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In this article we describe a statistical model that was

developed to segment brain magnetic resonance im-

ages. The statistical segmentation algorithm was

applied after a pre-processing stage involving the use

of a 3D anisotropic filter along with histogram

equalization techniques. The segmentation algorithm

makes use of prior knowledge and a probability-

based multivariate model designed to semi-automate

the process of segmentation. The algorithm was ap-

plied to images obtained from the Center for Morph-

ometric Analysis at Massachusetts General Hospital

as part of the Internet Brain Segmentation Repository

(IBSR). The developed algorithm showed improved

accuracy over the k-means, adaptive Maximum

Apriori Probability (MAP), biased MAP, and other

algorithms. Experimental results showing the seg-

mentation and the results of comparisons with other

algorithms are provided. Results are based on an

overlap criterion against expertly segmented images

from the IBSR. The algorithm produced average re-

sults of approximately 80% overlap with the expertly

segmented images (compared with 85% for manual

segmentation and 55% for other algorithms).
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MAGNETIC RESONANCE IMAGING
(MRI) has become one of the most im-

portant non-invasive diagnostic tools intro-
duced in the field of medicine in recent years. At
present, most interpretation of MR images is
accomplished from a large number of images
representing ‘‘slices’’ through the object, which
must be studied in order to formulate a diag-
nosis. This may suffice for the detection of ab-
normalities, but it does not serve other tasks
such as surgical or radiation therapy plan-
ning.1,2 These tasks require mental visualization
of the areas of abnormalities, which has been

shown to be difficult, and dependent on the
observer’s experience and imagination. It is
desirable to have a more realistic view of the
images acquired in the scans, and thus three-
dimensional (3D) visualization is wanted. The
3D surfaces of the anatomy help the physician
understand the complex nature of the features
presented in the 2D slices.3 The use of 3D
medical images has been reported in a number
of areas, including the visualization of frac-
tures,4 craniofacial abnormalities,5,6 intercrani-
al structures,7 and the arterial circulation.8,9

They are also used in radiation therapy10,11 and
surgical planning.1,2,12

To fully realize the usefulness of 3D visuali-
zation, it is desirable to segment the 2D slices
prior to 3D reconstruction. Prior segmentation
can be done at a purely 2D level, in which each
image is considered independent of adjoining
images. The major drawback of such ap-
proaches is that, in considering each image in-
dependently, they ignore the spatial relationship
of the image as a part of a 3D object. Con-
versely, 3D segmentation after the creation of
the 3D volume incorporates the spatial rela-
tionship of the 2D slices, but it can be con-
taminated by data introduced in the
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interpolation of the 3D volume. Thus a sort of
hybrid approach is necessary to benefit from
both areas.

In the hybrid approach, although 2D seg-
mentation is done, the spatial relationship of
the slices is used as a part of the model. This
additional information leads to more accurate
segmentations as all information is now being
considered rather than just a subset. One of the
drawbacks of these approaches is the increased
number of variables and thus the computa-
tional complexity of the model. Such a system
should also be able to handle sequences in
which the interslice and interpixel distances are
not necessarily equal.

RELATED REPORTS

Segmentation of MRI images can be achieved
in different ways,13 one of the most popular of
which is identifying the tissue based on its
multi-spectral values (T1, T2, PD). One exam-
ple is provided by neural networks trained on
the tissue-specific multispectral values. Ozkan et
al14 present preliminary results of a computer
system for automatic multispectral MRI anal-
ysis. Amarkur et al15 present another neural net
approach to solving the problem, based on the
Hopfield network. MARA (Multi-layer Adap-
tive Resonance Architecture),16 which uses a
stable and plastic self-organizing neural net-
work, is capable of recognizing, reconstructing,
and segmenting the traces of previously learned
binary patterns. The recognition and recon-
struction properties of the network are invari-
ant with respect to distortion, noise, translation,
scaling, and partial rotation of the original
training patterns. Katz et al17 have reported
segmentation of the aorta from MRI with a
translation invariant method (i.e., the method is
invariant to the orientation of the images),
where they used a backpropagation neural
network. Chen et al18 have proposed a general
purpose medical image segmentation technique
that uses constraint satisfaction neural net-
works (CSNN), Li et al19 used a Boolean
Neural Network (BNN) to both segment and
label MR brain images.

In 1989, Beaulieu and Goldberg20 used a hi-
erarchical stepwise approach to segmentation to
produce an image that is segmented and ar-

ranged such that the largest (and supposedly
most important) sections of the image were
placed at the top of the structure and the
smaller ones at the bottom. The disadvantage of
using this method with the MR images is that in
medical images, there is no guarantee that the
anomalies of interest will be of a certain size,
either large or small. Perez and Gonzalez21 used
an adaptive threshold algorithm for segmenta-
tion that was based on the reflectance of the
image. Later, Gutfinger and Sklansky22 intro-
duced the idea of mixed adaptation for classi-
fication of tissues in MR images. This technique
combines unsupervised clustering with super-
vised classification and uses the tissue parame-
ters to classify different tissue types. The
individual processes of clustering and classifi-
cation are based on standard pattern-recogni-
tion techniques. The drawbacks of this method
are the need for user interaction in the cluster-
ing stage, and the fact that the algorithm was
not developed directly for MR images. The
advantages are the ability to integrate other
imaging modalities for a more robust classifi-
cation. In another pattern-recognition ap-
proach23, three MR images are acquired for a
region of interest using spin-echo pulse se-
quence in a manner that allows the calculation
of MR-related physical parameters from the
image intensity data. After preprocessing, the
three MR-related parameters are calculated for
each location. Then, in a supervised training
environment, this calculated data set is used
with the acquired image data set in a minimum-
distance classifier to assign a class-specific color
or gray level to each location in the image.

Unser and Murray24 used a feature-extrac-
tion method for segmentation of the image
based on the different textures of the various
parts of the image. This approach requires that
there be some textural difference between the
regions of the image, and in medical images
there may not always be appropriate texture
separation. Saeed et al25 used a combination of
knowledge-base and texture definition of the
intensity to segment the brain from the sur-
rounding tissue. A thresholding and contour
extraction process was used to isolate the brain.
The result was then passed through a knowl-
edge algorithm that incorporated information
such as approximate brain position and size,
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along with a generic shape definition of the
brain. This work deals only with isolating the
contour of the brain as a whole rather than
the regions within the brain. Thus it allows for
the reconstruction of the brain but does not
handle the internal features. In addition it is not
a 3D system. In another study, Poon and
Braun26 present a contour model that incorpo-
rates region analysis for segmentation. Their
deformable model uses an iterative method to
minimize an energy function for N contours
corresponding to N + 1 regions.

As can be seen from the cross-section of work
presented above, numerous methods have been
proposed for dealing with segmentation and
classification of images. These methods do not
all guarantee the classification with the least
possible number of errors, which is an impor-
tant issue in diagnosis. One reason for this dif-
ficulty in classification is the complex nature of
the images. What we present in this article is an
algorithm that guarantees the minimization of
possible errors and so provides the most accu-
rate classification based on the quality of the
input signal, which is the real added value of
this research.

GENERAL MODEL DESCRIPTION

The proposed solution to minimize possible
errors uses the 3D relative distribution of the
pixel-intensities to form a probabilistic model,
which is built using the properties of the
co-occurrence matrices in all directions of
neighborhood for each pixel. This allows the

construction of probabilities for the occurrence
of a particular configuration of neighborhoods
for each class of slice orientation. A general
block diagram showing how the segmentation
fits into a system is shown in Figure 1.

Before segmentation, it is necessary to re-
move any artifacts produced from noise. The
filter must be able to take into account the in-
herent 3D nature of the images and it must
operate in a way that enhances discontinuities
while smoothing similarities, thus sharpening
the borders and reducing the noise within the
various regions. (A 3D anisotropic diffusion
filter is the best choice).27

A 3D statistical model was developed to an-
alyze the images, to extract region-based statis-
tics, and to act as the basis for the segmentation
model. This also makes use of the 3D nature of
the images. It takes into account the fact that in
MR studies, the adjoining images should be in-
cluded in the determination of regional classifi-
cation of pixels. The algorithm, though, makes
allowances for the situation in which the inter-
slice distance is vastly greater than the interpixel
distance. The model does not specifically address
a particular anatomy, but is general enough to
be used in other applications and thus can be
used for other types of 3D image sets.

In MR images, a large region of low-valued
pixels corresponding to the background region
within the image gives the histogram a bi-modal
structure. This region is removed during the
segmentation in order to enhance performance.
Although the model can handle inclusion of the
background, the saving in performance (gained

Fig 1. A general block diagram showing how the developed segmentation (shaded) fits into an overall system.
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from not having to test each background voxel
against every segment), is significant because at
least half of the voxels do not have to undergo
the full test.

At the same time, the regions of useful data
within the image (the data representing the tis-
sues) is confined to a relatively small range of
intensities and so, if segmentation is attempted
on this small range, the results will be affected
by the small separation and the possible overlap
of regions. Small separation results in higher
probability of misclassification (classification
errors) of pixels and the possible inclusion of
small regions into larger ones, which can be
corrected by stretching the range of useful data
that enhance region separation and prevent
small regions from being lost. The stretching
process is done globally on the sequence to
avoid affecting the relative statistics of the re-
gions. The next step is the selection of the sta-
tistical analysis space (SAS) for use within the
segmentation model. Various SASs have been
used, the image itself,15,22 gray-level histo-
grams,21,28,29 co-occurrence maps,30,31 and
multi- spectral images.14,32

Because both region and boundary informa-
tion are required for proper segmentation, a
method that combines these two features is
desirable. Separate processing of regions and
boundaries using different models is possible,
but then it leaves the task of combining the
results of the models in a meaningful manner.
Thus a SAS providing both region and
boundary information in the same analysis
space for the model is ideal. With this in mind,
the co-occurrence matrices are chosen as the
SAS, and a probabilistic model is selected as the
segmentation methodology.

MULTIVARIATE STATISTICAL MODEL

The statistical model is called the ‘‘Multiva-
riate Minimum Total Probability of Misclassi-
fication Model,’’ and for short we refer to it as
the MMTPM model. The classification of im-
ages is carried out through the use of a statistical
model, based on the knowledge of neighbor-
hood orientations determined from the co-oc-
currence matrices. This model is used to classify
the current pixel as a function of its neighbors.

The classification uses a multivariate probability
structure to determine the best classification for
the current pixel, which then gets assigned to
that pixel. Removal of the background is done
with a thresholding algorithm because the his-
togram displays bi-modal tendency, and thres-
holding is required to remove the relatively large
region formed by the background (otherwise it
will disrupt the probabilities).

Statistical Analysis Space

Consider a sequence of images for an MRI
acquisition series of n images. Images are
numbered in consecutive order, 1, 2, 3, ..., i)1, i,
i+l,...n. Let Ii, represent the ith image of the
sequence, and Ii(x,y) be the pixel at loca-
tion (x,y) of the ith image of the sequence,
then the 8-neighbors of pixel (x,y) are given by
the set

NðiÞ8 ¼Iiðx; yÞ8

¼fIiðx� 1; y� 1Þ;
Iiðx; y� 1Þ;
Iiðxþ 1; y� 1Þ;
Iiðx� 1; yÞ;
Iiðxþ 1; yÞ;
Iiðx� 1; yþ 1Þ;
Iiðx; yþ 1Þ;
Iiðxþ 1; yþ 1Þg: ð1Þ

For the images on either side of this image, i.e.,
Ii)1 and Ii+1, the 8-neighbors of the corre-
sponding pixels, Ii)1(x,y) and Ii+1(x,y), are
given by N(i)1)8 and N(i+1)8. Thus the ad-
jacent 8-neighbors are given by

NiA ¼ Nði� 1Þ8

[
Nðiþ 1Þ8

[
fIði�1Þðx; yÞ; Iðiþ1Þðx; yÞg;

ð2Þ

and the total 3D 8-neighbors are given by

NðiÞ3D ¼ NðiÞ8

[
NðiÞA: ð3Þ

This results in a total of 26 adjacent pixels.
Let any pixel (x,y) be represented by p, and a

pixel that is a D-neighbor of p be denoted as p
+ D and the gray-level intensity of a pixel p for
image i is given by gi(p), where G ‡ g ‡ 0. Then
the gray level histogram for the entire image set
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is given by

SðiÞ ¼
Xn
i¼1

X
p

dðg : giðpÞÞ; ð4Þ

where d (g ; gi (p)) is the Kronecker delta
function. The gray-level histogram for a single
image is obtained by restricting the summation
to a single image. The gray-level co-occurrence
matrix is defined as the frequency of occurrence
of two pixels with certain intensity levels. This
measures how often a pixel of intensity g lies
next to a pixel of intensity h. And for the entire
image set for a particular n-pair the co-occur-
rence matrix is defined as31

SDðg; hÞ ¼
Xn
i¼1

X
p

X
p0

dðg : giðpÞÞ

	 dðh : hiðpþ DÞÞdðp0 : pþ DÞ: ð5Þ

Thus for the d-pairs for the set N(i)3D there
are 26 matrices defining the frequency of oc-
currence of two pixels of given intensity, one for
each direction. The co-occurrence matrices can
be shown to be composed of on-diagonal and
off-diagonal elliptically shaped peaks (see ref-
erence 31 for a full proof). The on-diagonal
peaks are directly related to the different regions
within the image, while the off-diagonal peaks
are related to the length of the boundaries. The
on-diagonal peaks, are centered along the di-
agonal of the co-occurrence matrix with major
and minor axes parallel and perpendicular to the
diagonal, respectively. The axis perpendicular to
the diagonal is related to the noise present in the
image and can be estimated by the variance of
the background noise. The axis parallel to the
diagonal is related to the variance of the region
itself. Thus the variance of the region may be
determined from the length of the axis parallel
to the diagonal. Thus an analysis of the histo-
gram formed from the diagonal provides the
statistical information needed for the regions of
the image. These matrices make up the defini-
tion of the analysis space used by the statistical
algorithm. Assuming that the directions of co-
occurrence are the variables, a multivariate dis-
tribution is needed to determine the best classi-
fication. This is accomplished by determining
the estimated minimum total probability of
misclassification (TPM) for each pixel, which in

turn is based on the minimum Expected Cost of
classification Methodology (ECM) that at-
tempts to separate values into different popu-
lations based on a statistical and probabilistic
analysis of the populations.33 A misclassifica-
tion is defined by placing a pixel in the wrong
population, and a good classification procedure
should attempt to minimize the probability of
misclassifications. In addition, an optimal clas-
sification rule should take into account not only
the statistics of the populations but also the
prior probabilities of occurrence.

Multi-Population Analysis

Let the population densities be fi(x) for
populations pi for i = 1, 2, 3, . . ., g. Also let the
prior probability of population pi be pi, and the
cost of allocating to pk when it belongs to pi be
c(k|i) for k,i = 1,7, . . ., g. Then for i = k,
c(k|i) = 0. Let Rk be the region k. The prob-
ability of classifying a value as pk when it be-
longs to pi is

PðkjiÞ ¼
Z
Rk

fiðxÞdx: ð6Þ

Then the expected cost of misclassifying a value
x belonging to p1 as belonging to p2 or p3,B,pg is

ECMð1Þ ¼ Pð2j1Þcð2j1Þ þ � � � þ Pðgj1Þcðgj1Þ

¼
Xg
j¼2

Pðkj1Þcðkj1Þ: ð7Þ

The values for ECM(2),. . .,ECM(g) can be
obtained in a similar manner.

The total cost ECM is derived by multiplying
each ECM by the prior probability of that
population; thus;

ECM ¼ p1ECMð1Þ þ � � � þ pgECMðgÞ

¼ p1

Xg
k¼2

Pðkj1Þcðkj1Þ
" #

þ � � � þ pg
Xg�1

k¼1

PðkjgÞcðkjgÞ
" #

¼
Xg
i¼1

pi
Xg

k¼1;k 6¼1

PðkjiÞcðkjiÞ
" #

: ð8Þ
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Thus an optimal allocation of values occurs
when the total ECM is minimized. This occurs
when Xc

t¼1tlj

pifiðxÞcðkjiÞ for population

pk; k ¼ 1; 2; � � � ; g ð9Þ
is minimum.

Now if the cost of misclassification is equal
for all regions (equate to 1 for simplicity), then
the ECM is simply the TPM, and the assign-
ment is to the population pk, for which

Xg
i¼1i6¼k

pifiðxÞ ð10Þ

is minimum. This occurs when the term pk fk

(x) is maximum. Thus the assignment simply
becomes this: Assign value x0 to Rk for which pk

fk (x0) is greatest.
Now, using this assignment and assuming

that the populations are normal such that

fiðxÞ ¼
1

ð2pÞg=2j
P

t j
1=2

e�ðx�ltÞ0
P�1

t
ðx�ltÞ=2;

ð11Þ
Pi fi(x) becomes

pi fiðxÞ ¼
pi

ð2pÞg=2j
P

t j
1=2

e�ðn�ltÞ1
P�1

t
ðx�ltÞ=2:

ð12Þ
Taking the log of this will not affect the order of
the values, thus:

ln½pif1x� ¼ lnðpiÞ �
g

2
lnð2pÞ � 1

2
lnj

X
t
j

� 1

2
ðx� ltÞ0

X�1

1
ðx� ltÞ: ð13Þ

Because the term with pi is constant, it can be
eliminated without affecting the order; thus the
assignment simply becomes this:

Assign value x0 to Rk if:

lnðpkÞ �
1

2
lnj

X
j
j � 1

2
ðx0 � ljÞS�1

j ðx0 � ljÞ

ð14Þ

is greatest.
Once again the values of li and pi may be

estimated from the sample means and sample
covariances, thus:

lt � �xi;
X

t
� St for all i ¼ 1; 2; � � � ; g;

ð15Þ
and the discriminant becomes

lnðpiÞ �
1

2
lnjSij �

1

2
ðx0 � �xiÞ0S�1

t ðx0 � �xtÞ:

ð16Þ
This measure includes the squared statistical

distance of the value from the mean, the prior
probability, and the determinant of the covari-
ance.33 The value x0 represents the intensity of
the pixel under consideration.

SEGMENTATION USING THE MMTPM

The general definition of a segment in an
image I is a region having homogeneous prop-
erties defined by a homogeneity predicate Q,
which depends on the context of the problem.
The definition of the segmentation problem
then follows to be dividing the image I into a set
of n regions Ri, where[n

i¼1

Ri ¼ I ð17Þ

the homogeneity predicate Q(.) defines the con-
formity of all points in the region Ri to the region
model. The homogeneity predicate and parti-
tioning of the image have the properties that any
region satisfies the predicate, and the union of
any two regions fails the predicate

QðRiÞ ð18Þ

QðRi
�ERjÞ ¼ FALSE 8i=j ð19Þ

The MMTPM algorithm selects the best seg-
ment for a voxel based on neighborhood of that
voxel. All the components considered by the
MMTPM are intensity means, their variances,
and prior probabilities. The neighborhood used
in taking the decision of classification of that
voxel can be defined by a set of vectors, which if
added to the coordinates of the central voxel
will result in the coordinates of the voxels used
in the classification

U ¼
ðxa; ya; zaÞ : xa ¼ x� xi; ya ¼ y� yi;

za ¼ z� zi

8x; y; z 2 X

8><
>:

9>=
>;
ð20Þ
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where is the region around voxel xi, yi, zi that is
being used for taking the decision. A constraint
that is imposed during the decision is weighing
that decision by the distance of every neighbor
from the voxel under consideration. This is
obvious, because deciding on a voxel class using
another far voxel is less likely to be true than
that made using a nearby neighboring voxel.
The Euclidean distance is considered through
the following:

Dðxa; ya; zaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
a þ y2

a þ z2
a

q
ð21Þ

TD ¼
X

xa;ya;za2U

Dðxa; ya; zaÞ ð22Þ

For every voxel v a decision function must be
evaluated:

DFðv;CÞ ¼ lnðpÞ � 0:5 lnjvj � 0:5
ðv� lÞ2

v

ð23Þ

TDF ¼
X
v2U

TD

Dðxa; ya; zaÞ
DFðv;CÞ; ð24Þ

where C is the class being tested and p is
the prior probability of that class C. After
evaluating equation (24) for every possible
class, the voxel is assigned to the class result-

ing in the largest Total Distance Function
(TDF).

Autonomous Operation: Segments
Detection Using the Zero Crossing of the

Co-occurrence Diagonal

The algorithms that are stated here have been
developed by us and tested on the MMTPM
algorithm. The co-occurrence matrices count the
frequency of repetitions of gray level intensities
for a predefined neighborhood. Within a seg-
ment S, it is more likely to find voxels of equal
intensities than across the borders of two seg-
ments. Consequently, for peaks along the diag-
onal of the co-occurrence matrix, it is highly
possible to find a segment whose mean intensity
is very near those peaks. Because the co-occur-
rence matrix does not show the spatial rela-
tionship between the pairs of voxels contributing
to a certain entry CM(i, j), we cannot say for
sure if that peak belongs to a segment. By con-
sidering more than one co-occurrence matrix
each for each different neighborhood, the deci-
sion made about the means of those segments
becomes more accurate. To combine the co-oc-
currences, they are multiplied so that ultimately
we will have the regions that all the co-occur-
rences showed may be segments. Because we are
interested in the cases where both voxels are
equal, then the co-occurrence diagonal is the
only component of the co-occurrence matrix to
be considered. Assume the following:

Fig 2. Values of alpha obtained from the sequence 1_24 (log scale).

MODEL FOR 3D IMAGE SEGMENTATION 371



1. xa, ya, za Additives to the x, y, z coordinates
that define the neighborhood for which the
co-occurrence will be calculated

2. CMxa,ya,za The co-occurrence matrix for the
neighborhood xa, ya, za

3. CMSxa,ya,za The smoothed co-occurrence
matrix for the neighborhood xa, ya, za

4. IMax Maximum gray-level intensity
The sequence is as follows:

1. Smooth the co-occurrence matrix using an
averaging filter repeatedly. The number of
times used in the experiments was IMax/10.

CMSxa;ya;zaði; iÞ ¼ 0:5 CMSxa;ya;zaði� 1; i� 1Þ
�

þ CMSxa;ya;zaðiþ 1; iþ 1ÞÞ
ð25Þ

CMxa;ya;zaði; iÞ ¼ CMSxa;ya;zaði; iÞ ð26Þ

2. Multiply the smoothed co-occurrences to-
gether; the result should look like Figure 2.

aðjÞ ¼
Y

xa;ya;za

CMSxa;ya;zaðj; jÞ ð27Þ

3. Approximate the derivative to be

a0ðjÞ ¼ aðjÞ � aðj� 1Þ ð28Þ

4. For each zero crossing at intensity v, set the
mean of the current segment MS = v.

5. Train the algorithm using the voxels equal to
the means as an initial portion of the
segments.

6. Take the ratio of those voxels as an initial
estimate of the prior probabilities.

Iteration after Parameter Initialization

The classical Iterated Conditional Modes
(ICM) algorithm searches for the peak over a
surface of a 2D function in two parameters
through successively maximizing/minimizing
each of the variables.

1. Start by any two arbitrary modes h1
ih2

i.
2. Find h1

i+1 by solving

dPðh1; h
i
2Þ

dh1
¼ 0

3. Find h2
i+1 by solving

dP½hi1; h2�
dh2

¼ 0

4. Repeat until no better solution is found The
algorithm is a local minimization algorithm
that will converge to the peak nearest the
initialization point. In our case, the two sets
of variables through which we will iterate
are the set of classifier parameters h and the
sets of voxels defining the segments Si, i =
1 … K.

The ICM algorithm has been widely used for
parameter estimation. Given the classifier pa-
rameters h, the voxels having the highest like-
lihoods in each segment S1, S2, …, Sk are
identified. The second step is updating the
classifier parameters h such that the likelihoods
of those sets of voxels are maximized. During
each of the iterations, the function describing
the system is conditioned by the mode of one of
the sets of variables. Because it is a local max-
imization/minimization algorithm, the ICM
must iterate in a system initialized near the
global minimum so that it converges correctly.
Because the co-occurrence matrices provide an
interpretation of the image, showing where the

Table 1. Experimental results showing overlap ratio with

‘‘ground truth’’ segmentations

Overlap with Ground Truth Images

Sequence Number White Matter Gray Matter

1_24 0.813946 0.849438

100_23 0.854365 0.893464

11_3 0.830839 0.869399

110_3 0.803721 0.848077

111_2 0.842378 0.870864

112_2 0.832793 0.882588

12_3 0.825778 0.853163

191_3 0.844526 0.883364

13_3 0.857874 0.892634

202_3 0.822301 0.854037

205_3 0.745637 0.725109

7_8 0.761533 0.78255

8_4 0.811621 0.842932

17_3 0.666087 0.567334

4_8 0.695134 0.701771

15_3 0.73838 0.763548

5_8 0.71868 0.715469

16_3 0.753587 0.798595

2_4 0.653763 0.546622

6_10 0.745025 0.732425

Average 0.780898 0.793669
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centers of the segments reside, the initialization
has been carried out near the global maximum/
minimum.

When the ICM algorithm is applied in a
pure manner, the system will get stuck in
local minima. To avoid this, and by further

Fig 4. Overlap coefficient versus iterations for different sequences.

Fig 3. Prior probability variation across iterations using ‘‘zero-crossing’’ detection.
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experimentation, we found that slow update of
parameters toward the peak direction leads to
convergence, as demonstrated by the results in
Table 1. We also found that as we approached
the peak, smaller update steps were feasible,
and led to tuning the convergence. As a result,
an update metric was used, which is inversely
proportional to the difference in overlap
between the last two iterations.

The parameter update took the following
form:

aþ ¼ baþ ð1 � bÞa� ð29Þ

where a[+] is the updated parameter value, a is
the old parameter value, a* is the value found
when using the ICM algorithm, and b is the up-
date ratio. The update ratio was estimated using

b ¼ ð1 � OÞaþ b ð30Þ

where O is the overlap between the last two it-
erations and, initialized by O, a and b are con-
stants that were set to 0.4 and 0.5 during the
experiments. The overlap O is defined as the
number of common voxels in all segments di-
vided by the total number of voxels.

In Figure 3, the prior probability of each
segment is demonstrated across iterations for
sequence 1_24. It is very clear that in both cases
the system settles on two main segments and a
set of small ones. The difference between the
two cases is that when successive peak sup-
pression is used, many segments that sometimes
number 50 are detected. As demonstrated in
Figure 4, and for sequence 1_24, 26 segments
were detected, from which two were the main
ones at the very end.

The iterations stop once no better segments
are found, or after the maximum number of it-
erations. In our experiments, 20 iterations were
sufficient for the overlap value to exceed 99%.

Experimental Steps

1. Initialize the MMTPM for zero crossing
segment detection

2. While the number of iterations < MaxItera-
tions

a. segment the image
b. update the parameters from the segment-

ed image

3. Repeat through step 2
4. Label after segmentation After the correct

segments have been estimated, the tissue in
each segment should be labeled. Labeling
was carried out by finding the nearest
neighbor to the central intensity of the
segment. The centers of each of the white
and gray segments were estimated using
image 1_24, and after the segmentation was
completed, the central intensity of each
segment was found by calculating the mean
of all voxel intensities inside that segment.

Experimental Steps

1. Find the mean intensity of each segment
2. For each known tissue class, calculate the

distance ||Segment Intensity-Tissue intensity|
known from a training set.

3. Label the segment with the nearest tissue

EXPERIMENTAL RESULTS

Experiments were carried out using 20 normal
MR brain data sets and their manual segmen-
tations provided by the Center for Morpho-
metric Analysis at Massachusetts General
Hospital as part of the Internet Brain Segmen-
tation Repository (IBSR). The data sets are
available at http://neuro-www.mgh.harvard.
edu/cma/ibsr. The IBSR project mission ‘‘is to
encourage the development and evaluation of
segmentation methods by providing raw test and
image data, human expert segmentation results,
and methods for comparing segmentation re-
sults.’’ The ISBR provides 20 Tl-weighted 3D
coronal MR image sequences from normal pa-
tients after positional normalization, along with
the expert segmentation for each image. The
imaging parameters for the sequences used are
also found on the IBSR Web site. The expert
manual segmentations provide the basis for a
‘‘ground-truth’’ set to be used for comparative
study. Comparison is acheived through the use
of an overlap measure between the experimental
segmentation under consideration and the
ground-truth expertly segmented images. The
overlap ratio is defined as the ratio of the sum of
the voxels with the same label in both the seg-
mented image and the ground-truth image to the
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total number of voxels with the same label
in either image. Because there is no definition
for what constitutes a perfect segmentation,
cross comparison between two segmentations is

conducted using the previously defined overlap
metric. The overlap metric is used as a measure
of similarity between manually segmented im-
ages and those segmented using different algo-
rithms in order to assess the segmentation
accuracy.

Prior to segmentation, noise removal is
achieved by the use of a non-linear anisotropic
filter, which is basically a diffusion filter based
on the filter presented in Gerig et al.34 and ex-
panded to handle three dimensions. It allows
the smoothing of regions within the images
while enhancing the discontinuities present be-
tween tissue types. The filter looks at the pixels
in the neighborhood of the pixel under consid-
eration and outputs a modification in the value
of the current pixel to better fit its neighbors.
The process is carried out slowly and slows
down as the number of iterations in re-applying
the filter increases, to the limit, where the

Fig 5. Sample image segmentations (sequence 100_23).

Table 2. Comparisons with Results Provided by the Internet

Brain segmentation repository (IBSR)

Segmentation Technique

Gray

Matter

White

Matter

Adaptive MAP 0.564 0.567

Biased MAP 0.558 0.562

Fuzzy c-means 0.473 0.567

Maximum aposteriori probability (MAP) 0.550 0.554

Maximum-likelihood 0.535 0.551

Tree-structure k-means 0.477 0.571

Manual (4 brains averaged over 2 experts) 0.876 0.832

MMTPM 0.794 0.781

MAP: Maximum Aposteriori Probability; MMTPM: Multivari-

ate Minimum Total Probability of Misclassification Model.
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changes in pixel intensities will eventually
become negligible. At this point in the process,
the noise in the images has been reduced, and
they are ready for classification.

Because the final algorithm is used for seg-
mentation, and because intensities are used in
labeling, using the gray-level intensities of vox-
els, those processes are very sensitive to inten-
sity level variations. Intensity variations from
different sequences can cause mislabeling of the
segments. A global intensity correction was
used to maximize the histogram intersection
between the sequences under consideration and
a single sequence used as a ‘‘training set.’’ To
achieve this correction, and to smooth out dif-
ferences between the number of voxels in each
image, we use the normalized histograms. The
histograms, being the frequency of repetition of
the present intensities, are normalized against
the total number of non-background voxels
present in the cerebrum in each image.

In addition, the data supplied by the center
for Morphometric analysis poses a number of
difficulties during brain segmentation, and
those cases clearly were carefully chosen by the
center. Among those difficulties are the sudden
intensity variations that appear in some cases.
To determine the correct direction of the solu-
tion, investigations of normal, intensity as well
as cases with sudden variations in intensity were
carried out. A useful test involved calculating
the normalized histogram intersection between
each of two consecutive slices. The result should
be high, for one obvious reason: the number of
voxels per tissue that change between slices are
few, and usually the percentages of tissue voxels
between every two consecutive slices are very
near to each other. This means that the distri-
butions of voxel intensities between each two
consecutive slices are nearly the same. We ap-
plied a correction algorithm that was able to
nearly match the mean and variance across
slices, thus correcting for any sudden intensity
variation.

Before the data were segmented, the images
were corrected by the intensity correction
mechanism (for both sudden intensity variations
in a single image and a global intensity for the
sequence), and filtered using a 3D anisotropic
filter with kappa = 5 for 10 iterations (the value
was chosen from experimental analysis). The

images were segmented using the autonomous
segmentation, where the MMTPM classifier
parameters were initialized from the image to be
segmented. Initialization was carried out once
using the ‘‘zero-crossing’’ algorithm.

Some sample original and segmented images
for sequence 100_23 are shown in Figure 5. The
segmented results were then compared with the
ground-truth segmentations provided by IBSR.
The comparison criteria used were the overlap
ratios comparing the results for the gray and
white matter brain segments (Table 1). Because
sequence 1_24 was used in training (for the in-
tensity correction algorithm), it was not used
again in testing, and was not used during the
averaging process in the last row of Table 1.

Table 2 shows the same overlap calculations
using various segmentation algorithms provid-
ed by IBSR for comparison with the results
from the MMTPM algorithm. The overlap ra-
tio is defined as the ratio of the sum of the
voxels with the same label in both the seg-
mented image and the ground-truth image to
the total number of voxels with the same label
in either image.

As can be seen from Table 2, the MMTPM
algorithm attained a 79.4% overlap on the gray
matter and a 78.1% overlap on the white mat-
ter. This is a much better result than those ob-
tained with other techniques. It is also just short
of the 87.6% and 83.2% for gray and white
matter, respectively obtained from averaging
over two human experts.

CONCLUSIONS

In this article we describe a multivariate
multi-population statistical model that built
and applied to the problem of 3D segmentation.
The test results showed that the whole system
was able to attain accuracies higher than
standard techniques when applied to a common
set of sequences. Analytically, we proved that
the current multivariate model will reach the
lowest possible probability of misclassification
for pixels, and so achieve the highest possible
accuracy.

The results were obtained using images and
segmentations provided by IBSR for use in
comparison of segmentation techniques for MR
brain images. The accuracy attained was shown
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to be better than many standard algorithms, but
it still falls short of that attained by trained
human experts.

Although the real value is the very high ac-
curacy, there is a cost in terms of performance.
Additional research to achieve improved accu-
racy, performance increases, and information
sharing between the statistical system and other
systems built in our research labs is ongoing.
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