
Springer Nature 2021 LATEX template

Using DevOps Toolchains in Agile

Model-Driven Engineering

Jörn Guy Süß1*, Samantha Swift1† and Eban Escott PhD1†

1*Research and Development, Codebots Pty. Ltd, 55 Railway
Terrace, Milton, 4064, Queensland, Australia.

*Corresponding author(s). E-mail(s):
joern.guy.suess@codebots.com;

Contributing authors: samantha.swift@codebots.com;
eban.escott@codebots.com;

†These authors contributed equally to this work.

Abstract

For Model-Driven Engineering (MDE) to become more Agile the com-
munity needs to embrace Development and Operations (DevOps) prac-
tices. One of the core practices of DevOps is the use of pipelines to
enable CI/CD to make teams more Agile and break down the barriers
between development and operations with faster deployments. Current
MDE tooling is not designed at its core to participate in DevOps
pipelines. Consequently this makes the adoption of MDE in indus-
try more difficult. In this article, we cover an industrial experience
report describing how we enabled our pipelines using DevOps and MDE.

Keywords: DevOps, CI/CD, Ant, EMF, Eclipse, Agile, Model-Driven
Engineering, MDE

1

ar
X

iv
:2

11
1.

11
60

7v
1 

 [
cs

.S
E

] 
 2

3 
N

ov
 2

02
1



Springer Nature 2021 LATEX template

2 Using DevOps Toolchains in Agile Model-Driven Engineering

1 Introduction

MDE has a strong representation in teaching and research contexts, while in
industry, it mainly reaches success in areas with firmly established domain lan-
guages (Whittle et al (2013)). For MDE to be more widely accepted into Agile
teams, more modern development practices like DevOps must be considered.

To facilitate further adoption, we must address the current barriers to adop-
tion and enable Agile MDE using DevOps. Modern DevOps practices combine
tools into pipelines to improve quality and increase release cycle speed. This
article provides an experience report and architecture description reflecting
our companies journey to make MDE Agile by using DevOps and toolchains
as a vehicle.

When we began this project, we found that industrial practice and require-
ments in our company were quite different to those for teaching and research:
Artifacts need to be rigorously built, tested, integrated and deployed in an effi-
cient and fast manner. These requirements are also at the heart of the Agile
approach to software production that we practice. It is worth pointing out
that Agile approaches have always been strongly connected to automation or
mechanisation to support a fast turn-around, and provide feedback on quality
in small increments (Fowler and Foemmel (2005)).

In the model-driven community, discussions about the causes of the lack
of general industrial adoption have occurred for a long time (Straeten et al
(2008); Bucchiarone et al (2020)). However, while the community seems to
look at the gains and successes of Agile approaches with some envy, it seems to
pay less attention to the technical foundations that enable it: Figure 1 shows a
taxonomy of what community consensus perceived as the Grand Challenges to
the adoption of MDE in 2020: Continuous Integration (CI) receives a marginal
mention; Continuous Deployment (CD) and DevOps, the practices and oper-
ations that drive Agile processes at large these days, are not present at all.
Especially DevOps - the programming of the process that produces and deploys
software quickly, efficiently and with timely pertinent feedback to stakeholders
(Debois (2011)) - is pivotal to a contemporary software developers’ workflow.

From our perspective as a software development company, current MDE
tooling does not meet the technical requirements to deliver Agile operations
in industrial practice. This article posits that if the MDE community wants to
have practical industrial relevance, and operate in an Agile manner, it must
consider DevOps and CI/CD a first-class concern. It must also provide for
horizontal reuse, allowing all MDE tooling to be reused within programmed
workflows.

This prompts the question, why it is challenging to horizontally integrate
and reuse existing MDE tooling and how one would meet that challenge? In the



Springer Nature 2021 LATEX template

Using DevOps Toolchains in Agile Model-Driven Engineering 3

Fig. 1 MDE Grand Challenges from Bucchiarone et al (2020)

remainder of this section, we investigate the impediments we have experienced
in detail. In section 2 we describe how our architecture is designed to meet the
challenges using a combination of tried off-the-shelve components and minimal
additions.

1.1 Challenges of Using Eclipse

The common foundation for most MDE offerings is the Eclipse Modelling
Framework (EMF); EMF is a light-weight Java-based descendant of the Meta-
Object Facility (MOF), the original meta-modelling service embedded in the
complex Common Object Request Broker Architecture (CORBA). The depen-
dency on EMF implies that most tool-sets are also expressed within the Eclipse
Rich Content Platform (RCP) or have some dependency on it.

RCP is a challenging platform to reliably write software for. It consists
of components, has evolved over 20 years, and substantially relies on frame-
works and declarative mechanisms. Compounded by thin documentation and

https://newsroom.eclipse.org/news/announcements/eclipse-ide-turns-20


Springer Nature 2021 LATEX template

4 Using DevOps Toolchains in Agile Model-Driven Engineering

challenging access to source code, Eclipse is a major hurdle in the adoption of
EMF-based software.

At the same time, RCP is feature-rich and its User Interface (UI) facilities
are directly linked with generated artifacts that EMF produces. This more
often than not leads to close coupling of the model-driven tools to the Eclipse
UI. For research demonstrators or teaching use, this does not cause a problem
and even provides an advantage to productivity due to tight and direct reuse.

If we want to retain access to functionality that is currently implemented,
we need to accept Eclipse RCP as a platform. Most MDE toolkits offer some
automation. But how do we co-ordinate the execution of all MDE toolkit
functionality within a single platform? If we would be able to show this to
be practical, we could commercially combine high-quality existing offerings
to create exciting new solutions. Showing this functionality might eventually
entice MDE tool developers to invest in a separation of their user interface
from their services functions and models, ultimately leading to a pool of Agile
DevOps-capable MDE toolchain components.

1.2 Ant in Eclipse: A minimal vehicle for MDE CI/CD

Historically, Eclipse has an interactive, declarative build system. It consists
of a file-system that detects changes, and Builders that respond to them and
update derivative files and views in various ways. This mode of development
was also initially used for the development of Eclipse components themselves.
However, it quickly became clear that this approach did not scale.

Consequently Eclipse’s Plugin Development Environment (PDE) was
extended to be controlled by the Ant build system. At that time, Ant was the
standard build facility for Java-associated projects. Since PDE made use of
Eclipse internals, an Eclipse host had to be running so the Ant build tasks for
Eclipse build automation could use the underlying framework-based facilities.
This resulted in the design of a headless Eclipse host application known as the
AntRunner that thinly wraps around the Ant execution engine.

Since the following discussion heavily depends on an understanding of Ant,
we will give a limited characterisation here. Ant is a build system that exposes
Java-written functionalities in an XML document using elements called Tasks.
Tasks are implemented as Java classes that are dynamically loaded at run-
time. Task instances are grouped into sequences of functionality called Targets
that represent desirable outcomes to the end-user. Targets may depend on
each other. This makes Ant build specifications directed multi-graphs. The
user selects a Target and the engine traverses and executes prerequisite Tar-
gets depth-first. The Ant runtime has a map-like storage for global state and
a facility intended for asserting facts in so-called Properties. Task instances

https://help.eclipse.org/latest/topic/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_core_resources_builders.html
https://help.eclipse.org/latest/topic/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_core_resources_builders.html
https://ant.apache.org/
https://help.eclipse.org/latest/topic/org.eclipse.platform.doc.isv/guide/ant_running_buildfiles_programmatically.htm
https://ant.apache.org/manual/using.html#tasks
https://ant.apache.org/manual/using.html#targets
https://ant.apache.org/manual/using.html#references
https://ant.apache.org/manual/using.html#properties


Springer Nature 2021 LATEX template

Using DevOps Toolchains in Agile Model-Driven Engineering 5

can interact with the global state and make assertions, affecting execution.
Tasks may dynamically invoke targets. This property, combined with the global
mutable state, means that Ant is effectively Turing-complete.

To run an Ant build a user minimally has to provide an Ant build file, any
initial properties, the list of Targets to build and implementations for all Tasks
that will be invoked in the build execution. Further, Ant has an input handling
mechanism that can synchronously obtain information from a user at runtime.
Listing 1 shows an example build file from the Ant online documentation to
exemplify these concepts.

Listing 1 An example of an Ant build file.

1 <project name="MyProject" default="dist" basedir=".">

2
3 <description >

4 simple example build file

5 </description >

6
7 <!-- set global properties for this build -->

8 <property name="src" location="src"/>

9 <property name="build" location="build"/>

10 <property name="dist" location="dist"/>

11
12 <target name="init">

13
14 <!-- Create the time stamp -->

15 <tstamp/>

16
17 <!-- Create the build directory structure used by compile -->

18 <mkdir dir="${ build}"/>
19
20 </target >

21
22 <target name="compile" depends="init"

23 description="compile the source">

24
25 <!-- Compile the Java code from ${src} into ${ build} -->

26 <javac srcdir="${src}" destdir="${ build}"/>
27 </target >

28
29 <target name="dist" depends="compile"

30 description="generate the distribution">

31
32 <!-- Create the distribution directory -->

33 <mkdir dir="${dist}/lib"/>
34
35 <!-- Put everything in ${ build} -->

36 <!-- into the MyProject -${ DSTAMP }.jar file -->

37 <jar jarfile="${dist}/lib/MyProject -${ DSTAMP }.jar"

https://ant.apache.org/manual/api/org/apache/tools/ant/Project.html#executeTarget(java.lang.String)
https://ant.apache.org/manual/using.html#example


Springer Nature 2021 LATEX template

6 Using DevOps Toolchains in Agile Model-Driven Engineering

38 basedir="${ build}"/>
39 </target >

40
41 <target name="clean"

42 description="clean up">

43
44 <!-- Delete the ${ build} and ${dist} directory trees -->

45 <delete dir="${ build}"/>
46 <delete dir="${dist}"/>
47 </target >

Most MDE tools delivered as Eclipse features include tasks for the AntRun-
ner. They generally use the interactive Ant execution facility built into the
IDE itself to provide a simple build process scripting facility scoped to the
tool at hand. Consequently, AntRunner is a minimal point of integration for
a large number of EMF/MDE tool-sets that otherwise would require custom-
coordination written in Java. Examples of components that expose through
Ant include Epsilon, Model Workflow Engine 2 (Xtext), Atlas Transformation
Language, and the Eclipse Modelling Framework Core. In addition, Eclipse
Launch Configurations can be started from Ant, which enables the use of tool-
ing provided by Modisco’s Workflow Component. Finally, there is a fair supply
of other software engineering Ant tasks ranging from specific system control
to general purpose language facilities.

1.3 Reusing Ant Automation

However, components integrated via the AntRunner suffer from four main
issues that make use of MDE in a CI/CD environment challenging: The
components frequently depend on Eclipse UI features, perform slowly due
to interpreted and reflective languages, have issues with parallelisation, and
have classpath issues due to Ant’s limited isolation. The following paragraphs
explain these issues in detail.

As stated, most EMF/MDE tools are written for interactive use in RCP
and hence reference the UI facilities and the Eclipse project-management file
system, known as the workspace. CI/CD and DevOps are inherently using
console-based interfaces. Build servers in the cloud do not have graphics cards.
Consequently this mismatch causes issues whenever these Eclipse facilities are
required in a headless run, but are not available, because they only exist when
the UI is active. For example, Epsilon, one of the premier integration kits for
MDE, has numerous dependencies from its workflow to the UI. It is possible
to compensate for this issue by using an X11 virtual framebuffer, as long as
no interactions are required from the graphical interface, but ultimately this is
an unsafe procedure and can lead to unexpected locking behaviour the causes
of which are very hard to diagnose.

https://www.eclipse.org/epsilon/doc/workflow/
https://help.eclipse.org/latest/index.jsp?topic=%2Forg.eclipse.emf.mwe.doc%2Fhelp%2Fworkflow_reference_workflow_configuration.html&anchor=workflow_reference_starting_from_your_own_code
https://help.eclipse.org/latest/topic/org.eclipse.m2m.atl.doc/guide/user/The-ATL-Tools.html?cp=6_1_4_2#ATL_ant_tasks
https://help.eclipse.org/latest/topic/org.eclipse.m2m.atl.doc/guide/user/The-ATL-Tools.html?cp=6_1_4_2#ATL_ant_tasks
https://download.eclipse.org/modeling/emf/emf/javadoc/2.5.0/org/eclipse/emf/ant/taskdefs/EMFTask.html
http://www.ant4eclipse.org/
http://www.ant4eclipse.org/
https://help.eclipse.org/latest/topic/org.eclipse.modisco.infrastructure.doc/mediawiki/workflow/user.html
https://ant.apache.org/manual/tasklist.html
https://en.wikipedia.org/wiki/Xvfb


Springer Nature 2021 LATEX template

Using DevOps Toolchains in Agile Model-Driven Engineering 7

MDE toolsets often use weakly typed languages to execute interpreters that
work using reflection, to achieve the flexibility that provides the advantage of
MDE tooling. Safety and speed compared to compiled languages is generally
poor, so tool performance and code maintenance also scale poorly. Epsilon,
for example, uses untyped languages that are reflectively interpreted over an
abstracted feature-based metamodel. This occasionally leads to unexpected
type errors when typed expressions are used, in turn invalidating the use of
types as a general practice.

MDE toolsets are often written with shared state in mind. This is another
side-effect of writing for the Eclipse IDE’s UI. It assumes that a single user
operates sequentially on a single set of data. Static and global registrations
and unsynchronized accesses are common. For CI workflows this has the impli-
cation that it is generally difficult to accelerate a build execution by running
parts of the work in parallel. Experimenting with Epsilon, we found it usually
causes a ConcurrentModificationException when used in an Ant parallel block.
This compounds the performance issue, as parallelization would usually be a
strategy to compensate for low interpretation speed.

One of the weaknesses of Ant itself is that it does not manage tasks’
dependencies as components, which can lead to classpath clashes. The Eclipse
AntRunner however manages dependencies using the Eclipse dependency man-
agement system. This allows Ant to be used in a reliable fashion. Hence this
weakness mostly affects Tasks that were written without the Eclipse container
in mind. Packaging them in Eclipse resolves this problem for such components.

As a company, we require the full scope and breadth of tools available in
the MDE community to create exciting and novel solutions for our customers.
Hence enabling reuse is our overriding architecture goal. To us, this goal is
at this time more important then model-specific aspects like those raised in
Sánchez et al (2020). We aim to compensate the shortcomings named above
through engagement in the community. We hope this will help to shape the
discussion. This article is intended as a contribution to this goal.

The following section describes the BB81 architecture we have developed
to allow this reuse.

1Since our company is based on making coding support systems known as Bots available to the
public, and we need to build these internally, we dubbed the system architecture BotBuilder. As
it offers twice the variability, speed and access to tools as compared to its predecessors, its version
number is 23 = 8. And we admit a slight nod to Star Wars as well.

https://ant.apache.org/manual/Tasks/parallel.html
https://ant.apache.org/manual/Tasks/typedef.html


Springer Nature 2021 LATEX template

8 Using DevOps Toolchains in Agile Model-Driven Engineering

User

User

Gitlab

Gitlab

AntRunner

AntRunner

Ant

Ant

MDE Task

MDE Task

Eclipse Runtime

Eclipse Runtime

Commit

Run Buildfile

Create MDE Task

with Model

with EMF

result

Fig. 2 A model-driven task runs as the result of a commit to Gitlab CI/CD.

2 BB8: An Architecture for MDE DevOps

The following sections describe the architecture of our system from the inside
out, giving a developers view (sections 2.1-2.3) and an operations view (section
2.4- 2.7).

The developers view starts with our reuse of Eclipse’s Ant Support (2.1) to
run workflows in CI. Section 2.2 describes how workflows can be tested using
JUnit. Section 2.3 shows how Ant users can test workflows without requiring
knowledge of Java or Eclipse.

The operations view begins in section 2.4 with an explanation of how com-
ponents of the workflow can be installed and removed. It addresses how a user
can get the desired MDE toolsets and other tools for running a specialized
workflow. Section 2.5 describes how the workflow runtime can be used every-
where, without installing anything locally and with faithful reproduction of
results. Section 2.6 describes how we deploy that runtime in the CI system
provided by Gitlab. Finally 2.7 describes how execution is coordinated within
cloud resources.

https://help.eclipse.org/latest/topic/org.eclipse.platform.doc.user/concepts/concepts-antsupport.htm?resultof=%22%61%6e%74%22%20


Springer Nature 2021 LATEX template

Using DevOps Toolchains in Agile Model-Driven Engineering 9

2.1 Executing MDE Workflows using AntRunner

As described in subsection 1.2, Eclipse AntRunner is a headless Eclipse appli-
cation, which is able to execute the Ant build system, while providing access
to the Eclipse plugin system and the underlying framework runtime. As noted
this allows the reuse of model-driven tooling provided by other projects within
the Eclipse scope. It also allows access to all of the EMF facilities.

Also, the PDE/Build system used for creating Eclipse components and
applications is available in the AntRunner. While PDE/Build is not a reli-
able means to build large-scale Eclipse applications, it is capable of building
small applications reasonably. This means that an on-board solution for com-
piling and packaging model-driven components is in principle available to every
workflow without a need to learn additional build facilities like Tycho or BND.

Finally, the Ant build language can express includes and imports of remote
build files, and define extension points, macros and scripts. Used with care,
these features allow for the design of compositional builds.

2.2 Eclipse-level Testing using AntHarness

If we are using Ant to integrate workflows, we will frequently create Ant Tasks
to provide secondary functionality and hence we will be developing and debug-
ging a lot of them. Ant Task classes themselves can be unit-tested with relative
ease, but interactions with Eclipse’s facilities can be complex.

To ensure we can verify behaviour of components in the AntRunner, we
have developed a JUnit5 Extension called AntHarness that allows to create
declarative tests that wrap around the AntRunner using configuration in Java
annotations. Test classes with AntHarness annotations will run Ant build
scripts inside AntRunner and make the configuration and runner available
after execution has finished; An Eclipse developer can then use JUnit’s asser-
tion facilities to verify the outcomes. Since AntHarness is designed to run in
the scope of Eclipse Plugin Tests, all of Eclipse’s debugging, logging and trac-
ing support can be used with it, including attaching the debugger to the code
of the Task under test or tracking an Eclipse Progress Monitor. Figure 3 shows
the AntRunner facilities the harness exposes in a context diagram.

2.3 User-level Testing using Ant Unit

Java developers will be familiar with JUnit 5. For them using the AntHarness
is effective. But the real target audience for us is users of MDE toolkits and
workflows, not of the Java language. For them, testing must be easy and should

https://help.eclipse.org/latest/nav/4_2_0
https://projects.eclipse.org/projects/technology.tycho
https://bnd.bndtools.org
https://ant.apache.org/manual/Tasks/include.html
https://ant.apache.org/manual/Tasks/import.html
https://ant.apache.org/manual/targets.html#extension-points
https://ant.apache.org/manual/Tasks/macrodef.html
https://ant.apache.org/manual/Tasks/scriptdef.html
https://JUnit.org/JUnit5/docs/current/user-guide/#extensions
https://help.eclipse.org/latest/topic/org.eclipse.pde.doc.user/guide/tools/launchers/JUnit_launcher.htm
https://wiki.eclipse.org/FAQ_How_do_I_use_the_platform_debug_tracing_facility
https://wiki.eclipse.org/FAQ_How_do_I_use_the_platform_debug_tracing_facility
https://www.eclipse.org/articles/Article-Progress-Monitors/article.html


Springer Nature 2021 LATEX template

10 Using DevOps Toolchains in Agile Model-Driven Engineering

AntHarness

File: buildFile
Target[]: targets
LogLevel: level
Directory: antHome
ClassPath: classpath
ProgressMonitor: monitor

LoggerInputHandler

CommandLineProcessor

Properties PropertyFiles

logger
?

listeners *

registy
*

current?

*

Fig. 3 A context diagram for the AntHarness.

only require a minimum of technological know-how. As we are designing this
tooling for model-driven software developers, we think it is fair to assume
that the users will have experience with some xUnit-style framework that uses
naming conventions to find setups and tests and provides assertions to verify
results.

Based on this, we integrated a solution to use Ant itself to perform inte-
gration tests. This allows to test build executions using Eclipse’s built-in Ant
editor and debugger facilities, rather than the Java and Plugin Development
environments.

The facility we have chosen is provided by the AntUnit framework. AntUnit
transfers the ideas of JUnit to Ant: A regular Ant build script with convention-
ally named targets is executed dynamically in such a way that it prepares an
environment, executes one or more test-case scripts, and validates the results.
AntUnit can be combined with powerful model-driven testing facilities, such
as Epsilon’s EUnit. This allows for combinatorial testing over models in the
context of Ant-driven build flows.

Listing 2 Invoking an AntUnit-based test from a build file.

1 <au:antunit >

2 <fileset dir="." includes="touch.xml"/>

3 <au:plainlistener/>

4 </au:antunit >

Listing 3 An xUnit-like test expressed as an Ant Build file using AntUnit tasks.

1 <project xmlns:au="antlib:org.apache.ant.antunit">

https://en.wikipedia.org/wiki/XUnit
https://help.eclipse.org/latest/topic/org.eclipse.platform.doc.user/reference/ref-anteditor.htm
https://help.eclipse.org/latest/topic/org.eclipse.platform.doc.user/reference/ref-anteditor.htm
https://ant.apache.org/antlibs/antunit/
https://www.eclipse.org/epsilon/doc/eunit/


Springer Nature 2021 LATEX template

Using DevOps Toolchains in Agile Model-Driven Engineering 11

2 <!-- is called prior to the test -->

3 <target name="setUp">

4 <property name="foo" value="foo"/>

5 </target >

6
7 <!-- is called after the test , even if that caused an error -->

8 <target name="tearDown">

9 <delete file="${foo}" quiet="true"/>

10 </target >

11
12 <!-- the actual test case -->

13 <target name="testTouchCreatesFile">

14 <au:assertFileDoesntExist file="${foo}"/>
15 <touch file="${foo}"/>
16 <au:assertFileExists file="${foo}"/>
17 </target >

18 </project >

2.4 Installing Ant Workflow Features using P2

The previous sections have covered how to execute workflows that use model-
driven components of several stacks, but have not touched on how the various
features required to produce a combined execution system need to be installed.
In our approach, this task is performed by Eclipse’s own installation system:
The Provisioning System 2 (P2). Inside the Eclipse workbench this tool is
exposed as a set of user-interface widgets that allow to install new software
from Eclipse installation websites. Eclipse features do not necessarily have to
be related to the graphical UI. In our case they are simply packaging for Ant
Tasks, Types and other facilities.

The regular installation procedure for Ant tasks in features makes them
immediately available in an Eclipse RCP instance. In any Eclipse workbench
a developer can install tasks and then start experimenting with model-driven-
builds interactively.

There is a headless application whose functionality is equivalent to the
graphical interactive installation in RCP known as the director which, provided
with adequate parameters, performs the same installation. It behaves much
like a package manager in the Unix operating system. It considers the installed
base, the features the user intends to install, solves the dependency equation
and provides an installation plan. It then creates a checkpoint and installs the
new solution.

Listing 4 shows the command line invocation to install the set of plugins
for C++ into an Eclipse instance in ~/eclipse/, downloading from the current
release of the platform.

https://help.eclipse.org/latest/topic/org.eclipse.platform.doc.isv/guide/p2_overview.htm
https://help.eclipse.org/latest/topic/org.eclipse.platform.doc.user/tasks/tasks-124.htm
https://help.eclipse.org/latest/topic/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ant_core_antTasks.html
https://help.eclipse.org/latest/topic/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ant_core_antTypes.html
https://help.eclipse.org/latest/topic/org.eclipse.platform.doc.isv/guide/p2_director.html?cp=2_0_20_2
https://help.eclipse.org/latest/topic/org.eclipse.platform.doc.isv/guide/p2_director.html


Springer Nature 2021 LATEX template

12 Using DevOps Toolchains in Agile Model-Driven Engineering

Listing 4 Adding C++ Developer Tools to an Eclipse installation using the director.

1 eclipse \

2 -application org.eclipse.equinox.p2.director \

3 -repository http: // download.eclipse.org/releases/latest/ \

4 -installIU org.eclipse.cdt.feature.group \

5 -destination ~/ eclipse/ \

6 -profile SDKProfile

P2 director also allows to update existing instances. So all that is required
for a workflow with new requirements is the basic system and the locations of
the update sites of the additional components.

The P2 director is not able to set any installation state, though. The
Eclipse Oomph Installer provides such functionality, but unfortunately, it is yet
another tool integrated with the Eclipse UI and cannot be used in a headless
environment at this time.

2.5 Creating portable Runtimes using Docker Containers

Installing Eclipse by hand on every system that needs to run workflows is a
tedious process even with scripting provided by the director. It is also a source
of inconsistencies and errors, as reproduction of the underlying environment
is not easy and can have an effect due to native libraries and Java runtimes.

For this reason, we use Docker container images as lightweight encapsu-
lations of existing installations. The build files that construct the container
images - the Dockerfiles - also allow us to control and change versions rather
easily. Like with all other software artifacts, we use CI to build these container
images in a controlled fashion.

The storage of these container images in repositories allows us to forward
the installations of prepared workflow runtimes to other users almost instantly.
Most importantly, keeping the workflows in container images allows us to use
them effectively for CI.

Using pre-packaged container images does not limit the individualized use
of the containers. Any user can obtain a pre-prepared container image, create a
container and enter it, call the director inside and change the setup in any way
they care. They can also leave the container, commit the changes and forward
the new variant to someone else for use. Containers thus greatly increase the
flexibility of the build process.

https://projects.eclipse.org/projects/tools.oomph
https://bugs.eclipse.org/bugs/show_bug.cgi?id=487626
https://bugs.eclipse.org/bugs/show_bug.cgi?id=487626
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/commandline/pull/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/commandline/commit/


Springer Nature 2021 LATEX template

Using DevOps Toolchains in Agile Model-Driven Engineering 13

2.6 Continuous Integration and DevOps with Gitlab

Model-driven workflows are often the first phase in a software construction
process. They take in highly abstract data, and produce more language-
specific and detailed software engineering artefacts. The toolchain that we
have designed to drive our model-driven processes is specific to this purpose.
It is not made to compile C++, work with SAP/ABAP or MuleSoft RAML,
or to render websites as HTML. While these things could be done using Ant
as a general-purpose tool, this approach would constitute a Golden Hammer
fallacy. Ready-made and highly adapted toolchains for all these technical envi-
ronments are available in off-the-shelf container images which are maintained
centrally and professionally.

Our obligation is that the toolchain activates the corresponding build
container images after the model-driven process has finished. We need a coor-
dination layer to perform this and any following build steps. For this purpose
we have chosen the Gitlab CI system.

2.6.1 Programming CI using Multi-Technology Pipelines

Gitlab expresses build processes in a declarative syntax in a file that uses shell
commands that are valid in the containerized environment that the respective
build phase runs in. At the start of each build pipeline, source code is retrieved
based on a git commit hash and additional derived software artefacts are sub-
sequently pumped through the various build phases of the pipeline using a
transparent built-in file exchange mechanism alongside the source code.

Every time a commit is made, a pipeline is started, tests are executed
and the developer receives feedback. Figure 4 shows a complex multi-project
pipeline visualisation. Execution time and computation cost are often signif-
icant, driving the design of build programs as first class artifacts and the
segmentation of software into reusable artifacts. In this way, CI and DevOps
drive software quality in a concrete, measurable fashion.

For our model-driven toolchains we invoke the AntRunner in a container
installed with basic Eclipse and any model-driven tooling we require. The
AntRunner executes the build file that is part of the source code checked out
from the version control system. As a result, new source code files are created.
As part of the Gitlab CI build file we specify where these files are to be found.
Gitlab will then take these files and move them into the next container.

Let us assume that we have generated some Java files and a Maven-specific
Project Object Model (POM) build descriptor file. We now add a build phase
in the Gitlab build descriptor that requires a container that is installed with the
Maven build system. We start the Maven build system with a shell command

https://en.wikipedia.org/wiki/Law_of_the_instrument


Springer Nature 2021 LATEX template

14 Using DevOps Toolchains in Agile Model-Driven Engineering

Fig. 4 A detail visualisation of a complex Gitlab pipeline showing phases and jobs.

and it reads the POM descriptor file. As a result, a Java application is now
being built in a conventional way. Any Java developer - without any knowledge
of model-driven processes - can understand what is happening here. As a result,
we now have a ready-to-run Java application. We can now use the workflow to
store the output in a binary repository. We can also add another phase with a
container that holds tools used for deploying to a cloud provider. This can be
proprietary, if desired, or based on a standard like Kubernetes or OpenShift.

This example showed how we performed CI of a model-based artefact and
followed it up with an immediate deployment.

2.6.2 Reviews, A/B Tests, Beta Channels, Incidents

The Gitlab CI system also provides implicit parameters and variables based on
the build context that can be used to configure the CI program in a declarative
manner. These variables include the commit hash, commit ref, committer id
and the locations of binary repositories associated with the build.

These implicit variables allow to integrate binary repositories into the
process easily. Gitlab provides package repositories and registries for vari-
ous technologies. The build can upload binary artefacts to these package
repositories.

Based on such parameters, it is now easy to deploy a version of the whole
application for review: The pre-built binary that was produced and stored in
the package registry in a previous phase can be retrieved from the registry and
deployed. Developers can now review the application live and inspect the new
feature.

With this setup many more DevOps practices that seem advanced and
theoretical become practically attainable: For example, variants of an appli-
cation can be provided as part of an A/B test. Beta versions can deployed for
early adopters. An application’s behaviour can be be monitored and feedback
attached in the form of tickets.

https://docs.gitlab.com/ee/ci/variables/
https://docs.gitlab.com/ee/user/packages/package_registry/
https://docs.gitlab.com/ee/user/packages/package_registry/
https://docs.gitlab.com/ee/development/experiment_guide/experimentation.html
https://docs.gitlab.com/ee/operations/feature_flags.html
https://docs.gitlab.com/ee/operations/


Springer Nature 2021 LATEX template

Using DevOps Toolchains in Agile Model-Driven Engineering 15

The processes described in the previous paragraphs seems to imply that
model-driven processes always have to be forward-engineering based. However,
we could also consider the case where an existing application is read into
model artefacts by using a reverse engineering system like Modisco to produce
documentation of how the system can be understood. A project can serve as
a log for discovery and experimentation. It is an effective vehicle for research,
because it captures source state and all circumstances of a build, producing
precise evidence.

2.6.3 Managing Technological Spaces with Sub-Projects

MDE processes excel at producing large, detailed code-bases. However, these
days it is rare for projects of any significant size to use a single implementation
language and technological platform. It is much more likely that specialised
languages for the various aspects of a platform will be used in conjunction.
The MDE process will usually produce the software artefacts based on one
set of consistent models in one directory, with derived artifacts for specific
technologies residing in sub-directories.

However, in order to make use of the stereotypical builds for the various
technology spaces it is useful to have projects that have a directory structure
that conforms to the expectation of the language or technological space. Both
developers and build processes in a technological space expect a git repository
that contains the layout and commits for its technological concern, and nothing
else. For example, the React front-end developer will not be interested that
the model-driven system made a change to the underlying business model and
persistence layers, if the server API stayed the same. From her point of view
the git commit that announces that change is distracting noise in her git log.

For this reason, we will need to design the CI system in such a way that it
keeps the sub-projects for different technological spaces coordinated in a safe
way, but at the same time keeps commits to them separated. In our environ-
ment we have achieved this by writing a set of specific Tasks that handle the
creation of git sub-modules which map to individual Gitlab projects. The top-
level project that references the other modules describes changes that happen
at the top level. The individual projects are used by individual developers of
the technologies. They behave like regular source-code-based projects.

Our company’s existing solutions build full-stack applications based on
several different technologies. Here, the sub-module management has direct
application. In prior iterations, the build of these applications was complex
and hence brittle. With the change to sub-modules this is much less complex.

As stated before, commits trigger builds in CI, so commits to the various
sub-projects trigger corresponding builds in these sub-projects. This leads to



Springer Nature 2021 LATEX template

16 Using DevOps Toolchains in Agile Model-Driven Engineering

the perception that sub-projects perform individual steps, when actually they
are coordinated in a global way. Gitlab supports control of this by tracking
and visualizing the relationship between builds.

This approach needs and leads to the stringent use of versioning. The vari-
ous sub-projects generally do not use the latest version of another sub-project,
but the latest verified version. This helps with stability and exposes API as a
separate factor. It also helps to speed up selective builds of the sub-projects.

The management of versioning and tagging that is orchestrated by the sub-
module tooling enables the use of binaries instead of souce code all the way
down. With this approach results of a JavaScript build are stored in an NPM
repository associated with the front-end project; Java project components will
be deposited into a Maven repository associated with the Middleware project;
and SQL packages will be stored within a general-purpose repository associated
with the backend project. The Docker container images for these projects will
be in one or more docker registries, and the Kubernetes deployment descriptor
that references them will be in the helm project’s registry.

With this setup, all an operations engineer needs from the development
group to deploy the complete modelled server application is the address of
the helm chart that describes the overall system. The knowledge required for
deployment has been encoded by the developers as a helm chart program. In
fact, the operations engineer in advanced process probably does not exist. If a
new helm chart is committed, CD occurs.

2.6.4 Getting Interactive Input for the Workflow

In the previous sections we have focused on the use of our architecture to
perform builds based exclusively on git committed file input. However, in MDE
there are a lot of cases, where processes can benefit from input from a user.
This is reflected in the fact that most Model-driven kits like Epsilon have
synchronous input facilities.

After all, domain expertise is one of the most valuable inputs into model-
driven processes. Forcing a domain expert to learn the technicalities of a
CI/CD system only to interact and provide information into a model-driven
toolchain would imply very poor appreciation of the experts value. Engagement
with the technology would likely be low.

Even current development approaches do not require software engineers to
learn details of interaction with the CI/CD servers and services. Instead today
we expect that build processes behave conversationally with those involved in
what has become known as Chat-Ops. We expect that in our day-to-day chat
interfaces the build process behaves like a participant. For example, we expect

https://docs.gitlab.com/ee/ci/pipelines/multi_project_pipelines.html#multi-project-pipeline-visualization
https://docs.gitlab.com/ee/ci/pipelines/multi_project_pipelines.html#multi-project-pipeline-visualization
https://www.eclipse.org/epsilon/doc/eol/#context-independent-user-input
https://www.eclipse.org/epsilon/doc/eol/#context-independent-user-input


Springer Nature 2021 LATEX template

Using DevOps Toolchains in Agile Model-Driven Engineering 17

the build server to talk to us on a messaging channel (such as Mattermost or
Slack) and inform us that a build has started, a new build phase has been
entered, a bug has been found, or an artefact has been produced. The messages
would depend on the needs of the communication participants. Likewise, we
would expect the build system to also be able to receive feedback from the
participants in the communication channel. For example, we would expect
that the system would take note of a new development issue to be pursued
by the team. We would expected it to respond to a team member typing
something like this: "/issue Enlarge the font on the home screen." asking
questions pertinent to complete the capture of the issue.

In our company we have taken this idea of Chat-Ops one step further and
created Model-Ops. In this case an input facility provided by Ant is connected
to an arbitrary textual chat system. The system asks questions formatted in
markdown syntax with references to domain items, and the build continues
when it has captured a response from the team. The questions can be quite
rich, containing full-format text, cross-references, tables, images and anything
else you would expect in a post.

For example a reverse-engineering toolchain could ask something like:
"Is HybridAdapterExtension.java a Java Bean? [y/n]", while hyperlinking
the file to the git repository browser. The answer fills the knowledge gap
and produces the correct data. The requesting process can now capture this
information for later use.

Given that this interface can be attached to RCS/SMS text messages, Face-
book messenger, Slack, Mattermost, IRC or Email it has a lot of reach for very
little implementation effort. This approach can also be used in an asynchronous
fashion where facilities ask a question in advance to return to a particular part
of work once an answer becomes available.

2.7 Using Kubernetes for Scaling and Online Service

In our specific setup Gitlab and all associated container deployments are
already hosted in Kubernetes on the cloud in Azure, and this covers the regular
DevOps requirements in terms of using MDE workflows in a pipeline. How-
ever, Kubernetes also offers separate opportunities to expand and enhance the
functionality of model-driven toolchains. As part of the following section we
describe other prospects that Kubernetes can offer to MDE.

https://ant.apache.org/manual/inputhandler.html


Springer Nature 2021 LATEX template

18 Using DevOps Toolchains in Agile Model-Driven Engineering

3 Outlook and Future Work

While our current work is geared towards establishing a basis for MDE work-
flows to harness model-driven processes as software engineering tools, the real
interest is in exploring how we offer model-driven facilities to others. There are
three areas that we are interested in: How online-applications that are offering
flexible model-driven services to users can be constructed (subsection 3.1), how
we can support the construction of tools that use models to simplify software
implementation and maintenance (subsection 3.2), and how modelling can be
used to support DevOps itself (subsection 3.3).

3.1 Applying Kubernetes for Cloud-based MDE

Instead of deploying a separate service execution for every run of a model-
driven workflow, the workflow could be embedded into a persistently running
server as part of an online service. Such services could then back interac-
tive IDE’s hosted on the cloud. We have noted previously that model-driven
technologies are often employing reflective and interpreted languages and
are consequently quite slow. For an interactive application this would be an
impediment to adoption.

The usual response to slow interpretation is to devise a compiler to cre-
ate program variations that perform the same task, but faster. Given that we
are reusing existing MDE components in our workflow that we are not main-
taining ourselves, this is not an option. The only other avenue to increasing
performance is parallelisation. Parallelisation in our approach can be achieved
at different levels: At the level of the workflow by defining sections that can
run in parallel, or at the level of whole build executions. The first option is
again affected by the design of most Task implementations that we will be
reusing: They are generally not thread-safe.

This leaves us with the option of performing parallelisation on the level of
whole build process executions. For this purpose, we will aim to combine a
variant of the Ant and Subant Tasks with the Kubernetes Java Client. This
will allow a build to spawn other executions of the build as Kubernetes Jobs
to run in parallel and to balance the load where this desired.

As we distribute the workloads, access to resources becomes an issue. In
this scenario, we do not have Gitlab’s implicit file provision any more. The
spawned jobs may require access to certain resources that live in the file system
of the container image that spawned the new job. While there are good off-the-
shelf solutions available for synchronising files and databases, sharing access
to models in an organised manner is more challenging. We would assume that
we would eventually implement tasks for our workflows that provide use of

https://ant.apache.org/manual/Tasks/ant.html
https://ant.apache.org/manual/Tasks/subant.html
https://github.com/kubernetes-client/java/
https://kubernetes.io/docs/concepts/workloads/controllers/job/


Springer Nature 2021 LATEX template

Using DevOps Toolchains in Agile Model-Driven Engineering 19

Connected Data Objects (CDO) for versioned and branched target data, or
Hawk for file-based persistency, graph data or other clients.

Viewed from a greater distance, such application assemblies that operate
on models effectively move modelling from our local environments into the
cloud. They constitute real ’Cloud Modelling’. We intend to focus some of
our research in this area to see what patterns are required to reuse existing
components to assemble model-driven cloud-based applications.

3.2 Teaching Bots to Code

Evolved assistance in the creation of source code is getting traction in prac-
tice. The Copilot and Tabnine services foreshadow that context-aware coding
support will be a normality in the future. Given that much of the creation of
source code generating MDE templates is fairly repetitive, it should be feasi-
ble to create solutions that perform the bulk of abstraction work in providing
coding support. Combined with the infrastructure for DevOps and Model-Ops
that BB8 offers and the prospect of parallelising work described in the pre-
vious section, an online service that supports a modelling engineer could be
devised. We are currently focusing our research in this area.

3.3 Using MDE to Support DevOps

DevOps is the practice of encoding processes for software development and
infrastructure. The flexibility that is required implies that the programming of
these toolchains offers control of operational details. However, as these DevOps
programs evolve, they encounter the same issues as any other software. Gitlab
for example began its CI language as a simple YAML specification file. Today a
dedicated parser manages inclusions, extensions, Around-advice, dependency
relationships, parallel matrix operations and many other features. The result-
ing complexity is so substantial that an interactive debugging shell is now part
of the system. With complexity and scale, models are becoming interesting to
DevOps engineers. Our company is looking at how the abstracting power of
models can be used to support DevOps.

4 Conclusion

Building an MDE system that supports Agile practices and allows implemen-
tation of DevOps is possible and provides a sound functional base for industrial
application. Our implementation includes means for testing, installation, flex-
ible deployment and workflow coordination, including limited interactivity,
while considering the roles of stakeholders in the process. While our design is

https://help.eclipse.org/latest/topic/org.eclipse.emf.cdo.doc/html/Overview.html
https://www.eclipse.org/hawk/
https://copilot.github.com/
https://www.tabnine.com/
https://docs.gitlab.com/ee/ci/yaml/includes.html
https://docs.gitlab.com/ee/ci/yaml/#extends
https://docs.gitlab.com/ee/ci/yaml/#stage-pre
https://docs.gitlab.com/ee/ci/yaml/#needs
https://docs.gitlab.com/ee/ci/yaml/#needs
https://docs.gitlab.com/ee/ci/yaml/#parallelmatrix
https://docs.gitlab.com/ee/ci/interactive_web_terminal/


Springer Nature 2021 LATEX template

20 Using DevOps Toolchains in Agile Model-Driven Engineering

limited by the implications of EMF as an Eclipse component, even the basic
implementation provides a surprising amount of latitude.

We found that via aligning to the Ant build system we can combine many
of the current MDE tools found in the Eclipse ecosystem. Even though at
times we had to work around some tools because they were not designed
with DevOps in mind, we found some positive results with this approach. We
encourage the MDE community to consider DevOps toolchains as one of the
Grand Challenges of MDE adoption in industry.

The experience we have gained also raises new questions with regard
to increasing speed and performance of flexible synchronous MDE services,
automation of aspects of the construction of MDE tooling and the application
of MDE approaches to DevOps languages as a subject.

MDE Model-Driven Engineering
DevOps Development and Operations
CI Continuous Integration
CD Continuous Deployment
EMF Eclipse Modelling Framework
MOF Meta-Object Facility
CORBA Common Object Request Broker Architecture
RCP Rich Content Platform
UI User Interface
PDE Plugin Development Environment
P2 Provisioning System 2

References

Bucchiarone A, Cabot J, Paige RF, et al (2020) Grand challenges in model-
driven engineering: an analysis of the state of the research. Softw Syst Model
19(1):5–13. https://doi.org/10.1007/s10270-019-00773-6, URL https://doi.
org/10.1007/s10270-019-00773-6

Debois P (2011) Devops from a sysadmin perspective. login Usenix
Mag 36(6). URL https://www.usenix.org/publications/login/
december-2011-volume-36-number-6/devops-sysadmin-perspective

Fowler M, Foemmel M (2005) Continuous integration,
http://www.martinfowler.com/articles/continuousintegration.html

Sánchez B, Kolovos DS, Paige RF (2020) To build, or not to build: Modelflow, a
build solution for MDE projects. In: Syriani E, Sahraoui HA, de Lara J, et al
(eds) MoDELS ’20: ACM/IEEE 23rd International Conference on Model
Driven Engineering Languages and Systems, Virtual Event, Canada, 18-23

https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.1007/s10270-019-00773-6
https://www.usenix.org/publications/login/december-2011-volume-36-number-6/devops-sysadmin-perspective
https://www.usenix.org/publications/login/december-2011-volume-36-number-6/devops-sysadmin-perspective


Springer Nature 2021 LATEX template

Using DevOps Toolchains in Agile Model-Driven Engineering 21

October, 2020. ACM, pp 1–11, https://doi.org/10.1145/3365438.3410942,
URL https://doi.org/10.1145/3365438.3410942

Straeten RVD, Mens T, Baelen SV (2008) Challenges in model-driven soft-
ware engineering. In: Chaudron MRV (ed) Models in Software Engineering,
Workshops and Symposia at MODELS 2008, Toulouse, France, September
28 - October 3, 2008. Reports and Revised Selected Papers, Lecture Notes in
Computer Science, vol 5421. Springer, pp 35–47, https://doi.org/10.1007/
978-3-642-01648-6 4, URL https://doi.org/10.1007/978-3-642-01648-6 4

Whittle J, Hutchinson JE, Rouncefield M, et al (2013) Industrial adoption
of model-driven engineering: Are the tools really the problem? In: Mor-
eira A, Schätz B, Gray J, et al (eds) Model-Driven Engineering Languages
and Systems - 16th International Conference, MODELS 2013, Miami, FL,
USA, September 29 - October 4, 2013. Proceedings, Lecture Notes in
Computer Science, vol 8107. Springer, pp 1–17, https://doi.org/10.1007/
978-3-642-41533-3 1, URL https://doi.org/10.1007/978-3-642-41533-3 1

https://doi.org/10.1145/3365438.3410942
https://doi.org/10.1145/3365438.3410942
https://doi.org/10.1007/978-3-642-01648-6_4
https://doi.org/10.1007/978-3-642-01648-6_4
https://doi.org/10.1007/978-3-642-01648-6_4
https://doi.org/10.1007/978-3-642-41533-3_1
https://doi.org/10.1007/978-3-642-41533-3_1
https://doi.org/10.1007/978-3-642-41533-3_1

	Introduction
	Challenges of Using Eclipse
	Ant in Eclipse: A minimal vehicle for MDE CI/CD
	Reusing Ant Automation

	BB8: An Architecture for MDE DevOps
	Executing MDE Workflows using AntRunner
	Eclipse-level Testing using AntHarness
	User-level Testing using Ant Unit
	Installing Ant Workflow Features using P2
	Creating portable Runtimes using Docker Containers
	Continuous Integration and DevOps with Gitlab
	Programming CI using Multi-Technology Pipelines
	Reviews, A/B Tests, Beta Channels, Incidents
	Managing Technological Spaces with Sub-Projects
	Getting Interactive Input for the Workflow

	Using Kubernetes for Scaling and Online Service

	Outlook and Future Work
	Applying Kubernetes for Cloud-based MDE
	Teaching Bots to Code
	Using MDE to Support DevOps

	Conclusion

