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Despite the continued spread of magnetic resonance
imaging (MRI) methods in scientific studies and clinical
diagnosis, MRI applications are mostly restricted to high-
resolution modalities, such as structural MRI. While
perfusion MRI gives complementary information on
blood flow in the brain, its reduced resolution limits its
power for detecting specific disease effects on perfusion
patterns. This reduced resolution is compounded by
artifacts such as partial volume effects, Gibbs ringing,
and aliasing, which are caused by necessarily limited k-
space sampling and the subsequent use of discrete
Fourier transform (DFT) reconstruction. In this study, a
Bayesian modeling procedure (K-Bayes) is developed for
the reconstruction of perfusion MRI. The K-Bayes
approach (described in detail in Part II: Modeling and
Technical Development) combines a process model for
the MRI signal in k-space with a Markov random field
prior distribution that incorporates high-resolution seg-
mented structural MRI information. A simulation study
was performed to determine qualitative and quantitative
improvements in K-Bayes reconstructed images com-
pared with those obtained via DFT. The improvements
were validated using in vivo perfusion MRI data of the
human brain. The K-Bayes reconstructed images were
demonstrated to provide reduced bias, increased preci-
sion, greater effect sizes, and higher resolution than
those obtained using DFT.
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INTRODUCTION

I n vivo magnetic resonance imaging (MRI) of
the human brain is proving to be a leading

imaging modality for ascertaining the mechanisms
of neurodegenerative disease progression such as
Alzheimer’s disease (AD), multiple sclerosis, and
other brain diseases/injuries1–4. To date, the pri-
mary application of MRI has been to determine
disease-related anatomical changes observed using
structural MRI. Consistent volumetric changes

have been detected that correlate with neurode-
generative disease, e.g., reduced hippocampal and
entorhinal cortex volumes in AD3. In addition, a
wide range of innovative and quantitative MRI
measurements of cerebral perfusion, diffusion,
metabolite concentrations, and neural activation
promise to reveal functional changes that accompa-
ny neurodegenerative disease. An underutilized
advantage of MRI over other imaging modalities
is that a range of physiologic measurements can be
obtained non-invasively for a single subject from
the same scanner and during the same scanning
session.
In particular, perfusion MRI provides a means to

determine blood flow alterations in the human
brain and potentially to detect effects specific to
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particular brain diseases or injuries. However, the
conventional reconstruction approach (for perfu-
sion MRI) of discrete Fourier transform (DFT) is
limited in terms of accuracy, precision, and
resolution. These limitations lead to poor sensitiv-
ity and specificity when estimating the clinical
effects of neurodegenerative diseases, psychiatric
diseases, and brain injuries. There are two funda-
mentally different but related reasons why DFT
produces reduced quality reconstructions. One
reason is that the DFT reconstruction approach is
unable to utilize complementary anatomical infor-
mation available from high signal-to-noise-ratio
(SNR) structural MRI. The second reason is that
the limited SNR of perfusion MRI effectively
restricts data acquisition to a small set of low spatial
frequency signals, i.e., the center of “k-space”. The
K-Bayes reconstruction procedure deals effectively
with these issues, thereby increasing the accuracy,
precision, and resolution of perfusion MRI recon-
structions. The K-Bayes model, DFT, and k-space
are described in detail in Part II.

ASL Perfusion MRI

Arterial spin labeling (ASL) perfusion MRI
(hereafter referred to as perfusion MRI) uses blood
water as an endogenous tracer for cerebral blood
flow. Perfusion MRI suffers from poor SNR
because labeled blood water is only a tiny fraction
(1–3%) of the overall MRI water signal from the
brain. In order to compensate for the lower SNR,
perfusion MRI is typically acquired with reduced
spatial resolution compared with structural MRI.
Perfusion MRI is typically acquired at a resolution
of several millimeters compared to 1 mm for
structural MRI; it therefore lacks positional (i.e.,
anatomical) specificity. An additional complication
arises from the different perfusion values of gray
matter and white matter. Perfusion of gray matter
is usually two to three times higher than that of
white matter5 and is close to zero in cerebrospinal
fluid (CSF) and zero outside the brain. The poor
spatial resolution of perfusion MRI introduces
gray/white matter partial volume effects and,
consequently, a bias towards lower perfusion
estimates in gray matter close to white matter
boundaries, complicating interpretation as to
whether low perfusion reflects disease or is simply
an artifact of the underlying tissue structure.

For these reasons, it is crucial to develop improved
reconstruction methods capable of enhancing perfu-
sion MRI image quality and resolution.

Advanced Bayesian (and Non-Bayesian)
Reconstruction Approaches

While the conventional DFT method offers a
convenient approach to reconstruct MRI data, it is
considerably less sensitive to the phenomena we
observe in perfusion MRI (i.e., blood flow) than
those we observe in structural MRI. This deficiency
calls for more sensitive reconstruction techniques
such as those provided by Bayesian image analysis6,
in particular the K-Bayes method proposed here.
Reconstruction procedures using Bayesian image

analysis are already the norm in many areas of
imaging (e.g., computer vision, motion tracking) and
are starting to be applied increasingly in medical
imaging7,8 and MRI9–12. The art of Bayesian
modeling is to develop prior models that characterize
key aspects of available prior information to be
combined with the information in the data. In fact,
standard reconstruction methods based on likelihood
theory (such as DFT) can (loosely) be thought of as a
special case of a Bayesian model where there is no
informative prior information.
The Bayesian formulation is particularly useful

for combining information from multiple sources.
There is a recent body of literature on combining
information from different medical imaging mo-
dalities. Chen et al.13 provide a general method for
fusing images from different modalities using an
edge detection prior for identifying structural
boundaries. The detection of edges between
neighboring pixels turns off the a priori modeled
smoothness between them (using Markov random
fields, MRFs). This approach has spawned consid-
erable research in applications to human brain
imaging, in particular for emission computed
tomography8,14,15. Other methods have been de-
veloped specifically for improving MRI resolution
using Bayesian image analysis. For example, Hurn
et al.10 propose a simultaneous Bayesian recon-
struction and tissue classification method that
reconstructs multiple MRI modalities to a common
high resolution. The tissue classification informa-
tion is used to impose smoothness on the recon-
struction through the use of MRFs. The approach
is not specifically designed for the reconstruction
of low-resolution k-space data (such as that from
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perfusion MRI) and is not a “true” reconstruction
approach in the sense that it is only applied to data
after DFT. It is therefore subject to artifacts
associated with DFT when applied to perfusion
MRI. Miller et al.16 describe a likelihood-based
method for reconstructing structural MRI from raw
k-space data. However, the procedure was not
designed to improve the reconstruction of low-
resolution data and does not incorporate prior
information. The method is extended in Schaewe
and Miller17 to incorporate a MRF prior model that
encourages smooth image reconstructions. How-
ever, this prior is limited by not varying smooth-
ness levels according to whether neighboring
voxels are of the same tissue type or not.
Furthermore, images are only reconstructed to the
same resolution that would be obtained by DFT.
Denney and Reeves18 have developed a Bayesian
approach for magnetic resonance spectroscopy
imaging reconstruction (that could also be applied
to other MRI modalities) that models the data in k-
space and utilizes an edge-preserving prior. They
use spectrally integrated estimates of the metabo-
lites at each k-space point as raw data. However,
the edge-preserving prior they adopt does not
utilize tissue class information. A number of
papers19–22 develop non-Bayesian approaches to
improving the resolution of MRI data with tissue
classification information. The basic idea is to
utilize basis functions that are motivated by tissue
classifications in order to smoothly represent signals
within homogeneous tissue areas. Because it needs
to be kept sparse (either by limiting the size of the
basis set or by penalizing selection from a larger
basis set), the basis function representation restricts
the potential set of reconstructions.
To the best of the authors’ knowledge, the K-

Bayes approach presented here represents the first
attempt to combine a k-space signal modeling
approach with a tissue classification prior within the
Bayesian paradigm. The Bayesian approach provides
a natural framework within which to balance the
perfusion and anatomical information sources by
quantifying them with probability distributions and
combining them using Bayes’ theorem.

METHODS

Our K-Bayes reconstruction procedure aims to
improve both spatial resolution and image quality

by overcoming the inherent limitations of DFT
reconstruction. These improvements are achieved
by incorporating high-resolution anatomical prior
information to supply constraints for the physio-
logical MR process while simultaneously relating
the physiologic image to be reconstructed to the
sampled k-space data points.

Incorporating Anatomical Information
from Structural MRI (the Prior Distribution)

Structural MRI generates high-resolution maps
that reveal local contrast between different types of
tissue. These maps can be used to provide a priori
anatomical constraints for the reconstruction of
perfusion MRI. Structural MRI yields information
at high spatial resolution owing to the abundance
of water in the brain. The high density of free
hydrogen in water generates good SNR and
contrast-to-noise ratio (CNR). The human brain
consists mostly of gray matter (neuronal cell
bodies), white matter (axons), and CSF, which
are distinguished readily with structural MRI due
to differences in water concentration. The good
CNR between these tissue types in structural MRI
allows tissue classification of the corresponding
anatomical information using available segmenta-
tion algorithms9,23–26. The segmented anatomical
image is employed as prior information for the K-
Bayes reconstruction of perfusion MRI.

RESULTS

k-Space Simulation

Studies of simulated data were performed to
compare K-Bayes with conventional DFT-based
reconstruction approaches under controlled cir-
cumstances. Simulated datasets were generated
using a version of the Montreal Neurological
Institute (MNI) brain27 that had been segmented
into gray matter, white matter, and CSF at 128×
128 resolution, along with the signal model
developed in Part II of this paper. Figure 1 shows
a simplified outline of how the data were simulated
to mimic real perfusion MRI data.
The perfusion MRI signal was simulated with

intensity in typical proportions of 2.5 (gray
matter) to 1 (white matter)5. A relatively small
and slowly varying quadratic spatial trend was
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added to the white matter signal to provide
smooth heterogeneity. Smoothing was also ap-
plied across the tissue boundaries to simulate a
‘bleeding effect’. Next, a hotspot of increased
signal was added within the white matter region
at a level equal to the original intensity of the
white matter. The hotspot allowed testing of
whether the prior information would cause the
K-Bayes procedure to smooth away the effects of
interest when they did not correspond to anatom-
ical boundaries (i.e., to test whether K-Bayes was
robust to information that did not match prior
expectations). The resulting map was utilized as
gold standard high-resolution data. To form raw
k-space data, the map was discrete Fourier-trans-
formed into k-space and the central 32×32 region
was cut out (to simulate low-resolution data).
Finally, simulated complex Gaussian noise was
added to the data with a standard deviation
corresponding to half the intensity of the white
matter signal in image space. This noise level
was chosen to produce a conservatively low SNR
level with which to test K-Bayes. The simulated
data had an average in-brain SNR level of 3.5,
which should correspond to that of a typical

volume coil used for imaging at 1.5 Tesla28. The
simulated k-space and original segmentation data
(i.e., tissue type information) became the input to the
Bayesian algorithm. A conventional zero-filled DFT
(zDFT) reconstruction was also obtained by placing
the 32×32 k-space data at the center of a larger 128×
128 array and filling with zeros elsewhere. This
process was repeated for a Hamming windowed
dataset, hereafter referred to simply as “Hamming”.

Statistical Metrics for Validation

To quantitatively evaluate K-Bayes reconstruc-
tion relative to zDFT, a range of statistical metrics
were used. In order to set up the notation for the
metrics, a gold standard image is defined to be y
and an estimate of y (e.g., K-Bayes or zDFT) to be
x. Then, for an image with N voxels, i=1,…,N, the
metrics considered are:

1. Bias: 1
N

PN
i¼1

yi � xið Þ. This describes the average

deviation from the truth, i.e., it determines whether
there is a trend for the reconstruction to under- or
overestimate. However, bias imparts no informa-
tion about the magnitude of the deviations.

Fig 1. Procedure for generating simulated data. The high-resolution (128×128) gray/white matter segmented map was taken from the
MNI dataset. Different levels of signal were generated within each tissue type; ratio of 2.5:1 gray/white. A hotspot plus a slight
quadratic trend were added to the white matter and the whole map was spatially smoothed. The map was then transformed by DFT to k-
space, Gaussian noise was added, and the center 32×32 region of k-space was cut out. This reduced k-space dataset formed the low-
resolution simulated dataset used in the K-Bayes reconstruction along with the gray/white mask.
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2. Root mean square error (RMSE):ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1

yi � xið Þ2
s

. This estimate of the square

root of the mean square residual size measures
the average size of deviation from the truth.

3. Gray/white effect size:

xG�xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var xGð Þþvar xWð Þ=

ffiffi
2

pp ,
where �xG , var(xG) and

�xW , var(xW) are the mean and standard devia-
tions of the signal of in gray and white matter
voxels, respectively. This metric (closely relat-
ed to CNR) quantifies the differentiability
between the signals of gray and white matter.
This metric has an advantage that it can be
applied in the absence of a gold standard.

2D Simulation Results

Figure 2 shows the 128×128 true simulated
perfusion map and the K-Bayes, zDFT, and
Hamming reconstructions. There was considerable
visual improvement in the K-Bayes reconstruction
compared with zDFT. K-Bayes had increased
definition and reduced ringing. The Hamming

reconstruction also reduces ringing compared with
zDFT, but blurs the results, effectively reducing
resolution.
Figure 3 displays the corresponding K-Bayes,

zDFT, and Hamming windowed residuals from the
truth. The real part of the noise was also added into
the images to allow a comparison between the
magnitude of the residual pattern and the noise
level. The K-Bayes reconstruction exhibits visually
reduced residual error compared to zDFT or
Hamming. There is little or no visible pattern in
the K-Bayes residuals, which blend into the noise.
In contrast, the zDFT and Hamming residual
patterns reveal considerable structure correlated
with the true signal map that was obviously not
captured by these reconstruction procedures.
Quantitative differences based on statistical

metrics between K-Bayes, zDFT, and Hamming
are given in Table 1. Hamming performed worse
than K-Bayes and zDFT with respect to all
metrics, except white matter bias where it per-
formed better than zDFT but worse than K-Bayes.
Therefore, only K-Bayes and zDFT results are
further summarized here.
K-Bayes showed considerable improvement in

gray and white matter bias compared with zDFT,
implying that the levels in gray and white matter
were more accurately reconstructed. In particular,
notice that zDFT reduced the gray matter signal by
0.4 (a 15% signal loss), whereas with K-Bayes, the
signal dropped by 0.05 (only a 2% signal loss).
These reductions in bias are critically important for
clinical perfusion studies where average changes
across subjects in gray and white matter regions
are assessed separately. There was approximately a
35% reduction in RMSE from 0.39 to 0.25 for the
K-Bayes reconstruction relative to zDFT, and the
gray/white effect size increased fourfold from 0.65
for zDFT to 2.42 for K-Bayes. K-Bayes performed
better than zDFT with respect to RMSE in the
hotspot, but not as well as zDFT with respect to
hotspot bias. At first glance, it appears surprising
that K-Bayes would do better in the hotspot with
respect to any metric because the hotspot is a
pattern not related to anatomical boundaries.
However, zero filling in zDFT interpolates voxels
in standard space and thus imposes smoothness
constraints that may be more severe and extend
over a larger and more arbitrarily determined
region than those from the K-Bayes MRF prior.
Furthermore, the improved reconstruction provid-

Fig 2. Results of reconstructions for 2D data: Truth (the high-
resolution version of the simulated process in image space), K-
Bayes, zDFT, and Hamming reconstructions. The K-Bayes
reconstruction provided a visually improved representation of
the truth compared with zDFT or Hamming.
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ed by K-Bayes for areas where anatomical guid-
ance is directly useful may indirectly help in other
regions, thereby reducing RMSE in the hotspot; if
part of the full perfusion signal has been correctly
apportioned spatially, then there is less room for
error in the non-anatomically related signal (e.g.,
that coming from the hotspot).
These results demonstrate that in the simplest

2D case, K-Bayes can quantifiably improve image
quality over zDFT by increasing accuracy, preci-
sion, and resolution while simultaneously reducing
artifacts (under the assumption that the a priori
tissue constraints are correct).

3D Simulation

The 3D volume simulations were performed as
for the 2D simulation except that the dataset
consisted of multiple slices (representing multi-
slice acquisition). The slices covered the complete
MNI brain with four structural MRI slices
corresponding to a single perfusion MRI slice.
The reconstructions of 3D K-Bayes and zDFT for

the 128×128×128 volume are displayed in Figure 4.
Four adjacent slices of the high-resolution simulated
truth are shown alongside the corresponding four
reconstructed slices from K-Bayes and Hamming

windowed zDFT. The K-Bayes reconstruction not
only provides much sharper definition than the zDFT
reconstruction but also allows for variable changes in
spatial pattern across the finer width MRI slices. For
zDFT, the best that could be done was to interpolate
the slices. Table 2 displays quantitative summaries
for the 3D simulation study. Gray matter bias was
reduced by 60% for K-Bayes compared with zDFT,
though white matter bias was almost 50% higher in
K-Bayes. Hamming had even better white matter
bias than zDFT and K-Bayes, but considerably
worse gray matter bias. The apparent improvement
in white matter bias for the DFT-based approaches is
likely artifactual, the chance consequence of two
competing errors. First, there is a tendency for partial
volume effects to merge signal between gray and
white matter, thereby increasing the white matter
level and reducing the gray. Second, the lack of
signal outside the brain causes partial volume effects
that reduce the white matter signal, to some degree
canceling the first error. K-Bayes reduces the
influence of the first partial volume effect because
only light smoothness is modeled across gray/white
boundaries. However, K-Bayes is not as susceptible
to the second partial volume effect because of the
strong prior modeling of a lack of signal in non-brain
tissue. Thus, there is no competing error effect in K-

Table 1. Statistical Comparison of the Reconstruction Procedures for the 2D Simulated Perfusion MRI Reconstructions

GM bias WM bias RMSE Effect size Hotspot bias Hotspot RMSE

K-Bayes −0.050 0.034 0.25 2.42 −0.083 0.19
zDFT −0.406 0.057 0.39 0.65 −0.033 0.22
Hamming −0.677 0.039 0.49 0.00 −0.320 0.34

Metrics of gray matter (GM) bias, white matter (WM) bias, RMSE, gray/white effect size, hotspot bias, and hotspot RMSE are presented
for each reconstruction technique. K-Bayes provided the best results for all measures except hotspot bias

Fig 3. Maps of residuals from the high-resolution truth (with associated added noise). The K-Bayes residuals show reduced pattern
relative to zDFT reconstruction, blending into the noise level. This implies that K-Bayes is performing considerably better than zDFT in
fitting the true signal pattern.
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Bayes. Furthermore, the RMSE drops from 0.47 for
the DFT reconstruction down to 0.28 for the K-
Bayes estimate, showing that K-Bayes reduced the
“average” error by over 25%. The hotspot bias and
RMSE were both considerably reduced with K-
Bayes relative to zDFT or Hamming.
In summary, the simulation studies showed

qualitatively and quantitatively that posterior esti-
mates of maps based on maximizing the posterior
distribution generally produced much improved

reconstructions over those obtained using zDFT.
K-Bayes produced reconstructed images that better
resembled the truth, with reduced Gibbs ringing
and noise.

Real Perfusion MRI Reconstruction

K-Bayes reconstruction was performed on 4 Tes-
la perfusion MRI data to demonstrate feasibility in
real applications. Figure 5 displays the procedures

Fig 4. 3D simulations: true maps, K-Bayes, zDFT, and Hamming windowed zDFT reconstructions for a set of four slices at the higher-
resolution of structural MRI. Visually, K-Bayes reconstruction does a much better job of reproducing the truth and nicely captures
changes over the four slices.

Table 2. Statistical Comparison of the Reconstruction Procedures for the 3D Simulated Perfusion MRI Reconstructions

GM bias WM bias RMSE Effect size Hotspot bias Hotspot RMSE

K-Bayes −0.25 0.119 0.28 1.69 −0.18 0.24
zDFT −0.62 0.081 0.47 0.12 −0.22 0.30
Hamming −0.78 0.033 0.56 0.28 −0.44 0.47

K-Bayes provided the best results for all measures except WM bias
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used to perform and evaluate the different recon-
struction techniques. Institutional Review Board
approval had been obtained for this data which
was acquired as part of a larger study.
The original perfusion data were acquired with

32×64 resolution using a continuous ASL se-
quence, were zero-filled to 128×128, and inverse
discrete Fourier-transformed to generate a pseudo-
gold standard map. zDFT was then applied to the
pseudo-gold standard magnitude map, providing
zero-filled and phase-corrected k-space data. The
central 16×16 region was then cut out to create a
reduced resolution k-space dataset. A simulta-
neously acquired 128×128 structural MRI was
registered and re-sliced to match the perfusion
data. The co-registered structural MRI was then
segmented into gray matter, white matter, and CSF
for input into K-Bayes. The 16×16 perfusion MRI
dataset was reconstructed using K-Bayes, zDFT,
and Hamming. Each reconstruction was then
compared to the gold standard using the statistical
metrics of bias, RMSE, and gray/white effect size.
The results of the different reconstructions are

shown in Figure 6. K-Bayes clearly provides the
best visual reconstruction of the three approaches.
It presents the most contrast and captures more of
the gold standard structure. The numerical com-
parisons in Table 3 indicate that K-Bayes improves
over the other methods for all metrics. In partic-
ular, bias is around one fourth of that for zDFT,
and the gray/white effect size is 50% higher. The
RMSE did not show the level of improvements for
K-Bayes that were observed in the simulation

studies. We believe that there are two reasons for
this. First the (pseudo) gold standard is expanded
via zero filling from a small enough region of k-
space such that it contains artifacts of Gibbs
ringing and aliasing. K-Bayes reconstruction of
the further reduced dataset does not reproduce
these artifacts, whereas the zDFT reconstruction
does. Therefore, the RMSE of zDFT would
increase and that of K-Bayes would decrease when

Fig 5. Real perfusion MRI analysis: high-resolution (32×64) perfusion MRI map is discrete Fourier-transformed into k-space and the
center 16×16 region is cut out. The reduced k-space data are reconstructed using K-Bayes to high resolution (128×128). The K-Bayes
reconstruction is then compared with a zDFT reconstruction from the 16×16 data. Gold standard is the 32×64 perfusion MRI map
interpolated to 128×128.

Fig 6. Reconstructions from K-Bayes, zDFT, and zDFT of
Hamming windowed data. K-Bayes provides the most detailed
reconstruction and recaptures many higher resolution features
lost in the DFT-based reconstruction.
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compared to a true gold standard that did not
contain Gibbs ringing and aliasing artifacts. Sec-
ond, K-Bayes reduces noise that exists in the gold
standard. Unlike the simulation study, the gold
standard here contains noise. A definitive evalua-
tion would require high-resolution and low-noise
perfusion MRI to be used as a gold standard, but
this is currently not available as a standard
acquisition procedure.

Computation Time

Computation was performed with a Dell Preci-
sion 370 desktop computer running RedHat Enter-
prise Linux 4.0 on a single 3.20 GHz Pentium 4
processor using c-code. Complete convergence of
the EM algorithm (to machine tolerance) for single
slice data required less than 1 h. Three-dimension-
al reconstruction took on the order of 1 day to
reach reasonable convergence (i.e., there were no
fundamental differences in the reconstruction or
statistical metrics if the algorithm was continued).
These reconstruction times can be drastically
reduced through parallelization, which is compu-
tationally trivial for the EM procedure. We found
that parallelization yields almost linear speed up
with the number of processors.

Discussion

Although perfusion MRI has great potential for
aiding clinical applications including diagnosis and
surgical intervention, it has not been attainable
with the high SNR of structural MRI. Hence,
perfusion MRI has necessarily been acquired at
low spatial resolution, limiting its scientific and
clinical application. The K-Bayes reconstruction
procedure boosts the effective resolution of perfu-
sion MRI by utilizing information from the high-
resolution structural MRI. K-Bayes capitalizes on
the knowledge that the perfusion process is to
some degree constrained to the same tissue

boundaries visible with high-resolution structural
MRI.
The simulation studies and real data analysis

presented here have shown that posterior estimates
of maps based on maximizing the posterior
distribution yielded much improved reconstruc-
tions over those obtained using standard DFT
methods. The K-Bayes reconstructions better re-
sembled the truth, with much reduced Gibbs
ringing and noise and improved statistical metrics.
The improved accuracy, precision, and resolution
afforded by K-Bayes reconstruction has the poten-
tial to push perfusion MRI into mainstream
research of neurodegenerative and other brain
diseases, providing significant advances in diag-
nosis and treatment evaluation. There is evidence
to believe that perfusion effects precede structural
effects in neurodegenerative disease progression29.
Therefore, perfusion MRI could find applications
as a biomarker for treatment effects in early
disease as well as ultimately provide a method
for early disease detection and screening.
Additional steps are needed before K-Bayes can

be used routinely for perfusion MRI reconstruc-
tion. First, the robustness of K-Bayes to segmen-
tation errors and to misregistration between
structural and perfusion scans need to be assessed.
The co-registration and segmentation of brain MRI
are imperfect procedures in which errors inevitably
occur. Quality control guidelines need to be
developed that incorporate acceptable levels of
misregistration and segmentation error. Further-
more, K-Bayes prior models could be developed
with increased flexibility to account for registra-
tion segmentation uncertainty.
Secondly, known perfusion effects across pop-

ulations need to be validated and demonstrated to
be observable with improved statistical power.
This will require the validation of K-Bayes against
specially acquired high-resolution gold standard
datasets and application of K-Bayes to one or more
large clinical studies. These points are the focus of
ongoing work by the authors.

Table 3. Statistical Comparison of the Reconstruction Procedures for the Real Perfusion MRI Reconstructions

GM bias WM bias RMSE Effect size

K-Bayes −0.009 0.006 0.108 1.7
zDFT −0.038 0.022 0.110 1.3
Hamming −0.150 0.050 0.140 0.8

K-Bayes provided the best results for all measures: having the smallest bias, RMSE, and largest effect size
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