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OLORECTAL CARCINOMA is the
leading cause of cancer-related death in
the nonsmoking United States population, with
about 60,000 annual fatalities." Yet it is the
most preventable cancer if the cancer precursor,
polyps, can be detected and removed at an early
stage. The current gold standard for colorectal
cancer screening is optical colonoscopy because
of its high accuracy compared to other screen-
ing methods such as fecal occult blood test,
double-contrast barium enema, and sigmoid-
oscopy. Increased optical colonoscopy compli-
ance for subjects over 50 would substantially
decrease the cancer mortality, however, fewer
than 40% of the average risk adults reported
having received a optical colonoscopy in the
past 5 years.! Optical colonoscopy compliance
is low due to its discomfort, perforation risk,
high cost, and high negative statistic.
Computed  tomographic  colonography
(CTC), or virtual colonoscopy, has been con-
sidered a promising replacement for optical
colonoscopy as a regular screening method since
its introduction in 1994 and has been an active
research field for both clinical researchers and
technology developers. On the clinical side,
many medical centers perform a CTC proce-
dure, and some of them are doing large
population clinical experiments on CTC. A
multi-center clinical trial’> of CTC over a large
asymptomatic population (1233 subjects) pub-
lished encquraging results, which show the via-
bility of virtual colonoscopy as a screening tool.
Regarding radiologist interpretation, CTC
acceptance has been hindered by two issues,
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detection accuracy, which is generally unac-
ceptable for clinical practice, and interobserver
variances. #**"With observers at diverse levels of
expertise and using different reading methods,
multiple centers reported radiologists’ CTC
results with sensitivities between 20% and 90%
for 6-mm and larger polyps.® Aside from inter-
pretation variation, detection performance is
affected by different raw image quality due to
patient preparation, scanner parameters, and
dose consideration. On the technology side, in
addition to CT scanner improvement from sin-
gle to multi-row detectors, researchers have
made efforts to use computer techniques to solve
the above clinical problems. Volume rendering
and visualization that are available on com-
mercial systems directly affect radiologists’
results.® Computer-aided polyp detection
(CAPD) or computerized polyp detection
(CPD) may improve the platform to address the
above issues in clinical research. Yoshida- and
Nappi reported a fully automatic CPD system
tested on 43 patients with 12 polyps and yielded
1 to 2 false positive results (FPs)/case.” Nappi
and yoshida have extended the algorithm by
introducing another geometric feature, modified
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gradient concentration, and applied the system
to more patients but with no substantial
improvement.'® Gokturk et al reported their
statistical ROSS method used in false positive
reduction,('"'?) which produced a 40-50%
increment of specificity without sensitivity loss,
an encouraging result but still far from radiol-
ogist accuracy, especially for the very low spec-
ificity. The main difficulties and challenges of
CAPD in CTC are summarized by Summers.'>

Given the CTC raw data, segmentation is the
first step in our CPD scheme. There are two
major segmentation approaches, surface meth-
ods and volume methods. In surface methods, a
mesh surface that represents the colon lumen
needs to be segmented from the volume
data.'*-16 In volume methods, the lumen surface
voxels and/or their neighboring voxels are seg-
mented using gradient operators(g’lo’”) and
volume subtraction.® There is no convincing
proof for the advantage of either method.

For the subsequent polyp detection, there are
also two sources for feature calculation. They
are:

o Local volumetric information calculated
from the intensity values of a small volumet-
ric neighborhood.

e Local shape information calculated from the
mesh surface structure.

The local volumetric information approach uses
the intensities of voxels in a neighborhood and
the extracted features computed from them so
that a CPD algorithm can classify the neigh-
borhood. For example, Yoshida and Nappi.®
defined the local shape index (SI), curvedness
(CV), and directional gradient concentration
(DCG) as three geometric features in their clas-
sifier. Statistical values based on voxel intensities
.may provide useful features. When local shape
information from the mesh surface is used, cur-
vature-based shape features can be calculated

from a group of connected vertices or from the .

polyp candidates. Also the size, roundness, etc.,
can be obtained easily from the surface data.
Furthermore, the surface method intrinsically
reduces the noise effect in curvature calculation.

Making the. decision to use one or both of
the sources to calculate the geometric features
is the beginning of feature selection and
reduction. Selection is accomplished by obser-
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vation, éxpert opinion, taking all possible
measureméigts, and/or any other methods that
transform Knowledge of the system into met-
rics. Feature reduction is the subsequent and
optional procedure to find the most useful and
most independent set of features, from the
originals, that also produces the optimum
classification. In many practical situations,
feature reduction is accomplished by observa-
tion or evaluating the system performance with
a framing database.

The goal of classifier selection is to find the
best classifier for partitioning the feature space.
Bayes classifiers'® are well-studied and widely
used in many medical applications. A hyper-
plane, corresponding to a linear discriminant
function (LDF), and a second-order surface,
corresponding to a quadratic discriminant
function (QDF), are the most frequently used
Bayes classifiers because of their simplicity and
effectiveness. Support vector machines (SVM)
transform the given feature space to higher
dimensions so that the sample vectors are line-
arly separable in the transformed space.!! In the
above classifiers, we often assume(l) normal
distributions for both the true positive and false
positive, or non-polyp categories, and (2) suffi-
cient training samples for parameter estimation.
However, these assumptions are not quite
practical in polyp detection. The first reason is
that the false positive category is the dominant
class, which may bias the calculation of the
average covariance matrices. The second reason
is that the normal distribution assumption for
the false positive category is questionable be-
cause the category embraces anything other
than polyps and the occurrences of the feature
vectors of false positives in the feature space are
generally unpredictable. Therefore, we propose
an MLDF method, which corresponds to sev-
eral empirical hyperplanes that frame a hyp-
ercubic region in a given feature space, and a
MAP method, which requires parametric
training only for the polyp category.

We have developed a fully automatic CPD
system, which begins with raw DICOM data
and ends with a list of detected polyps by
employing a typical CAPD/CPD scheme: seg-
mentation, polyp candidate generation, and
false positive reduction. In our system, both
supine and prone scans are combined to in-
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Fig 1. The system flowchart for computerized polyp
detection.

crease the colon coverage in computerized seg-
mentation'* and in turn to improve the detec-
tion sensitivity. Colon deformation between the
two positions makes the surface registration
practically unsolvable. Fortunately, the clinical
significance of patient-based accuracy of CTC
renders registration unnecessary; if a polyp
showed in either or both scans, the patient
would be forwarded to optical colonoscopy. In
this specific situation, we redefine the accuracy
terms for the CPD when using both scans. A
true positive occurs when an optical colonos-
copy polyp finding is CPD detected in either or
both scans; a false positive occurs when a CPD
finding in any scan cannot be matched to any of
the optical colonoscopy polyp findings. Our
results demonstrate that using both scans im-
proves the detection sensitivity. The segmenta-
tion algorithm is presented in the accompanying
article.' In this article, we focus on the sub-
sequent polyp detection. The details of our
detection algorithm as well as a brief introduc-
tion of segmentation are presented below in
Methodology, while the section titled Data de-
scribes the scanner parameters and the proce-
dure for data acquisition. A description of the
detection results follows; and we close with the
Discussion and Conclusions.

METHODOLOGY

We use a surface representation output from
the segmentation algorithm and simplify the
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following detection task by taking two steps,
polyp candidate generation and false positive
reduction, a detection strategy used by several
other CPD schemes.(*'%'>16). The first step
should provide maximum sensitivity, yet com-
putation on each vertex must be light because it
processes all the smallest units of the segmen-
tation, which may contain millions of vertices in
the mesh surface. Subsequently, the second step
uses more features to distinguish the true polyps
from the polyp candidates. Polyp candidate
generation and false positive reduction can be
considered as two classifiers, as shown in Fig. 1.
Although many CPD algorithms share this or a
similar framework, their details may differ sig-
nificantly. The details of our algorithm are pre-
sented in the paragraphs that follow.

Colon lumen Segmentation

Segmentation is the basis for detection, and
the accuracy of the segmented surface, espe-
cially shape accuracy, directly affects detection
performance. We have developed a novel and
efficient segmentation algorithm.'* Briefly, 2-D
imaging techniques are employed for a reliable
and fast seed selection for the following 3-D
region-growing that uses an empirically deter-
mined near-air threshold of -814 Hounsfield
units (HU).!* Simultaneously, an improved
marching-cubes algorithm leads to the fast
generation of a compact mesh surface. The 3-D
region-growing method provides mesh surface
at sub-voxel accuracy, which is sufficient for
6-mm and larger polyp detection. Fig. 2. shows
a rendered segmented lumen surface and the

‘mesh details of small patches on the surface.

Because non-duplicated vertex mesh surfaces
are required for fast and accurate geometric
feature calculation, we remove the mesh vertex
redundancy by uniquely using a hash table ap-
proach that successfully arranges the mesh
surface in a well-organized vertex-triangle-
structure. Computer time on the order of 2 min
for a million-vertex surface is achieved rather
than several hours needed when using a generic
searching algorithm. In the data structure that
we have implemented, every vertex has direct
reference to its neighbor triangles, while every
triangle has direct reference fo its component
vertices.
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Fig 2. An example of the segmented mesh surface. (a) is the rendered surface of the entire segmented colon lumen. {b} shows
the mesh details of a small region outlined by the small rectangle b. (c) shows the mesh details of a deep fold outlined by the small
rectangle c. The views in (b) and (c} are rotated and enlarged but not by the same scale.

Polyp Candidate Generation

After colon lumen segmentation, the surface
mesh is stored in the data structure. In polyp
candidate generation, the local geometric fea-
tures of all the vertices on the mesh surface are
calculated. Polyp candidate detection is then
conducted using these local geometric features.

Geometric Feature Calculation.

wo major 3-D surface shape features are se-
lected for polyp candidate generation. They are
the two principal curvatures, ie. , the maximum
and minimum curvatures Ky., and Kpin.'® The
principal curvature of a vertex can be calculated
from its neighboring vertices, which can be
efficiently retrieved from the vertex-triangle-
structure. As defined by the data structure, the
n-level depth neighborhood of a vertex com-
prises a group of connected vertices and is de-
fined as follows:

1. A I-level neighborhood is the union of the
vertices constituting the neighboring trian-
gles of the vertex.

2. An (n + 1)-level neighborhood is the union
of the vertices constituting the neighboring
triangles of the vertices in an #n-level neigh-
borhood.

A 3-level neighborhood of a given vertex, which
covers an area about 5-mm in diameter, is used
to estimate the curvatures of the vertex.

Gaussian curvature (GC) and mean curvature
(MC) can be obtained from K., and K.,
using Eq(1):

GC = Krnin X Kmax

MC = (Kmin + I<max)/2

Given the vertices from a 3-level neighbor-
hood, we use the algorithm described in stockily
and Wu?° to calculate the principal curvatures.
Using Eq (3), we can easily calculate the normal
direction of the vertex from its neighboring
triangles, which is the area-weighted sum of the
normal directions of all of the neighboring tri-
angles. The surface normal of a triangle is en-
coded in the data structure by the order of its
component vertices.:

N ' N
= (Z Area; x Normal,-) / (2; Areai>,

i=1

where N is the number of triangles within the
3-level neighborhood of a vertex, i is the trian-
gle index, and Normal is calculated from the
vector product of two of its sides in their stored
order in the data structure.

Polyp Candidate Detection.

After the GC and MC of each vertex are
calculated, the vertices are grouped according
to their connectivity and the following condi-
tions:
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Fig 3. Geometric features of a polyp candidate. (a) Top view of a group of vertices the represent a polyp candidates; the 3-D PCA
algorithm provides the two largest axes for EF. (b) Side view of the polyp candidate; the straight line pointing upward is the
calculated normal direction of the polyp candidate. (¢} The 2nd order surface best fits the polyp candidate {d) Planes A and B
correspond to the maximum and minimum curvature planes of the 2nd order surface. {e} and (f) illustrate MXR and VINR,
respectively.

lon, polyp-like surface regions near the catheter,

GC>0 , and small artifacts due to partial volume effect
MC (PVE) or imperfect segmentation. Although
thousands of FPs are produced as polyp can-
A polyp candidate is identified when more didates, high sensitivity can be ensured for
than 10 connected vertices satisfy Eq (4) and polyps of significant size, ie, 6-mm and larger.
(5). Theoretically, the two conditions in Eq (4) With respect to the millions of vertices in the
select all the vertices whose second-order fitting colon lumen, polyp candidate generation effec-
surfaces of their local neighborhoods protrude tively removes most normal regions with light
into the colon. This is a major shape feature of a computation.
polyp, with inclusion of haustral areas. Eq (4)
also requires that the smallest radius of the False-Positive Reduction
matched surface be smaller than 10 mm
according to the definition of the GC and MC. As the outcome of the first step, a polyp
In real situations, some vertices in normal colon candidate comprises a group of vertices in a
regions, because of small variations on the small surface patch, which is stored in the
segmented lumen surface, might be selected as same kind of vertex-triangle-structure as used
well; however, these vertices are less likely to be in the lumen segmentation. For every polyp
connected as a group larger than the predefined candidate, some principal geometric features of
size. Among the polyp candidates may be found the surface patch are calculated and applied in
the true polyps, false positive polyps on folds, the false-positive reduction step. We propose a

spike artifacts, isolated artifacts inside the co- rule-based classifier, namely an MLDF classi-
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fier, and a statistical classifier, namely a MAP
classifier, to remove FPs. Both classifiers are
based on the principal geometric features de-
scribed next.

Principal Geometric Features of
Polyp Candidates.

In polyp candidate generation, the geometric
features of a vertex are calculated using its 3-level
neighborhood, whereas, in false positive reduc-
tion, the geometric features of a polyp candidate
are calculated using the grouped vertices of the
small surface patch. Some principal geometric
features, such as roundness and other extended
features of a potential lesion, have been quanti-
fied. Six shape/location features are defined as
the principal geometric features of polyp candi-
dates, some of which are illustrated Fig. 3.

1. Maximum polyp radius (MXR):

MXR = 1/minimum curvature of the
polyp candidate

2. Minimum polyp radius (MNR):

MNR = 1/maximum curvature of the
polyp candidate

When estimating the maximum and minimum
curvature of a polyp candidate for MXR and
MNR, the same algorithm was employed as in
the polyp candidate generation step; the normal
direction of a polyp candidate is still the area-
weighted summation of the component triangles
(see Eq 3). The polyp candidate center is taken as
the vertex that projected farthest along the cal-
culated normal direction. See Fig. 3b, and 3¢

3. Polyp surface area (SA):

SA = Total surface area of all
the triangles in the polyp candidate

4. Roundness of the polyp candidate (RN):If a
polyp candidate locates on a fold, all the
normal vectors of the associated triangles
would be well aligned along the same plane.
A least-squares method is used to locate the
best aligned plane. RN is calculated by the
mean least-square error of the alignment-ie
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the mean square distance from all the normal
vectors rﬂ group to the aligned plane. The-
oretically, RN = 0 if the candidates are on
the fold.

5. Elongation factor (EF):

EF= Max axis/2nd Max axis

The maximum (Max) axis and the 2nd maxi-

mum (2nd Max) axis are calculated using 3-D

principal component analysis (see Fig. 3a). EF

restricts the 3-D distribution of the polyp ver-
tices to be pie-shaped instead of elongated.

6. Distance from the catheter (DC) represents
the distance from the center of a polyp
candidate to the automatically obtained
catheter centerline. We introduce this loca-
tion feature because some of the segmented
regions around the catheter for air inflation
mimic polyp geometry.

These principal shape/location features are se-
lected or combined in classification in the false
positive reduction step.

Classifier Design

Rule-based method-MLDF: We have set up
an MLDF system, which is a rule-based classi-
fier. The deterministic MLDF has predefined
thresholds based on subjective observation
according to the features’ geometric meanings.
A true positive occurs when a polyp candidate
satisfies the following conditions:

- 1 MXR < oy, where a,, is the upper limit of

the MXR for the true polyps larger than a
given size, ps. 20 mm is set for a,, in the
prototype classifier. This criterion is intended
to remove some FPs on ridge-shaped folds
with a relatively large maximum radius.

2. MNR < B,,, where B, is the lower limit of the
MNR of a true polyp larger than ps. 1.5 mm is
set for B, in the prototype classifier. This is
intended to remove some spike-like FPs
produced by noise or partial volume effect.

3. S4 x RN > §,, combines the analysis of S4
and RN. When S4 is small and RN is large,
the polyp candidate is possibly the tip of a
real polyp. When SA is large and RN is
small, the candidate is more likely on a fold.
Using 5 large randomly selected polyps
identified by an experienced radiologist
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(detection of polyps larger than 10 mm by
radiologists has high accuracy) as training
samples, we set 5, as 2.8 mm?

4. EF < 1y, is set so that elongated FPs on
folds can be removed. 5:1 is set for v, in the
MLDF classifier.

5. DC > o, where o, constraints the mini-
mum distance from the catheter. We set o),
as 15 mm, considering that the diameter of
the catheter is about 10 mm.

These criteria define the multiple (five) planes
that outline the feature space enclosing the true
positive category. Although each criterion is
relatively mild, a false positive candidate rarely
meets all conditions.

Statistical method-MAP classifier: Tradi-
tional Bayes classifiers, such as LDF and QDF,
can be limited in detection performance because
of the normal distribution assumptions, espe-
cially for the non-polyp category. A MAP clas-
sifier is based on the likelihood that the polyp
candidate will be a true positive given the feature
vector and it ignores the estimation of the pat-
terns for the non-polyp category. With the
assumption of the selected features’ indepen-
dence, the a posteriori probability is expressed as

where W, is a true positive event, Y; is the
feature vector of the jth polyp candidate, and n
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pendence bécause any one feature is not re-
stricted by thé?§yalues of the others.

The parametric estimation of the Gaussian
distributions for these selected features uses the
CTC polyps from our data that were identified
by a radiologist and confirmed by a gastroen-
terologist. The CPD score of a polyp candidate
is then defined as,

Pl j,lWl
%) H P0)

_ ﬁﬂimexp(—O.S((yj,,- — u,-)a,-)z
P Pi(yy)

where p; () is the estimation of the overall
probability density function of the ith feature,
which is directly calculated from the occurrence
frequency using all the polyp candidates.
According to Eq (10) and (11) a higher value of
the CPD score indicates a larger a posteriori
probability because P(Wj) is a constant. Sub-
sequently, the polyp candidates are classified by
the MAP classifier using the following criteria

> Threshold and DC; > 15mm, thej
th polyp candidate is a true polyp;

PWIIY = Y)) = [ P(W1lyi = y1)

i=1

;1 Poi=

i=]

is the number of selected features. P() is
probabilities, and p(.) is probability density
functions or conditional probability functions.
To implement the MAP classifier, we use the
following combinations of the shape features:
(MXR + MNR)[2, MNR | MXR, EF, SA and
RN. Considering the geometric meanings of
these selected features, we assume their inde-

2 P(Wl,yl_ /

Y;
A)) Otherwise, thejthpolyp candidate
isnot a polyp

yl,]) i1

Y2
Y; = -J g

X P(y; =yl W) .

Yin
ll W 1

(J’J, )

In Eq (12), we use the distance feature DC as a
rule to filter out the catheter-created lumen
deformations with polyp-like shapes. To deter-
mine the threshold in Eq (12), we use FROC
apalysis. By varying the threshold, we generate
a FROC plot with its abscissa as thé patient
based sensitivity and the ordinate as the false
positive rate.
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Table 1. Patient-based accuracy of the polyp detection algorithm based on MLDF using cutoff size (optical colonoscopy size) of 3

mm and 6 mm. Y

Scan without contrast Scan with contrast All scans

Supine Prone Both Supine Prone Both Supine Prone Both
=3 mm True P 11 10 15 15 8 15 26 18 30
=3 mm False P 10 8 1 8 6 11 18 14 22
=3 mm Total P 16 16 16 16 16 16 32 32 32
=3 mm Total N 18 18 18 18 18 18 36 36 36
=3 mm Sensitivity 69% 63% 94% 94% 50% 94% 81% 56% 94%
=3 mm Specificity 44% 56% 39% 56% 67% 39% 50% 61% 39%
=6 mm True P 7 7 10 9 8 9 16 15 19
=6 mm False P 14 ki 16 14 6 17 28 17 33
=6 mm Total P 10 10 10 10 10 10 20 20 20
=6 mm Total N 24 24 24 24 24 24 48 48 48
=6 mm Sensitivity 70% 70% 100% 90% 80% 90% 80% 75% 95%

42% 54% 33% 42% 75% 29% 42% 65% 31%

=6 mm- Specificity

NOTE: 3 mm is the polyp size that we consider CTC capable of detecting using our system, and 6 mm is generally accepted as the
polyp size that requires polyp removal; P = positives, N = negatives.True positives: the number of subjects that have at least one
CPD detected polyp and at least one optical colonoscopy polyp larger than 3 or 6 mm.False positives: the number of subjects that
have at least one CPD detected polyp but no optical colonoscopy polyp larger than 3 or 6 mm.Total positives: the number of
subjects that have at least one optical colonoscopy polyp larger than 3 or 6 mm.Total negatives: the number of subjects that have

no optical colonoscopy polyp larger than 3 or 6 mm.
DATA

The CTC data for this work were collected
using a 4-slice helical CT scanner (GE Light-
Speed QX/1, General Electric Medical Systems,
Milwaukee, WI.) with 5-mm collimation, 120
KVp, and 180 mA for the supine position and
80 mA for the prone position. The raw data
were reconstructed and interpolated at 1-mm
intervals. The 34 subjects enrolled for this
study adhered to a special diet 48 h preceding
the CT scans. On the exam day, the subject
had two abdomen CT scans at supine and then
prone positions using the above parameters. A
few hours later, the subject underwent a sec-
ond set of scans after drinking 36 oz of fluid
that dilutes 1 oz of oral iodinated contrast
agent. After these scans, traditional optical
colonoscopy was performed on the same day.
The volumetric data for a single CTC scan was

large and normally comprised 300-500, 512 x .

512, 16-bit grayscale images. The oral contrast
studies were performed for clinical research to
investigate radiologist reading variation; how-
ever, for this article we did not differentiate
contrast from non-conftrast studies in our CPD
algorithm. Instead we used the contrast and
non-contrast data as two separate data sets,
providing 68 data sets regardless of contrast.

The detection algorithm was implemented in
C+ -+, and runs on both Solaris operating
system on a Sun Blade 100 (Sun Microsystems
Inc., Santa Clara, CA) and Linux operating
system (Linux 9.0 Red Hat, Inc.,) on a Dell
precision 530 PC workstation (Dell Inc.,
Round Rock, TX).

RESULTS

The segmentation algorithm is independent
of the polyp detection, and its results. are re-
ported separately in the accompanying article.*
The polyp candidate generation algorithm takes
about 2 min for a fully segmented colon, and it
provides an average of 1067 polyp candidates
per scan. We evaluated the detection perfor-
mance at the patient level by direct comparison
with the optical colonoscopy results because the
patient-level sensitivity and specificity are the
clinically important factors for screening.?! Di-
rect comparison also provides the best evalua-
tion objectivity. Some CPD/CAPD researchers,
on the contrary, evaluated their CPD schemes
using the radiologist identified polyps that were
confirmed by optical colonoscopy.”!° Hence,
those CPD results were over-evaluated because
the polyp database excluded the optical colo-
noscopy identified polyps that were not located
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Fig 4. Patient-level ROC curves of the CPD using MLDF and MAP classifiers.
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Fig 5. Patient-level FROG curves of the CPD using MLDF and MAP classifiers.

by radiologists. In our data sets, when using
6 mm (optical colonoscopy size) as the cut-off
size, 20 of the 68 subjects are positive according
to optical colonoscopy, whereas 32 of the 68 are

positive with 3 mm as the cut-off size.(optical
colonoscopy size).

In all 68 data sets, a total of 125 polyps
passed the MLDF classifier using the predeter-
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mined parameters described above in the sec-
tion titled Classifier Design and were detected
as CPD identified polyps. The results are shown
in Table 1 and are categorized according to
supine, prone, and both scans, showing the
sensitivity improvement by combining the two
scans. Results with and without oral contrast
are also listed. From Table 1, we see that using
both scans improves the patient-based sensitiv-
ity by 15% with a 6-mm cut-off size and 13%
with a 3-mm cut-off size; however, the speci-
ficity is degraded.

For the MAP classifier, we use 6mm as the
cut-off size, which is the size criterion for
selecting the sample polyps. Patient-level ROC
and FROG analyses were performed, and the
results are shown in Figs. 4 and 5. By varying
the parameters, the results of the MLDF
method are obtained and then plotted on the
same ROC and FROC axes for a performance
comparison. According to the ROC and FROC
analyses, there is no statistically significant
improvement between the MAP and the MLDF
methods; however, the MAP algorithm is more
reliable in determining the optimal operating
points from the (F)ROC curves. When our
system operates at 90% patient-level sensitivity,
the MLDF classifier achieves 47% specificity
and 1.3 FPs/case, whereas the MAP classifier
achieves 42% specificity and fewer than 1.2 FPs/
case.

The CPD algorithm performance is limited
by the CTC process. Investigating the study of
the patient with an 11-mm optical colonoscopy
identified polyp that was incorrectly detected as
negative by CPD, we found that the polyp was
also missed by the radiologist. The CPD study
missed the polyp because the colon section that
contained the polyp was not segmented on ei-
ther scan because of bad distention, a major
reason that a radiologist might miss such a large
polyp. Obviously, other factors also contribute
to human error. On the one hand, it evidenced a
limitation of CTC that a small but nonzero
probability for missing polyps, even large pol-
yps, exists. On the other hand, it explained that
using only radiologist-identified polyps is not
suitable for evaluating CPD results.

Without code optimization and parallel
computation, the automatic detection algo-
rithm requires a total of 10-15 min to process
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both scans of a subject on the described PC
system. Therefore, in vivo polyp detection is
possible when we optimize the algorithm on a
state-of-the-art PC workstation.

DISCUSSION AND CONCLUSIONS

Compared with some previous detection
schemes %1112 our algorithm is based on the
surface approach, and the CPD results and
F(ROC) curves demonstrate its effectiveness.
The expansion of the feature space with some
new geometric features or using local volume
information is likely to improve the detection
performance, especially for the specificity that is
degraded by using both scans. For example,
combining the neighboring voxel intensity values
to utilize pathology related features may help to
identify FPs due to acquisition or stool artifacts.
In the rule-based MLDF classifier, the parame-
ters were determined by observation and expe-
rience. In the statistical MAP classifier,
parametric training is performed using 18 polyps
that are practically insufficient for parametric
training regarding the shape variation of polyps.
Further effort in the MAP classifier would aim at
a larger and more reliable polyp database and
statistical models with correlated features that
require the estimation of the covariance matrices
of a joint Gaussian distribution.

With CT hardware improvements, especially
16-slice scanners, it is practical to obtain CTC
with isotropic volumetric data within a single
breath-hold for most patients under a similar or
lower x-ray dose than used for this study. The
partial volume effect would be reduced and
z-axis resolution would be improved. The rela-
tively higher radiologist polyp detection accu-
racy reported by Pidchardt et al * is possibly
due to their CTC acquisition using 1.5-2.5-mm
collimation while most other research institutes
use 2.5-5.0-mm collimation. Qur surface-based
CPD algorithm can readily reflect the hardware
improvement in the detection performance.

In conclusion, we have presented an efficient
and effective automatic polyp detection algo-
rithm that uses prone and supine scans and re-
sults in substantial patient-level sensitivity
improvement over the use of one scan only.
Despite the decreased specificity, using both
scans in CPD is advocated for three reasons: (1)
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sensitivity is clinically important for a screening
method; (2) the dual scan sensitivity improve-
ment is unachievable by a single scan, because
the images from one position reveal some pol-
yps that are not shown in the images from the
other position due to colon deformation and
floating residual fluid; and (3) the degraded
specificity is likely to be improved by the more
sophisticated classifiers. The detection perfor-
mance of the CPD using the MLDF algorithm
is encouraging, demonstrating the effectiveness
of our surface approach and the feature selec-
tion. The MAP classifier with statistical para-
metric training provides slightly lower detection
performance; however, it has potential areas for
improvement. Besides more complex models,
such as non-normal distributions and correlated
features, we can incorporate more principal
features and optimize the feature selection and
combination. Although patient-based accuracy
has clinical relevance and implies the usefulness
of the presented CPD system, polyp-based
accuracy analysis is a goal for obtaining more
complete validation of the computerized polyp
findings and for providing localization infor-
mation for polypectomy.
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