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The authors have developed an automated algorithm
for segmentation of magnetic resonance images
{MRI) of the human brain. They investigated the quan-
titative analysis of tissue-specific human motor re-
sponse through an approach combining gradient echo
functional MRI and automated segmentation analysis.
Fifteen healthy volunteers, placed in a 1.5 T clinical
MR imager, performed a self-paced finger opposition
throughout the activation periods. T,-weighted im-
ages (WI), T,WI, and proton density Wl were acquired
for segmentation analysis. Single-slice axial T% fast
low-angle shot (FLASH) images were obtained during
the functional study. Pixelwise cross-correlation anal-
ysis was performed to obtain an activation map. A
cascaded algorithm, combining Kohonen feature
maps and fuzzy C means, was applied for segmenta-
tion. After processing, masks for gray matter, white
matter, small vessels, and large vessels were gener-
ated. Tissue-specific analysis showed a signal change
rate of 4.53% in gray matter, 2.98% in white matter,
5.79% in small vessels, and 7.24% in large vessels.
Different temporal patterns as well as different levels
of activation were identified in the functional re-
sponse from various types of tissue. High correlation
exists between cortical gray matter and subcortical
white matter (r = 0.957), while the vessel behaves
somewhat different temporally. The cortical gray mat-
ter fits best to the assumed input function (r = 0.957)
followed by subcortical white matter (r = 0.829) and
vessels (r = 0.726). The automated algorithm of tis-
sue-specific analysis thus can assist functional MRI
studies with different modalities of response in differ-
ent brain regions.
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UNCTIONAL magnetic resonance imaging
(fMR]) is a powerful noninvasive tool for
studying the physiology of functional activities in
human brains. The underlying rationale for the
endogenous contrast phenomenon is the blood ox-
ygenation level dependent (BOLD) effect. Never-
theless, magnetic susceptibility-based fMRI is re-
lated to many complex changes, associated with
neuronal activation such as regional blood volume
and blood flow in addition to deoxyhemoglobin
levels, that result in altered signal intensity in T3 or
T,-weighted MR images.' Therefore, a method
capable of identifying the exact origin of the signal
may become crucial. Does the functional response
represent activation in the cerebral parenchyma or
is it from interfering signals from extracerebral
vasculature overlying the cerebral cortex?*> Many
studies have been designed and designated to de-
lineate these controversies.®®

Functional images usually are generated from
conventional or echo planar imaging (EPI) gradi-
ent echo (GRE) studies. GRE fMRI is sensitive to
decreased deoxyhemoglobin in activated brain tis-
sue; however, it also is inherently vulnerable to the
interference of inflow effect.*® Thus, it induces
large signal change at venous vessels during task
activation.

In this report, we analyzed the motor response of
the human brain through an approach combining
GRE-based functional MRI and automated seg-
mentation with MR images. We aimed to quantify
the BOLD enhanced effect in the brain paren-
chyma and to separate it from inflow contribution
from the extracerebral vessels. The addition of
spatial anatomy helps to identify response signals
with different temporal profiles and physiologic
information from various sources.

MATERIALS AND METHODS

Fifteen healthy volunteers, with ages ranging
from 24 to 52 years (30.5 + 7.8 years), served as
subjects in the study. The participants mainly were
recruited from medical staff and medical and en-
gineering students. All subjects gave their in-
formed consent.
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Experimental Procedure

We adopted the boxcar paradigm in the study.
There were 3 alternating rest and activity periods
for each subject. Subjects were asked to do finger
opposition with their dominant hand in a fixed
sequence. Subjects carried out the task repetitively
and continuously at a self-paced rate of 1 to 2 Hz
throughout the activation period. During the rest-
ing period, subjects laid down and relaxed without
any motion. Sponges and straps were applied to
enhance immobilization of the head throughout the
experiment.

Image Acquisition

All images were acquired on a General Electric
Signa 1.5 T clinical imager (Milwaukee, WI). In
the experiment, 1 pair of temporomandibular-joint
(TMI) coils was placed symmetrically over both
frontoparietal regions just above the motor cortex.
Sagittal T,-weighted images (T,WI) with the fast
spin echo pulse sequence were performed first as
localizers for deciding the slice used in the func-
tional study. These also were used as scout images
to assure that both TMIJ coils were positioned
symmetrically and focused properly. On the mid-
sagittal image, an axial slice through the middle of
the precentral gyrus located between the cingulate
sulcus and the cerebral vertex parallel to the bi-
commissural plane was chosen for the functional
study. An axial T,-weighted image (T,WI) at the
same level was acquired for the structure image.
Axial T,WI and proton density weighted images
(PDWI) also were obtained for later segmentation
analysis. The resolution of the T,WI, T,WI, and
PDWI images is identical to that of the functional
images described in the following. T% fast low-
angle shot (FLASH) pulse sequences, including
typical parameters such as TR 110 ms/TE 50
ms/alpha = 40°/FOV 24 X 24/256 X 128/NEX =
1/slice thickness = 4 mm/flow compensated, were
applied to generate the functional images. Each
block consisted of 12 images, and the 3 pairs
produced a total of 72 sequential images for one
individual. All images were interpolated to form
256 X 256 matrix size.

Image Preprocessing by Automated Registration

To minimize the deteriorating effect from head
movement, we applied image registration to reduce
movement artifacts before further analysis. All
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functional images were aligned to the first image of
each image series using the 2-dimensional rigid
body model of AIR 3.0 (automated image registra-
tion) developed by R. P. Woods et al.® Sinc inter-
polation was used to minimize interpolation error.

Image Processing for Functional Response

Pixelwise cross-correlation (CC)'%!! with a box-

car reference waveform, a square wave function
(SWF), was applied to generate activation maps. In
this study, the region of interest (ROI) was defined
as a minimal rectangle encompassing the sensory-
motor area contralateral to the activation side. To
define the sensory motor area, we identified the
central sulcus and superior frontal gyrus, and used
the minimal rectangle to include the gyrus anterior
and posterior to the sulcus (Fig 1). The rectangular
region included parenchyma and cerebrospinal
fluid (CSF) as well as the vascular space adjacent
to the cerebral cortex. The average signal change in
the ROI was calculated and expressed as a percent-
age, the mean signal change rate (mean SCR,
Appendix 1). In ROI the pixels, whose signal
intensity highly correlated temporally with the in-
put SWF at the statistical level of P < .01, were
considered activated. The number of pixels acti-
vated statistically was computed. To compare
among subjects, the area of activation in the ROI
was expressed as the relative activated area (RAA,
Appendix 2), ie, the pixel number in the ROI of
each subject was regarded as 100%.

Fig 1. A T,WI for the structure and the ROL
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Image Processing for Tissue Segmentation

The nonuniform properties of MRI make it
rather difficult to decide a global threshold value
effective for image segmentation using single con-
trast methods such as edge detection, threshold
setting.'>!* Hence, multispectral approaches are
preferred for MRI segmentation in which multiple
images for identification of textural features are
necessary.'*!> Algorithms for multispectral seg-
mentation can be supervised or unsupervised. Be-
cause supervised methods are operator dependent,
small differences in manually determined features
might cause large interobserver or intraobserver
variations in the results. Unsupervised methods are
automated algorithms, which train themselves iter-
atively to get meaningful results. Therefore, unsu-
pervised methods are clearly desirable in terms of
reproducibility. The fuzzy C means (FCM) and a
self-organizing feature map such as the Kohonen
feature map (KFM), which were both applied in
this study, are this type of method.

Therefore, we designed a cascaded algorithm
combining the KFM (Appendix 3)!¢ and FCM
(Appendix 4)'7 in the image segmentation (Fig 2).
There were 3 phases in this model. The first phase
was an input layer used to receive data vectors
from the source images. Input was from MR im-
ages with 3 different contrast weightings, ie, T, WI,
T,WI, and PDWI spine-echo images. The second
phase was to reduce the dimension of the source
data (3 X 256 X 256) to a simple 8 X 8 feature
map in which the optimal number of output neu-
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rons of the KFM was determined experimentally.
The unsupervised 2-layered KFM was used to
classify the pixels in brain images into categories.
In the last phase, we labeled tissues in the source
images. The output of the KFM was sent to the
FCM to label tissues in the brain image. There
were 6 clusters in the output layer of FCM, each
representing the scalp, skull, meninges, gray mat-
ter, white matter, and CSF.

Finally, the segmented image became a mask for
further analysis of the functional activation maps.
An “AND” logical operation was then performed
to combine activated pixels in ROI and the mask,
which resulted in tissue specific activation.

One-way analysis of variance (ANOVA) with
Scheffe’s post hoc test was used to examine the
significance of differences among tissue specific
responses of the SCR and RAA. Correlation coef-
ficients were computed pairwise between temporal
profiles of different tissues.

RESULTS

In spite of instruction and a device immobilizing
the subject’s head during the experiment, we had to
exclude one subject whose motion artifact was so
severe that we could not overcome it even after
image registration. The activation map was gener-
ated by overlaying a T;-weighted image with ac-
tivated pixels at the significance level of P < .01
obtained from a pixelwise CC processing (Fig 3).
The statistical threshold of the activation map was
decided rather arbitrarily. With a higher threshold,

Fuzzy C-Means

The two dimensional

Kohonen neural network

Fig 2. Structure of the cascaded algorithm bi

ing the Koh

neural network and fuzzy C-means.
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Fig 3. A functional activation map generated from pixel-
wise cross correlation analysis at the significance level of P <
.01 superimposed on a T,-weighted image.

eg, P < .001, we obtained less noise and a higher
mean SCR, but, at the same time, fewer activated
pixels and a smaller RAA. In contrast, a lower
threshold, eg, P < .05, incurred many probably
irrelevant activated pixels and a lower mean SCR.
The significance level of P < .01 was chosen on an
empirical ground after considering all these
tradeoffs. The mean SCR (P < .01) in the ROI of
14 subjects was 5.60 = 1.84% and ranged from
3.19% to 10.12%, whereas the mean RAA was
17.00 * 6.16 (Table 1).

Image processing for tissue segmentation clas-
sified pixels of the MR image into 6 clusters.
Usually, the outer rim of the image, including the
skull, scalp, or edge artifacts from motion was
segregated as 1 or as several clusters separate from
other components of the inner structures (Fig 4). In
most cases, the pia matter and annexed small
cortical vessels (small vessels) were classified into
1 individual cluster, keeping the overlying large
cerebral vessels (large vessels) and surrounding
CSF space apart. The cortical gray matter and
subcortical white matter were separated into dif-
ferent clusters. However, in some cases it was
necessary to combine 2 clusters to fulfill the pic-
ture of either cortical gray matter (Fig SA) or
subcortical white matter (Fig 6A). To have a com-
prehensive understanding of the signal contribu-
tion of the inflow effect, we combined clusters
from small and large vessels (Fig 7A).
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Table 1. Functional Response in the Region of Interest and
Tissue-Specific Areas

Ratio
Mean {n = 14) SD  (1/White matter)

Region of interest

RAA (%) 17.00 6.16 13.30

Mean SCR (%) 5.60 1.84 1.88
Gray matter (G)

RAA (%) 7.33 3.64 573

Mean SCR (%) 4.53 1.38 1.652
White matter (W)

RAA (%) 1.28 1.09 1.00

Mean SCR (%) 2.98 1.31 1.00
Parenchyma (G + W)

RAA (%) 8.60 3.95 6.73

Mean SCR (%) 4.39 1.33 1.47
Small vessels

RAA (%) 4.36 2.38 3.42

Mean SCR (%) 5.79 1.88 1.94
Large vessels

RAA (%) 3.72 2.05 2.91

Mean SCR (%) 7.24 2.41 243
Vessels (small + large)

RAA (%) 8.09 3.38 6.33

Mean SCR (%) 6.54 2.02 2.20

An “AND” logical operation between the acti-
vated pixels and the mask resulted in the tissue-
specific functional response (Figs 5B, 6B, 7B). The
1-way ANOVA test on 4 tissue categories, includ-
ing cortical gray matter, subcortical white matter,
small vessels, and large vessels, showed significant

Fig 4. Outer rim of the magnetic resonance image ob-
tained from the Kohonen feature map/fuzzy C-means algo-
rithm.
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Fig 5. (A) Mask for cortical gray matter. (B) Functional
activation map of cortical gray matter.

differences in terms of the RAA (F = 14.22; P <
-0001) and mean SCR (F = 14.21; P < .0001).
Analysis on the tissue specific mean RAA showed
that most functional response occurred in the cor-
tical gray matter (7.33 = 3.64; Scheffe’s post hoc
test, P << .03; Table 2). The second most functional
response was in small vessels in the pia matter
(RAA = 436 * 2.38), and the third was in the
large vessels in the CSF space (RAA = 3.72 =+
2.05). The subcortical white matter had very few
responses (RAA = 1.28 * 1.09). Analysis of the
mean SCR showed significantly higher rates of
response in the large vessels than in the paren-
chyma, both in cortical gray and subcortical white

CHIU ET AL

matter (Scheffe’s post hoc test, P < .05; Table 2).
However, there was no significant difference be-
tween small and large vessels in terms of the RAA
or mean SCR (Scheffe’s post hoc test; P > .05;
Table 2). Therefore, the inflow effect is repre-
sented reasonably by the sum-up response (mean
SCR = 6.54 * 2.02%) from both small and large
vessels.

Finally, various temporal profiles in accordance
with tissue specificity were identified. The time
course was calculated by averaging tissue specific
mean signal intensity in the ROIs of all 14 subjects
at each time-point. The sequential 72 images ac-
quired thus were considered as 72 continuous time-

Fig 6. (A) Mask for white matter. (B) Functional activation
map of white matter.
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Fig7. (A)Mask for the CSF space. (B) Functional activation
map from vessels in the meninges and CSF space.

points. The correlation between 2 compartments of
the vessel space, which consisted of the small
vessels overlying the cortex and the large vessels
in the CSF, is rather high (r = 0.976), and it is
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again reasonable that we considered it as a single
entity for further analysis and discussion. The cor-
relation study also showed a very high correlation
coefficient between temporal patterns of cortical
gray matter and subcortical white matter (r =
0.957). The correlation was somewhat lower be-
tween cortical gray matter and vessels (r = 0.723)
as well as between subcortical white matter and
vessels (r = 0.713). There also were different
levels of correlation in terms of the assumed input
fuction, the SWF of a boxcar paradigm. The cor-
relation coefficient between the SWF and the cor-
tical gray matter was r = 0.957, and between the
SWEF and the subcortical white matter it was r =
0.829, and between the SWF and the vessells it
was r = (.726. The sustained responses from either
cortical gray matter or subcortical white matter
contrasted themselves from the initially declining
time course of response in the vessel space (Fig 8).
The diagram showed at the same time that the
response from the vessels had intrinsically higher
signal intensity than the parenchyma along the
time course after baseline correction.

DISCUSSION

To overcome the low signal-to-noise ratio
(SNR) obtained from the standard head coil in our
system, we used surface TMJ coils. Because sur-
face coils may introduce variations from coil po-
sition and spatial nonuniformity of signal, we had
to be cautious in placing the coils and sometimes
had to readjust them under the guidance of scout
images. However, the SNR is very important in an
fMRI study and this caution is necessary. In addi-
tion, the target we investigated ie, the motor cortex,
which is relatively superficial in anatomical posi-
tion, is within the effective range of surface coils.
Therefore, the problem of the inhomogenity was
not detrimental to the results of this study.

Because FCM provides an iterative approach to

Table 2. Result of Scheffe’'s Post Hoc Test in Tissue-Specific Areas (P < .05)

Gray Matter White Matter Small Vessels Large Vessels
RAA MSCR RAA MSCR RAA MSCR RAA MSCR
Gray matter - —
White matter * NS — —
Small vessels * NS * * — -
Large vessels * * NS * NS NS - -

Abbreviations: NS, no significance; MSCR, mean signal change rate.

* Positive with Scheffe’s post hoc test, P < .05.
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Fig 8. The chart shows 3 different temporal patterns with different activation levels from different brain tissues for human
motor response. WM, white matter; GM, gray matter; and V, vessel space. The Y-axis indicates the signal change rates and the
X-axis indicates the sequential image numbers considered as continuous time points.

approximate the minimum of the objective func-
tion starting from a given position, it usually is
applicable to tissue classification. However, FCM
often requires long computation time because of
the complexity of the algorithm.'® However, the
KFM distributes original data on a 2-dimensional
map, in our case an 8 - 8 matrix, in which similar
input signal patterns are joined together with adja-
cent nodes on a map.'® The KFM has excellent
computational performance, but it is influenced
easily by factors such as initial condition, learning
rate, and update rule, which may then generate
variable results (unpublished data). This is why we
applied such a complex cascaded architecture in-
stead of either single method alone. Using this
architecture, we benefit from the efficiency of the
KFM in terms of high computation power and low
memory load for the computer as well as the
optimization capability of FCM."*

Furthermore, the performance of either the KFM
or FCM is decided by the internal parameters of
the systems. There always is a tradeoff between
effectiveness and efficiency in deciding of various
internal parameters. For example, increasing the
cluster number of either the KFM or FCM could
elevate specificity and make the pattern of the
smaller area size easier to identify.”® However, too

many clusters will overclassify the patterns, thus
making the results very difficult to analyze and
interpret. In addition, a large cluster number in-
creases the processing time. For further details
about the performance, internal parameters and
validation of the algorithms readers are referred to
our previous work.!%?!

In this study, the T,, T,, and PD are parameters
capable of tissue characterization.”’>* Using these
parameters, we showed that the process of auto-
mated image segmentation, which cascades the
KFM and FCM algorithms, can effectively sepa-
rate anatomic structures in MR images (Figs 4, 5A,
6A, 7A). This makes possible the tissue-specific
analysis of functional activation in the brain.

However, the issue of partial volume effect
(PVE) must be considered here, because it might
indicate some limitation on our algorithm with
present hardware settings. We used a resolution of
256 X 256 (interpolated from images with a reso-
lution of 256 X 128) on an FOV of 24 X 24 cm
with our MR images, either with morphologic or
functional images. Therefore, the voxel is around
1 X 1 X 4 mm®, which probably makes the seg-
mentation susceptible to the PVE especially in the
direction of thickness. Thus, there are always some
pixels, at the border of the gray matter and white

R e ——
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matter, containing tissues from either side. Never-
theless, the scale of the problem may not be so
large as to significantly influence the results of the
segmentation or tissue-specific analysis of our
functional response. After all, the mixing of tissues
caused by the PVE may occur only in pixels at the
border of the 2 tissues. The number or proportion
of these pixels is quite limited. The problem of
PVE in tissue segmentation can be alleviated but
not resolved by recent advances in hardware set-
tings, eg, higher image resolution with higher
Tesla machines. However, even with echo planar
fMRI, which is used frequently nowadays, many
researchers prefer to perform their functional stud-
ies with even lower resolution, eg, 64 X 64, be-
cause the signal intensity and time resolution is of
more the concern in many studies.

The FLLASH sequence is important in terms of
functional MRI studies. Nonetheless, FLASH is
inherently sensitive to the inflow effect, which is
especially high when we apply a large flip angle
and long TE.”® The inflow effect may be undesir-
able because the BOLD effect is the only focus of
interest in many fMRI experiments. In this study,
we separated activation into the BOLD effect,
which is confined to the parenchyma and mainly
over the cortical gray matter, and the inflow effect,
which is mainly derived from the overlying corti-
cal vasculature. Therefore, additional spatial infor-
mation offers the magnitude of influence and a
temporal pattern of response in the blood vessel. In
this study, we applied a pulse sequence with a large
flip angle (o = 40°) and a long TE (TE = 50 ms)
with flow compensation to accentuate the inflow
effect. With the help of this new technique, we can
separate the response of vessels such as cortical
veins or meningeal arterioles from the BOLD ef-
fect in the cerebral parenchyma. However, the flow
sensitivity of FLASH images applies only to those
vessels with proper orientation and flow velocity in
our single slice method. Thus, we do not claim to
replace other flow-sensitive techniques such as flow-
sensitive alternating inversion recovery (FAIR).5%*
Nevertheless, we do isolate the response and ac-
tivity in the parenchyma and reduce the influence
of inflow effect to a substantial degree. Further-
more, the tissue-specific response provides the de-
lineation of temporal profiles from different phys-
iologic sources (Fig 8). High correlation exists
between cortical gray matter and subcortical white
matter (r = 0.957), which implies a similarity of
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response in the parenchyma from gray and white
matter. However, the vessel behaves somewhat
different temporally in response to the neural acti-
vation. We computed the functional response by
cross correlation between an assumed square wave
input function of the boxcar paradigm and the
signal intensity changes on MR images. Although
the genuine tissue-specific process (response curve)
in the brain is not known, our results showed that
the cortical gray matter fits best to the assumed
SWEF (r = 0.957) followed by subcortical white
matter (r = 0.829) and vessels (r = 0.726). The
phenomenon is worth exploring further especially
the different modalities of brain activation such as
somatosensory, visual, or high cortical functions.
Further comparison with results from other data-
driven analysis®!*®* also should be considered.

We analyzed the motor response of the human
brain through an approach combining the pulse
sequence of functional MRI, the accentuating in-
flow effect, and a cascade algorithm performing
effective automated image tissue segmentation.
This approach enables tissue-specific analysis and
separates activation with different temporal pat-
terns in human motor responses. It reduces the
disadvantage of inflow vulnerability in conven-
tional GE and provides quantification and separa-
tion of BOLD enhancement effects from inflow
contributions in an activated human brain. Tissue
segmentation provides the most natural basis for
neuroscientists, who are already acquainted with
the anatomy of the human brain, to do data anal-
ysis. This technique may become a new helpful
tool for GRE fMRI.

APPENDIX 1

The mean SCR is obtained from the following
equation:

1 Ny 1 Ng
_2 SA,-——Z Ski
_ Nyioa Ng o
SCR; = R X 100%
_ Si
ngl ?

1 &
meanSCR = — >, SCR,
Nppzh
Where S, is the signal intensity of pixel P during
the activating period; S is the counterpart of S,
during the resting period; N is the number of the
time-series images in the activating period; Ny, is
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the number in the resting period; in our study N, =
Ng; SCRp is the signal change rate of an activated
pixel expressed as a percentage; Ny, is the number
of all the activated pixels, obtained by a threshold
procedure with the cross correlation, in the ROL

APPENDIX 2
The relative activated area is computed from the
following equation:

Np

RAA =

X 100%

ROI
Where N is the number of all activated pixels
selected by a threshold procedure (P < .01) with
CC confined in the ROI; N, is the number of all
pixels contained in the ROI.

APPENDIX 3

The KFM is a model of a self-organized feature
map, which is capable of clustering the inner struc-
tures or intrinsic characteristics of a data set auto-
matically. The core idea of this network is “win-
ner-take-all.” It has a 2-layer structure. The first
layer, the input layer, receives the variables of the
whole network. The second layer is the competi-
tive layer or so-called output layer. It expresses the
output as classification of the training set. The
learning algorithm of the Kohonen feature map is
as follows:

AW, =n X (X,— W;) X R

Where 7 is the learning rate of the network, R is
the radius of convergence, and D is the distance
between the winner and other output nodes. When
all of the output nodes are updated according to the
learning algorithm, the average error is calculated
as the criteria of the convergence of the system.
The average error is calculated as follows:

Pixel Vector

D, = 2 E |Xi,j - Wwinner,j'
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Where X;; is the jth vector of the ith input unit;
W.vinner,j 18 the weighting vector of the winner node
in the output layer. This algorithm will iterate until

D,
which was 107 in this study.

When the amount of modification is below a
certain threshold, the system training is finished.
Then all the weighting values in the network were
saved for further classification.

< g, € is the criterion of convergence,

APPENDIX 4

The basic idea of the fuzzy theorem is that it
attributes to each event of interest a fuzzy set of
membership functions with a probability of occur-
rence. Instead of simply classifying every input
into a definite cluster, the final decision is made
according to a membership function of each event.
The membership function is the probability for a
pixel to be attributed to a certain cluster in the
image segmentation. A distant feature implies a
smaller probability of the attribution. The value of
a membership function lies between 0 and 1. The
sum of all clusters is 1. For convenience, we
expressed the probability of each pixel with a ¢ X
n matrix U, which was called the fuzzy C partition
or membership matrix. C is the total cluster num-
ber and n is the total pixel number. Then we iterate
with the principle of least-squares error to locate
the optimal center of the clusters. The purpose of
the optimization was to minimize the objective
function:

U, V)= 2 3 UK - VP,
Where Uy, represents the membership function of
the k™ pixel belonging to the i cluster; X, is the
feature vector of the k™ pixel; V, is the center
feature vector of the i cluster; m is an adjustable
parameter usually ranging between 1.1 and 5.0.
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