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In this pilot study the authors examined areas on a
mammogram that attracted. the visual attention of
experienced mammographers and mammography fel-
lows, as well as areas that were reported to contain a
malignant lesion, and, based on their spatial fre-
quency spectrum, they characterized these areas by
the type of decision outcome that they yielded: true-
positives (TP}, false-positives (FP), true-negatives
(TN), and false-negatives (FN]. Five 2-view (cranio-
caudal and medial-lateral oblique) mammogram
cases were examined by 8 experienced observers, and
the eye position of the observers was tracked. The
observers were asked to report the location and na-
ture of any malignant lesions present in the case. The
authors analyzed each area in which either the ob-
server made a decision or in which the observer had
prolonged (>1,000 ms) visual dwell using wavelet
packets, and characterized these areas in terms of the
energy contents of each spatial frequency band. It
was shown that each decision outcome is character-
ized by a specific profile in the spatial frequency do-
main, and that these profiles are significantly différent
from one another. As a consequence of these differ-
ences, the profiles can be used to determine which
type of decision a given observer will make when
examinirig the area. Computer-assisted perception
correctly predicted up to 64% of the TPs made by the
observers, 77% of the FPs, and 70% of the TNs.
Copyright © 2001 by W.B. Saunders Company
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REAST CANCER is one of the leading
causes of death among American women,
and 46,000 women die from this disease each year.
As with other types of cancer, early detection can
significantly change the prognosis for a woman
with this disease. Thus, renewed efforts have been
made to develop accurate imaging techniques that
can detect abnormalities of smaller and smaller
sizes.

Nonetheless, a problem that usually is over-
looked when considering such imaging techniques
is the radiologist’s ability to correctly interpret
what is in the image. Studies have shown that 10%
to 30% of all cancers in the breast are missed, and
from these, approximately two thirds are seen in
retrospect.’ The missing of these cancers is caused
by a variety of factors, such as search errors (43%),
interpretation errors (52%), and suboptimal tech-

nique (5%).? Furthermore, in studies that examined
how radiologists’ search for cancerous lesions in
the breast, using eye position monitoring; it has
been shown that approximately 62% of the missed
cancers are fixated with the high-resolution fovea.>
However, image-derived factors are not the only
ones involved in perception, also, factors that come
from within the observer have just as much influ-
ence.* Kundel® showed that 3 factors seem to be
involved in the decisions made by the radiologists
when searching for chest nodules (1) the preva-
lence of cancer in the population from which the
patient is drawn; (2) the cost of making an incor-
rect decision of incorrectly mistaking normal tissue
as being cancerous; and (3) the structure of the
image around the nodule and at a distance from it.
The third factor, which is directly related to the
image, has been shown to have significant impact
in image perception. In a study in which nodules in
the chest were displayed embedded in an uni-
formly distributed background and in a real ana-
tomic background,® the investigators found that the
effects of the anatomic background, called “struc-
tured noise,”” were about 25 times higher than the
effects of the variabilities in the image caused by
the fluctuations in the number of x-ray photons
reaching the receptors, called “quantum noise.”®
Note that structured noise affects lesion detection
either by masking the lesion or by creating artifacts
that resemble lesions, thus taking attention away
from the real lesion when one is present.
Furthermore, it has been shown that lesions can
be classified based on their Fourier spectra, be-
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cause different abnormalities will have a different
signature in the spatial frequency space.’

In this report we will take this argument a step
further. Namely, we will consider the effects that
different lesion and background spectra have on
the observer’s perception when reading mammo-
grams. We will attempt to determine if there is a
combination of image structures, the quasi-local
combination of lesion and background, in the spa-
tial frequency domain, in which lesion detection is
facilitated, thus, leading to true-positives (TP) and
to true-negatives (TN), or, where it is hindered,
thus, yielding false-positives (FP) and false-nega-
tives (FN).

MATERIALS AND METHODS

Eight experienced observers (3 mammographers from the
staff of the Hospital of the University of Pennsylvania and 5
fellows undergoing training in Mammography at the same
institution) read 5 2-view (cranio-caudal[CC} and medio-lateral
oblique, [MLO}) mammogram cases (adding up to a total of 10
images). All cases had a malignant mass present; in 3 cases it
was visible in both views, and in 1 case it was only visible in
one view (CC). One case contained 2 malignant masses visible
in both views.

These cases were obtained from the archives of the Hospital
of the University of Pennsylvania. The films were digitized
using a Lumiscan Model 100 digitizer (Lumisys Inc, Sunny-
vale, CA), using a 100-pm spot size. The 2 views were
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displayed side-by-side on a single 19-inch, 2,048 X 2,048 gray
scale monitor (GMA 201; Tektronix, Beaverton, OR), inter-
faced to a Sun Sparc computer (Sun Microsystems, Sunny-
vale, CA).

The observers were instructed to search for malignancy and
freely examine the cases until they felt confident to answer if a
malignant lesion was present, and, if so, where it was located.
The eye position of the observers was monitored during search
using an ASL 4000 SU eye-head-tracking device (Applied
Science Laboratories, Bedford, MA), and it was used to deter-
mine the areas in the image that attracted the observers’ visual
attention. Details of this experiment have been published else-
where.®

Eye position was used because it is a good indicator of what
in the image attracted the observer’s visual attention. It has been
shown that the observers dwell as long on lesions that were not
reported (that is, FNs) as they do in the ones that were (TPs).>1°

At the end of the experiment the eye positions of each
observer, for each case, were superimposed to the 2-view
mammogram examined as shown in Fig 1.

For each case and each observer, 10 regions were extracted
from the 2-view mammogram displayed. These regions were
based on the decisions made by the observer when reading the
case and the areas where the observer had prolonged (>1,000
ms) visual dwell. In this way, 5 cases X 10 regions X 8
observers generated 400 regions. These regions were rectangu-
lar windows of 128 X 128 pixels, which corresponded to 5° of
visual angle at 38 cm viewing distance. They were extracted
and processed using a program written in IDL (Research Sys-
tems, Inc, Boulder, CO).

The extracted regions were labeled with the purpose of
generating a truth table that later could be used to compute the

Fig 1. Example of eye-position monitoring when an expert is reading a mammogram case. The 2 larger circles correspond to
the known location of a malignant mass. The smaller circles correspond to fixations (sequential dwells on areas of 0.5° of visual

angle).
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error in the system. To do so, we used the following criteria,
which combined perceptual and decision-making elements.

For a True-Positive

To get assigned a TP label a region had to be reported by the
observer, at the end of the session (thus, indicating that it had
reached an internal suspicion criterion).

For a False-Negative

A region had to contain a malignant lesion that the observer
failed to report. In this case an FN label was assigned regardless
of the presence of visual dwell in the location of the lesion. It
is important to mention that the number of EN regions was very
small, but most of such regions received visual dwell for almost
as long as the TP regions. Unlike the TP regions, here the
observer did not report the lesion. This is in agreement with
results previously reported in the literature >*°

For a False-Positive

The observer had to have prolonged (>1,000 ms) visual
dwell on a location in which no lesion existed. No differentia-
tion was made between the cases in which the observer reported
the presence of a malignant lesion at that location, and the cases
in which the observer, after visual scrutiny of the area, decided
that no lesion was present. This was because we hypothesized
that any lesion-free area that attracted the observer’s visual
attention for as long as lesion-containing areas deserved further
investigation, regardless of the observer reporting the presence
of an abnormal finding in that area.

For a True-Negative

In this case the observer did not fixate, and therefore had no
visual dwell in a lesion-free area. Thus, this was an area in an
image that was free of abnormalities and free of fixations. We
hypothesized that such areas did not attract the observer’s visual
attention, and because it did not contain any lesions, it was a
clear TN. We felt that areas that did not attract any visual
attention should be examined further to determine what makes
them different from the areas that did attract visual attention.
These criteria are summarized in Table 1.

To analyze the areas selected we sought inspiration in the
human visual system. Visual signals are perceived through
spatial frequency channels.!! The processing carried out by the
channels is effectively a filtering mechanism that operates
within a specific frequency range. Furthermore, the outputs of
the channels correspond to visual stimuli at different spatial
scales.!? In his highly influential book, David Marr'?® pointed
out that the nervous system seems to prefer methods that run

Table 1. Criteria Used to Label Each Image Piece

Significant
Dwell Decision Criterion Ground Truth
TP Yes/no Reported Lesion present
TN No Not reported No lesion present
FN Yes/no Not reported Lesion present
FP Yes Reported/not reported  No lesion present
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analysis from coarse to fine, thus, repeating the same process,
but obtaining new information at the end of each cycle.

These properties of the visual system seem to indicate that an
appropriate way to analyze visual data is by using a method
capable of taking into consideration scale information, of being
recursive, and yet introducing new information at each level.
These are exactly the characteristics of a wavelet decomposi-
tion, and so we have decided to use wavelet packets to analyze
these data.

Wavelet packets are a signal decomposition through a filter
bank, in which the low-passed and the high-passed signal from
one level serve as the input for the next level. The low-pass and
high-pass filters in this filter bank are generated from a single
function, called the wavelet prototype, through dilations, con-
tractions, and shifts.'* Note that this decomposition effectively
separates the signal into different spatial frequency bands.

Each of the 400 local image patches extracted and labeled as
previously described was analyzed by a wavelet packets tree
using a Daubechies filter. These filters were chosen because
they have compact support and smooth decay, and thus have
good localization properties in space and are computationally
efficient.

We have used the following convention to label the spatial
frequency bands. The first number (0,1,2,3,4) refers to the
position in the tree at which the band is located. The second
number (0,1,2,3) can be interpreted as: 0, a low-pass filter was
applied to the low-passed signal from the previous step; 1, a
high-pass filter was applied to the low-passed signal from the
previous step; 2, a low-pass filter was applied to the high-passed
signal from the previous step; 3, a high pass filter was applied
to the high-passed signal from the previous step.

The energy of the representation in each spatial frequency
band was calculated as follows

Ei=(UN) D, #

where x is a vector containing the elements in each band, and Ni
is the number of elements in the band.

To automatically characterize the type of decision outcome
made by the observer when examining specific areas in the
mammogram, we used a pattern classifier, an Artificial Neural
Network (ANN). We chose ANNs because they are unbiased
estimators, that is, they do not need a mathematical model that
relates input to output to be known beforehand. In other words,
they “learn from experience.”*® This enables them to learn
adaptively, and sometimes intelligently, the patterns present in
the data set.

An unsupervised learning clustering algorithm, the Adaptive
Resonance theory (ART) algorithm, was chosen to train the
ANN.!S The main advantage of this type of algorithm is that the
network itself decides how many classes are present in the data
set, and how the classes are partitioned. One of the main
disadvantages of this type of algorithm is that labeling has to be
done in a separate step, after the network has converged to a
state of equilibrium.

To generate the features for the ANN we run multiple
analyses of variance (ANOVA), aiming at determining which
spatial frequency bands contributed for the differentiation of the
decision outcomes. This is in agreement with the notion that
different spatial scales carry different information about the
same input; thus, it may be possible to define an optimal
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Table 2. Mean = SD for the Energy Per Spatial
Frequency Band

Band Name Mean s Band Name Mean  SD

00 11,327.45 8,792.16 22 208 1.67
01 4.29 3.44 23 1.99 .1.62
02 20.17 17.01 30 16.11 13.65
03 - 28.01 23.88 31 208 167
10 42,502.70 33,870.77 32 59.06 51.34
1 0.44 0.36 33 0.44 0.36
12 16.11 13.66 40 19.86 19.41
13 19.86 19.41 41 1.99 1.62
20 0.44 0.36 42 044 036
21 11.38 9.33 43 7377 71.69

encoding for a particular input by carefully selecting the scales
used. M

RESULTS

After processing each image patch as described
previously, the values for the energy in each of
the spatial frequency bands were calculated. This
yielded the following values for the mean energy
per spatial frequency band.

As Table 2 shows, there is a wide variability in
the contribution of each of the bands. Some carry
a great amount of information, which is reflected in
the mean value for the energy in those bands, and
some barely carry any information at all. Thus, the
next step was to divide the bands into 3 types, by
establishing thresholds between the spatial fre-
quency bands: low energy (x < 10): 01, 11, 20, 22,
23, 31, 33, 41, 42; medium energy (10 = x < 50):
02, 03, 12, 13, 21, 30, 40; high energy (x = 50):
00, 10, 32, 43.

To assess the contribution of each band on the
decision outcomes (ie, TP, FP, TN, FN) multiple
ANOVA analyses were run, using the energy val-
ues as the dependent variable, and decision out-
come as the independent variables, splitted by the
spatial frequency bands.

For the high-energy bands, it was found that the
band 00 (F[3,382] = 6.206; P = .004) and band 10
significantly contributed to differentiate TPs from
FPs (F[3,382] = 5.145; P = .017).

For the low-energy bands, 6 bands marginally
contributed to differentiate FPs from TNs: band 11
(F[3,382] = 3.22; P = .023), band 20 (F[3,382] =
3.22; P = .023), band 23 (F[3,382] = 224, P =
.033), band 33 (F[3,382] = 3.22; P = .023), band
41 (F[3,382] = 2.94; P = .033), and band 42
(F[3,382] = 3.22; P = .023). Note that none of the
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medium-energy bands contributed to differentiate
any decision outcomes.

In this way, TPs had greater energy than FPs on
band 00 (Scheffe’s test; P < .018) and 10 (Scheffe’s
test; P < .011). However, TNs had greater énergy
than FPs on the bands 11 (Scheffe s; P < .085),20
(Scheffe’s; P < 085) 23 (Scheffe’s; P < .105), 33
(Scheffe’s; P < .085), 41 (Scheffe’s; P < .105),
and 42 (Scheffe’s; P < .085).

The importance of these results is that they seem
to indicate differences in the energy contents, per
spatial frequency band, of the regions in the image
that yield different decision outcomes. The next
step was to look at the energy breakdown for each
of the decision outcomes to assess which spatial
frequency bands carry the most information. The
ranking information was obtained by deriving a
table, like Table 2, for each decision outcome, and
then hierarchically placing the energy contents
from thee band with the highest meéan energy value
to the 10th highest mean energy value. The final
ranking is shown in the Table 3.

Note that for all of the decision outcomes except
for the TPs, the energy mosaic is the same (albeit
the mean values in each band may be quite differ-
ent, which is critical for the Artificial Neural Net-
work (ANN) to be able to predict the different
decision outcomes). Moreover, the mosaic for the
TPs is exactly the same as it is for the other
decision outcomes, except for an inversion of in-
formation contents between the sixth and the sev-
enth highest spatial frequency bands.

An example of the 4 decision outcomes and their
energy profiles, in the spatial frequency domain, is
shown in Fig 2.

The TP indicated in Fig 2 was found by all 8
observers; the FN was missed by all observers.

Table 3. Rank of Energy Bands, From Highest to
Tenth Lowest, Per Decision Outcome

Rank TP FP TN FN
First 10 10 10 10
Second 00 00 00 00
Third 43 43 43 43
Fourth 32 32 32 32
Fifth 03 03 03 03
Sixth 13-40 02 02 02
Seventh 02 13-40 13-40 13-40
Eighth 12-30 12-30 12-30 12-30
Ninth 21 21 21 21
Tenth 01 01 01 01
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Fig 2. Example of the energy profiles yielded by the different decision outcomes. The lesion shown on A was reported by all
observers; the one shown on B was missed by all observers. The artifact shown on C was mistaken as malignant by 6 observers,
and the region shown in D was not scrutinized by any of the observers.

Additionally, 6 observers indicated incorrectly a
lesion in the location shown as an FP, and none of
the observers indicated a lesion on the location
shown as a TN.

To select the parameters used for the Artificial
Neural Network, we used the results of the
ANOVA analysis, which showed that the energy
values in the high- and low-energy bands signifi-
cantly contributed to differentiate the decision out-
comes. Additionally, a number from 1 to 8 was
used to separate the observers. This was done
because we reasoned that different observers could
react differently to the same elements in the image.
For example, an experienced observer may point
out a subtle malignant lesion, whereas a less expe-

rienced observer may not see anything in the same
location. In this way, the mapping performed by
the network was from a 14-dimensional input
space onto a 1-dimensional output space (TP, FP,
FN, or TN).

Using an ART network with 14 neurons in the
input layer, the results shown in Table 4 were
obtained in terms of percentage of correct and
incorrect responses per category.

The above results suggest that the energy pro-
files for the TPs, TNs, and FPs are unique and can
be used to predict correctly each of these decision
outcomes. However, the results for the predictions
of the FNs were low. There are a variety of
factors at play; for example, there was a very
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Table 4. Percentage of Correct and Incorrect Decisions as

Yielded by the ANN
Predicted Decision Outcome Percentage Correct
TP 64
FP 77
TN 70
FN 28

limited number of such samples (18 v. 69 of the
TPs, 60 of the FPs and 253 of the TNs), which
hindered- the network learning. Additionally,
most FNs were mistaken as TPs by the network,
which might indicate that, even though these
lesions did not raise the observer’s suspicious
threshold high enough to make a decision in the
location, their profile was similar enough to the
profile of the TPs to make the network report the
presence of a finding in the location (which is an
underlying condition to a TP label). Currently,
studies are being conducted with the purpose of
improving the classification of the FN decision
outcomes.

Regarding the correct prediction rates for TPs,
FPs, and TNs, it is important to keep in mind that
they depend strongly on the observer’s self-consis-
tency. The network cannot account for a clearly
visible lesion that is not reported because the
observer was distracted, as well as it cannot ac-
count for artifacts that are a product of the observ-
er’s imagination, rather than of image elements. In
this way, we can say that the achieved prediction
rates were appropriate, given these elements that
cannot be taken into account.

DISCUSSION

The results obtained herein indicate that there
is a particular configuration of energy, in the
spatial frequency domain, that is associated with
the detection of true lesions. This configuration
is unique for the TPs, and it is hierarchically
similar, albeit with different mean values, for the
other decision outcomes. Furthermore, when de-
riving the energy ranking in the spatial frequency
domain for areas of the image that led to the different
decision outcomes, it becomes clear that for the
TPs there is an inversion in the order of 2 spatial
frequency bands. Thus, an interesting hypothesis
rises, namely, that part of the FNs are missed
because they are too “subtle,” that is, the features
that define the lesion are not strong enough yet to
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cause the shift in the information contents of these
2 bands, which characterized the TPs.

This topic needs further investigation, because of
the small amount of data available for this experi-
ment. Additionally, no strict restrictions were made
when labeling the image pieces to be further pro-
cessed between areas that had been fixated from the
ones that had only been reported. For example, to
assign a TP label the area had to be reported; for an
FN it only needed not to be reported, whereas for a
FP it could either be reported or not reported. More-
over, all TN labels were assigned to areas that did not
attract any visual attention, and that were not reported
as containing a lesion.

The image areas selected represent quasi-local
features, because they are not produced by fixa-
tions, but rather by fixation clusters. Furthermore,
in the wavelet analysis of the local image patches,
no consideration was made regarding the spatial
frequency composition of the whole image. It is
clear that if such composition had been taken into
account, by either working as an additional set of
features or as a “modifier” of the features that were
described previously, the results could have been
quite different. For example, the energy configu-
ration of the whole image could have been used to
normalize the energy in the labeled areas. How-
ever, by doing so, the small local differences were
masked by the distribution of the data in the entire
image. Another possibility to take into account
information regarding the whole image would be
to add the image information as a set of additional
features, but in this case one is doubling the num-
ber of dimensions in the problem space but adding
fixed coordinates in these dimensions, because the
image energy decomposition is the same, regard-
less of local decision outcomes. This biases the
results of the pattern classifier artificially, because
these new dimensions do not add any new infor-
mation to the problem, they just introduce an
artificial stability.

Another possible outcome of this work is that,
because the energy configuration of the FPs is
different from the one of the TPs, then perhaps it is
possible to screen out some of the FPs generated
by systems that automatically detect suspicious
findings in the breast, based on this difference in
energy. This might have a considerable application
in an analysis of the outputs of computer-assisted
diagnosis systems, because these systems in gen-
eral produce a large number of FPs."”
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