
Integrating Multiple Clinical Information Systems using
the Java Message Service Framework

Wyatt M. Tellis, and Katherine P. Andriole, PhD

This article describes an application for capturing,

delivering, and tracking urgent radiology exam re-

sults. Urgent exam findings are entered using a Web

form embedded within the Picture archiving and

communication system (PACS) display station. The

findings are then accessible via soft copy using the

PACS display stations, hospital information system

(HIS) terminals, or wireless-enabled personal digital

assistants (PDAs) or via hard copy printouts that are

generated automatically or on demand. Additionally,

quality control is performed on those findings entered

by radiology residents and fellows, the results of

which are used for both performance tracking and

educational activities. The application was developed

using Sun Microsystems’ Java programming lan-

guage. The Java Message Service (JMS) was used to

manage the delivery of findings. JMS provides a ro-

bust, flexible framework for exchanging messages

between disparate applications. The application is

now used for all urgent exams; completely replacing

the original paper-based system. The use of JMS

provides the necessary level of reliability needed by

this application.

KEY WORDS: Integration, Java Message Service

(JMS), urgent exams, PACS, clinical information sys-

tems, RIS, HIS, PDA

INTEGRATION OF CLINICAL INFOR-
MATION SYSTEMS can facilitate radiol-

ogy and urgent care interdepartmental
communications and contribute to improved
quality of patient care in the emergency de-
partment by delivering medical information at
the point-of-care. It was decided that to enable
the rapid delivery of urgent exam results at the
authors’ institution, the old paper-based ‘‘wet-
read’’ process would be replaced with an elec-
tronic system. In the old process the radiologist
wrote the findings on an exam requisition form
and faxed it to the emergency department (ED).

This process was fraught with problems, in-
cluding illegible handwriting and lost faxes. The
new application is directly integrated with the
picture archiving and communication system
(PACS) display stations where the radiologists
use an embedded web form to type in their
findings. To minimize the need to reengineer
ED workflow during the initial phase of the
application’s deployment, the wet-reads are
printed out on networked printers located in the
ED. During the second phase, these printouts
will be supplemented with networked PDAs
(personal digital assistants), which can receive
the exam results over a WLAN (wireless local
area network). Additionally the wet-readings
can be passed on to the HIS (hospital infor-
mation system) where they are available from
any HIS terminal. As well as electronically
capturing wet-reads, the new application con-
tains an educational component for radiology
attending physicians to review and comment on
wet-reads entered by radiology residents and
fellows. These comments are automatically
e-mailed to the resident or fellow, and any dis-
crepancies between the wet-read and the final
report are recorded and presented at the
monthly resident Q/A conference.

From the Laboratory for Radiological Informatics, Uni-

versity of California San Francisco, San Francisco, CA, USA.

Correspondence to: Wyatt M. Tellis, tel: 415-502-0213;

fax: 415-502-3217; e-mail: wyatt.tellis@radiology.ucsf.edu

Copyright � 2004 by SCAR (Society for Computer Ap-
plications in Radiology)

Online publication 25 March 2004

doi: 10.1007/s10278-003-1717-0

80 Journal of Digital Imaging, Vol 17, No 2 (June), 2004: pp 80-86



METHODS

The application was developed entirely in the Java pro-

gramming language from Sun Microsystems (Menlo Park,

CA). Java was used because of its built-in support for dat-

abases through the Java Database Connectivity (JDBC)

framework, its support for Web-based applications through

the Java servlet and Java Server Pages APIs (Application

Programming Interfaces), and its object-oriented nature,

which greatly facilitates application design. Development

was done using the freely available NetBeans (http://

www.netbeans.org/) IDE (Integrated Development Envi-

ronment). The application consists of three major compo-

nents: a database server, a Web server, and a Java Message

Service (JMS) provider. An overview of the application’s

architecture is presented in Figure 1. The individual com-

ponents are described in detail below. It should be noted

that an IRB Exempt Certification was obtained before the

system was placed into clinical operation.

The database server used for this project was PostgreSQL

version 7.2 (http://www.postgresql.org/) running on Sun

Solaris 8. PostgreSQL is an open-source ANSI (American

National Standards Institute) SQL92 compliant relational

database that runs on a variety of UNIX based platforms

(including Linux). PostgreSQL was chosen for this project

because it was the open-source database with the largest

installed base and developer community that supported the

advanced database features necessary for ensuring the log-

ical integrity of the data being stored; a mandatory re-

quirement imposed by the need to manage clinical data.

Such features include triggers, which permit the execution of

database functions when data are inserted, updated, or de-

leted from the database; foreign key constraints, which

manage related data across multiple tables within the da-

tabase; and ACID (atomicity, consistency, isolation, and

durability) transactions, which allow for the grouping of

data inserts, updates, or deletes.1

The Web-based component of this application used the

servlet and JSP (JavaServer Pages) technologies from Sun

Microsystems. A servlet is a lightweight Java application

that runs within a Web server. Servlets are usually used to

generate dynamic HTML pages, though they can generate

any type of content including images and XML (extensible

markup language) documents. Servlets have full access to

the entire Java API, making them a very powerful tool for

creating Web-based applications. JSP is an extension of the

Java servlet technology that allows a Web application de-

veloper to embed Java code directly within HTML to create

a JSP page. Just before the JSP page is sent to a browser, the

Web server executes the Java code embedded within it and

combines the result with the static HTML to produce the

final document. JSP pages are used in place of servlets be-

cause they make it easier to write dynamic HTML content

by allowing the developer to embed Java code directly

within the HTML code of the page. Additionally JSP pages

can use a ‘‘tag library’’ in place of Java code. A tag library is

a collection of HTML-like tags that encapsulate the Java

code that generates the content for the page. These tags can

perform functions such as generating an HTML table from

the results of a database query without requiring any Java

code to be included within the JSP page itself. Because JSP

tags are reusable, the logic they contain can be included on

multiple JSP pages, thereby eliminating duplicate Java code.

Both the servlet and JSP APIs are defined by a set of

Fig 1. Overview of system architecture.

INTEGRATING MCIS USING THE JAVA MESSAGE SERVICE 81



specifications issued by Sun Microsystems which can be

found at: http://java.sun.com/products/servlet/ and http://

java.sun.com/products/jsp/, respectively.

In order to function, all servlets and JSP pages must be

hosted within a ‘‘servlet container’’ that is responsible for

providing the environment needed for the servlet or JSP page

to run. This includes handling all network communication

between the client browsers and the servlet or JSP page,

parsing incoming requests from client browsers and directing

them to the appropriate servlet or JSP page, as well as

managing client sessions. The container used for this project

was Tomcat version 4.1.12 (http://jakarta.apache.org/tom-

cat/) running on Windows 2000 Server Edition (Microsoft,

Redmond, WA). Tomcat is an open-source Java servlet and

JSP container developed under the auspices of the Jakarta

Project of The Apache Software Foundation.

Input of findings and reviews takes place from the PACS

display stations using Web-based forms embedded within

the display stations’ GUI (graphical user interface). The

forms are generated by a set of Java servlets and JSP pages

using data from the PostgreSQL database. The PACS dis-

play stations used at this institution are IMPAX R4.1 dis-

plays (AGFA Medical Imaging, Ridgefield Park, NJ)

running on Windows 2000 Professional Edition. Integration

with the PACS display makes use of two vendor specific

APIs: the ‘‘context_server’’ and the ‘‘script button’’ script-

ing language. The context_server is a hidden Windows

program that runs on each PACS display. The con-

text_server provides functionality similar to HL7’s CCOW

(Clinical Context Object Workgroup) standard (http://

www.hl7.org/special/committees/visual/visual.cfm). It acts

as a broker between the IMPAX display software and other

clinical desktop applications, and it enables these applica-

tions to share the same clinical context. For example the

context_server allows notification of a third party desktop

application of when a user logs into IMPAX or when a

study is displayed. Communication between IMPAX, the

context_server, and any third-party applications takes place

through COM (Component Object Model), a Microsoft

API for integrating Windows applications.2 The script

button scripting language enables a third-party developer to

add customized buttons to the display station’s GUI. The

scripting language is specific to the IMPAX software and

allows the developer to obtain information about the cur-

rent clinical context (i.e., login name, patient name, and

medical record number associated with the study being

displayed from the context_server as well as launch appli-

cations such as a Web browser. For this application several

script buttons were created to capture the name of the

current user along with the UID (unique identifier) of the

study being displayed and to launch a Web browser

(Internet Explorer version 5.5, Microsoft, Redmond, WA)

using a URL (uniform resource locator) containing this

information. The URL points to a JSP page, which uses the

information contained in the URL to dynamically generate

an HTML page to send back to the browser.

The Java Message Service (JMS) provider is the final

component of this project. JMS is a vendor agnostic API

from Sun Microsystems for enterprise messaging. ‘‘An en-

terprise message system, or Message-Oriented-Middleware

(MOM), allows two or more applications to exchange in-

formation in the form of messages.’’3 In JMS nomenclature

a MOM is considered a ‘‘provider’’ and applications that

send and/or receive messages are referred to as ‘‘clients.’’

Because JMS is independent of the MOM vendor, a devel-

oper can replace one provider with another without having

to completely rewrite the application. A key feature of any

provider is support for asynchronous message delivery,

where a message sender does not have to wait for the mes-

sage to be received but instead can continue processing

immediately after sending a message. Instead the sender

relies on the provider to ensure the message will be delivered

to the appropriate recipients. The provider is responsible for

handling any software or hardware failures that may occur

while attempting to deliver the message. In the event of a

failure, the provider is expected to retain the message in a

‘‘persistent store’’ (either a database or file) for redelivery.

The provider will attempt to redeliver the message until ei-

ther it is successfully sent or a message-specific timeout

condition is triggered. Consequently each message must be a

self-contained package with enough state information and

data for the recipient to process it. The JMS specification

places no restrictions on the structure of a message. A

message can contain text, other data types such as numbers

or dates, or an opaque array of bytes.3,4

The JMS API defines two messaging architectures: the

publish-and-subscribe (pub/sub) model and the point-to-

point (PTP) model. In the pub/sub model a single client will

publish to a messaging channel called a ‘‘topic,’’ at which

point the provider will deliver the message to all recipients

subscribed to that topic. In the PTP model a single client

sends a message to a ‘‘queue’’ which the provider then sends

to a single receiver listening on that queue. In addition to

filtering by topic or queue, a message receiver can use ‘‘se-

lectors’’ to further filter incoming messages based on each

message’s properties and payload.3,4

In the beginning, OpenJMS version 0.7.4 (http://open-

jms.sourceforge.net/), a freely available, open-source JMS

provider, was used; however, subsequent versions of the

application rely on Softwired’s (Zurich, Switzerland) iBus//

MessageServer version 4.5.2. iBus//MessageServer was used

in place of OpenJMS because it is closely integrated with

iBus//Mobile Gateway (Softwired, Zurich, Switzerland),

which acts as a proxy between the JMS provider and mobile

JMS clients. iBus//Mobile Gateway provides an extra layer

of robustness for handling the volatile nature of mobile de-

vice connections as well as the ability to connect to a variety

of mobile devices, including PDAs, pagers, and cell phones

using a multitude of protocols such as TCP/IP, SMS (short

message service), or WAP (wireless application protocol).

Both the iBus//MessageServer and iBus//Mobile Gateway

were deployed under Windows 2000 Server Edition.

The PDA used for initial development is the Sharp

(Mahwah, NJ) Zaurus 5500 outfitted with an 802.11b (‘‘Wi-

Fi’’) CompactFlash card, model DCF-650 W (D-Link Sys-

tems Inc., Irvine, CA). The Zaurus runs a version of the

Linux kernel designed for embedded and mobile devices. In

addition, the PDA ships with the Insigna (Fremont, CA)

Jeode JVM (Java Virtual Machine). The Jeode JVM con-

forms to the PersonalJava API version 1.2, a subset of the

standard Java API optimized for PDAs (http://java.-

sun.com/products/personaljava/).

82 TELLIS AND ANDRIOLE



RESULTS

Input of a wet-reading from a PACS display
station makes use of the Web-based form pic-
tured in figure 2. The form is accessed using a
script button embedded within the PACS display
station’s GUI. The form automatically contains
the current clinical context such as the name and
medical record number of the patient being dis-
played, the exam’s accession number and de-
scription, as well as the name of the current user.
The form allows radiologists to record any ad-
ditional clinical history aswell as the findings and
the name of the personwithwhom they discussed
the findings.Once awet-reading has been entered
using this form, the Web server converts it into a
JMS message and sends it to a JMS topic on the
JMS provider in figure 1. The provider then
distributes the same message to any clients sub-
scribed to the topic. In the case of a new wet-
reading submission, the JMS message is sent to
the printing client, the HL7 client, and the iBus//
Mobile Gateway. To ensure that the wet-reading
message is fully self-contained, all the clinical and
demographic data associated with the wet-read-
ing are stored within the message. Each client is
responsible for interacting with a particular ex-
ternal system and therefore processes the same

message differently. In the case of the printing
client, the message is used to generate the print-
out pictured in figure 3. The printouts are sent to
networked printers in the emergency depart-
ment. The HL7 client converts the message into
an HL7 message, which is used to notify the RIS
(Radiology Information System) of the availa-
bility of the wet-reading. The iBus//Mobile
Gateway distributes the message to JMS clients
running on the networked PDAs, which then
present an alert to the user as shown in figure 4.
The PDA JMS clients use JMS selectors to filter
out those messages that are not relevant to the
user. The selectors allow only those messages
whose requestingphysician namematches that of
the PDA owner to be accepted by the JMS client
and to trigger an alert.

Confidential Q/A reviews of wet-readings are
also entered from the PACS display stations
using the form pictured in figure 5. The reviews
are performed by radiology attending physi-
cians and are done on the wet-reads entered by
radiology fellows or residents. The review
tracks whether a questionable, minor, or major
discrepancy between the wet-reading and the
final report exists, as well as whether the dis-
crepancy affects short-term or long-term patient
management. If a discrepancy is found, or if the

Fig 2. Web form used for entering wet-reading from PACS display station.

INTEGRATING MCIS USING THE JAVA MESSAGE SERVICE 83



Fig 3. Sample printout sent to emergency department.

Fig 4. Personal digital assistant GUI (graphical user interface) screens.

84 TELLIS AND ANDRIOLE



attending physician has any comments, an
e-mail message is automatically sent to the
resident or fellow. If an e-mail message is to be
sent, the Web server creates a JMS message,
which is sent to the JMS provider and delivered
to the e-mail JMS client. When the e-mail JMS
client receives this message, it attempts to use
the radiology department’s e-mail server to re-
lay the wet-read review to the e-mail recipient.
In addition, the reviews can be printed out us-
ing the same JMS mechanism as the wet-read
printouts.

DISCUSSION

The built-in error recovery mechanisms of
JMS have allowed the application to gracefully
deal with a variety of error conditions, includ-
ing printer and network failures, and e-mail and
RIS downtimes. As of this writing, the printer,
e-mail, and HL7 clients of the application have
been active for approximately 6 months. The

printer and HL7 clients have been processing
approximately 80 messages per day, with the
e-mail client processing approximately 5 mes-
sages per day. During this time no messages
have been lost, despite multiple occurrences of
each failure condition mentioned above. The
PDA piece is still under active development, so
no performance and reliability statistics are
available at this time, although development
testing, such as simulated JMS provider, gate-
way and network outages, has shown that the
iBus//Mobile Gateway is able to handle the
types of network failures and bandwidth fluc-
tuations usually associated with Wi-Fi connec-
tions. Having this level of robustness was a
requirement for acceptance by the radiology
faculty and integration into the interpretation
workflow. Given that the application has com-
pletely replaced the original fax-based wet-read
notification process, it now being used for other
non-ED, urgent cases, such as those from the
‘‘pre-op’’ and screening clinics.

Fig 5. Web form used for entering Q/A review of wet-reading.

INTEGRATING MCIS USING THE JAVA MESSAGE SERVICE 85



The vendor-independent nature of the JMS
API also proved important during development
of this application. During the first stages of
development the OpenJMS provider was used.
The subsequent migration to the iBus//Mes-
sageServer provider was seamless, and only re-
quired changes to the JMS clients’
configuration instead of modification of each
client’s Java code. Development time was also
reduced by the application of JMS selectors and
the use of the pub/sub architecture. For exam-
ple, a single topic was used to handle all wet-
read JMS messages. Each JMS client that sub-
scribed to the topic (the printer client, HL7
client, and PDA clients) used selectors to decide
whether to process the message. The Web
server, which generates the JMS messages,
needs only set flags on the messages indicating
whether it wants them to be printed, sent to the
RIS, or distributed to the PDAs. All the ma-
chinery required to route these messages is
contained within the JMS provider, allowing
the programmer to focus development effort on
the application’s business logic and GUI design.

CONCLUSION

This application has completely replaced the
use of the fax-based wet-read notification

process. The ability of the JMS infrastructure to
recover from network and server failures has
allowed the application to process approxi-
mately 15,000 wet-reads over a span of
6 months without a single loss. Additionally,
the switch from one JMS provider, OpenJMS,
to another, iBus, without requiring a complete
redesign of the application is evidence of the
JMS framework’s vendor agnostic design and
platform independence. This project has shown
that JMS is one potential solution for inte-
grating clinical systems.

ACKNOWLEDGMENTS

This work is supported by the SCAR 2002 research grant

in imaging informatics.

REFERENCES

1. Ullman, JD, Widom, J: A First Course in Database

Systems. New Jersey: Prentice-Hall, Upper Saddle River,

1997

2. Shepard, G, King, B: Inside ATL. Redmond, USA:

Microsoft Press, 1999

3. Monson-Haefel, R, Chappell, DA: Java Message Serv-

ice. Sebastopol, California: O’Reilly & Associates Inc., 2001

4. Hapner, M, Burridge, R, Sharma, R, Fialli, J, Hasse,

K: Java Message Service API Tutorial and Reference:

Messaging for the J2EE Platform. San Francisco, Cali-

fornia: Addison-Wesley, 2002

86 TELLIS AND ANDRIOLE


