they are stored in the engineer’s
respective IWS. A change can be one of three types:

— Create A “Create” change is caused by the creation of an
artifact and its properties.

— Modify Whenever a property is modified with a new value
it counts as an “Modification” change.

— Delete A “Delete” change happens whenever an artifact
and its properties are deleted.

Each change type is complemented by a value. The value
can be of one of the types illustrated in Fig. 5. How changes
are stored effectively depends on the concrete type of the
respective work space. In an IWS, a change is only stored as
a delta with regard to the same engineering artifact in the PS.
When the IWS is eventually committed to the PS, the change
is removed from the IWS. In the PS, the change is then added
as the latest entry to a list of changes, i.e., a property in the
PS references multiple changes. This list of changes acts as
a change history.

Whenever a change is stored the respective work space
fires a change notification. The notification is sent to listeners
of the work space, such as the consistency checker service.
In our case, the consistency checker is notified about changes
from any IWS and checks them for inconsistencies.
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Take, for example, Bob’s additionon the [UML: : Class]
Streamer (connect). This change will cause are-evaluation
of CRE. 2. 2 . B. The corresponding change notification will
be fired from Bob’s IWS. On re-evaluating the consistency
rule, the consistency checker can write feedback on the
change into Bob’s IWS, immediately making Bob aware of
the new consistency state. Bob can then continue and com-
mit his changes to the PS. On Alice’s side, the consistency
checker can then re-evaluate her own version of the con-
sistency rule, making sure, that her local changes are not
in conflict with the latest changes of her co-worker. This
reduces the problem of the conflicting, concurrent changes
made by Alice and Bob (discussed earlier). She may decide
to immediately attune her work to Bob’s change. As a result,
her later commit to the public work space will not cause an
inconsistency to the public CRE. 2. 2.

4.7 Services

In our approach, consistency checking is realized as a service.
A service is an automated mechanism that can analyze and
alter the contents of the cloud environment’s artifact storage.
To do so, a service reacts toward the changes within a specific
work space. The service’s mechanism is then executed on the
respective space. The consistency checker adds and alters
artifacts solely in terms of evaluated CREs, which are kept
alongside regular artifacts.

4.8 Linking

A major aspect for every modern engineering project is the
awareness and documentation of relationships between its
engineering artifacts. Documenting these relationships pro-
vides useful insights for several engineering disciplines, e.g.,
in the form of traceability links, widely used in requirements
engineering. It also provides us with information about arti-
facts that need to be kept consistent, regardless of whether
there is an automated mechanism to check consistency for
us. The relationships between artifacts can either be of an
implicit nature (e.g., established via naming conventions) or
be explicitly documented. The documentation of relation-
ships is often done in separate tools (e.g., traceability tools),
independently of the concrete engineering artifacts. This lim-
its the possibilities for analysis and requires additional effort.

In our approach, the relationships, respectively, links,
between artifacts are captured side-by-side with the concrete
engineering artifacts. There are two ways to establishing links
in the cloud environment. They can be simple references of
one artifact to another by adding a respective property field
to the linked engineering artifact. Or they can be separate
artifacts pointing at both the source and the target of the link
as property fields (see Fig. 7). The way how to represent links
is mostly up to the concrete problem—conceptually there is
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Fig.7 Two differently typed artifacts instantiations linked through a dedicated link artifact type, respectively, its instantiation

no deciding advantage in one way or the other. In the latter
case however, links are organized as actual engineering arti-
facts themselves. This provides us with further possibilities
to reason over them in our consistency checking mechanism
(e.g., by the addition of meta-information on the concrete
link artifact, such as a specific link type—a UML-specific
“implements” association—could be captured this way). In
this work, it was sufficient to represent links as regular ref-
erences.

Another important consideration to make is the automa-
tion of the linking process in the cloud. Potential solutions for
this issue range from fully automated (e.g., name-matching)
to semi-automated (e.g., heuristic recommender-systems) to
manual approaches (i.e., regular artifact linking via spe-
cific tools). Each of these solutions has its own advantages
and disadvantages with regard to flexibility, correctness, and
completeness of the resulting link structure. However, the
necessary automation of the linking process is also up to the
circumstance and scale of the engineering project. Bigger
projects may require an automated approach, which can be
realized in the form of an automated service operating on
the artifact storage of the cloud environment. While such
approaches for the automatic establishment of links exist
(e.g., as presented by Ghabi et al. [33]), manual approaches
are still the prevalent way to tackle the problem. Our work
does not prescribe a mechanism. How to link is up to the
engineers.

We establish links between related artifacts to provide nav-
igation structures for the consistency checking mechanism.
As such, consistency rules may include linking property
fields to refer from one artifact to another. Consider again

consistency rule CRD2 (see Listing 4), referring to the arti-
fact structure illustrated in Fig. 7. In this rule, the consistency
checker would first retrieve the name field of an operation
before comparing it to a linked java-specific method name
field. The “javaLink” property serves as a navigation link
between the code and the UML artifact. Vice versa, the arti-
fact representing the java class is referencing its respective
UML representation, via a property called “umlLink.” Every
link in the cloud environment is established bidirectionally.
If a user links an artifact to another, the reverse link is auto-
matically created. The property field for the reverse link is
defined in the type information of the linked artifacts.

4.9 Consistency checking artifacts

Earlier we discussed the concepts of CRDs and CREs (see
Sect. 2). In the following, we discuss how these concepts can
be realized. In our approach, engineers may add CRD at any
time. For this the consistency checker uses the uniform rep-
resentation of artifacts in order to store both rule definitions
(CRDs) and results (CREs). The consistency checker there-
fore creates instances of two different engineering artifact

types:

— Consistency Rule Definition (CRD) Artifact These arti-
facts hold information on the type of artifact a rule is
applied to (the context), as well as the concrete rule
itself—written in OCL. These artifacts are the represen-
tation of a CRD.

— Consistency Rule Evaluation (CRE) Artifact These arti-
facts realize CRDs for a certain artifact instantiation (the
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context element). They hold their current consistency
result as well as a reference to the respective CRD. Fur-
ther, they keep track of the so called “scope.” Equivalent
to the concept described in Sect. 2.2.1, a scope is a list of
artifact/property pairs that are involved in the evaluation
of a certain rule, regarding a specific context element.

When an engineer creates a type, this type can be used as
the context of a CRD. With the creation of a CRD (done by
an engineer via a specialized tool), a CRE is automatically
created for each artifact of the context type. These CREs are
stored in the work spaces the respective artifacts reside in.

For example, if Alice creates an artifact type for Java pack-
ages, our tool would automatically recognize the said type
and make it possible to create a rule definition for it. If she
goes on to create a CRD for this type, the consistency checker
will create the respective CREs in Alice’s IWS. These CREs
are immediately evaluated on the basis of the newly created
rule.

During the initial evaluation, the scope of a CRE is built.
The scope is a set of all artifacts, respectively, their properties,
which are traversed during the rule evaluation. On side of the
referred property, a reference to the CRE is added (as a delta
within the IWS from whose perspective a rule is checked).
Should any of these properties change during runtime, the
reference is followed back to the CRE and a re-evaluation is
initiated.

4.10 Feedback

Since services can write their results into IWSs in the form
of artifacts, tool adapters can synchronize and interpret such
results. Every tool adapter can transform service results into
individual feedback, corresponding to the changes adapted
on their tool-internal engineering artifacts. In case of the con-
sistency checker, the service writes a result as a delta on a
CRE. Such a delta can be recognized by the tool adapter and
lead to individualized consistency feedback within the tool,
e.g., ascreen warning or the different coloring of inconsistent
artifacts in a UML tool.

5 Consistency checking

An overview of the consistency checking approach is illus-
trated in Fig. 8, showing the main workflow related to the
consistency checking performed. In Step I, namely, engi-
neers perform changes, Alice and Bob perform the changes
in their corresponding artifacts as discussed in Sect. 2. These
changes are synchronized with their respective IWSs. Then,
the instant consistency checking mechanism starts (Step 2),
where the new changes performed in their IWSs are ana-
lyzed to find possible inconsistencies. The next step, Step 3,
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is when the global consistency checking happens. This is trig-
gered by commits from the individual work spaces into the
public space. During this step, the changes committed from
an IWS are analyzed to find possible inconsistencies originat-
ing from them in the public space. Hence, our approach only
needs to analyze the artifacts modified by these new changes,
rather than the whole artifact storage in the public space. Fur-
thermore, it is possible that these new changes (e.g., Alice’s
changes), now included in the public space, create incon-
sistencies in the IWS of other engineers (e.g., Bob). In this
case, the approach performs consistency notifications (Step
4), notifying Bob which artifacts in his IWS are inconsistent
concerning the public space. In this context, the approach
does not need to re-analyze Bob’s artifacts as these changes
and their originated inconsistencies were already checked in
the public space.

In this work, we do not focus on the consistency rule
mechanism as it is handled by a separated, exchangeable
mechanism, the discussion of which is omitted to uphold the
readability of this work (for more information on rule evalu-
ation please refer to Reder et al. [23]). The aspect of handling
the results from the changes is mostly concerned with writing
information on the correct IWS, which is implicitly decided
during the analysis of these changes. Feedback regarding the
consistency notification is dependent on the implementation
of the respective tool adapter, which is not the focus of our
contribution.

The following section discusses our approach toward the
analysis of the changes performed by engineers. We also dis-
cuss how the cloud environment from Sect. 4 can be utilized
during data gathering. Depending on the nature of the change,
the consistency checking mechanism must react accord-
ingly. We discuss each change type in detail and describe
the respective reaction from the consistency checker’s side.
Furthermore, we discuss the consistency checker’s tasks
whenever users decide to commit their IWSs into the public
space.

5.1 Data gathering by change type

Engineers may modify artifacts within their development
tools. Changes made by an engineer are observed by the tool
adapter and propagated to the engineer/tool’s corresponding
IWS. These changes are represented artifact properties/val-
ues that were added, modified or deleted. There the changes
are stored as deltas with regard to the public space. These
deltas represent the differences between the artifact in the
public space and the changes applied in an IWS. Less
straightforward is computing the consistency implications
of these changes. If an artifact is part of a CRE, it means that
its state have to evaluated for consistency checking. Thus,
affected CREs have to be re-evaluated and the new state also
needs to be stored in the IWS. However, this process varies
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with regard to the nature of changes: modification,
addition, and deletion. Each of the aforementioned
changes triggers a notification to connected IWSs, where rel-
evant CREs have to be evaluated as well. In the next sections,
we give more details of how these types of changes are ana-
lyzed.

5.1.1 Modification

Modifications describe changes that update the value of a
property in a given artifact. For instance, recall that Alice
renames her Java method from “wait” to “pause” (see Fig. 2).
She does this in her tool and the tool adapter will update
Alice’s IWS with the modified name (“pause”). Listing 7
describes the algorithm to handle modifications of artifact’s
properties in the IWS. The property from the artifact that was
modified is added in line 2 as an artifact delta.

The syntax of this line is to be understood as follows:
IWS.Aartifact contains the delta (A) for all artifacts.
The delta for an individual artifact with identifier i can be
accessed through IWS.Aartifact[i]. Recall that each
artifact is identified by a unique id, which is utilized for this
access. Furthermore, the A of individual properties of arti-
facts can be accessed by IWS.Aartifact[i].[p], p again
being the identifier for the property. In this case, the name of
a property is the unique identifier for the access of property
deltas. This is possible as property names are unique in the
context of an artifact.

modify (IWS, i, property, oldValue, newValue)

IWS. Aartifact[i].[ property] = newValue

CREs = {CRE € PS.CRE

CRE. alive = true and CRE ¢ IWS. ACRE}
CREs U= IWS. ACRE
for CRE € CREs
if (i, property) e CRE.scope
IWS. ACRE[CRE] = evaluate (CRE)

0NN AW =

Listing 7 The modify function

Anexample of such anaccess couldbe IWS. A [ [Java: :
Class]pause] . [name]. This artifact/property does not
exist in the IWS before the modification and is set to the
value “pause”—thus overruling the value “wait” from the

same artifact/property found in the public space. At this point,
the change is only applied to the IWS, but the consistency
checker is still aware of both the currently values of the IWS
as well as the value from the public space. Each artifac-
t/property may have at most one entry in IWS.Aartifact.
Should Alice later overwrite this name again (e.g., change
“pause” to “stop”), then the new name would overwrite the
previous change in the IWS (e.g., the current delta would
hold the value “stop” instead of “pause”).

For each modification, all CREs affected by the modifi-
cation must be re-evaluated and the result must be persisted
in IWS.ACRE. Similar to artifacts for tool adapters, a con-
sistency checker has an internal language for CREs. Thus,
CREs are similarly translated into the uniform representation
and also uniquely identified and accessible as artifacts. Since
these CREs are as well subject to version control, we must
distinguish two cases: CREs that already are in IWS.ACRE
and CREs that are in the PS. The variable CREs is the union
of the individual CREs and the public CREs. Computing the
individual CRE:s is straightforward because it is IWS.ACRE
itself.

In our approach, the search for public CREs relevant to
a change is simplified by the existence of backward links.
When a CRE is first evaluated, it builds a scope. This scope
is a set of all properties from artifacts related to that CRE.
When a property is added to the scope, the CRE saves a
reference to the said property. This reference can be traversed
bi-directionally. So anytime there is a change, the consistency
checking service checks whether the changed property has a
backward link to a CRE. If so, the CRE is retrieved.

Once the CREs are retrieved, we need to re-evaluate those
CREs where the scope contains the changed properties. The
new evaluation result is then stored in IWS.ACRE (line 8),
which either overwrites a previous individual result, or—if
there was none—creates a new entry.

This explains the need to filter the overwritten public
CREs as discussed earlier. For Alice, IWS.ACRE was ini-
tially empty. Of the five CREs that existed in the PS during
check-out (Fig. 1), only CRE. 2 . 2 had a scope that included
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the Java class changed by Alice. Therefore, CRE. 2 . 2 needs
to be re-evaluated, resulting in the individual CRE.2.2 . A
stored in her IWS. This individual CRE exists for Alice only
and is superordinate to the public CRE. 2.2. The public
CRE. 2.2 cannot be replaced physically because it corre-
sponds to the public artifact. For example, Bob’s IWS still
needs to see the public CRE. 2 . 2 as he does not see Alice’s
changes at this point and he has not made his changes either.
The evaluation mechanism evaluate (CRE) is not dis-
cussed at this point for brevity. In this regard, interested
readers may consult the work of Reder et al. [34] for more
details.

5.1.2 Creation

Creations describe additions to the model. These additions
can be the creation of a new artifact or the creation of prop-
erties in an existing artifacts. In either case, the new artifact
and new properties need to be inserted in IWS.Aartifact
(line 2 in Listing 8).

The creation of an artifact cannot cause a re-evaluation
because a new artifact cannot yet be part of the scope of any
CRE.

However, if a CRD exists whose context matches the type
of the newly added artifact, then a CRE must be created
and evaluated (lines 5-8). For example, recall that Bob adds
anew [UML: :Message]connect in his sequence dia-
gram (Fig. 3). After Bob’s tool adapter sends this newly
created artifact, the add algorithm adds the new message to
IWS.Amodel and adds a newly instantiated CRE.1.4.B
to IWS.ACRE—recall that a CRE is instantiated for every
instance of a matching context element.

CRE = create instance
IWS. ACRE[CRE] = evaluate (CRE)

1 | add(IWS, i)

2 for property of artifact

3 IWS. Aartifact[i].[property] =

4 artifact.[property]

5 for (R € CRs

6 if cr.context = artifact.type then
7

8

Listing 8 The add function

5.1.3 Deletion

Deletion refers to the exclusion of artifacts or their prop-
erties. The deletion of an artifact (Listing 9) requires the
removal of all CREs whose context elements match the
deleted artifact (as opposed to creations that cause the cre-
ation of CREs). A CRE residing in the IWS can be deleted
simply by removing it from IWS.ACRE. However, CREs
residing in the public space cannot be deleted. These CREs
must be flagged as “not alive.” This is done by adding/mod-
ifying a CRE to IWS.ACRE with the alive flag being false.
Regular artifacts are handled likewise. For example, should
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Bob delete [UML: :Message]wait, then the model ele-
ment and its CRE must be flagged deleted and added to the
IwS.Aartifact and IWS.ACRE.

deletion(IWS, artifact, i)
CREs = ... //as defined in change(..)
for CRE € CREs
if artifact € CRE.scope then
if CRE ¢ PS.CRE then
remove CRE from IWS. A.CRE
else
CRE. alive = false
if artifact ¢ PS.artifact then
10 for property of artifact
11 remove IWS. Aartifact[i].[property]
12 else
13 IWS. Aartifact[i].alive = false

NelE-REN e R e S N

Listing9 The deletion function

5.2 Committing consistency artifacts

Once users have finalized their changes, they can transfer
these changes to the PS and make their work visible to other
users of the cloud environment. In the cloud environment, this
can be done by committing the deltas stored in an IWS into the
PS, where they are appended to the current state of the corre-
sponding engineering artifacts, respectively, their properties.
an IWS generally stores all deltas of artifacts with regard
to the PS, i.e., all changes an engineer performs on a pub-
licly available artifact. Additionally, the consistency checker
stores deltas on its organizational artifacts (CREs and CRDs)
within an IWS, effectively documenting the current consis-
tency state of the IWS’s contents. This means, if an artifact is
adapted and the change results in an altered consistency state,
this alteration is stored as a delta on the respective CRE arti-
fact result properties, within the IWS that stored the original
change. This process is illustrated in Fig. 9.

When there are CRE deltas stored in an IWS, this means
that IWS holds changes that would also alter the consistency
state of the PS after committing. Since consistency-related
artifacts are treated as regular artifacts, CRE deltas would
simply be appended to the artifacts in the PS. A retrieval of
CRE results from the PS would then reflect the consistency
state taken over from the IWS. In a basic scenario, with only
one IWS this would not pose a problem. The consistency
state in the PS is correctly updated whenever changes are
committed. In other words, both committed changes and con-
sistency states are always in sync. However, if another IWS
regards the same PS, committing artifacts into the PS may, in
certain scenarios, require a re-evaluation of the other IWS’s
consistency state. Failing to do so, may result in incorrect
consistency information being held by the IWSs. In case such
incorrect information was committed to the PS, this would
corrupt the consistency state of all IWSs. The scenarios which
require re-evaluation can be categorized by the type of their
committed changes (creation, modification, deletion). Their
correct handling can be counter-checked by applying a set of
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Fig.9 Overview of CRE result 1
deltas being stored in an IWS.
This way the consistency state
of the IWS’s content is

documented P [Artifact ID: n],.. [[CRE] Artifact ID: m],,. P
Do | [Property; = X],... | ’ [result = true(x)l,. | P
| i | [Property, = yl,.. | ‘ [scope = {Property,}].. | | |
o « . o
P ' ! L
: .......................... R D D e DD DD I |
! I . 1 )

! Individual Work Space |‘®°"i" | tayering
T I e LS ]
1 1

[Artifact ID: n],

aserl

[[CRE] Artifact ID: m],,,.

[Property, = z]...

[result = true(z)l,..

S S . | S— ‘

1 1 I |

e A PR JI-.-..--..-.--.--....-..-.--.-J

(1) Change |} | (2)Change 1 (3) Feedback
Synchronization | 1 Notification }
1 1 1
1
Tool Adapter SESESES * Consistency Checker

post-conditions to the IWSs. We discuss these aspects in the
following.

5.2.1 Committed creations

Scenario C1 (Context element creation with individual CRD)
Assume the PS receives an artifact of a certain type. This type
is defined as a context in a CRD that is only existing within
an IWS. The consistency checker must now automatically
instantiate and re-evaluate an according CRE within the IWS.
The CRE is then committed together with the CRD (i.e., as
soon as the CRD exists in the PS, all corresponding CREs
appear along with it).

Scenario C2 (Scope element creation) Assume a commit
contains new scope elements for a CRE. If an IWS contains
its own result delta on the CRE, this result would now be out-
dated, since the evaluation did not consider the newly added
scope element. Therefore, the CRE must be re-evaluated from
the IWS’s perspective.

Scenario C3 (CRD creation) Assume the PS receives a
new CRD. an IWS contains context elements for this CRD.
The consistency checker must automatically re-evaluate the
IWS and create the corresponding CREs.

5.2.2 Committed modifications

Scenario M1 (Context element or scope element modifica-
tion) Assume a commit contains deltas on existing scope or
context elements of a CRE. If an IWS contains deltas on non-
overlapping scope elements of the same CRE (i.e., any scope
element of the CRE that was not modified in the commit), the

combination of individual and newly committed deltas may
lead to a different consistency result. Therefore, the CRE
must be re-evaluated from the IWS’s perspective. If, on the
other hand, an IWS contains changes on the same context or
scope elements, it must already have its own delta on the CRE
result. This result may be different from the newly committed
result in the PS; however, it is still corresponding to the IWSs
individual view on the PS—as the individual CRE result is
always layered over its public version (see Fig. 9). Therefore,
this specific case would not require a re-evaluation.

Scenario M2 (CRD modification) Assume the PS modi-
fies a CRD and the corresponding CREs. an IWS contains
scope or context elements referenced by the CREs. If the rule
changes, all CREs referencing the modified CRD must be re-
evaluated. If the context changes, this is equal to the deletion
of an old and the creation of a new CRD. The consistency
checker must clean and modify the CREs accordingly. How-
ever, if an IWS contains an overlapping delta on the same
CRD, this means the rule definition must be interpreted dif-
ferently from the perspective of the IWS. There is no need
for a re-evaluation.

5.2.3 Committed deletions

Scenario D1 (Context element or scope element deletion)
Assume the PS deletes a context or scope element and
the corresponding CREs. an IWS contains changes on the
same context or scope elements. Subsequently the IWS must
already have its own delta on the CRE result. This result,
respectively, the changes on the artifacts, must overrule the
deletions within the PS, since, from the perspective of the

@ Springer



2504

A. Mashkoor et al.

IWS the corresponding context or scope element artifacts are
still alive (see Fig. 9). A commit of these artifacts must natu-
rally restore all artifacts within the PS. A re-evaluation is not
necessary. However, if the PS only deletes non-overlapping
scope elements, the modified scope in combination with the
IWS’s individual changes on other scope elements, may lead
to a different consistency state. Therefore, this case would
require a re-evaluation.

Scenario D2 (CRD deletion without overlap) Assume the
PS deletes a CRD and all its corresponding CREs. an IWS
contains scope or context elements. The correspondingly
stored CREs must be re-evaluated, respectively, removed
from the IWS in the re-evaluation process. However, if the
IWS contains an overlapping modify on the CRD and corre-
sponding CREs, the commit of the IWS restores the CREs
as well as the CRD.

5.2.4 Post-conditions

To trigger the appropriate consistency checker actions, the
commit of an IWS into the PS is forwarded to the rest
of the cloud environment. The consistency checker then,
depending on the situation, re-evaluates the corresponding
IWSs. Handling commits this way keeps consistency check-
ing information up-to-date in all IWSs at all times. The
process is illustrated in Fig. 10.

We secure this way of propagating consistency informa-
tion by defining a universal post-condition in Listing 10.
This post-condition must hold true for every work space after
every commit.

P=P AP,AP3
Py ={YCRD |CRD € IWS — {VCREcgrp | CREcrp € IWS}}
P, ={VCE|CE €IWS — {VCREcg |CREcg € IWS}}

Py ={VCRE | (CEcrg € IWSV CEcRrE € IWSparents)
A(CRDcRg € IWSNV CRDCRE € IWSparents)}

0NN B W=

Listing 10 Commit post-condition

The post-condition P is a logical conjunction of three sub-
conditions P;, P> and P3. These three sub-conditions can be
read as follows:

— P;: Every CRD must have all its corresponding CREs in
the same work space at all times (CRD perspective)

— P»: Every context element (CE) must have all its cor-
responding CREs in the same work space at all times
(context element perspective)

— P3: Every CRE must have its CRD, respectively, its con-
text element in the same stack of layered work spaces
(i.e., the CRD or context element are either in the same
or a parent work space)
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Fig. 10 Overview of an IWS (k) committing its contents to the PS,
resulting in a re-evaluation of other IWSs (m—n)

The CRD perspective guarantees that every newly cre-
ated or modified CRD automatically creates or re-evaluates
the corresponding CREs within the same work space. By
keeping the CREs as tightly bound to CRDs as possible,
the layered stacks of IWSs retain an individual perspective
on stored engineering knowledge, while still keeping their
consistency rules up to date. The context element perspec-
tive guarantees the same for the creation and modification of
consistency relevant engineering artifacts. By keeping CREs
tightly bound to context elements, we guarantee that every
work space that is contributing to the consistency state of an
engineering project, contains its corresponding consistency
information. This gives the engineer using the respective
IWS insight into the consistency of their created or modi-
fied artifacts, without having to commit their work into the
PS. Post-condition Pz is a weaker post-condition than the
previous ones, because it is inherently given by how CREs
are functionally bound to both CRDs and context elements.

Securing these post-conditions helps us to avoid late re-
evaluation of engineering artifacts and to keep consistency
information up-to-date in every work space at all times. In
a tightly interwoven engineering project, this is a relevant
task—in case of a late consistency check, ongoing work
might already be in conflict with inconsistent changes and
the arising problems may have carried over to other areas
of the project (in our illustrative example, think, e.g., of
an inconsistent method name being used in many different
classes, or being overloaded several times). Such situations
can easily occur with version control systems, that do not
instantly propagate knowledge about inconsistent engineer-
ing artifacts. What follows are lengthy merging situations and
cleaning up artifacts locally before committing them into the
repository.
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Reconsider the collaboration setup of Alice and Bob.
Assume that both are uploading an artifact type relevant to
their work. Bob is uploading a type for UML operations,
whereas Alice is uploading a type for Java methods. Bob
then creates a CRD for his UML operation artifacts, stating
that every UML operation must be realized in an equally
named Java method.

Depending on the order of commits at different stages
of work, different scenarios may now unfold. Assume that
Bob commits both his CRD and changes first. In this specific
case, Alice’s IWS would remain unaffected, as her (newly
added and still individual) artifacts are not linked up to UML
artifacts yet should she decide to link them up herself, this
would cause a change of the UML context element, triggering
a regular re-evaluation. Similarly, should Alice commit first
and Bob links the artifacts, the same would happen on his
side. In neither case, any of the IWSs contained any relevant
artifacts, requiring an automatic re-evaluation after a commit.
However, in a later stage of work, when Alice and Bob are no
longer creating new artifacts, but rather adapting their already
existing publicly available versions, commits must be given
special consideration.

Assuming that Bob’s UML artifacts are already linked up
with artifacts currently being changed by Alice, a modifi-
cation of his CRD would cause the scenario “M2.” Should
Alice commit her new changes before Bob, this would cause
the scenario “M1.” Should Bob only modify his UML con-
text elements and commit, the scenario “M1” would occur
from his side, and so on.

Not handling these commits in a specific way would
inevitably result in conflicting consistency states. Consider
a simple change like the refactoring of an operation name
in UML, as outlined in our illustrative example. Bob com-
mits the changed UML artifact (and his re-evaluated version
of the related CRE) to the PS. Naturally, if Alice’s linked
method is no longer matching in name, the consistency state
of her related CRE? must change. However, without auto-
matic re-evaluation after Bob’s commit, the consistency state
of Alice’s IWS would remain invalid, until she causes another
re-evaluation of the related CREs. It is not certain that this
would ever happen. If she were to commit her work immedi-
ately and without re-evaluation, she would commit both an
inconsistent Java method and deprecated consistency infor-
mation. This conflict situation is illustrated in Fig. 11.

5.2.5 Consistency checking before committing

A characteristic of our approach, which warrants being
highlighted, is the possibility to check consistency of an

9 Given that Alice is updating artifacts, which are already linked to
UML artifacts, her changes must trigger the re-evaluation of related
CRE:s via the scope, and, therefore, new results are stored in her IWS.

[[CRE] Artifact ID: m].. T

I [Context Element = ID: k].. | -

| [scope = {Method,}].. | .
|

| [result = truel...
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Fig. 11 Conflicting CREs in case of absent commit notifications
between IWSs. If Bob commits his CRE and Alice’s version is not
re-evaluated, her result may become inconsistent with the publicly avail-
able versions of modified scope elements

individually changed artifact with regard to publicly avail-
able artifacts. This is mainly due to the layering of IWSs on
the PS and the way how data gathering is performed by the
consistency checker. Every IWS can be regarded as a spe-
cific perspective on the artifact storage. In itself an IWS only
represents certain changes on artifacts. Layered on the PS it
represents the full artifact storage in an altered state. When
our consistency checking mechanism retrieves artifacts for
analysis, it does so, for a specific IWS, i.e., from a specific
perspective on the artifact storage, containing the changes
of an engineer. Since the PS can constantly change, the per-
spective of an IWS is always up-to-date with the latest public
state of artifacts. This is different from most traditional ver-
sion control systems, where artifacts are checked out in a
base version that remains static for the time of its editing.
The consistency information results are written back into the
IWS, to equip its perspective with corresponding consistency
information. If the IWS is now committed, its perspective
becomes part of every other IWS’s perspective, requiring the
re-evaluations discussed beforehand.

5.3 Advanced consistency checking

An advanced application of our approach can be imple-
mented in the form of group-oriented consistency checking.
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When a change happens within an IWS, there are, depend-
ing on the setup of work spaces, two ways our consistency
checking approach can react. In the default setup, the IWS’s
consistency state is checked with regard to the PS. However,
if a work space is in a group with other work spaces, the con-
sistency of the change can be counter checked with regard
to all grouped work spaces. For this, consistency checking
relevant properties, such as the elements of a scope, are first
retrieved from the IWS, then from the grouped work spaces
and then from the PS. The only extended functionality of this
consistency checking mechanism is the data retrieval order
and how changes are layered upon each other from the per-
spective of the consistency checker.

Connections between work spaces can be established
manually via a tool provided by the cloud environment.
The grouping information can be stored alongside other arti-
facts within the artifact storage as well. Change notifications
received by the consistency checker hold information about
the work space from whose perspective consistency needs to
be checked. From the said work space, grouping informa-
tion can be retrieved if it exists. The consistency checking
service can now modify consistency information in the fol-
lowing environments:

— Within the work space that performed the change
— Within all (individual) work spaces that are affected by
the change

The former consistency check is similar to a simple individ-
ual consistency check, while the latter is a re-evaluation of
the consistency rule, with regard to all work spaces holding
a delta on related scope elements. The former consistency
check is individual and only modifies CREs in one work
space, while the latter is global and modifies the CREs in
all grouped work spaces. As of now a group-oriented consis-
tency checker implementation is hypothetical; however, its
conceptual formulation already illustrates the wide applica-
bility of our approach in different work situations.

6 Validation of applicability

In Sect. 5, we discussed how our approach integrates IWSs
with a PS in a cloud-based environment to enable compre-
hensive, complete consistency checking in a multi-developer
environment. While in theory this approach can solve the
problems described in Sect. 2, its practical application
requires further validation. This is a primary concern, as
the scale of many regular industrial projects can overwhelm
an experimental approach to a point where it is unus-
able. An approach, which is potentially handling thousands
of artifacts, must scale from an algorithmic as well as a
hardware-related viewpoint. Therefore, we validate the appli-
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cability of our approach, by (1) analyzing its computational
complexity, (2) analyzing the memory consumption of stor-
ing the CREs, and (3) discussing its advantages in terms of
memory consumption for each IWS. To put our results into
perspective, we compare them to evaluation results gained
from the Model/Analyzer [8,34]. The Model/Analyzer is an
established consistency checker, which acts as a predecessor
to our approach. However, it was never integrated in a cloud
or used a cloud infrastructure to its advantage.

6.1 Prototype implementation

Our approach was implemented as a prototype'? applying
the principles discussed in this work. We built this prototype
on a Java-based client/server architecture, using gRPC!! for
network communication. The inventory of tool adapters sup-
porting DesignSpace includes Eclipse IDE, Eclipse Papyrus,
Jetbrains IntelliJ, Microsoft Excel, Microsoft Visio, Eplan,
Creo Elements Pro, among others, such as a simple tool for
documenting various software requirements, as well as a tool
for work spaces and artifact management (e.g., work space
creation, linking, and definition of consistency rules). While
the distribution of change information and the storage of con-
sistency results were handled as described in this work, the
concrete rule evaluation was performed by an implementa-
tion of the Model/Analyzer [23], which was integrated in
the engineering environment. It should be noted that the rule
evaluation part of our approach is modular and can easily
be replaced by any integrated rule evaluation mechanism.
An exemplary artifact synchronization, as well as the consis-
tency checking of artifacts can be seen in the supplementary
material.>13

6.2 Computational complexity

The applicability of our approach is dependent on its scal-
ability. Scalability evaluation’s results can be achieved by
analyzing different attributes of a system, such as memory
usage, network usage, CPU usage, among others. In this
work, however, we focus our scalability evaluation on the
algorithm/computational complexity of our approach.

The computational complexity of consistency checking is
mostly a factor of the number of necessary re-evaluations.
The changes that cause the re-evaluations are create and
modification—the deletion of model elements does
not cause re-evaluations. According to Egyed [8], previous

10 Our prototype is the DesignSpace project. Its wiki page is available
at https://isse.jku.at/designspace.

1T gRPC: https://grpc.iof.
12 Artifact Synchronization: https://tinyurl.com/yxfwpfoy.
13 Consistency Checking: https:/tinyurl.com/y4pzx23s.
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validations of the Model/Analyzer suggest that the aver-
age number of evaluations per change is between 3 and 11
(depending on the model size). Following, we denote this
value as a constant c. We define the set of performed changes
(which trigger re-evaluations, i.e., create and modification)
by an individual engineer as change.am. Equation 1 defines
the total number of CRE evaluations CRE.E,pproach as the
sum of evaluations required for each individual engineer.

lengineer|

CRE .Eqpproach = Z (c x |change.am;|) @))

i=1

This equation shows that the computational complexity
grows linearly with the average number of performed
changes per engineer and the total number of engineers. Thus,
our approach scales.

To empirically assess the overhead imposed by our
approach, we re-enacted an evaluation of the Model/Ana-
lyzer using our approach. During the evaluation, we used the
same UML models as described by Reder and Egyed [34].
Table 1 presents these 22 UML models, the number of model
elements from each model, as well as their source (Academia
or Industry). We also performed random changes in these
models by simulating the changes for all model elements
in each of the used models. More specifically, we captured
the time required for re-evaluating all affected CREs and to
persist the new result.

Each change was performed several times and the raw
data for each change was recorded. The experiment was per-
formed on a Windows 7 Professional PC with an Intel(R)
Core(TM) i7-3770 CPU @ 3,4GHz and 16GB of RAM.
Figure 12 depicts the evaluation times per affected CRE on
average depending on the project size. We furthermore per-
formed an ordinary least squares regression analysis'# on the
total processing time (i.e., the time it takes to find affected
CREs and to re-evaluate them). The obtained results are sum-
marized in Table 2, which shows that the model size has
a significant, yet quite small effect on the evaluation time.
Increasing the model size by 1000 elements leads to a total
processing time increase of 0.4ms on average. The results
furthermore indicate that the number of affected CREs and
evaluation times per CRE individually do not affect the total
processing time. However, in combination those factors are
significant determinants of the total processing time. On aver-
age, an increase in the number of affected instances by one
increases the total processing time by 23ms. An increase in
the evaluation time per affected instance by lms increases
the total processing time by 1.5ms on average. Note that

14 Ordinary least squares regression is a method to estimate the rela-
tionship between one or multiple independent and a dependent variable.
This method uses a coefficient of determination (R2) to address how well
the data points fit the regression line.

2507
Table 1 UML models used in the evaluation
Name #mes Source
VOD paper 103 Academia
ATM 219 Industry
Microwave oven 289 Industry
ModelViewController 417 Industry
eBullition 511 Industry
Curriculum planner 762 Academia
Teleoperated robot 1113 Industry
Dice3 1272 Industry
ANTS visualizer 1280 Industry
Inventory and sales system LCA 1295 Industry
Course registration system 1404 Academia
UML model IOC F05a T12 V5.0 1451 Industry
Vacation and sick leave system 1657 Industry
Home appliance control system 1706 Industry
HDCP defect seeding system LCA 1783 Industry
DESI2.3 1972 Industry
iTalks 2211 Industry
Hotel management system 2581 Academia
Biter robocup client 2630 Industry
Word pad 8076 Academia
dSpace3.2 8759 Industry
00dt07 9826 Industry

#mes—Number of model elements

more than 99.9% of sample variations are explained by the
analyzed factors. Comparing to previous evaluations of the
Model/Analyzer [34], we obtained similar results and our
framework did not slow down the evaluation times.

6.3 Memory consumption

The memory consumption of our approach correlates with
the number of CREs that need to be maintained overall and
for each engineer individually. Equation 2 defines the total
number of CREs that have to be persisted in our approach
(CREupproach)- The first factor describes the set of CREs
needed for the PS, which is the number of CREs for a given
model (C RE (model)). Furthermore, since an IWS stores the
delta (A) with respect to the PS, we must consider the effect of
modifications, creations, and deletions. Each of these oper-
ations adds a new entry to IWS.ACRE. Recall the average
number of CREs affected by a single change c: In the worst
case, each performed change adds a corresponding amount
of CRE entries. Note that the number of CREs needed for
an entire model grows linearly with the model size (factor
CRE((model)). The CREs’ memory consumption in the PS
is thus linear with the model size. Furthermore, the CRE’s
memory consumption in the IWSs is again linearly depen-
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dent on the number of changes per engineer and the total
number of engineers.

|engineer|
CREapproach = CRE(model) + Y (c  [change;|)
i=1

@

This equation again shows the scalability of our approach as
we can see the linear growth of its computational complexity.

6.4 Version control mechanism

In this subsection, we discuss the advantages of our approach
in terms of memory consumption for each individual IWS.
As previously stated, an IWS stores the Amodel and fur-
thermore ACRE. We provide a behavioral analysis of how
an IWS’s memory footprint within the cloud environment
depends on model changes compared to using the Model/-
Analyzer as a plugin.

In this discussion, we use the function M (x) to denote
the memory consumption of a specific element x. In our
approach, for both Amodel and ACRE there exists an upper
bound in terms of memory consumption: (i) M (model), the
memory it takes to store the complete model after the adap-
tations are implemented by an engineer (Eq. 3), and (ii)
M (C RE), the memory the consistency checker needs to store
the corresponding complete consistency information (Eq. 4).

M (Amodel) < M(model)
M(ACRE) < M(CRE)

3
“)
Note that the plugin Model/Analyzer’s footprint always

equals Mgy as defined in Eq. 5. Mgy describes the mem-
ory consumption of a complete consistency check where all
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Table 2 Regression results for total processing time

Total processing time (ms)

Model elements 0.0004581%**
(0.0000068)

Affected instances (Al) —0.0017938
(0.0074605)

Evaluation time per instance (ET) —0.0001086
(0.0003659)

AI*ET 1.000365 1 %#%**
(0.0002575)

Observations 48708

R? 0.9996

Standard errors in parentheses
*p < 0.05; **p < 0.01; ***p < 0.001

engineering artifacts are locally available.

Msy = M(model) + M(CRE) 5)
Intuitively, in the worst case (i.e., if the complete model was
changed) our approach is similar to the plugin Model/An-
alyzer as in this case our approach stores the whole model
again in its entirety in the IWS and re-evaluates all CREs.
Subsequently, as long as this is not the case our approach
only stores a fraction of the whole model. Thus, our approach
provides the advantage of (M (model) — M (Amodel)) +
(M(CRE) — M(AcrEg)). Therefore, the amount of saved
memory depends on the size of Amodel and ACRE.
Equations 6 and 7 state our assumptions about both
Amodel and ACRE. The size of Amodel is expressible
through a function of the model size (Eq. 6) (e.g., an engi-
neer may always change a fixed number of elements per
commit). Furthermore, the size of ACRE is completely deter-
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Fig. 13 Results of the memory consumption evaluation

mined by the function C RE (Eq. 7), which takes as argument
Amodel.

|Amodel| = DeltaModel (lmodel|) (6)
|ACRE| = CRE(Amodel) @)

Memory consumption of IWSs is mostly influenced by
Amodel. In Fig. 13, a behavioral analysis for possible cases
of DeltaModel is presented, as described next.

6.4.1 Memory consumption per distinct model elements
changed

First, we discuss memory consumption per distinct changed
model elements, which is plotted on the positive y-axis in
Fig. 13. Values on the positive y-axis are normalized as fol-
lows:

(M(Apoder) + M(Acrg))/Msu

This describes the ratio between actual memory consumption
and possible memory consumption. The x-axis shows that the
ratio of distinct model element changes to the model size (1
implies the entire model changed). Two possible assumptions

for distinct elements changed are: (1) memory consumption
may rise linearly with the percentage of changed elements
(linear function f(A)) or more pessimistically and (2) mem-
ory consumption may rise faster in the beginning than toward
the end i (A). The function & represents a pessimistic case
for our framework, as few changes would already lead to high
memory consumption. Consider now x; and its correspond-
ing memory consumption of /(xp). If an engineer changes
more of the model (e.g., x2) then the memory consumption
rises to h(xp). Hence, memory is saved with regard to Mgy
(even under a pessimistic assumptions).

6.4.2 Memory consumption depending on model size

The negative y-axis in Fig. 13 indicates model sizes in total.
One can assume different functions of how much of a model
is changed by an engineer. Consider now that before each
commit regardless of model size a roughly constant number
of elements is changed (function ), resulting in the mem-
ory consumption of i(m). As models increase in size, the
memory consumption relatively decreases. For example, if
the model size increases from m’ to m then memory con-
sumption changes from & (m’) to h(m). If we assume that the
commit sizes increase with larger models then our approach
is still beneficial. For example, assume that each commit
changes about fifty percent of the model. In this case regard-
less of model size, the memory savings of our approach
are—based on the assumed memory consumption—constant

(e.g., 1-h(.5)).
6.5 Correctness

The correctness of our approach was evaluated by applying
the prototype implementation into an exhaustive scenario
simulation. This simulation created 2994 input scenarios
manipulating the artifact storage of the cloud environment.
Furthermore, these scenarios were executed in sequence
and the resulting end state of the artifact storage was
counter-checked against a series of post-conditions. These
post-conditions defined the required number and location of
CREs applied to artifacts within the IWSs after a manip-
ulation of the artifact storage. The end state of all created
input scenarios satisfied the defined post-conditions. Since
the input scenarios cover a large number of potential user
inputs, it is reasonable to argue that our scenario simulation
evaluates the correctness of our approach in a representa-
tive way. For further information on the exhaustive scenario
simulation, we invite readers to consult this paper [35].

6.6 Threats to validity

In terms of computational complexity, we demonstrated that
for each engineer only a small set of CREs needs to be
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stored/evaluated, i.e., the CREs that are affected by changes
made by the engineers. Furthermore, the model of the ver-
sion control mechanism showed that it is optimal in terms
of memory consumption. The equations and models defined
in the validation are based on the presented algorithms and
observed behavior of the Model/Analyzer. Thus, their cor-
rectness can be inferred from the algorithms themselves.
Finally, the empirical validation confirmed that our approach
scales well (based on a diverse and large set of artifacts
authored by different engineers). As far as the validity of
the empirical study, we performed is concerned, we believe
that the used models were representative. They were diverse
in size and origin, i.e., they were created by different (groups
of) engineers and companies. This paper does not discuss per-
formance threats the communication overhead might pose,
as this is mostly an implementation detail. Further, incre-
mentally propagating changes from tools to the IWS leads to
more communication than the occasional batch processing of
changes. We ignored this in our models but we believe that
this does not pose a threat to validity as a variety of cloud-
based services already employ this pattern (e.g., Google
Docs).

7 Limitations and future work

In the following, we discuss the limitations that our cur-
rent work presents as well as possibilities for future work
to address these limitations.

When dealing with artifacts from different domains, con-
sequently, we have to deal with artifacts from different tools.
Although we provide a unified representation (Fig. 5) for
structuring these artifacts, some limitations regarding this
approach must be considered. In this sense, the tool’s internal
data object can be transformed into our cloud environment
internal engineering artifact as long as it can be mapped to
the unified representation through a tool adapter. The usage
scenarios are only limited by the applicability of such tool
adapters, respectively, the applicability of the unified rep-
resentation. As a result, the question of limitations is one
that concerns these two forms of applicability. Technically,
the applicability of tool adapters could be limited by closed
APIs. If the internal data objects are unavailable, for what-
ever reason, the tool adapter cannot read or synchronize them
into the engineering environment. One could still transform
the file outputs of a tool, however, this would not allow for
live synchronization. This may restrict any advanced form
of collaboration between different IWSs. Also, it is likely
that the file formats of a tool with a closed API are similarly
proprietary and unreadable. Hence, our approach is equally
limited by proprietary data formats, respectively, data struc-
tures, e.g., when a tool API is given but does not provide
the required insight into the data structures to do a live syn-
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chronization. In case that all tool internal data is available
and readable the approach can still be limited by the fact that
the read data is unmappable to the unified representation for
whatever reason. Generally speaking, this is the case when
data cannot be transformed into a key/value mapping. This
could, for example, be the case with extensive signal data.
This, however, would be more of an inconvenience rather
than a limitation, because even such data can be summarized
into blocks/windows that can be mapped as values.

For investigating this problem in more detail, future work
is being carried out, where we investigate how to represent
models from different domains using different types of opera-
tions commonly found in version control systems [36]. These
operations are used for creating these models by applying the
unified representation structure.

Furthermore, the issue regarding dealing with artifacts het-
erogeneity becomes a matter of granularity and a question of
how detailed the data must be represented on an artifact’s
property level. This is a matter that must be decided by the
engineers. The combination of certain tools or mechanisms
with the artifact structure is again a question of whether these
mechanisms can be complemented with a tool adapter. The
storage of artifacts is independent of the actual mechanism
that tools provide. Thus, a tool, such as a code generator,
could retrieve model artifacts from the engineering environ-
ment (i.e., the tool adapter would transform them from the
unified representation into the tool internal data structure),
apply its mechanism to the transformed engineering artifacts
(which is a purely tool-internal process), and synchronize the
generated code back to the engineering environment (i.e., the
tool adapter transforms tool internal data structures into the
unified representation—in this case, code artifacts).

The tough question in this regard is how to link the model
with its corresponding code, respectively, how to handle
changes in the model and correctly propagate them to the
code artifacts. This is an issue concerning the propagation of
model transformations, which unfortunately goes far beyond
the scope of this work. For the time being, generated code
artifacts would have to be replaced in full if they were re-
generated from changed model artifacts. Alternatively, the
new code artifacts could be synchronized as a different ver-
sion of the previously synchronized code artifacts. Currently,
we have ongoing work with regard to traceability generation
and refinement. Our goal is to provide recommendations for
engineers when creating trace links between artifacts from
different domains.

Furthermore, we consider exploring new aspects of col-
laboration environments that may be used for improving the
global consistency checking. For instance, we carried out
studies regarding the hierarchical distribution [35,37] and
timestamp constraints [38] of work spaces and how they can
affect the consistency checking. These two aspects of the
cloud environment may bring advantages to our approach.
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The exploratory results showed that by considering these
aspects when performing the consistency checking, we can
improve the results considering both scalability and usability.
We plan to conduct additional empirical evaluations con-
sidering these contributions to collect evidence about their
applicability in real engineering environments.

8 Related work

Consistency checking, collaborative modeling and version
control are active fields of research related to our own
work. As reported in literature, however, there is a lack of
approaches handling all these fields together [30]. Hence, in
the following, we discuss related works classifying them by
their main active field.

Global Consistency Checking These approaches address
the general problem of consistency checking across possi-
bly distributed engineering artifacts of a system. Finkelstein
et al. [6] introduced consistency checking in multi perspec-
tive specifications. Each engineer owns a perspective (i.e., a
viewpoint [3]) of the system according to his or her knowl-
edge, responsibilities or commitments. Multiple viewpoints
can describe the same design fragment, leading to overlap
and the possibility of inconsistencies. The issues involved
in inconsistency handling of multi perspective specifications
are outlined in Finkelstein et al. [6]. An important insight
for handling consistency is to allow models to be temporar-
ily inconsistent, rather than enforcing full consistency at all
times. Despite this advantage, no implementation is pro-
vided. Further, the approach does not differentiate between,
a public state that is fixed (i.e., the contents of the repository)
and individual modifications.

Nentwich et al. with xlinkit [10] present a framework

for consistency checking distributed software engineering
documents encoded in XML. Sabetzadeh et al. [39] pre-
sented global consistency checking by model merging. The
approach focuses on handling inconsistencies between mul-
tiple models expressed in a single language. Although both
approaches consider distributed models, at the time of the
consistency check there is no distinction between individual
adaptations and public knowledge.
Our approach largely builds on both Demuth et al. [14]
as well as Troels et al. [15,16,40], which considers global
consistency checking among artifacts from different engi-
neering disciplines. Our approach extends this by considering
individual work spaces, isolating the artifacts of different
engineers and thus splitting up consistency information,
which has to be modified on a global basis.

Consistency Checking in General Numerous approaches
exist for consistency checking, specializing on specific arti-
fact types or across artifacts [41]. Many of these approaches

can also be used to check consistency across several engi-
neering artifacts.

Finally, two approaches need to be highlighted, as these
could have been replacements for the Model/Analyzer. Blanc
et al. [42] look at the sequence of operations used to produce
the model rather than looking at the model itself. Thus, they
can not only verify structural consistency of model but also
methodological consistency. Reiss presented an approach
(CLIME) to incremental maintenance of software artifact
[1]. This approach covers a multitude of engineering arti-
facts (presented are source code, models and test cases).
As uniform representation information is extracted from the
engineering artifact (e.g., symbol table for source code, the
class diagram itself) and stored in a SQL Database. CLIME,
however, does not consider any multi-developer aspects, it is
required that all engineering artifacts are locally available.

Collaborative Modeling Koshima et al. [43] presented
DiCoMEF, an approach for conflict detection, reconcilia-
tion and merging while collaboratively editing EMF models.
Debreceni et al. [44] presents the MONDO collaboration
framework, discussing how adoption of secure views work
in collaborative modeling. Such views use rule-based access
control on models. The authors address the protection of
intellectual property across heterogeneous teams as one of
their main concerns. In our work, access to engineering arti-
facts is controlled by work spaces. Artifacts are inherently
individual until an engineer decides to commit them to the PS.
Yet, individual engineering artifact changes can always be
analyzed in relation to the PS. Such analysis can happen with-
out specific security policies—as data is not exposed to team
members. However, analysis provides insights that would
otherwise only be available by fully integrating (i.e., expos-
ing) an engineer’s work. As a result, our approach allows
heterogeneous teams to automatically analyze their individ-
ual work with regard to public knowledge, both protecting
their intellectual property and enriching their work with addi-
tional meta-information (e.g. consistency information).

With Kitalpha [45], engineers are given the possibility
to focus on system architecture and create workbenches
for Model-Based Engineering. This involves the consider-
ation of heterogeneous model artifacts. Similar to our cloud
environment, bridges between workbenches enable the bidi-
rectional exchange of information. However, Kitalpha puts
little focus on incremental consistency checking.

Obeo, !’ including the Sirius project'® and its commer-
cial extensions, offer a strong focus on collaboration [46].
In these solutions, model artifacts from both native and cus-
tom tools can be integrated. Collaborative manipulation as
well as conflict management are a focus of the Sirius project.
However, it is largely built on an Eclipse basis. While in our

15 Obeo: https://www.obeo.fr/en.

16 Sirjus: https://www.eclipse.org/sirius.

@ Springer


https://www.obeo.fr/en
https://www.eclipse.org/sirius

2512

A. Mashkoor et al.

own approach, although we started with a similar solution,
we soon concluded that such a foundation adds an additional
layer of complexity. This complicates the integration of cus-
tom tools and limits the experimental applicability of our
approach. Therefore, we made our approach largely inde-
pendent from third-party frameworks (with the exception of
network communication and back-end storage).

Version Control Version control for text-based engineer-
ing artifacts permeate software engineering and academia.
Further, extensive research was conducted on version con-
trol of models, a survey is presented by Altmanninger et al.
[47]. Research in the area of version control systems analyze
their version controlled engineering artifacts to find incon-
sistencies. An example of such an approach was presented
by Taentzer et al. [48]. The approach considers the abstract
syntax of models as graphs. Revisions are graph modifica-
tions. Based on this, they identify two kinds of conflicts,
operation-based and state-based as a result of merged graph
modifications. State-based conflicts are concerned with the
well-formedness, operation-based conflicts are then con-
cerned on the parallel dependence of graph transformations
and the extraction of critical pairs. Cicchetti et al. [49] pro-
posed a meta-model for representing conflicts which can be
used for specifying both syntactic as well as semantic con-
flicts. Finally, two popular version control systems need to
be mentioned GIT [50] and Apache Subversion (SVN) [32].
Both inherently provide capabilities to create a continuous
integration, during which source code checks are executed.
Applying our approach to the continuous integration phase,
would allow that for a commit or push to a feature branch
the consistency checker would verify the impacts of the
performed changes with respect to all engineering artifacts.
However, it should be noted that an equivalent to the layering
of IWSs would be a much more complex process in tradi-
tional version control systems. Merging conflicts between
the feature branch and the remote repository are bound to
arrive. Naturally any further analysis of artifacts suffers from
the same complexity. The authors are not aware of any tools
to extend traditional version control systems to also check
consistency across multiple artifacts.

With GIT, each obtained working directory is a full-
fledged repository—a clone copies the entire history of the
repository to the working directory. Therefore, an engineer
has the complete standard workflow available without being
dependent on network access or a central server. To publish
changes a push to a remote server is necessary. However,
since different implementations of GIT (and extensions to
the typical workflow) exists, a push may at first be pushed to
a staging area, where it needs to be reviewed, before being
approved and becoming part of the main trunk (e.g., Ger-
rit!7).

17" Gerrit Code Review: https://code.google.com/p/gerrit.
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Characteristics Comparison Table 3 summarizes the com-
parison of our approach with related studies in the field. This
comparison is performed based on the main characteristics
of version control systems that provide consistency and col-
laboration mechanisms [30,51]. These characteristics are:

(1) users, if the approach support single-/multiple-users;
(ii) checking type, if the consistency checking mechanism
evaluates the whole artifact at once, or does the evalu-
ation incrementally;
(iii) rule definition, type of rules that are supported the con-
sistency checking;
(iv) artifact types, if the approach support multiple types of
artifacts or not;
(v) extensibility, if it is possible to extend the approach,
adding new features;
(vi) requirements, which are the requirements to exe-
cute/apply the approach;
(vil) working spaces, if the approach supports public and
individual work spaces;

(viii) activeness, whether the consistency checking and col-
laboration mechanisms are triggered automatically
(proactive) or need user interaction (reactive);

(ix) comparison type, which type of comparison is per-
formed for checking the artifacts across multiple user-
s/domains.

The results of the comparison (Table 3) show that ver-
sion control systems, such as GIT and SVN, present no rule
definition for consistency checking, relying only on con-
flict detection. Furthermore, consistency checking specific
approaches, such as xlinkit, CLIME, and the Model/Ana-
lyzer, only support one user working in the artifacts at a time,
preventing collaborative work. If we consider Demuth et al.’s
approach, our approach expands on it by providing the pos-
sibility for users to work in individual working spaces before
making changes publicly available.

In summary, version control approaches do not address
consistency checking problems, while consistency checking
approaches were not designed to be used in a collaborative
environment. In this sense, our proposal tackles both limita-
tions, while allowing multiple users to collaborate during the
consistency checking process.

9 Conclusion

This paper presents a novel approach to multi-tool/multi-
developer consistency checking. It discusses how the highly
heterogeneous nature of engineering artifacts can become
problematic in terms of artifact consistency. It further dis-
cusses, how to overcome these problems by integrating the
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engineering artifacts in a cloud environment and checking
consistency there.

Our approach elaborates on how to handle consistency
information within the cloud environment. We explain how
public and individual work spaces in the cloud can be used
to store changes as well as consistency checking results.
We further outline scenarios how to propagate these results
and define a post-condition that must hold whenever individ-
ual work spaces commit their changes to the public space.
Furthermore, the approach eliminates consistency checking
redundancies to reduce the CPU usage and memory foot-
print to a relative constant per engineer. We demonstrate that
our approach is agnostic to the size of a model, hence easily
scalable.

As a future work, we plan to integrate more development
tools in our cloud-based engineering environment. We also
intend to investigate delta operations regarding the creation
and union of models. Additionally, we plan to investigate
how to improve the performance of the cloud infrastructure
by using indexing to access model elements faster. Lastly,
the planning and conduction of a case study in an industrial
environment is part of our future work as well.
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