
Creation of DICOM—Aware Applications Using ImageJ

Daniel P. Barboriak, M.D., Anthony O. Padua, B.S., Gerald E. York, M.D., and James R. MacFall, Ph.D.

The demand for image-processing software for radiology
applications has been increasing, fueled by advance-
ments in both image-acquisition and image-analysis
techniques. The utility of existing image-processing
software is often limited by cost, lack of flexibility,
and/or specific hardware requirements. In particular,
many existing packages cannot directly utilize images
formatted using the specifications in part 10 of the
DICOM standard (‘‘DICOM images^). We show how
image analyses can be performed directly on DICOM
images by using ImageJ, a free, Java-based image-
processing package (http://rsb.info.nih.gov/ij/). We dem-
onstrate how plug-ins written in our laboratory can be
used along with the ImageJ macro script language to
create flexible, low-cost, multiplatform image-process-
ing applications that can be directed by information
contained in the DICOM image header.

KEY WORDS: Image processing, image analysis,
DICOM, Java

BACKGROUND

The advent of new radiological applications

and the rapidity of advances in image-

processing techniques have led to increasing

demand for customized, flexible image-analysis

software. For most research applications, two

approaches are used to obtain software for image

analysis: the software is either purchased from a

commercial vendor or developed and produced in-

house by individuals with computer programming

experience. If a purchased software package can

be programmed or modified, a combination of

these two approaches may be used.

Packages available to perform image processing

vary widely in terms of flexibility and cost. They

may be designed to run on a single operating

system or on multiple systems. Some packages

can be implemented only on proprietary work-

stations or may require that images are available

in particular formats.

The use of images formatted using the specifi-

cations in part 10 of the DICOM standard

(‘‘DICOM images^) as a starting point for image

analysis offers several advantages. First, it is often

possible to obtain these images directly from

imaging equipment and/or PACS storage without

the need for intermediate conversion steps. Sec-

ond, the DICOM headers included with these

images contain valuable information, such as scan

parameters in MR and CT imaging, that may be

lost if images are converted to another format.

The information on the header can be useful to

automate analyses. For example, information on

the field of view could be used to modify the size

of images in the displayed output of the analysis.

Assuming that the information on the DICOM

header is correct, the results of the image analysis

may be more reliable using this approach rather

than an approach requiring users to input this

information. The information on the DICOM

header can also be useful for error checking,

allowing errors in the scan parameters used to

obtain source images to be more easily detected.

ImageJ (http://rsb.info.nih.gov/ij/) is a free,

open-source image-processing platform written

in Java and supported by the National Institute

of Health (Wayne Rasband, National Institute of

Mental Health). ImageJ runs on Windows,

From the Department of Radiology, Duke University

Medical Center, PO Box 3808, Durham, NC 27710, USA.

Correspondence to: Daniel P. Barboriak, M.D., Department

of Radiology, Duke University Medical Center, PO Box 3808,

Durham, NC 27710, USA; tel: 919-684-7407; fax: 919-684-

7157; e-mail: barbo013@mc.duke.edu

Copyright * 2005 by SCAR (Society for Computer

Applications in Radiology)

Online publication 19 April 2005

doi: 10.1007/s10278-004-1879-4

Journal of Digital Imaging, Vol 18, No 2 (June), 2005: pp 91Y99 91

Macintosh, and UNIX platforms, and can read

several image formats including RAW and

DICOM part 10 format images (‘‘DICOM

images^). The ability to read DICOM images as

well as the recent addition of a macro language

for ImageJ has made it possible to develop low-

cost image-processing applications on this plat-

form. We describe two open source plug-ins to

the ImageJ software package, Import Dicom

Sequence (available at http://rsb.info.nih.gov/ij/

plugins/import-dicom.html) and Query Dicom

Header (available at http://rsb.info.nih.gov/ij/

plugins/query-header.html) developed in our lab-

oratory to simplify the utilization of DICOM

images in ImageJ. We then demonstrate the utility

of this approach by describing three applications

that were implemented as ImageJ macro scripts.

METHODS

Plug-in Development

Import DICOM Sequence

ImageJ shares with several other image-analysis software

programs the capability to open and display DICOM images.

Image analysis using single images can be easily performed

using these native capabilities. ImageJ can also perform

analyses on multiple images within a DICOM series: as

currently configured, all the DICOM images in a directory

can be imported into a ‘‘stack^ of images.

The order in which DICOM image files are imported is

crucial for efficient data processing. It is important to note that

there is no ‘‘correct^ order for sorting: the most appropriate

order for sorting depends upon the application for which the

images are to be used. For many applications, the most

appropriate order is an anatomic one (inferior to superior slice

position, for example). On the other hand, a dynamic contrast-

enhanced sequence may be most logically sorted primarily by

image acquisition time and secondarily by image location.

One limitation of ImageJ is that DICOM images are

imported in order of the title of the DICOM image file. This

feature, common to many image-analysis packages, is prob-

lematic because the titles of DICOM image files are not

specified as part of the DICOM standard. Instead, each PACS

and imaging equipment vendor is free to adopt its own

convention in assigning filenames to DICOM image file. As a

result, schemes used to assign titles to DICOM image files vary

greatly between and even within PACS and imaging equipment

vendors. Importantly, there is no guarantee that importing

images in the order of DICOM image file title will result in

stack of images ordered in a clinically useful way.

A common reason for poorly ordered series is that number

suffixes on image titles are frequently not padded with zeros.

For example, ImageJ would import a file titled ‘‘image10^ after

‘‘image1^ but before ‘‘image2^ (Fig 1). This problem can be

solved by padding the numeric component of image titles with

leading zeros to make titles of equal length.

Other problems are less easily addressed. For example, for

some vendors, image titles may be assigned in the order in

Fig 1. Importing a series of images in order of image title may lead to poorly ordered image stacks. A. When the character-equivalent
of the image title is used, the title ‘‘image10’’ sorts between ‘‘image1’’ and ‘‘image2.’’ B. This problem is frequently solved by appending
leading zeros to the numeric portion of the image title. The Import Dicom Sequence plug-in uses this solution when image number
information (group:element 0020:0013) is not available in the DICOM header.

92 BARBORIAK ET AL

which the image was acquired. Although this order may often

be useful, it is generally not ideal when images are not

obtained in anatomic order (as would be the case, for example,

when an interleaved MR imaging sequence is performed).

We created the Import Dicom Sequence plug-in to help

address these problems. The plug-in modifies ImageJ’s image

sequence importing capability by sorting the images to import

them in order of image number in the DICOM header

(group:element 0020:0013). If no image number is available

in the header, the numeric component of the image title is

padded with leading zeros as described above and the images

are imported in order of the modified title.

One limitation of this approach is that only sorting by image

number is supported. This open-source plug-in can be modified,

however, to sort by other fields in the DICOM header.

Query DICOM Header

The development of a macro scripting language for ImageJ

allows the creation of flexible, sophisticated sequences of

image-processing operations that can be saved and repeated.

Macro scripts can be created by recording operations from the

ImageJ toolbar, by writing scripts using ImageJ’s reasonably

simple macro language, or both. Macro scripting in ImageJ is a

powerful way to create applications using a variety of image-

processing functions already prebuilt into ImageJ as well as

user-contributed plug-ins, many of which can be used within

macro scripts.

Although ImageJ allows users to view DICOM header

information within a text window using the ‘‘Show Info^
command, the information in this form cannot be easily used to

direct the actions of a macro script. In particular, extracting the

value of a particular DICOM tag is unwieldy using this

approach.

The Query Dicom Header plug-in is designed to retrieve

data from the DICOM header in a form convenient for use in

macro scripts. The user or script provides the group and

element code of the DICOM tag, and the value for that tag is

returned in ImageJ’s results table (Fig 2). The plug-in also

returns a value called ‘‘Type^ which specifies whether the

value for the field in the DICOM header is numeric (Type

equals 1), nonnumeric (Type equals 2), or missing or invalid

(Type equals 9). The value for the field in the DICOM header

can be extracted within a macro script using the getResult

function if the result is numeric or the getInfo function if the

result is nonnumeric, and these data can be used to direct

further image processing.

Fig 2. Use of Query Dicom Header to extract data from the DICOM header. A. A portion of the DICOM header from an image is
displayed. Two entries, Echo Time and Receiving Coil are expanded for display. (Display from NeoLogica Dicom Dumper, v.1.1,
www.neologica.it). The corresponding image is opened in ImageJ, and Query Dicom Header is used to query the Echo Time (B) and
Receiving Coil (C). The result of the query is placed in ImageJ’s Results table. Type is coded 1 for numeric data, 2 for text data, and 9 for
missing or invalid data. Query Dicom Header can also be triggered within a macro, and the result of the query retrieved within the macro
from the results table.

CREATION OF DICOM—AWARE APPLICATIONS USING IMAGEJ 93

One potential limitation* of this technique is that each

DICOM image file is assumed to be composed of a single

image and associated header data. Although current imple-

mentations of the DICOM image format generally meet this

assumption, support will be needed in the future for the

recently announced second-generation ‘‘DICOM Image Object

Definitions for MR images,’’1 which will use a multiframe

image format.

RESULTS

We used the Import Dicom Sequence and

Query Dicom Header plug-ins to produce three

example applications using ImageJ’s macro lan-

guage features. All three macro scripts are

available at http://www.radweb.mc.duke.edu/

dbplab/SCAR2004.html.

Auto Window/level

The first application uses the Query Dicom

Header plug-in within the macro script to query

and extract the values from the Window Center

(group:element 0028:1050) and Window Width

(group:element 0028:1051) fields in the header of

the active image window in ImageJ, then adjusts

the display of the image accordingly (Fig 3). This

simple script is shown in its entirety (Fig 4).

T2 Parameter Maps

The second application is designed to generate

maps of estimated T2 from dual-echo spin-echo

T2-weighted MR images (Fig 5). This approach,

which assumes mono-exponential T2 decay in the

underlying structures, has been used to character-

Fig 3. First application: windowing and leveling based on DICOM header fields. Dual echo spin-echo T2-weighted images are imported
into a stack using the Import Dicom Sequence plug-in. The macro script used the Query Dicom Header plug-in to query the Window
Center and Window Width fields in the DICOM header, and automatically sets the minimum and maximum signal intensities displayed in
ImageJ based on this information.

Fig 4. Macro script used to perform first application. The
script clears the results table, runs the Query Dicom Header
plug-in from within the macro script to extract the Window
Center (group:element 0028:1050) and Window Width (group:
element 0028:1051) fields in the DICOM header, performs error
checking to ensure the values for these fields are present and
valid, extracts the values from the results table, and uses these
values to set the minimum and maximum pixel intensities
displayed.

* The tag-related limitation mentioned at the beginning of

this paragraph was fixed on December 4, 2004 and is no longer

operative.

94 BARBORIAK ET AL

ize hippocampal abnormalities in patients with

mesial temporal sclerosis.2,3

Four steps are used to generate the T2 maps:

1. The Import Dicom Sequence plug-in is used to

import DICOM images from a dual-echo spin-

echo T2-weighted sequence into a stack. At our

institution, these images opened in image

number order will create a stack of alternating

long TR short TE and long TR long TE images

from the same location.

2. The Query Dicom Header is used to extract the

echo times (group:element 0018:0081) from the

first two images, assuming that the echo times

are identical for every image pair in the series.

3. A plug-in called Substack Maker is used to

separate the stack into two substacks, the first

containing long TR short TE images (odd

numbered images), and the second containing

long TR long TE images (even numbered

images).

4. The T2 maps are calculated using the standard

formula T2 = (TE2 j TE1)/ln(SI1/SI2), where

TEi is the echo time from the ith echo, and SIi

is the signal intensity from the ith echo. This

step illustrates how ImageJ’s mathematics

capabilities can be used to add, subtract,

multiply, or divide images by constants or

variables within a macro script. In addition,

images or image stacks can be added, sub-

tracted, multiplied, or divided by each other.

Logarithms and reciprocals of images and

image stacks can also be obtained.

T1 Parameter Maps

The third application is designed to generate

maps of T1 and S0 (equilibrium magnetization)

from T1-weighted spoiled gradient echo (SPGR)

images acquired using multiple flip angles using a

linear fit solution (Fig 6). Mapping of tissue T1 is

Fig 5. Second application: T2 parameter maps generated from dual echo spin-echo T2 weighted images. A. Dual echo spin-echo T2-
weighted images are imported into a stack using the Import Dicom Sequence plug-in. B. The macro script uses the Query Dicom Header
plug-in to extract Echo Time fields (group:element 0018:0081) from the DICOM header, and divides the stack into two substacks
representing the long TR long TE and long TR short TE images respectively. C. The T2 parametric map is calculated using a standard
formula by performing image mathematics on the two substacks and multiplying by the difference in echo times.

CREATION OF DICOM—AWARE APPLICATIONS USING IMAGEJ 95

used as a preparatory step for measuring contrast

permeability using dynamic contrast-enhanced

T1-weighted imaging.4,5 For SPGR images, the

relationship between the signal intensity obtained

at a given flip angle S(a) and the S0 and T1 is

expressed by the equation S(a) =S0 (1jejTR/T1)

sin(a)/(1 j cos(a)ejTR/T1), where TR is the

repetition time. Given the signal intensity data at

a number of known flip angles, this equation can

be solved for T1 and S0 using nonlinear fitting. An

alternative approach is to linearize the equation by

using trigonometry and rearranging terms, and to

solve for T1 and S0 from the slope and intercept.

The equation can be rewritten as S(a)/sin(a) =

mS(a)/tan(a) + S0 (1 j m), where m = ejTR/T1.

This equation is now in a linear form such that a

plot of S(a)/sin(a) versus S(a)/tan(a) has a slope

of m and an intercept of S0(1 j m).6 T1 and S0

can be calculated directly from the slope and

intercept.

The macro script application calculates T1

maps in three steps:

1. For this application, we assumed that the

SPGR images obtained at each flip angle are

placed in separate directories. The user inputs

the number of flip angles to be used in the

mapping, and the macro script then uses the

getDirectory macro function to allow the user

to specify the location of each directory

through a graphical user interface. Each SPGR

sequence is opened as a separate stack using

the Import Dicom Sequence plug-in.

2. The Query Dicom Header plug-in is used

within the macro script to extract each flip

angle (group:element 0018:1314) and the rep-

Fig 6. Third application: T1 parameter maps generated from multiple 3D spoiled gradient echo in steady state (SPGR) images using
variable flip angles. A. In this example, five series of 3D SPGR images are imported into separate stacks using the Import Dicom
Sequence plug-in. B. For the purposes of performing a linear correlation between images, each of the five stacks is converted to a pair of
ordinate and coordinate stacks using Flip Angle information obtained using Query Dicom Header. C. The slope and intercept stacks
obtained from the linear correlation of ordinate and coordinate stacks (not shown), along with information derived from the DICOM
header placed in the log table (the number of pairs and the repetition time obtained using Query Dicom Header are listed), are used to
calculate stacks of 32-bit quantitative maps of linear correlations (Rsq), equilibrium magnetization (S0) and T1.

96 BARBORIAK ET AL

etition time (group:element 0018:0080) for the

stacks. Ordinate and coordinate stacks are

produced for linear fitting by dividing each

flip angle stack by the sin(a) and tan(a),

respectively.

3. The formula for linear regression is applied to

the ordinate and coordinate stacks to perform

a least squares linear fit and solve for the

slope, intercept, and correlation. The stacks

corresponding to the slope and intercept are

used to produce pixel-by-pixel maps of T1

and S0.

DISCUSSION

Low-cost Platform for Development of
Image-processing Applications

When a research laboratory decides to use

image-analysis software for research purposes,

several fundamental decisions must be made.

First, would development of software be feasible

as an in-house project, or is there off-the-shelf

technology available to do the task? How much of

the solution can be purchased, and how much

should be produced? The answer will depend to a

large extent on local factors: familiarity with

image-analysis platforms, flexibility of the plat-

form, local support available, local programming

resources available, format of images, and hard-

ware resources (such as workstations) available.

There are many image-processing software

packages available, each with different features.

Although it is unrealistic to expect a single

software package to provide an ideal solution to

all image-analysis problems, the profusion of

software has some undesirable consequences.

Although several software packages may perform

the same type of image processing, differences in

the approach and in the coding of the software in

each package may affect the results of the analysis.

As a result, differences in image-analysis software

may make it more difficult to compare the results

obtained in one lab with those obtained in

another. This is particularly of concern because

the extent to which software packages are evalu-

ated for reproducibility and bias using test data is

quite variable. Even when testing uncovers

programming errors, software packages, especial-

ly proprietary products, may be difficult to quickly

repair.

The ideal software solution would be inexpen-

sive, flexible, run on multiple operating systems,

and support automated analyses. In addition, the

ideal software should also be able to use DICOM

images as these are often readily available and

contain valuable information in the DICOM

header.

In this article, we suggest that a programmable,

open-source, Java-based software solution offers

many advantages and illustrate this approach by

developing sample applications of varying com-

plexity using ImageJ’s macro language. This

macro language works synergistically with the

Import Dicom Sequence and Query Dicom Head-

er plug-ins to allow the development of flexible

DICOM-aware image-analysis applications.

Advantages

Assuming that the information in the DICOM

header is accurate, the adoption of a DICOM-

aware approach to image analysis offers several

advantages. The most important of these is that the

information in the DICOM header can be used to

customize analyses. In this context, it is important

to keep in mind that conversion of imaging data to

other image formats as is required by some image-

analysis software generally leads to loss of much

of the information in the DICOM header. Another

advantage is that error checking for complicated

imaging protocols becomes reasonably straight-

forward: the image headers can be queried to

ensure that image data were obtained using the

proper scanning parameters.

The use of ImageJ’s macro language to create

DICOM-aware applications facilitates the develop-

ment of automated image analyses, an approach

that saves time when repeated analyses are

performed. By reducing errors associated with

manual input of scan parameters, this approach

would additionally be expected to improve

reproducibility.

This approach will only be widely applicable if

the image-processing functions provided by the

software are reasonably broad and robust. In ImageJ,

there is native support for many image-processing

functions beyond simple image arithmetic, in-

cluding smoothing, sharpening, edge detection,

masking, binary operations, Fourier transforma-

CREATION OF DICOM—AWARE APPLICATIONS USING IMAGEJ 97

tions, and watershed transformations. In addition,

there are over 200 user-supplied plug-ins listed on

the ImageJ site, many of which can be called from

within a macro script. These plug-ins support a

wide variety of image-processing functions; for

example, addition of image noise, spatial trans-

formation of image stacks, segmentation by k-

means clustering, and specialized edge detection.

Additionally, Java-based libraries can be incorpo-

rated into ImageJ to provide expanded function-

ality. For example, matrix algebra packages such

as Jama (http://math.nist.gov/javanumerics/jama/,

National Institute of Standards and Technology)

facilitate the use of elementary matrix operations

within plug-ins. The power of macro applications

can also be expanded by incorporating ImageJ

into image-processing pipelines such as the

LONI pipeline (UCLA Laboratory of Neuro-

imaging, http://www.loni.ucla.edu/ICBM/

ICBM_Pipeline.html),7 which allow several soft-

ware packages to interact with imaging data.

The many advantages of using ImageJ as the

platform to create image-processing applications

are enhanced by ImageJ’s use of the Java

programming language and its open source code.

By using Java, ImageJ can be implemented on

computers using a variety of operating systems,

generating a cost savings compared with software

requiring proprietary and expensive workstations.

By using an open-source approach, software tools

developed on ImageJ are often more ‘‘repairable^
and ‘‘evolvable^ than software produced with

proprietary techniques. An open-source approach

also allows faster implementation of new image-

processing algorithms as they become available.

A key component of this approach is the develop-

ment of a community of interested users and

developers to provide feedback and stimulate

innovation. Over a period of years, ImageJ has

fostered an international users group which com-

municates via a mailing list (http://rsb.info.nih.

gov/ij/list.html).

Limitations

Although the number of image-processing func-

tions and plug-ins available when using ImageJ’s

macro language allows a wide variety of image-

processing problems to be addressed, there are

several practical limitations that should be kept in

mind when using this approach. Perhaps most

importantly, pixel-by-pixel processing is per-

formed approximately 100 times slower in a macro

script than in a plug-in (http://list.nih. gov/cgi-bin/

wa?A2=ind0103&L=imagej&P= R2426). As a

rule, when pixel-by-pixel processing is needed,

we use plug-ins written in Java rather than macro

scripts to perform these operations. Many func-

tions that create new images (e.g., image mathe-

matics) use a Java plug-in structure that can be

called from within macro scripts to handle image

creation with no significant loss of speed. On the

other hand, macro scripts can be useful as a

preliminary step or ‘‘mock up^ to test the

feasibility of creating a Java plug-in. We have

found little difference between the speed of a plug-

in that calls a series of plug-ins and the speed of a

macro script that calls the same series of plug-ins.

Although plug-ins are available that allow

DICOM images to be created, the ability of ImageJ

to correctly create DICOM tags with appropriate

values for these images is limited. For this reason,

there is no easy way to upload the quantitative

images such as those created in our example

second and third applications to a PACS system.

There is currently no support in ImageJ for

reading or creating DICOMDIR files, which

would allow more convenient access to a series

of images.

This approach is also limited in several respects

by limitations in the macro language itself. First,

error handling is much more primitive in a macro

script than within a Java plug-in. Second, the

graphical user interface for either entering data or

receiving text output from a macro script is

relatively primitive. Finally, passage of data be-

tween plug-ins and macro scripts can be awkward.

The macro language has been increasing in sophis-

tication since it has been introduced, and further

improvements in its functionality are expected.

CONCLUSION

We have demonstrated the utility of using

ImageJ’s macro language along with plug-ins

produced in our laboratory to produce low-cost,

automatable, DICOM-aware image-processing

applications. It should be noted in closing that

we would anticipate that these applications are

most appropriate for use in a research setting.

Software applications used for diagnostic purpo-

98 BARBORIAK ET AL

ses in a clinical setting are considered medical

devices and are generally subject to regulatory

approval from authorities such as the Food and

Drug Administration (in the United States), re-

quiring rigorous verification and validation proce-

dures for this purpose.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of a Seed

Grant from the Radiological of North America. The support of

ImageJ software by Wayne Rasband and the ImageJ users and

developers group is also acknowledged with gratitude.

REFERENCES

1. Clunie D, Parisot C: New enhanced multiframe DICOM

CT and MR objects to enhance performance and image

processing on PACS and workstations. The 21st Meeting of

the Society for Computer Applications in Radiology, Vancou-

ver, British Columbia, Canada, p 88, 2004

2. Duncan JS, Bartlett P, Barker GJ: Technique for

measuring hippocampal T2 relaxation time. Am J Neuroradiol

17:1805Y1810, 1996

3. Duncan JS, Bartlett P, Barker GJ: Measurement of

hippocampal T2 in epilepsy. Am J Neuroradiol 18:1791Y1792,

1997

4. Evelhoch JL: Key factors in the acquisition of contrast

kinetic data for oncology. J Magn Reson Imaging 10:254Y259,

1999

5. Li KL, Zhu XP, Waterton J, Jackson A: Improved 3D

quantitative mapping of blood volume and endothelial perme-

ability in brain tumors. J Magn Reson Imaging 12:347Y357,

2000

6. Bluml S, Schad LR, Stepanow B, Lorenz WJ: Spin-lattice

relaxation time measurement by means of a TurboFLASH

technique. Magn Reson Med 30:289Y295, 1993

7. Rex DE, Ma JQ, Toga AW: The LONI pipeline

processing environment. NeuroImage 19:1033Y1048, 2003

CREATION OF DICOM—AWARE APPLICATIONS USING IMAGEJ 99

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

