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Abstract

In the design of autonomous systems, it is important to consider the preferences of the interested parties to improve the
user experience. These preferences are often associated with the contexts in which each system is likely to operate. The
operational behavior of a system must also meet various non-functional requirements (NFRs), which can present different
levels of conflict depending on the operational context. This work aims to model correlations between the individual contexts
and the consequent conflicts between NFRs. The proposed approach is based on analyzing the system event logs, tracing
them back to the leaf elements at the specification level and providing a contextual explanation of the system’s behavior. The
traced contexts and NFR conflicts are then mined to produce Context-Context and Context-NFR conflict sequential rules.
The proposed Contextual Explainability (ConE) framework uses BERT-based pre-trained language models and sequential
rule mining libraries for deriving the above correlations. Extensive evaluations are performed to compare the existing state-
of-the-art approaches. The best-fit solutions are chosen to integrate within the ConE framework. Based on experiments, an
accuracy of 80%, a precision of 90%, a recall of 97%, and an F1-score of 88% are recorded for the ConE framework on the
sequential rules that were mined.

Keywords Sequential rule mining - Context correlation - Context-NFR conflict correlation - Goal models

1 Introduction

In modern-day autonomous systems, multiple stakeholders
are involved in the elicitation of requirements (both func-
tional and non-functional), as each of them is concerned with
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specific performance issues. There are negotiation frame-
works to facilitate a common platform for the stakeholders
(like Theory W [1]), so that the system can be delivered with
the desired feature set. This requires a couple of important
issues to be addressed, (i) the need to understand the cor-
relation between stakeholder preferences and the contexts
associated with the requirements; (ii) to correlate the possi-
ble NFR conflicts [2—4] that can arise in different contexts
(identified previously). In the recent works [5,6], it is shown
how NFRs and contexts play a crucial role in the operational
behavior of a system. There is a strong need to correlate the
two for improving the overall experience of the end-user. For
example, let us consider the Uber online cab booking appli-
cation. We can identify two NFRs—Fast Response Time and
Feature Availability, which can be associated with such an
application. The NFR fast response time aims to reduce the
waiting time of service delivery for the end-user, and the
NFR feature availability talks about the number of features
(or services) that are being delivered to the end-user. These
two NFRs might be in conflict in case of a particular environ-
mental context. For example, it may not be possible to deliver
all resource-intensive services while achieving fast response
times with limited available bandwidth (say, due to heavy
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rain). In such a situation, solution architects may choose to
compromise on feature availability and deliver a limited set
of essential services while achieving fast response times for
the same. Establishing correlations between NFR conflicts
and contexts allow system engineers to design the applica-
tion servers in a manner where multiple different apps for
the same service provider (for example, Uber and Uber Lite)
need not be maintained. Based on the environmental context,
the server offers a different quality of service and, perhaps,
only a subset of the functionalities to the end-user. This gives
the end-user a seamless experience of service consumption
under different environmental contexts.

The objective of this research is to design a novel frame-
work for identifying correlations between contexts and NFR
conflicts within a system by processing its event logs. The
motivation of building this framework is to predict the
NFR conflicts that might occur in the future when certain
environmental contexts are activated. The proposed contex-
tual explainability framework establishes sequential rules
between—(i) individual contexts and (ii) corresponding NFR
conflicts—that happened within the systems’ operational
environment. We develop a transformer-based language
model that maps the events recorded in the system’s event-
logs with the system’s requirement goal model. The event
log only records the activities performed and not the NFRs
or contexts. This mapping helps to infer, which contextual
parameters were activated during system operations vis-a-vis
the NFRs which were observed to be in conflict. We assume
that the functional requirements are explicitly annotated with
context information and the variation points [7,8] are identi-
fied in the requirements goal model.

Our research methodology can be summarized as follows.
Based on the literature review, we first design a framework
for Contextual Explainability. Its architecture is depicted in
Fig. 1. This framework maximizes the reuse of existing pre-
trained language models and sequential rule-mining libraries.
In the next step, we experimentally compared the results for
the alternative solutions with respect to accuracy, precision,
recall etc. This is done by adopting different BERT-based
transformers and different sequential rule mining algorithms.

The proposed Contextual Explainability framework con-
sists of the following sequence of steps:

e Initially, we inspect the system event log which lists all
the activities performed by different resources (humans,
servers, databases, etc.) while delivering the services pro-
vided by the system.

e Next, we deploy a BERT-based Transformer Model
(BTM), pre-trained over existing event logs. This BTM
identifies the leaf goals operationalized for a particular
execution thread using semantic similarity. Based on the
leaf goals identified, we observe the contexts that are acti-
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vated at the variation points and the NFR conflicts that
occur.

e The above process is repeated to identify the contexts and
NFR conflicts associated with all the execution threads
in the event log.

e These data are then fed into the Sequential Rule Mining
Framework of the SPMF library [9] for mining two types
of sequential rules—(i) between individual contexts; and
(i1) between contexts and NFR conflicts.

It is interesting to note that our approach involves three
different research domains—namely, goal-oriented require-
ments engineering, sequential rule mining, and process
re-engineering. This work provides scope for academics from
these three domains to explore the possibility of combining
their knowledge and expertise to deliver end-to-end solutions
for real-world problems.

The main advantages of adopting our Contextual Explain-
ability (ConE) model within the software engineering spec-
ification activity, either in an evolutionary or in a DevOps
lifecycle, are twofold:

1. ConE provides insights into the possible set of contexts
that could be activated simultaneously in the operations
environment.

2. ConE provides insights into the non-functional require-
ments that may not be satisfied when certain contexts are
activated in the operational environment.

The structure of the paper is as follows. Section 2 discusses
existing related work in the literature. Section 3 provides the
background. Section4 details our ConE framework. Sec-
tion5 describes the experimental environment. Section6
discusses the experimental results. Section7 highlights the
different threats to validity of this research. Section8 pro-
vides a comparative evaluation of our approach with existing
works in the literature, and Sect.9 concludes.

2 Related works

The number of empirical research on explanations and
explainable systems has been increasing in a variety of signif-
icant themes. Incorporating explanations can assist users in
understanding why a system has given specific outcomes.
This in turn reduces opacity and makes decision-making
more visible. Explanations are often considered a way to
overcome a system’s lack of transparency [10]. Selvaraju
et al. [11] and Tintarev et al. [12] have investigated the
impact of explanations on quality aspects such as acceptabil-
ity, trust and effectiveness, while Kulesza et al. [13] explored
how aspects of explanations impact on the understandabil-
ity of a system. Chazette et al. [14] have focused on the
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relationship between usability and explainability as usability
significantly influences software quality. They proposed a set
of lightweight user-centered activities to support the design
of explanations that can be integrated into the requirements
engineering phase. Chazette et al. in [15] contribute to the
development of standard catalogs and semantics, allowing
the discussion and analysis of explainability during the RE
process. The authors proposed a model to analyze the impacts
of explainability across different quality dimensions. Sadeghi
et al. [16] present a taxonomy of explanation needs that clas-
sify scenarios that require explanations. The taxonomy can
be used to guide the requirements elicitation for explanation
capabilities of interactive intelligent systems. For each leaf
node in the taxonomy, the software system should produce
an explanation. The explanation of different cases helps to
analyze the system’s interaction. Beaudounin et al. [17] com-
bine three steps to define the right level of explainability in
a given context. The first step defines the contextual factors,
the second step examines the technical tools available, and
the third one is a function of the first two steps and chooses
the right levels of global and local explanation.

Recently, concepts such as interpretable machine learn-
ing and explainable artificial intelligence have evolved, and
factors that enhance the intelligibility of machine learning
algorithms have become a trending area of research [18,19].
In those domains, the use of explanations often focuses on
understanding the mechanisms of the learned models dur-
ing visualization [20-22] and decision making [11,23]. In
[24] Dam et al. argued for explainable software analytic
issues to assist human understanding of machine prediction
as a crucial aspect to gaining trust from software practi-
tioners. Zevenbergen et al. [25] collected five use cases
for explainability in machine learning-based systems, along
with relevant motivating scenarios. The concept of embed-
ding explanations in software systems has previously been
extensively researched in the domain of knowledge-based
systems [26]. Vultureanu-Albisi et al. [27] aim at explain-
ability in recommendations while taking the user’s context
into consideration. The authors [27] presented an explainable
recommendation system that is quantitative and qualitative in
nature and gives context-based explanations of recommen-
dations.

A qualitative comparison of our approach with existing
works in the literature in presented in Table 6 in Sect. 8.

3 Preliminaries

In this section we briefly illustrate some of the preliminary
concepts that will help the reader to better understand the
objective and results of this research work.

3.1 Goal model concepts

Goal models are an abstract way of eliciting, modeling and
analyzing software requirements at an early phase. Primarily,
goal models are comprised of the following components as
stated in [28]:

e Actors orAgents: “ An actor is an active entity that carries
out actions to achieve goals by exercising its know how.”

e Goals: “ A goal is a condition or state of affairs in the
world that the actor would like to achieve.”

e Tasks: ““ A task specifies a particular way of doing some-
thing. When a task is specified as a subcomponent of a
(higher) task, this restricts the higher task to that partic-
ular course of action.”

e Resources: ““ A resource is an entity (physical or informa-
tional) that is not considered problematic by the actor.”

e Soft-goals: ** A soft-goal is a condition in the world that
the actor would like to achieve, but unlike in the con-
cept of (hard) goal, the criteria for the condition being
achieved are not sharply defined a priori and are subject
to interpretation.”

e Decomposition or Refinement Links: These links are used
to decompose a goal into sub-goals or tasks. There are two
types of decomposition links: AND (Task Decomposition
Link) and OR (Means-end Link).

e Dependency Links: An actor may be depended on another
actor to achieve goals, perform tasks or furnish resources.

e Contribution Links: Contribution links are used to repre-
sent the varying degrees of impact that one softgoal or
goal has upon another softgoal.

The different components of a goal model help requirement
engineers and developers to visualize higher-level strategic
objectives at an early phase. Contextual goal models [7] fur-
ther help in associating operational contexts with goals or
requirements of the system. An example case study consist-
ing of hard and soft goals for a patient healthcare system is
added in Appendix-I, and the goal model corresponding to
it is available in our GitHub repository: https://github.com/
ConEModel/PHA-Goal-Model.

3.2 Non-functional requirements

NFRs characterize an important quality aspect of a software
system. NFRs do not existindependently and are often related
to different functional requirements. In addition, NFRs are
interrelated, i.e., one NFR may have a positive or negative
impact (conflicts) on the fulfillment of another NFR [29].
In a multi-stakeholder system, there may exist multiple such
conflicting NFRs and for each NFR there may be more than
one operationalization strategy [30]. These different opera-
tionalization strategies evolve due to the different contexts in
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which the system may operate. Several research efforts have
been made to identify NFR conflicts at an early software
development phase [29,31]. However, there is limited work
that tries to identify the NFR conflicts arising dynamically
when a system operates in different contexts. This research
work is aimed toward identifying these correlations between
contexts and NFR conflicts.

3.3 Sequential rule mining

Sequential rule mining algorithms [32,33] establish associ-
ations between the items in a sequence. A sequential rule
maps sequential relationship among items. It shows that
if some item(s) occurs in a sequence, what are the other
item(s) that may follow, based on some support and con-
fidence values [32]. Support gives a measure of what portion
of the input database in sequential rule mining satisfies the
mined rule. Confidence gives the conditional probability of
an item to occur given that another item has occurred. There
are many different sequential rule mining algorithms like
ERMiner [32], CMRules [34], RuleGrowth [33], CMDeo
[34] and RuleGen [35]. Each of them differs by its per-
formance characteristics. In this research work, we have
explored different sequential rule mining algorithms for
deriving context-context correlations and contexts-NFR con-
flict correlations.

3.4 Sentence embedding and semantic similarity

Representation of words and sentences as vectors in a low-
dimensional space enables us to incorporate various deep
learning NLP techniques to overcome different challenging
tasks such as semantic similarity, named entity recognition,
key phrases extraction and many more. The quality of infor-
mation inference, using a language model, is determined by
the following three characteristics:

1. The corpus on which the model is trained.

2. The architecture of the model.

3. The amount of contextual knowledge the model focuses
on.

The BERT model is built on the transformer architecture,
and it is trained on gigabytes of data from various sources
(mostly from Wikipedia and Book Corpus) in an unsuper-
vised fashion [36]. In a nutshell, the training is performed by
masking nearly 15% of the words in a corpus and allowing
the model to predict masked words. As the model is trained
to predict, it also learns to generate an efficient internal repre-
sentation of words as word embedding. The BERT model is
a bi-directional model that explores text representation from
both directions in order to obtain a clearer understanding of
the context. In this regard, we consider the BERT model as it
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sets a new benchmark performance on semantic textual simi-
larity among state-of-the-art models [36,37]. Furthermore, it
is also possible to fine-tune BERT-based transformer models
on task-specific datasets.

4 The ConE framework

In this section, we introduce the overall idea and workflow of
our contextual explainability framework (refer to Fig. 1 using
a simple case study. We take the help of a Patient Healthcare
Assistance (PHA) system (refer to Appendix-1) to illustrate
the ConE framework. The basic assumptions for applying

our framework are as follows:
1. The availability of domain-specific event logs. Such logs

serve the purpose of reusing vocabulary for training our
transformer-based language model and other NLP down-
streaming tasks.

2. The availability of a goal model representation of the
system requirements.

3. A contextual knowledge base that identifies the variation
points in the goal model and defines the strategy to be

followed under specific contexts.
There are research works in different domains where

researchers have used event logs for their simulations [38,39].
Many of these event logs have been made publicly available
and can be used for experimentation purposes. The avail-
ability of goal models might be a challenge, particularly
for legacy systems, where goal models had not been used
for requirements elicitation. In such situations, requirement
engineers may have to represent the existing requirements
using goal modeling concepts. However, the annotation of
goal models with the context knowledge base is possible.
Research works of Ali et al. [7] have shown how such anno-
tated goal models can be created.

The architecture of the framework is depicted in Fig. 1.
The end-to-end flow of activities and outcomes of the
framework are shown using the red arrows. The different sub-
processes of the framework are shown as light-blue boxes
with a numeric tag in orange. The yellow artifacts represent
intermediate process outputs fed as input to a subsequent
phase. The green artifacts are external inputs required for
particular processes. Different machine learning models used
and developed as part of the framework are shown in red
boxes. The following subsections elaborate on each process
activity of the framework with the help of this running exam-
ple of PHA system.

4.1 Pre-training BERT-based transformer model

The application of a pre-training BERT-based transformer
model is marked in Fig. 1 as activity (1). We consider the
BERT-based transformer model [36,40] and pre-train it for
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This is the sub-process (2) of the ConE framework shown in
Fig. 1. The pre-trained BTM, derived from the first step, is
further fine-tuned to be used in the goal identification process.
This is done by using semantic similarity, as shown in Fig. 2.
In the very first step of the fine-tuning process, the goals and
event logs are fed into the pre-trained BTM. The transformer
model accepts these inputs and generates token embedding.
Pooling strategies generate fixed-sized sentence embedding
(from token embedding) to perform certain NLP tasks—Ilike
classification, semantic similarity, and named entity recog-
nition. There are two possible pooling strategies—MEAN
Pooling and MAX Pooling—that are used for sentence repre-
sentation tasks. Among these two strategies, MEAN Pooling
performs better for sentence representation [41]. In case of
MEAN Pooling, the instances of fixed-size sentence embed-
ding are obtained by averaging the hidden state of encoding
layer on the time axis. Finally, the cosine similarity is mea-
sured for these fixed-size sentence embedding to determine
the semantic similarity between events and goals. The highest
similarity measure determines the leaf level goal correspond-
ing to a particular activity in the event log.

It is worth mentioning that cosine similarity is generally
used as a metric that measures the angle between vec-
tors where the magnitude of the vectors is not considered.

T T Embeddings T

Pre-trained BTM
A

Fig. 2 Architecture of fine-tuning pre-trained BTM for calculating
Semantic Similarity

Sentences could be of uneven length. In this situation, the
semantic similarity between two sentences can be affected if
we consider the spatial distance measures. As cosine similar-
ity measures the angle between two vectors, it is preferable
for measuring semantic similarity than the approaches that
use spatial distance measures such as Euclidean distance
[41,42]. This is the reason for choosing the cosine similarity
measure.

For example, Fig.3 illustrates a part of the goal model
specification of our PHA system. Table 1 shows a part of
the event log provided as input to the fine-tuning process
described above. Column 6 in Table 1 lists the leaf level
goals from Fig. 3 correspond to the activity listed in column
2 of the same table.

@ Springer
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Fig.3 The goal model specification with its associated context knowledge base

Table 1 Some entries of the event log with respect to a particular thread

Thread ID Activity Type Date Time Leaf goal

1 Blood pressure measurement Complete 02/04/2021 11:03 Record data

1 Local authentication Complete 02/04/2021 11:05 Locally

1 Data analysis Complete 02/04/2021 11:07 Detect severity

1 Results compressed and stored Complete 02/04/2021 11:09 Keep record compressed
1 Alarm raised Complete 02/04/2021 11:11 Raise alarm

4.3 Value propagation

In sub-process (3) of the ConE framework, the leaf goals
identified in the previous step are used to discover the con-
texts and NFR conflicts activated for each event thread in the
event log. The steps performed in activity (3) are as follows:

1. We obtain the corresponding leaf goals by fine-tuning the
BTM for each thread of entries in the event log. These
leaf goals are then marked with +100 satisfaction val-
ues within the goal model (refer to Fig. 3). In subsequent
steps, we observe the propagation of satisfaction values
from the leaf goals through goal decomposition and con-
tribution links.

2. We have used the execution view of jJUCMNav [43] tool
to observe the propagation of satisfaction values. At first,
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we have manually assigned a +100 evaluation value (in
the execution strategy of the tool) to each of the leaf
goals identified. The jJUCMNav tool then propagates the
satisfaction values toward the root goal and through the
contribution links toward the softgoals (or NFRs) [44].

. Next, we refer to our pre-existing Context Knowledge

Base (refer to Table 2) that contains the various contexts
and their values associated with different leaf goals. We
have associated contexts only with the variation points
[7,8] within the goal model (i.e., where goals have OR
decomposition). This can be observed in Fig.3, where
we see that each OR-decomposed goal has some contexts
associated with it. Each variation point within the goal
model gives rise to multiple possible execution strategies.
The particular strategy that is chosen depends on contexts
activated at run time and their corresponding values.
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;:?::e 2 Context knowledge Context Values Leaf goals
Network load (C1) Low (C1.1) Cloud
Medium (C1.2) Locally
High (C1.3) Locally
Patient location (C2) Home (C2.1) Raise alarm
Old-age-home (C2.2) Call Caregiver
Hospital (C2.3) Call Doctor
Accompanying people (C3) Relative (C3.1) Raise alarm
Caregiver (C3.2) Call Caregiver
None (C3.3) Call Doctor
Prior Illness (C4) None (C4.1) Locally
Yes (C4.2) Cloud

Next, we perform the following two tasks:

(a) First we identify the specific contexts that have been acti-
vated with respect to the leaf goals identified in activity
(2) of the framework. Thus, for each event thread, we
can trace out the different environmental contexts that
were activated, which eventually helps to reason about
the system behavior.

(b) Second, we identify the different NFR conflicts for each
event thread. When a leaf goal has opposing contributions
to two different softgoals, there is a possibility of conflicts
existing between them. The jJUCMNav tool marks such
softgoal (or NFR) conflicts with distinguishing colors.

These two observations are used to correlate, how the occur-
rence of various contexts affects the satisfaction of different
NFRs.

In Fig.4a, the leaf level goals identified in the rightmost
column of Table 1 are fully satisfied by assigning the value
+100. Figure4a shows the propagation of satisfaction val-
ues from these leaf goals in jJUCMNav’s execution mode. In
Fig.4a, we make the following observations from this value
propagation:

1. At the {C1,C4} variation point, the context parameters
have the values C1.2: Network Load = Medium and C4.1:
Prior Iliness = None.

2. At the {C2,C3} variation point, the context parameters
have the values C2.1: Patient Location = Home and C3.1:
Accompanying Person = Relative. The values of the con-
text are derived from the pre-existing Context Knowledge
Base (refer to Table 2) that we assumed for this example.

3. The leaf goal Locally gives rise to two NFR conflicts—
{Cost Efficiency, Fast Processing} and {Performance
Time, Fast Processing}.

4. The leaf goal Raise Alarm results in only one NFR
conflict—{ Performance Time, Quietnessj.In this case the

soft-goal Performance Time is satisfied, but the soft-goal
Quietness is affected.

Similarly in Fig.4b, we consider another scenario where
leaf goals Cloud and Call Doctor are satisfied. Here we can
make the following observations:

1. At the {CI,C4} variation point, the context parameters
have the values C1.1: Network Load = Low and C4.2:
Prior Illness = Yes.

2. At the {C2,C3} variation point, the context parameters
have the values C2.3: Patient Location = Hospital and
C3.3: Accompanying Person = None.

3. The leaf goal Cloud gives rise to two NFR conflicts—
{Fast Processing, Cost Efficiency} and { Fast Processing,
Performance Time}. However, the observation here is that
only the soft-goal Fast Processing is satisfied in this case.
The soft-goals Cost Efficiency and Performance Time
that were satisfied in the previous case (Fig.4a) are both
denied here.

4. The leaf goal Call Doctor results in only one NFR
conflict—{Quietness, Performance Timej}. Unlike the
previous case (Fig.4a) here soft-goal Quietness is sat-
isfied, but Performance Time is affected.

We already know, from the goal model, how the contri-
butions of leaf goals to the associated soft-goals result in
conflicts among the NFRs. The ConE framework further
helps to identify how the satisfaction of these conflicting
NFRs is affected by several contextual parameters arising in
the systems operational environment. The mapping of execu-
tion trace to contextual goal models helps in identifying when
the conflict actually occurs and the contexts responsible for
degradation of different quality of service parameters.

The data, which are inferred from an individual thread in
the event log, are recorded. The process is repeated for every
thread of activities that have been recorded in the event log.

@ Springer
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2. Given a context C;, which are the NFR conflicts that
occur in the operations environment?

The derived sets of inferences serve as input for the next step
of Sequential Rule Mining.

4.4 Sequential rule minin
9 9 ‘We take the derived dataset of contexts and NFR conflicts

(from activity (3)) and feed it into a sequential rule miner
(for instance ERMiner [32]). Table 3 shows one such sample
input dataset. Thread 1 in Table 3 corresponds to the thread
shown in Table 1.

We feed two input datasets in the sequential rule miner
to derive the two types of rules, respectively. The first input
consists of sequences representing the set of contexts that are
activated for a particular thread in the event log. This dataset

This is sub-process (4) of the ConE framework shown in
Fig. 1. The set of identified contexts and NFR conflicts (as
obtained from previous step) associated with each thread in
the event log serves as input for the sequential rule mining
activity.

The sequential rule miner produces the main deliverable of
this research—the Contextual Explainability (ConE) Model.
The ConE Model mines the following two types of sequential

rules:

1. Given a context C;, what are the other contexts that are
also activated in the operations environment?
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is captured by Column 2 of Table 3. In the second input,
each sequence consists of both the contexts and the NFR
conflicts that have been activated for a particular thread. This
dataset is derived from Columns 2 and 4 of Table 3.
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Table 3 Derived dataset of contexts and NFR conflicts fed as input to the sequential rule mining algorithms

NFR conflicts

Associated NFRs

Contexts

Thread ID

NCl: Cost Efficiency and Fast Processing NC2: Fast

Cost Efficiency Fast Processing Performance Time

(Turnaround time) Quietness

Medium C4.1: Prior Illness
None C2.1: Patient Location = Home C3.1:

C1.2: Network Load

Processing and Performance Time NC3: Quietness

and Performance Time
NCl: Cost Efficiency and Fast Processing NC2: Fast

Relative

Accompanying Person

Cost Efficiency Fast Processing Performance Time

Quietness

Low C4.2: Prior Illness = Yes
C2.2: Patient Location = Old-age-home C3.2:

C1.1: Network Load

Processing and Performance Time

Caregiver

Accompanying Person

NCl: Cost Efficiency and Fast Processing NC2: Fast

Cost Efficiency Fast Processing Performance Time

Quietness

Medium C4.1: Prior Illness
None C2.1: Patient Location = Home C3.1:

C1.2: Network Load

Processing and Performance Time NC3: Quietness

and Performance Time
NCl: Cost Efficiency and Fast Processing NC2: Fast

Relative

Accompanying Person

Cost Efficiency Fast Processing Performance Time
Quietness

High C4.2: Prior Illness
Yes C2.1: Patient Location = Home C3.2:

C1.3: Network Load

Processing and Performance Time NC3: Quietness

and Performance Time

Caregiver

Accompanying Person

ConE rule base
The ConE rule base consists of two types of correlations:

1. Context-Context Correlations: Each correlation X=Y
implies that whenever context(s) X has occurred sub-
sequently context(s) Y has also been activated in the
operations environment. In Fig. 5a, we have shown the
rules that have been mined by a sequential rule mining
algorithm (ERMiner [32]). The correlations are sup-
ported by the corresponding support and confidence
values. For example Rule 2 in Fig. 5a shows that when-
ever the context Accompanying Person has the value
Relative (context C4.1), the context Prior Illness has
value None (context C3.1). Similarly, in Rule 3 in Fig. 5a,
we find that whenever the same context Accompanying
Person has the value Caregiver (context C4.2), the con-
text Prior Illness has value Yes (context C3.2). Each of
these rules shows how different contexts are correlated
based on their values observed in the systems operational
environment.

2. Context-NFR conflict(s) Correlations: Each correlation
X=Y implies whenever context(s) X has been activated,
NFR conflict(s) Y has also been observed in the oper-
ations environment. Figure 5b shows the Context-NFR
conflict correlations that have been mined by a sequen-
tial rule mining algorithm (ERMiner [32]). For example
in Rule 1 in Fig. 5b we find that whenever contexts Net-
work Load, Accompanying Person, and Patient Location
have values Medium (C1.2), Relative (C3.1) and Home
(C2.1), respectively, the NFR pairs (Cost Efficiency,Fast
Processing) (NC1) and (Quietness,Performance Time)
(NC3) are in conflict. The reader may correlate the data
in Table 3 and Fig. 5a and b to have a better understanding
of the rules.

The sequential rule mining algorithm shows how con-
texts with different values are correlated among themselves
and also results in different NFR conflicts. The rules mined
always satisfy the specified support and confidence thresh-
old. We also observe that in Fig. 5a some of the rules can be
formed from the combination of other rules. Each of these
rules has the same support values, but it is not always the case
(as observed in our experimental Sect. 6). The results gen-
erated in Fig. 5a are based on a very small example; hence,
they have the same support values. We do not remove these
rules that are formed from the composition of other rules as
in real-life scenarios they may have different support val-
ues. The support values determine the significance of each
of these rules.

The Context-Context Correlations serve as the basis for
predicting the system behavior based on context activation
in the operations environment. The Context-NFR conflicts
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(a) Context-Context Correlations

Fig.5 ConE Rule Base

Correlations are used to identify how different contextual
factors contribute to the triggering of different NFR conflicts.
This serves the system analyst in understanding whether the
NFRs are satisfied as per their priorities. These observa-
tions can be useful for the developers for refactoring the
system to meet the desired needs. Further, the prediction
of context-NFR conflict correlation helps to build a smart
system that can adjust its quality parameters based on past
predictions.

With respect to the motivating case study of the Uber app
(explained in Sect. 1), the context-NFR conflict correlation
would be captured as -

Cl= NClI

where C1 refers to the environmental context heavy rain and
NC1 refers to the conflicts between the NFRs fast response
time and feature availability. Uber system designers can
deploy the application server architecture to address this cor-
relation. Whenever an end-user tries to use the Uber cab
booking service in heavy rains (C1), a lightweight version of
the app is loaded to minimize the impact of the NFR conflict
(NC1).

5 Setting the scene for the experimental
evaluation

Our empirical evaluation aims to assess the ConE framework
on a significant case study.

@ Springer

(b) Context-NFR conflict Correlations

5.1 Case study selection criteria

1. Rationale. The PHA system was chosen as we have been
exploring and using this case study in all of our recent
works. We have a clear understanding of the requirements
of the system. We also found several healthcare system
event logs that could be freely accessed for training our
models.

2. Objective. The case study was adopted for illustrating
the workflow of the proposed methodology. Every sub-
process of the proposed framework has been elaborated
with examples from our case study.

3. Research Question. Given the event logs of healthcare
services that have been delivered, can we correlate the
requirement contexts with the NFR conflicts that affect
the quality of these services?

4. Method of Data Collection. The training data for our
pre-training process were obtained from freely accessi-
ble online repositories and archives. Possible contextual
parameters for our framework were obtained from the
datasets generated by the ITRA project [45-47]. These
datasets were generated from interviews conducted with
healthcare service providers distributed over different
locations.

5. Selection of Data. The datasets were generated by aggre-
gating interviews conducted with all the different stake-
holders involved with the project. The interviews were
conducted once every week over a period of six months.

5.2 Experimental environment

1. Data Acquisition: We have carried out a literature survey
and found several research works [38,48] that pro-
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pose Deep Learning models trained on electronic health
records or clinical datasets. Two databases Cerner Health
Facts! and Truven Health MarketScan?® are well-known
datasets for electronic health records, but they are not
publicly accessible. On the other hand, MIMIC-III [49]
is an openly accessible popular dataset for the clinical
domain and hence, used in our work. We obtained an ini-
tial set of healthcare system requirements from the ITRA
project [45—47]. These data were further extrapolated
using requirements collected from healthcare experts and
stakeholders of the project over a period of time. The
interviews were conducted by researchers who have a
sound understanding of FRs and NFRs. The NFRs were
observed or collected in iterations after different deploy-
ments of the project. The contextual parameters affecting
the system were also collected by observing the differ-
ent geographical locations in which it was deployed. The
obtained set of requirements have been represented as
contextual goal models.

2. Data Generation for Testing: The FRs obtained from
the ITRA project were used for generating the event
threads of our healthcare event logs. Based on the varia-
tion points in the goal model, we have created different
execution threads in the log. The activities in the event
log are created by considering different possible com-
binations of the contextual parameter values associated
with the variation points. The same thread of activities is
replicated multiple times to mine sequential rules having
sufficiently high confidence and support values. Some
event threads were created using random combinations
of activities to obtain a fair distribution of sequential rules
with low confidence and support values as well.

3. Data Analysis: The testing dataset was generated through
multiple iterations. A careful analysis of each data incre-
ment was performed to detect the introduction of data bias
due to repetition of certain event threads. Replications of
specific event threads were introduced (or deleted) from
the event logs for removing these biases even if they get
introduced during the data generation process.

4. Ground Truth Estimation: There was an unavailability
of ground truth in terms of identifying the leaf goals
corresponding to the entries in the event logs. We have
identified the leaf goals® corresponding to each activity
in the event log manually. This served as the ground truth
for our experiments and helped in selecting the best BTM
for our framework.

5. Model Selection: For the purpose of pre-training, we
have experimented with five different BERT-based trans-

U https://sc-ctsi.org/resources/cerner-health-facts.

2 https://www.ibm.com/products/marketscan-research-databases/
databases.

3 https://github.com/ConEModel/PHA-Goal-Model.

former models. A detailed methodology and a compar-
ative analysis of these models are provided in Sects. 6.1
and 6.2, respectively. For sequential rule mining tasks,
we identified five standard sequential rule mining algo-
rithms existing in the state of the art and compared their
performance characteristics in Sect.6.5. However, only
two representative algorithms were used to document the
efficiency analysis.

6 Experimental results

In this section, we elaborate the experiments performed to
demonstrate the functioning of the ConE framework. All
experiments are performed on a workstation with 11th Gen-
eration Intel Core i7 processor (3.0 GHz), 16GB RAM and
Windows 11 operating system.

6.1 Pre-training BERT-based transformer models

In our pre-training, at the foundation level, we use five
BERT-based transformer models—BERT [36], RoBERTa
[40], DistilBERT [50], PUBER [51] and FiBER [51]. Each
of them has a default architecture of 1024 hidden layers,
each with 24 transformer blocks and 16 self-attention heads.
We train these models on healthcare event logs and name
them as LogBERT, LogRoBERTa, LogDistilBERT, LogPU-
BER and LogFiBER, respectively. The pre-trained models
can be obtained by the following steps:

1. The first step is to build the domain-specific vocabulary.
In order to build the vocabulary from the alphabet of
single byte, we have used the default WordPiece tokenizer
with 30,000 token vocabulary.

2. Once the vocabulary is prepared, we start training the
language model. The vocabulary is then used for word
embedding and masking.

3. As the FiBER model is based on BERT, we train it on
a task of Masked Language Modeling [36] that masks
some percentage of the input tokens randomly and then
predicts those masked tokens.

4. The final hidden vectors corresponding to the masked
tokens are fed into a softmax layer. The training environ-
ment is described as follows.

(a) Batch size is set to 32.
(b) Number of training steps is 100,000.
(c) Learning rate is kept as 2e-5.

These settings enable us to obtain a bidirectional pre-
trained domain-specific language model. Once this model
is developed, it is ready to be used for different downstream
tasks. Figure 6 shows the architecture for obtaining the Log-
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Fig.6 The LogFiBER Transformer Model Architecture

FiBER transformer model. The architecture remains the same
for all other pre-trained models. The pre-training datasets,
models and results are available in our GitHub repository.*

6.2 Comparing BERT-based transformer models

We have synthetically created an event log (refer to Sect. 6.3)
that serves as the test data for the five pre-trained models. In
this section, we show the comparison between the different
pre-trained models by measuring their accuracy, precision,
recall and F1-score.

Accuracy

Figure 7a shows the accuracy achieved by the pre-trained
BTMs mentioned earlier. LogFiBER outperforms the other
models and achieves the highest accuracy of 83.33% in iden-
tifying the leaf goals. LogBERT scores 76.80%, which is
better than the remaining models. LogDistilBERT and Log-
PUBER give 71.42% and 62.71% of accuracy, respectively.
LogRoBERTa gives the lowest score of 61.01%.

Precision

Figure 7b shows the precision achieved by the pre-trained
BTMs. LogFiBER model achieves 84.61% of precision,
whereas highest precision of 89.28% can be seen with Log-
BERT. LogRoBERTa and LogDistilBERT show 85.96% and
83.33% of precision, respectively. LogPUBER shows poor
performance with 63.79% of precision.

Recall
Figure 7c shows the recall achieved by the pre-trained BTMs.
LogFiBER model gives the highest recall of 98.21%. Log-

PUBER and LogRoBERTa both achieve the 97% mark with
97.36% and 97.29%, respectively. LogBERT and LogDistil-

4 https://github.com/ConEModel/Pre-training-Data.
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BERT show similar recall measures of 83.87% and 83.33%,
respectively.

F1-score

Figure 7d shows the analysis of F1-Score of the pre-trained
BTMs. LogFiBER model achieves the highest F1-Score of
90.90%. LogBERT model stands second among them with
86.66% of F1-Score. LogPUBER and LogRoBERTa show
F1-Score measures of 77.08% and 75.78%, respectively.
LogDistilBERT achieves 83.33% of F1-Score.

The ConE framework aims to identify the complete set
of correlations that exist between the contexts and NFR con-
flicts of a particular system. In order to achieve completeness,
accuracy and recall are more significant than precision as a
metric for choosing the language model. The accuracy and
recall of LogFIBER are better than that of LogBERT by a
factor of 6.5% and 15%, respectively. F1-score combines the
recall and precision metrics and, here also, LogFIBER out-
performs LogBERT by a factor of 3% (approx.). Thus, we
select LogFiBER for the subsequent phases.

6.3 Synthetic event log creation

We have created a goal model for a PHA system. The goal
model shown in Fig. 3 is a part of the larger goal model. The
complete goal model is available in our GitHub repository*.
We have built our event log taking this goal model into con-
sideration. Table 4 shows the different characteristics of our
goal model and event logs.

The steps for building the event log were as follows:

1. First, for each leaf goal in the goal model, we deter-
mine a list of activities to be performed for satisfying
that goal. For example, if we consider the goal Keep
Record Compressed in Fig. 3, the sequence of activities
that are performed to achieve this goal are—(a) fetching
the record, (b) compressing the record and (c) storing
the record in a suitable location. We have considered an
existing hospital event log [52] while determining the
activities for each goal.

2. We continue by adding sets of activities to threads. Each
thread in the event log consists of activities related to
multiple goals. We have considered the temporal relation-
ships among the leaf goals while adding the activities in
the log. For example, the activities for Record Data must
appear before the activities for Keep Record Compressed
(refer to Fig. 3) in the log for the sake of achievability of
final goals.

3. We try to infer some temporal ordering from the inter-
actor dependencies for sequencing the events in the event
log. For example, let us consider two activities involving
two different actors in our PHA system—patient (actor)
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orders medicine online and the pharmacist (actor) gets it
delivered. Then the activity of the patient is recorded at
a time instant earlier than the activity of the pharmacist
to keep the event log consistent. As observed from our
studies, popular requirement goal models such as i* [28]
do not capture temporal ordering explicitly.

4. We have interleaved the activities corresponding to
mutually exclusive goals. This brings variation while
maintaining correctness in the ordering of the events.

5. The same set of entries are repeated in different threads
to populate the event log (refer to Table 4).

Table 4 Characteristics of goal model and synthetic event log

Parameter Value / Range
No. of leaf goals 48

No. of actors in the goal model 4

No. of inter-actor dependencies 10

No. of activities for each leaf goal 3-9

Total no. of threads 70,000

Total no. of activities in the log 1,116,518
Thread repetition 500-10,000

Analysis of Precision
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Analysis of F1-Score
LogPUBER
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LogRoBERTa

LogBERT

o
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(d) F1-Score

The event log created manually is available in our GitHub
repository.’

6.4 Simulation

The comparative analysis in Sect. 6.2 shows that LogFiBER
outperforms other models in terms of accuracy, recall and F1-
score. We consider the leaf goals identified by the LogFiBER
transformer model for performing the subsequent step of our
ConE framework. The identified leaf goals are activated in
the goal model in jJUCMNav [43] execution mode to observe
the propagation of satisfaction values (through goal decom-
position and contribution links) for each thread in the event
log. The final outcome is the identification of contexts and
NFR conflicts. Activity (3) is performed against two sets of
leaf goals:

1. Actual Leaf Goals: This is the actual set of leaf goals
corresponding to each activity in the event log identified
manually. We determine the contexts and NFR conflicts
that are activated in the operations environment based
on this set. Note: These rules mined subsequently are
treated as the ground truth for our experimental process.

> https://github.com/ConEModel/Event-Logs.
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2. Predicted Leaf Goals: This is the predicted set of leaf
goals identified by the LogFiBER transformer model.

The process described in Sect.4.3 is performed for both
actual and predicted leaf goals. The list of contexts and NFR
conflicts activated in the operations environment is recorded
for each of the 70,000 threads.

We have two input datasets for context-context rule
mining—one based on actual leaf goals and another based on
predicted leaf goals. They are named Actual Context Dataset
(C ) and Predicted Context Dataset (C p). Similarly, we have
two input datasets for context-NFR conflict rule mining—one
based on actual leaf goals and another based on predicted leaf
goals. They are named Actual Context NFR conflict Dataset
(CNy) and Predicted Context NFR conflict Dataset (CNp).
These four datasets are available in our GitHub repository.°®
These four sets of input sequences are subjected to different
sequential rule mining algorithms. The results are discussed
in the next section.

It is to be noted that these four input datasets are sparse
in nature. This is due to the manually created event logs.
Each thread in the event log contains only a small number
of entries. This results in few associated contexts and NFR
conflicts for each thread resulting in a sparse dataset.

6.5 Performance characteristics

We have mined sequential rules from our derived dataset
using 5 algorithms ERMiner [32], CMRules [34], Rule-
Growth [33], CMDeo [34] and RuleGen [35]. Typically, the
rules mined by the algorithms ERMiner, CMRules, Rule-
Growth and CMDeo are in the same format, but RuleGen
mines a different form of sequential rules.

The sequential rules mined by ERMiner [32], CMRules
[34], RuleGrowth [33] and CMDeo [34] are in the form of X
= Y, where X and Y are two sets of items. Here X and Y are
disjoint and unordered sets of items. In the case of RuleGen
[35] the sequential rules are in the form of X = Y, such
that X and Y are ordered itemsets and X is a subset of Y. In
our application scenario for context-context rule generation,
both X and Y represent the sets of contexts. However, for
context-NFR conflict rule generation, X represents contexts
and Y represents NFR conflicts.

Context-context rule generation

Context-Context Correlations are created by mining rules
using all 5 algorithms on both datasets C4 and Cp. The rules
mined for dataset C 4 (let us assume them to be RC 4) repre-
sent the actual set of context-context sequential rules for our

event log. The rules mined for dataset C p (let us assume them

6 https://github.com/ConEModel/SequentialRuleMiningDataSets.
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Fig.8 Running Time for Context-Context Rule Generation

to be RCp) represent the context-context sequential rules
mined based on the leaf-goals predicted by our LogFiBER
transformer model. The five algorithms (as mentioned above)
consider the sequential datasets C4 or Cp, a minimum sup-
port value and a minimum confidence value. Since we have
a sparse dataset, it is observed that the first set of sequen-
tial rules was obtained for minimum support of 0.25 and a
minimum confidence value 0.75. None of the five algorithms
gave any output for our sparse dataset when the support value
is higher than 0.25. We generated sequential rules with min-
imum support in the range [0.25, 0.01] in steps of —0.01.
The minimum confidence interval was set to [0.75, 1.0] in
steps of +0.01. When dataset C,4 is mined, each algorithm
generates 650 files, one for each combination of support and
confidence values. Similarly, for dataset Cp, each algorithm
generates 650 files.

Figures 8 and 9 show the running time and memory
consumption (documented in the data sheets’) of different
algorithms for generating Context-Context sequential rules
for dataset C 4. The running time and memory consumption
required for mining rules from both datasets C4 and Cp are
almost similar, and hence, the surface plots for dataset Cp
are not shown.

7 https://github.com/ConEModel/SequentialRuleMiningResults.
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Context-NFR conflict rule generation

Context-NFR conflict Correlations are created by mining
rules using all 5 algorithms on datasets CN4 and CNp.
The rules mined for dataset CN4 (let us assume them to
be RCN,) represent the actual set of Context-NFR con-
flict sequential rules for our event log. The rules mined for
dataset C Np (let us assume them to be RC Np) represent the
Context-NFR conflict sequential rules mined based on the
leaf-goals predicted by our LogFiBER transformer model.
We have generated sequential rules with minimum support in
the range [0.25, 0.01] in steps of —0.01. The minimum confi-
dence interval was set to [0.75, 1.0] in steps of +0.01. When
dataset C N4 is mined, each algorithm generates 650 files,
one for each combination of support and confidence values.
Similarly, for dataset C Np, each algorithm again generates
650 files.

Figures 10 and 11 show the running time and memory
consumption (documented in the data sheets’) of different
algorithms for generating Context-NFR conflict sequential
rules for dataset C N4. The running time and memory con-
sumption required for mining rules from both datasets C N4
and C Np are similar, and hence, the surface plots for dataset
C Np are not shown. All Context-Context and Context-NFR
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conflict correlations mined by all the 5 algorithms are avail-
able in our GitHub repository”.

6.6 Efficiency analysis

In this section, we discuss and compare the efficiency of
two sequential rule mining algorithms—ERMiner and Rule-
Gen. We have mentioned previously that ERMiner [32],
CMRules [34], RuleGrowth [33] and CMDeo [34] belong to
the same category of sequential rule mining algorithms. We
have observed that both Context-Context and Context-NFR
conflict correlations mined by these algorithms are exactly
the same (results are available in our GitHub repository”).
We also ran these four algorithms on the test datasets pro-
vided in the SPMF library [9] and found that they generate
exactly the same set of sequential rules. In Figs.8, 9, 10
and 11 we observe that ERMiner has the best time perfor-
mance (this is also documented in the SPMF library [9]) and
memory requirements are just second best to RulesGrowth.
Based on this comparative performance analysis of ERMiner,
CMRules, CMDeo and RulesGrowth, we select ERMiner as
the representative of the four algorithms. We have measured
the efficiency of the rules mined by ERMiner for both Actual
and Predicted datasets. Since the same output is generated
by the remaining three algorithms, the efficiency analysis
yields the same result (refer to our GitHub repository’). We

@ Springer



2002

M. Roy et al.

500 91200 1250,
2 1000
400 5 s00
750
300 S 400

500

=
200 2o 250

015%10
Oy, 0.95 020 %15 50"
£ o
Epe @0 025

(b) CMRules

(a) ERMiner

1200

20 1000
200 800
600
150
400

100 200

0.05

0, 0.95

0,
"%, 100 0,25
"ea

(d) CMDeo

015 %100t
020" 3 5P®
e

1000

800

600

400

200

(e) RuleGen

Fig. 11 Memory Consumption for Context-NFR conflict Rule Gener-
ation

also measure the efficiency of the RuleGen algorithm as it
represents a different category of sequential rule mining.

We have measured the accuracy, precision, recall and F1-
score of the rules mined from the predicted datasets (Cp
and CNp). The rules mined from the actual datasets (Cy4
and C Ny ) serve as the ground truth. We define the confusion
matrix to measure these parameters, for the mined sequential
rules as follows:

1. TruePositive(TP): All Context-Context correlations that
are present in both RC4 and RCp, are marked as true
positive. Similarly, all Context-NFR conflict correlations
that are present in both RCN4 and RC Np, are marked
as true positive.

2. False Positive(FP): All Context-Context correlations
that are present only in RCp, but notin RC 4, are marked
as false positive. Similarly, all Context-NFR conflict cor-
relations that are present only in RCNp, but not in
RCN,, are marked as false positive. These false posi-
tives occur due to the incorrect leaf goals identified in
activity (2) of the proposed ConE framework.

3. False Negative(FN): All Context-Context correlations
that are presentin RC 4, butabsentin RC p, are marked as
false negatives. Similarly, all Context-NFR conflict cor-
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Fig. 12 Context-Context Rule Mining Efficiency for ERMiner

relations that are presentin RC N4, but absentin RCNp,
are marked as false negatives. Identifying incorrect leaf
goals adds some invalid contexts or NFR conflicts, due
to which some actual correlations are missed.

4. True Negative(TN): True negative implies something
that is not present in actual is not identified in the predic-
tions as well. In our measurements, there is no scope of
mined sequential rules to be incorrect or invalid. Hence,
we have kept the true negatives as zero.

The values of these parameters, as obtained for the
ERMiner and RuleGen algorithms, are available in our
GitHub repository.® The accuracy, precision, recall and F1-
score are computed using the parameters TP, FP, FN and TN
as mentioned in the literature [53,54].

Efficiency of ERMiner:

Figure 12 shows how accuracy, precision, recall and F1-
score vary for different support and confidence values when
Context-Context correlations are mined by ERMiner. In this
case, average recall is 75.02%, average precision is 72.75%,
average F1-score is 70.73% and average accuracy is 59.23%.
The low accuracy is due to the imbalanced dataset. Although
our LogFiBER transformer model has precision and recall
of 84.61% and 98.21%, respectively, there are incorrect leaf
goal identifications that introduce invalid contexts against
different threads. This results in invalid rules being mined
while missing some of the actual rules.

Figure 13 shows how accuracy, precision, recall and F1-
score vary for different support and confidence values when

8 https://github.com/ConEModel/RuleComparison.
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Context-NFR conflict correlations are mined by ERMiner.
In this case, average recall is 95.15%, average precision is
65.12%, average Fl-score is 76.03% and average accuracy
is 63.29%. Here recall is high, but precision is comparatively
low which implies that the number of false negatives is low,
and false positives are high. This is because for each incorrect
leaf goal prediction by our LogFiBER transformer model,
both incorrect contexts and NFR conflicts are added. Hence,
two different sets of errors are introduced, which results in a
number of incorrect sequential rules being mined.

Efficiency of RuleGen:
Figure 14 shows how accuracy, precision, recall and F1-
score vary for different support and confidence values when
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Fig. 15 Context-NFR conflict Rule Mining Efficiency for RuleGen

Context-Context correlations are mined by RuleGen. In this
case, average recall is 84.4%, average precision is 58.4%,
average Fl-score is 65.2% and average accuracy is 53.7%.
In RuleGen, the itemsets in the mined sequential rules are
ordered. So for the same set of items (in this case contexts)
multiple rules are mined with different orders with different
support values. Thus, each invalid set of contexts is repeated
multiple times in this way, increasing the number of false
positives and resulting in low precision and accuracy.

Figure 15 shows how accuracy, precision, recall and F1-
score vary for different support and confidence values when
Context-NFR conflict correlations are mined by RuleGen.
In this case, average recall is 89.5%, average precision is
51%, average Fl-score is 62.3% and average accuracy is
48.4%. Here also for each incorrect leaf goal prediction by
our LogFiBER transformer model, both incorrect contexts
and incorrect NFR conflicts are added. For each set of invalid
contexts, multiple incorrect correlations with different sup-
port values are mined, resulting in large false positives. This
reduces the precision and accuracy.

6.7 Impact of data bias

We observe from Figs. 12, 13, 14 and 15 that the surface plots
of accuracy, precision and F1-score encounter a sudden drop
when the minimum support value reaches 0.14. This happens
due to—(i) the biases in our datasets and (ii) incorrect leaf
goal identifications. The biased sequences that are respon-
sible for this sudden drop have a frequency of 9900 in our
dataset. When the minimum support value is 0.15 (frequency
of 10,500) and above, these incorrect rules are not mined.
However, as soon as the support value becomes 0.14 (fre-
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Table 5 Summary of experimental results

Average Values (in %) Accuracy Precision Recall F1-score

Support Values > 0.14 <0.14 > 0.14 <0.14 > 0.11 <0.11 > 0.14 <0.14
ERMiner (Context-Context) 79.89 43.00 90.27 58.98 84.84 62.53 85.36 59.24
ERMiner (Context-NFR) 78.23 51.56 79.92 53.51 97.28 92.45 87.59 66.95
RuleGen (Context-Context) 74.90 37.02 82.14 39.80 84.55 84.23 81.74 52.16
RuleGen (Context-NFR) 65.49 35.01 68.21 36.94 94.11 83.71 78.78 49.34

quency of 9800), these incorrect rules satisfy the threshold
and gives rise to multiple false positives. This results in the
sudden drop in accuracy, precision and F1-score. Decreasing
the minimum support values further, the values gradually
increase as there is an increase in true positives. Thus, for the
remaining results we observe no sudden drop in values due
to a large number of false positives.

The surface plots for recall, as observed in Figs. 12, 13,
14 and 15, also encounter a drop when the minimum support
value reaches 0.11. The reason for this same as mentioned
above. The biased sequences that are responsible for these
drops have a frequency of 7,838 in our dataset. When the
minimum support value is 0.12 (frequency of 8,400) and
above, these incorrect rules are not mined. However, as soon
as the support value becomes 0.11 (frequency of 7,700), these
incorrect rules satisfy the threshold and gives rise to multi-
ple false positives. This in turn reduces the number of true
positives and increases the number of false negatives. Hence,
we observe these drops in recall. Decreasing the minimum
support values further, the recall value gradually increases as
there is an increase in true positives.

6.8 Summary

In Table 5 we have provided a comprehensive summary of the
average recall, precision, F1-score and accuracy of ERMiner
and RuleGen algorithms in mining the two types of correla-
tions. The measurements are based on the absolute count of
the sequential rules generated and number of correct matches
in the activity-goal mapping. Further we have rounded off
these values to four significant digits.

In the previous section we have discussed how the pres-
ence of bias in the input dataset results in the drop of accuracy,
precision, recall and F1-score at support values 0.14, 0.14,
0.11 and 0.14, respectively. In Table 5, for each parameter,
we have shown two averages—for support values below and
above the bias threshold, respectively. For example, in Table
5, we can observe that ERMiner (for Context-Context corre-
lation) has a high precision of 90.27% for all support values
greater than 0.14. However, its precision drops to 58.98%
when support value is less than or equal to 0.14.

@ Springer

The ConE framework proves to be effective in terms
of accuracy, precision, recall and F1-score for support val-
ues that are greater than the respective bias thresholds. The
existence of this bias in the generated event logs has been
explained in the previous section. In real life datasets, we do
not expect such data bias to exist. Thus, we can conclude
that we have been able to successfully address the research
question mentioned in Sect.5.1.

7 Threats to validity

The first possible threat to validity is related to the valid-
ity of the data used for experimental evaluation. Empirical
research needs to be supported by some case study or experi-
ments. This research work uses actual event logs for training
and synthetically generated event logs for testing our models.
There are publicly available event logs, but they are not sup-
plemented with corresponding goal models. Also, creating
a goal model for the entire system (represented by the real
logs) is not feasible as the goal model becomes very complex
and often non-deterministic. Hence for this purpose synthetic
event logs are created by taking reference from actual event
logs.

The second possible threat to validity is related to the
research validity of this proposed model. The potential usage
of this research is aimed toward better development of soft-
ware systems whose behavior depends upon environmental
contexts. Although our experimental evaluation yields mean-
ingful correlations between contexts and NFR conflicts, the
framework still needs to be tested within real-world environ-
ments to better validate its utility. However, the scope of this
empirical research work is limited to proposing the frame-
work and conducting the necessary supporting experiments.
A real-life case study for this research comes within the scope
of future work.

The third possible threat to validity is related to the goal
model of the PHA system that is manually created. There
is no deterministic way of identifying a single goal model
specification of a system. For this research, we have reused
the goal model specifications that we have developed for
this case study in our recent previous works. Based on the
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acceptance of these works in the requirements engineering
community, we can possibly assume that our goal model
representation does not pose a threat to the validity of the
framework.

The fourth possible threat to validity is related to the avail-
ability of domain-specific event logs for training the language
model. We have found multiple works in the literature where
event logs are used for the simulation of different domains.
These logs are publicly available, but we cannot claim the
availability of event logs for every domain of applications.
However, the event logs used for training are system gen-
erated and will not be very difficult to obtain for the target
system in which we want to deploy the ConE framework.

The second threat regarding the validity of the proposed
model can also be correlated to the threat associated with
the acceptability of the framework by system engineers. The
third threat may give rise to internal validity threats where the
correlations being derived by our framework may get biased
by the goal model specification. An additional threat is related
to the specification of the threshold values that are very much
dependent on the nature of the input data set, whether it is
sparse or dense. The mined correlations might not be an accu-
rate representation of the real-world environment that we are
studying. External validation threats associated with the gen-
eralization of correlations mined in our case study to other
real-world settings are subject to further empirical explo-
rations and collection of evidence.

8 Comparative evaluation

In this section, we compare our contextual explainability
approach with other explainability approaches from the liter-
ature (refer to Table 6). We have carefully selected works that
have tried to address the issues of system behavior explain-
ability. The details of the research works in Table 6 are briefly
illustrated in Sect. 2. These works are focused on applications
of Al approaches for system behavior explainability.

Table 6 shows that there are limited works that have
addressed Context-NFR conflict correlations in their pro-
posed approach. Limited attention is given to the operational
contexts of the system and explored their correlations. These
correlations form the basis for predicting future system
behavior. Chazette et al. [14] have tried to correlate contexts
and NFR but that is limited to only specific types of NFR and
they have not explored conflicting scenarios. Predicting NFR
conflicts and contexts correlation from systems operational
behavior can help the system designer in adapting system
behavior in certain contexts. Such system can alert the user
of the conflicts that may arise in different contexts of system
usage.

Also, none of them have used system event logs in deriv-
ing the correlations. ConE provides a novel approach that

Table 6 Qualitative comparison with existing works

Research Domain

Context-Context Correlation Context-NFR conflict Correlation Experimental Evaluation Usage of Event Logs

Research Work

No RE

Qualitative analysis by using open-

coding approach

Identified the link among explain-
ability and NFRs like usability

Not addressed

Not addressed

Chazette et al. [14]

Software Systems

No

GitHub Repository has been pro-
vided with explainability cases

Not done

Not addressed

Sadeghi et al. [16]

Al

No

Not addressed
Not addressed

Not addressed

Zevenbergen et al. [25]

No Al

Qualitative and Quantitative analy-

sis have been carried out

Not done

User’s context has been considered

Vultureanu-Albisi et al. [27]

Al

No

Not addressed

User’s context and operational con-

text have been considered

Beaudouin et al. [17]

RE

Not done No

Not addressed

User’s context has been considered

Chazette et al. [15]

ConE

RE and Al

Yes

Performed with synthetic data

Context-NFR conflict correlations

Context-Context
are addressed

Environmental

correlations addressed
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identifies system behaviors from the event logs while corre-
lating environmental contexts with other contexts and NFR
conflicts.

9 Conclusion

There has been much research in the domain of explainable
systems that aims to help end-users understand the chang-
ing behavior of a system under different contexts. However,
the present state of the art does not explore the correla-
tions between contexts and system NFRs in detail. The main
contribution of this paper has been to provide contextual
explainability of system behavior by tracing back events in
the event log to their corresponding goals in the goal model.
The novelty of the proposed ConE framework lies in the
approach to provide explainable system behavior in terms of
the environmental contexts, capturing information on how
they activate other contexts, and on their correlation with

NFR conflicts.

As part of our future work, we aim to extend this research
work in different directions. One such exploration could be
to observe whether the sequential rules being mined are
actually being repeated in future execution threads of the
system. There is also a need to assess the impact of the ConE
model in different operational environments and application
domains, in particular, related to IoT [55,56] and robotic sys-
tems [57,58]. Another interesting research direction could be
to observe how the sequential rules generated by the ConE
framework may be impacted when system design undergoes
changes due to evolving requirements. Another future work
is the external validation of the ConE framework in some
real, industrial settings.
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Appendix: |

This section briefly describes the functional and non-
functional requirements of our use case of the Patient
Healthcare Assistance (PHA) system.

Functional Requirements

1. A patient healthcare assistance system that is designed to
monitor patient health remotely.

2. Such a system will have a front end that runs as an appli-
cation on smartphones or desktops. At the back end, the
application will forward the data to the edge node or cloud
server for processing.

3. The cloud server will be responsible for maintaining
patient health records.

4. The edge nodes will be lightweight and have limited pro-
cessing capability.

5. The patient must register himself/herself to a healthcare
application system.

6. The patient is expected to have wearable sensor devices
in their body. There may be one or more wearable sensor
devices in patients’ bodies.

7. The wearable sensor device(s) will periodically record
patient vitals.

8. The data recorded by the sensor will be forwarded to
the application in the smartphone of the patient. It then
forward the data for processing.

9. The data can be processed at edge node or at cloud server
depending upon the type of analysis to be performed.

10. Cloud server should keep a record of all data processing
results at all times for all patients registered in the system.

11. Based on the data processing of the vitals recorded if it
finds some abnormality, then it must take an action.

12. Based on the severity of the condition and patient location
different actions can be taken-

(a) When the patient is located at home supported by
some caregiver or family member, the system may
raise an alarm. This requires an alarm system to be
installed in the home where the patient resides.

(b) When the patient is alone at home, then it may notify
a doctor to visit the patient or send an ambulance.

(c) When the patient is outside, it may send an ambulance
and also may notify and family members.

13. The application will also provide the following types of
assistance to be patient -
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(a) Placing online medicine order:

(i) The patient must be logged in before placing an order.
(i1) After logging the patient can place an order for
medicine by selecting the medicine and adding them
to the cart.
(iii) The patient must upload a prescription for the
medicines.
(iv) After uploading the prescription, payment has to be
made.
(v) After payment the order will be successfully placed.
(vi) The cloud server will maintain a record of all the
purchases made by the patients at all times.

(b) Booking a test online:

(i) The patient must be logged in before booking the test.
(ii) After logging the patient can select the tests required.
(iii)) The patient must upload a prescription for the tests.
(iv) After uploading the prescription, payment has to be
made.

(v) After payment the system must notify the patient
whether the technician will be visiting or the patient
has to go to the lab.

(vi) The cloud server will maintain a record of all the tests
booked by the patients and test results after the test
is conducted.

(c) Online Doctor Assistance -

(a) A patient must register himself/herself in the appli-
cation to avail of online doctor assistance.

(b) The patient can upload his/her past medical history
in the system.

(c) The patient can submit his/her symptoms in the sys-
tem and book a doctor’s appointment.

(d) The patient will have the provision to select the doctor
from the application.

(e) The system must notify the patient of the appointment
one-day in-prior.

(f) The doctor can provide an online prescription to the
patient.

Non-functional Requirements

The following list of NFRs has been considered for our case
study. For the purposes of brevity, there may not be formal
quantification metrics associated with them.

1. Efficiency: The processing of a patient’s vitals should be
performed as fast as possible.

2. Cost Efficiency: The collection of vitals, processing and
storage of results should be performed cost-effectively.

10.

1.

12.

13.

14.

15.

16.

. Security: The patient record must be transferred and

stored in an encrypted format.

. Space Efficiency: Processed results, patient history and

other data should be stored in a compressed format for
space efficiency.

. Response Time: The system must respond quickly to any

abnormality recorded by the sensor.

. Availability: The system must ensure that patient with

abnormal vitals must be attended by a caregiver or doctor.

. Quietness: The system must respond to a patient abnor-

mality in a way that it minimizes disturbances in the
neighborhood.

. Authorization: The system must authorize the patient

before he/she can place a medicine order, book a test
and book a doctor’s appointment.

. Authentication: The system must authenticate user details

before giving access to the system.

Confidentiality: A patient must not access any other
patient’s medical record.

Access Control: An authorized caregiver will have lim-
ited access to the patients’ records.

Privacy: The patients’ medical records will only be
accessible to the concerned doctor, involved in the treat-
ment of that patient.

Ease of Use: The application interface must be user-
friendly such that any age group must be comfortable
to use it.

Safety: Online medicine orders will be delivered only
after the pharmacy verifies the prescription uploaded by
the patient.

Privacy: The system must ensure that the pharmacy main-
tains patients’ privacy while handling their orders.
Latency: The medicine order should not be delivered any
later than 2 days.

References

. Boehm, B., Ross, R.: Theory-W software project management

principles and examples. IEEE Trans. Softw. Eng. 15(7), 902-916
(1989). https://doi.org/10.1109/32.29489

. Roy, M., Deb, N., Cortesi, A., Chaki, R., Chaki, N.: NFR-aware

prioritization of software requirements. Syst. Eng. 24(3), 158-176
(2021). https://doi.org/10.1002/sys.21572

. Roy, M., Deb, N., Cortesi, A., Chaki, R., Chaki, N.: Requirement-

oriented risk management for incremental software development.
Innov. Syst. Softw. Eng. 17(3), 187-204 (2021). https://doi.org/10.
1007/s11334-021-00406-6

. Roy, M., Deb, N., Cortesi, A., Chaki, R., Chaki, N.: CARO: a

conflict-aware requirement ordering tool for DevOps. In: Proceed-
ings of the IEEE International Conference on Requirements Engi-
neering, pp. 442-443 (2021). https://doi.org/10.1109/RE51729.
2021.00061

. Gupta, M., Abdelsalam, M., Khorsandroo, S., Mittal, S.: Security

and privacy in smart farming: challenges and opportunities. IEEE

@ Springer


https://doi.org/10.1109/32.29489
https://doi.org/10.1002/sys.21572
https://doi.org/10.1007/s11334-021-00406-6
https://doi.org/10.1007/s11334-021-00406-6
https://doi.org/10.1109/RE51729.2021.00061
https://doi.org/10.1109/RE51729.2021.00061

2008

M. Roy et al.

10.

11.

12.

13.

14.

15.

16.

18.

20.

21.

Access 8, 34564-34584 (2020). https://doi.org/10.1109/ACCESS.
2020.2975142

Samin, H.: Priority-awareness of non-functional requirements
under uncertainty. In: 2020 IEEE 28th International Requirements
Engineering Conference (RE), pp. 416-421 (2020). https://doi.org/
10.1109/RE48521.2020.00061

Ali, R., Dalpiaz, F., Giorgini, P.. A goal-based framework for
contextual requirements modeling and analysis. Requir. Eng. 15,
439-458 (2010). https://doi.org/10.1007/s00766-010-0110-z
Botangen, K.A., Yu, J., Yongchareon, S., Yang, L.H., Bai, Q.:
Specifying and reasoning about contextual preferences in the goal-
oriented requirements modelling (2018). https://doi.org/10.1145/
3167918.3167945

Fournier-Viger, P. et al.: The SPMF open-source data mining library
version 2. In: Proceedings of the 19th European Conference on
Principles of Data Mining and Knowledge Discovery (PKDD 2016)
Part III, Springer LNCS 9853, pp. 36-40 (2016). https://www.
philippe-fournier-viger.com/spmf/

Doran, D., Schulz, S., Besold, T.R.: What does explainable
Al really mean? A new conceptualization of perspectives.
arXiv:1710.00794 (2017)

Selvaraju, R.R., et al.: Grad-cam: visual explanations from deep
networks via gradient-based localization. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 618-626
(2017). https://doi.org/10.1109/ICCV.2017.74

Tintarev, N., Masthoff, J.: Evaluating the effectiveness of explana-
tions for recommender systems. User Model. User-Adapt. Interact.
22(4-5), 399-439 (2012). https://doi.org/10.1007/s11257-011-
9117-5

Kulesza, T. et al.: Too much, too little, or just right? Ways explana-
tions impact end users’ mental models. In: 2013 IEEE Symposium
on Visual Languages and Human Centric Computing, pp. 3-10
(2013). https://doi.org/10.1109/VLHCC.2013.6645235

Chazette, L., Schneider, K.: Explainability as a non-functional
requirement: challenges and recommendations. Requir. Eng. 25(4),
493-514 (2020). https://doi.org/10.1007/s00766-020-00333-1
Chazette, L., Brunotte, W., Speith, T.: Exploring explainability:
a definition, a model, and a knowledge catalogue. In: 2021 IEEE
29th International Requirements Engineering Conference (RE), pp.
197-208 (2021). https://doi.org/10.1109/RE51729.2021.00025
Sadeghi, M., Klos, V., Vogelsang, A.: Cases for explainable soft-
ware systems: characteristics and examples. In: 2021 IEEE 29th
International Requirements Engineering Conference Workshops
(REW), pp. 181-187 (2021). https://doi.org/10.1109/REW53955.
2021.00033

Beaudouin, V. et al.: Flexible and context-specific Al explain-
ability: a multidisciplinary approach. Available at SSRN 3559477
(2020)

Koh, PW., Liang, P.: Understanding black-box predictions via
influence functions. In: International Conference on Machine
Learning, pp. 1885-1894 (2017)

Ribeiro, M. T., Singh, S., Guestrin, C.: “Why should i trust you?”
Explaining the predictions of any classifier. In: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 1135-1144 (2016). https://doi.org/10.
18653/v1/N16-3020

Hamel, L.: Visualization of support vector machines with unsu-
pervised learning. In: 2006 IEEE Symposium on Computational
Intelligence and Bioinformatics and Computational Biology, pp.
1-8 (2006). https://doi.org/10.1109/CIBCB.2006.330984
Jakulin, A., MoZina, M., Dem§ar, J., Bratko, I. & Zupan, B.: Nomo-
grams for visualizing support vector machines. In: Proceedings of
the Eleventh ACM SIGKDD International Conference on Knowl-
edge Discovery in Data Mining, pp. 108—117 (2005). https://doi.
org/10.1145/1081870.1081886

@ Springer

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Mozina, M., Demsar, J., Kattan, M., Zupan, B.: Nomograms for
visualization of Naive Bayesian classifier. In: European Conference
on Principles of Data Mining and Knowledge Discovery, pp. 337—
348 (2004). https://doi.org/10.1007/978-3-540-30116-5_32

Kim, B., Glassman, E., Johnson, B., Shah, J.: iBCM: Interactive
Bayesian case model empowering humans via intuitive interaction.
CSAIL Technical Reports (July 1, 2003 - present) (2015). http:/
hdl.handle.net/1721.1/96315

Dam, H.K., Tran, T., Ghose, A.: Explainable software analytics.
In: Proceedings of the 40th International Conference on Software
Engineering: New Ideas and Emerging Results, pp. 53-56 (2018).
https://doi.org/10.1145/3183399.3183424

Zevenbergen, B., Woodruff, A., Kelley, P.G.: Explainability case
studies. arXiv:2009.00246 (2020)

Konstan, J.A., Riedl, J.: Recommender systems: from algorithms to
user experience. User Model. User-Adapt. Interact. 22(1), 101-123
(2012). https://doi.org/10.1007/s11257-011-9112-x
Vultureanu-Albisi, A., Badicd, C.: Explainable collaborative fil-
tering recommendations enriched with contextual information. In:
2021 25th International Conference on System Theory, Control
and Computing (ICSTCC), pp. 701-706 (2021). https://doi.org/
10.1109/ICSTCC52150.2021.9607106

Yu, E.S.-K.: Modelling Strategic Relationships for Process Reengi-
neering. University of Toronto, Toronto (1996)

Mairiza, D., Zowghi, D., Nurmuliani, N.: Towards a catalogue
of conflicts among non-functional requirements. In: ENASE—
Proceedings of the 5th International Conference on Evaluation of
Novel Approaches to Software Engineering, Athens, Greece, pp.
20-29 (2010)

Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional
Requirements in Software Engineering, vol. 5 (2000). https://doi.
org/10.1007/978-1-4615-5269-7

Carvalho, R.M.: Dealing with conflicts between non-functional
requirements of ubicomp and IoT applications. In: 25th IEEE
International Requirements Engineering Conference, RE, Lisbon,
Portugal, pp. 544-549 (2017). https://doi.org/10.1109/RE.2017.51
Fournier-Viger, P, et al.: Erminer: sequential rule mining using
equivalence classes. In: Advances in Intelligent Data Analysis XIII,
pp. 108-119 (2014). https://doi.org/10.1007/978-3-319-12571-
8_10

Fournier-Viger, P., Wu, C.W., Tseng, V.S., Cao, L., Nkambou,
R.: Mining partially-ordered sequential rules common to multi-
ple sequences. IEEE Trans. Knowl. Data Eng. 27(8), 2203-2216
(2015). https://doi.org/10.1109/TKDE.2015.2405509
Fournier-Viger, P., Faghihi, U., Nkambou, R., Nguifo, E.M.:
CMRules: mining sequential rules common to several sequences.
Knowl.-Based Syst. 25(1), 63-76 (2012)

Zaki, M.J.: SPADE: an efficient algorithm for mining frequent
sequences. Mach. Learn. 42, 31-60 (2001). https://doi.org/10.
1023/A:1007652502315

Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-
training of deep bidirectional transformers for language under-
standing. arXiv:1810.04805 (2018)

Das, S., Deb, N., Cortesi, A., Chaki, N.: Sentence embedding
models for similarity detection of software requirements. SN Com-
put. Sci. 2(69), 1-11 (2021). https://doi.org/10.1007/s42979-020-
00427-1

Alsentzer, E. et al.: Publicly available clinical BERT embeddings
(2019). https://doi.org/10.48550/ ARXIV.1904.03323

Lu, Y., Chen, Q., Poon, S.K.: A deep learning approach for repairing
missing activity labels in event logs for process mining (2022).
https://doi.org/10.48550/ARX1V.2202.10326

Liu, Y. et al.: RoBERTa: a robustly optimized BERT pretraining
approach. arXiv:1907.11692 (2019)

Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings
using Siamese BERT-networks. arXiv:1908.10084 (2019)


https://doi.org/10.1109/ACCESS.2020.2975142
https://doi.org/10.1109/ACCESS.2020.2975142
https://doi.org/10.1109/RE48521.2020.00061
https://doi.org/10.1109/RE48521.2020.00061
https://doi.org/10.1007/s00766-010-0110-z
https://doi.org/10.1145/3167918.3167945
https://doi.org/10.1145/3167918.3167945
https://www.philippe-fournier-viger.com/spmf/
https://www.philippe-fournier-viger.com/spmf/
http://arxiv.org/abs/1710.00794
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1007/s11257-011-9117-5
https://doi.org/10.1007/s11257-011-9117-5
https://doi.org/10.1109/VLHCC.2013.6645235
https://doi.org/10.1007/s00766-020-00333-1
https://doi.org/10.1109/RE51729.2021.00025
https://doi.org/10.1109/REW53955.2021.00033
https://doi.org/10.1109/REW53955.2021.00033
https://doi.org/10.18653/v1/N16-3020
https://doi.org/10.18653/v1/N16-3020
https://doi.org/10.1109/CIBCB.2006.330984
https://doi.org/10.1145/1081870.1081886
https://doi.org/10.1145/1081870.1081886
https://doi.org/10.1007/978-3-540-30116-5_32
http://hdl.handle.net/1721.1/96315
http://hdl.handle.net/1721.1/96315
https://doi.org/10.1145/3183399.3183424
http://arxiv.org/abs/2009.00246
https://doi.org/10.1007/s11257-011-9112-x
https://doi.org/10.1109/ICSTCC52150.2021.9607106
https://doi.org/10.1109/ICSTCC52150.2021.9607106
https://doi.org/10.1007/978-1-4615-5269-7
https://doi.org/10.1007/978-1-4615-5269-7
https://doi.org/10.1109/RE.2017.51
https://doi.org/10.1007/978-3-319-12571-8_10
https://doi.org/10.1007/978-3-319-12571-8_10
https://doi.org/10.1109/TKDE.2015.2405509
https://doi.org/10.1023/A:1007652502315
https://doi.org/10.1023/A:1007652502315
http://arxiv.org/abs/1810.04805
https://doi.org/10.1007/s42979-020-00427-1
https://doi.org/10.1007/s42979-020-00427-1
https://doi.org/10.48550/ARXIV.1904.03323
https://doi.org/10.48550/ARXIV.2202.10326
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1908.10084

Correlating contexts and NFR conflicts from event logs

2009

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Sitikhu, P., Pahi, K., Thapa, P., Shakya, S.: A comparison of seman-
tic similarity methods for maximum human interpretability, vol. 1,
p. 1-4 (IEEE, 2019)

jUCMNav 7.0.0: University of Ottawa, ACC. September (2016)
https://github.com/JUCMNAV

Amyot, D., Shamsaei, A.: Towards Advanced Goal Model Analysis
with jJUCMNav. Lecture Notes in Computer Science, vol. 7518, pp.
201-210. Springer, Berlin (2012)

Banerjee, S., Sarkar, A.: Ontology-driven approach towards
domain-specific system design. Int. J. Metadata Semant. Ontol.
11(1),39-60 (2016). https://doi.org/10.1504/1JMS0.2016.078110
Banerjee, S., Sarkar, A.: Ontology driven conceptualization of
context-dependent data streams and streaming databases. Comput.
Inf. Syst. Ind. Manag., 240-252 (2017)

Banerjee, S., Sarkar, A.: Ontology driven meta-modelling of clin-
ical documents. Int.J. Healthc. Technol. Manag. 16, 271 (2017).
https://doi.org/10.1504/IJHTM.2017.088869

Rasmy, L., Xiang, Y., Xie, Z., Tao, C., Zhi, D.: Med-BERT:
pretrained contextualized embeddings on large-scale structured
electronic health records for disease prediction. NPJ Digit. Med.
4(1), 1-13 (2021)

Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care
database. Sci. Data 3(1), 1-9 (2016)

Sanh, V., Debut, L., Chaumond, J., Wolf, T. DistilBERT, a
distilled version of BERT: smaller, faster, cheaper and lighter.
arXiv:1910.01108 (2019)

Das, S., Deb, N., Cortesi, A., Chaki, N.: Sentence embedding
models for similarity detection of software requirements. SN Com-
put. Sci. 2(2), 1-11 (2021). https://doi.org/10.1007/s42979-020-
00427-1

Pika, A., et al.: Privacy-preserving process mining in healthcare.
Int. J. Environ. Res. Public Health 17, 1612 (2020). https://doi.org/
10.3390/ijerph17051612

Goutte, C., Gaussier, E.: A probabilistic interpretation of precision,
recall and F-score, with implication for evaluation. Lect. Notes
Comput. Sci. 3408, 345-359 (2005). https://doi.org/10.1007/978-
3-540-31865-1_25

Dalianis, H. (2018) Evaluation metrics and evaluation. In: Clinical
Text Mining: Secondary Use of Electronic Patient Records. pp.
45-53. https://doi.org/10.1007/978-3-319-78503-5_6

Ferrara, P, Mandal, A.K., Cortesi, A., Spoto, E.: Static analysis
for discovering IoT vulnerabilities. Int. J. Softw. Tools Technol.
Transf. 23(1), 71-88 (2021). https://doi.org/10.1007/s10009-020-
00592-x

Mandal, A.K., Panarotto, F., Cortesi, A., Ferrara, P., Spoto, F.: Static
analysis of android auto infotainment and on-board diagnostics 11
apps. Softw. Pract. Exp. 49(7), 1131-1161 (2019). https://doi.org/
10.1002/spe.2698

White, R., Christensen, H.I., Caiazza, G., Cortesi, A.: Procedu-
rally provisioned access control for robotic systems. IEEE Int.
Conf. Intell. Robots Syst. (2018). https://doi.org/10.1109/IROS.
2018.859446

Dieber, B., et al.: Penetration testing ROS. Stud. Comput. Intell.
831, 183-225 (2020). https://doi.org/10.1007/978-3-030-20190-
6_8

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Mandira Roy is presently a
Research Scholar, in Computer
Science and Engineering Depart-
ment of University of Calcutta,
India. She has completed Mas-
ters’ in Computer Science and
Engineering from the University
of Calcutta, in the year 2020. She
is pursuing her research studies in
the domain of requirements engi-
neering and software engineering.
She has published in both journals
and conferences. One of which
was published as a research arti-
cle in ACSS International Sympo-

sium (2021), where the same has been awarded as the best paper.
Consequently, an extended version of the said article was published in
the Springer Innovations in Systems and Software Engineering.

|

Souvick Das is a Research Asso-
ciate at the Department of Envi-
ronmental Science, Informatics,
and Statistics, of Ca’ Foscari Uni-
versity, Venice, Italy and is cur-
rently pursuing Ph.D. in Com-
puter Science and Engineering
from University of Calcutta, India.
He has received B.Sc and M.Sc
in Computer Science from West
Bengal State University, India in
the year 2012 and 2014 respec-
tively. He has qualified UGC NET-
JRF in the year of 2016.

Novarun Deb is an Assistant Pro-
fessor at the Department of Com-
puter Science and Engineering in
the Indian Institute of Information
Technology (IIIT) Vadodara. He
has worked as a research associate
as part of his post-doctoral studies
at the Department of Informatics
and Statistics, Ca’ Foscari Uni-
versity in Venice, Italy. He was
awarded Ph.D. from the Depart-
ment of Computer Science and
Engineering, University of Cal-
cutta, India. His active research
interests are in the domain of

Requirements Engineering and Software Engineering, and the applica-
tion of Natural language Processing and Artificial Intelligence in these

domains.

@ Springer


https://github.com/JUCMNAV
https://doi.org/10.1504/IJMSO.2016.078110
https://doi.org/10.1504/IJHTM.2017.088869
http://arxiv.org/abs/1910.01108
https://doi.org/10.1007/s42979-020-00427-1
https://doi.org/10.1007/s42979-020-00427-1
https://doi.org/10.3390/ijerph17051612
https://doi.org/10.3390/ijerph17051612
https://doi.org/10.1007/978-3-540-31865-1_25
https://doi.org/10.1007/978-3-540-31865-1_25
https://doi.org/10.1007/978-3-319-78503-5_6
https://doi.org/10.1007/s10009-020-00592-x
https://doi.org/10.1007/s10009-020-00592-x
https://doi.org/10.1002/spe.2698
https://doi.org/10.1002/spe.2698
https://doi.org/10.1109/IROS.2018.859446
https://doi.org/10.1109/IROS.2018.859446
https://doi.org/10.1007/978-3-030-20190-6_8
https://doi.org/10.1007/978-3-030-20190-6_8

2010

M. Roy et al.

Agostino Cortesi is a full pro-
fessor of computer science at Ca’
Foscari University, Venice, Italy.
He has extensive experience in the
area of static analysis and soft-
ware verification techniques, with
particular emphasis on security
applications. He published more
than 150 papers in high level inter-
national journals (including ACM
TOPLAS, IEEE TSE, SCP, TCS,
IEEE RAL, ESWA etc.) and pro-
ceedings of international confer-
ences (including ACM POPL,
ACM PLDI, IEEE LICS, ICALP,
VMCAI, SAS, ACM SAC etc.). His current h-index is 21 according
to Scopus, and 30 according to Google Scholar. Currently, he serves
as co-Editor in Chief of the book series “Services and Business Pro-
cess Reengineering” published by Springer-Nature.

Rituparna Chaki a full professor
in the A K Choudhury School of
IT, University of Calcutta, India,
since 2013. She is actively
involved in the research related to
the domain of wireless network-
ing for over last twelve years.
Her field of research encompasses
optical network topology to adhoc
network routing, wds for WSN.
She is also actively involved in the
promotion of Internet of Things
and has recently authored a book
on IoT security by CRC press.
: : - She is an active member of ACM
India and is currently chairing the ACM-Kolkata professional Chapter.
Besides wireless networking and IoT, she is also involved in research
related to Systems Software, Software security and testing. She has
well over 150 international publications to her credit. Prof. Chaki has
delivered invited lecture in different Universities, and Conferences in
India and abroad. She is also a Visiting Professor in the AGH Univer-
sity of Science & Technology, Poland since October 2013.

@ Springer

Nabendu Chaki is a Professor
and Head in the Department of
Computer Science & Engineer-
ing, University of Calcutta,
Kolkata, India. He is sharing the
responsibility of the Series Edi-
tor for the Springer Nature book
series on Services and Business
Process Reengineering jointly
with Professor Agostino Cortesi
of Venice, Italy. Besides editing
more than 50 conference proceed-
ings with Springer, Dr. Chaki has
authored 8 texts and research books
with reputed publishers including
CRC Press, Sprmger Nature, etc. He has published more than 250 Sco-
pus Indexed research articles in Journals and Conferences (h-index is
16 in SCOPUS base). Nabendu has served as a Visiting Professor in
different places including US Naval Postgraduate School, in Califor-
nia, and in different Universities in Europe. He has been the founder
Chair of ACM Professional Chapter in Kolkata and served in that
capacity for 3 years during 2014-2017.



	Correlating contexts and NFR conflicts from event logs
	Abstract
	1 Introduction
	2 Related works
	3 Preliminaries
	3.1 Goal model concepts
	3.2 Non-functional requirements
	3.3 Sequential rule mining
	3.4 Sentence embedding and semantic similarity

	4 The ConE framework
	4.1 Pre-training BERT-based transformer model
	4.2 Leaf goal identification
	4.3 Value propagation
	4.4 Sequential rule mining
	ConE rule base


	5 Setting the scene for the experimental evaluation
	5.1 Case study selection criteria
	5.2 Experimental environment

	6 Experimental results
	6.1 Pre-training BERT-based transformer models
	6.2 Comparing BERT-based transformer models
	Accuracy
	Precision
	Recall
	F1-score

	6.3 Synthetic event log creation
	6.4 Simulation
	6.5 Performance characteristics
	Context-context rule generation
	Context-NFR conflict rule generation

	6.6 Efficiency analysis
	6.7 Impact of data bias
	6.8 Summary

	7 Threats to validity
	8 Comparative evaluation
	9 Conclusion
	Acknowledgements
	Appendix: I
	Functional Requirements
	Non-functional Requirements

	References




